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Machine learning researchers distinguish between reinforcement learn-
ing and supervised learning and refer to reinforcement learning systems 
as “agents”. This paper vindicates the claim that systems trained by re-
inforcement learning are agents while those trained by supervised learn-
ing are not. Systems of both kinds satisfy Dretske’s criteria for agency, be-
cause they both learn to produce outputs selectively in response to inputs. 
However, reinforcement learning is sensitive to the instrumental value 
of outputs, giving rise to systems which exploit the effects of outputs on 
subsequent inputs to achieve good performance over episodes of interac-
tion with their environments. Supervised learning systems, in contrast, 
merely learn to produce better outputs in response to individual inputs.
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1. Introduction
One of the most powerful ideas in modern philosophy of mind is that 
an entity’s origins can ground standards of success or evaluation to 
which its activities are subject. The relevant origins here are histories 
of learning or selection. This idea builds on the claim from philosophy 
of biology that selective history grounds biological function (Garson 
2016) and has been prominently used in theories of representation (e.g. 
Millikan 1984, Papineau 1993, Shea 2018), as well as in teleofunctional 
theories of mental states (Sober 1985, Lycan 1987). In the theory of rep-
resentation this idea helps to explain the correctness conditions which 
are deeply connected with meaning. In teleofunctionalism it helps to 
explain the fact that mental states and processes stand in normative 
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relations to one another—for instance, that it is part of the function of 
desires to cause motivation to act in combination with beliefs.

This idea may also be used in analysing agency. Agents engage 
in activity which is purposeful, functional, or otherwise governed by 
norms or standards, and their etiologies may ground these features. 
Glaciers interact with their environments but they are not agents be-
cause this activity is not governed by standards of correctness or evalu-
ation. There is no sense in which glaciers aim to, or are supposed to, 
meet any such standards. Living organisms, in contrast, are at least 
candidates for agency, because much of their activity is purposeful or 
functional. I will say that agents engage in “norm-governed” activity, 
using the word “norm” very broadly to refer to non-arbitrary standards 
of correctness or of better or worse performance. Norm-governed ac-
tivity is a necessary but not suffi cient condition for agency, because 
the heart—for example—engages in activity which can be more or less 
successful according to its biological function, but the heart is not an 
agent. So agency is a species of which norm-governed activity is the 
genus.

Another way to see the point that agency is norm-governed is to 
start from the idea that agents pursue goals. If this is the case, agents’ 
activity can be evaluated according to whether it helps to achieve their 
goals. Having a goal and having a function are two different ways to 
be subject to norms. In this paper, I will suggest that to have a goal, 
and thus to be an agent, it is necessary to have a history of learning or 
selection of a particular kind. Histories of this kind are made possible 
by certain capacities, and make others possible in turn. I will focus on 
formulating my claim in the context of a particular case; more work 
will remain to test the claim in other contexts.

My discussion will focus on the case of machine learning and in 
particular on the distinction between reinforcement learning and su-
pervised learning. Machine learning researchers standardly refer to 
entities which undergo reinforcement learning as “agents”, and rein-
forcement learning algorithms are designed to solve problems of the 
same general form of those which face biological agents (Sutton and 
Barto 2018). Furthermore, concepts and algorithms from reinforcement 
learning research are now widely used to explain value learning and 
action selection in humans and other animals (Niv 2009, Dolan and 
Dayan 2013). So it is natural and plausible to associate reinforcement 
learning with agency. In contrast, there are many systems trained by 
supervised learning, such as image classifi ers, spam fi lters and trans-
lation tools, which do not seem to be agents. I will suggest an account of 
agency which vindicates these initial impressions, on the grounds that 
reinforcement learning is an example of the kind of process which gives 
rise to goals, but supervised learning is not.

This paper is therefore concerned with minimal agency—with the 
most basic distinction between those entities which are agents and 
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those which are not. It contrasts with much philosophical research 
on agency, which is concerned with the subtleties of human agency. 
Humans make plans, collaborate with others, experience emotions, 
and refl ect on our own motives and choices, but none of these features 
seems to be essential to agency. I will start from a theory of minimal 
agency developed by Fred Dretske (1985, 1988, 1993, 1999), partly be-
cause it is abstract enough to be applied to the cases I am concerned 
with. I will set aside alternative approaches to minimal agency which 
are more specifi cally focused on the biological domain, such as those by 
Barandiaran et al. (2009) and Burge (2009).

In much of the paper I will not discuss the normative aspect of 
agency explicitly. After presenting Dretske’s theory I will criticise it 
on the grounds that it implies that supervised learning-trained image 
classifi ers are agents (section 2). I will then examine the differences 
between supervised learning and reinforcement learning, and propose 
a modifi cation to Dretske’s account, in section 3. In section 4 I will il-
lustrate and elaborate on my proposal by discussing further examples 
of machine learning. In section 5, however, I will return to the idea 
that agency arises from histories of a particular kind, which give rise 
to entities which have goals and are consequently subject to associated 
norms. I will reformulate my proposal in these terms, building on the 
claim that natural selection gives rise to traits with biological func-
tions.

2. Dretske’s theory of agency
According to Dretske (1993, 1999), action is behaviour “controlled” or 
“governed” by thought. His account of agency forms part of his ambi-
tious and elegant theory of intentionality and mental causation, which 
is presented in Explaining Behavior (1988) and several associated ar-
ticles. One central claim of the account is that learning is necessary 
for agency. This learning must establish a structure in which a form 
of behaviour is produced selectively in response to features of the envi-
ronment, through the operation of an internal state of the system. This 
internal state must be correlated with a feature of the environment, 
and must cause the behaviour partly in virtue of this correlation. That 
is, for some output of a system of type B to be an action, the following 
conditions must be met:
i. Internal states of the system of some type R are correlated with a 

feature of the environment E.
ii. The system learns to produce outputs of type B when in R-states.
iii. This learning happens in part because R-states are correlated with 

E.
For a system as a whole to be an agent, it must perform actions; a token 
output of type B is an action when it is caused by an internal state of 
type R through the route established by learning.
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For example, consider a bird which learns to eat red pellets. For 
this to happen, the bird must have a visual system which enters a state 
of a certain kind when red pellets are in its fi eld of view. If it pecks at 
and eats red pellets in the course of exploring its environment, and 
this behaviour is rewarded (e.g. because the pellets are palatable), it 
may learn to eat them selectively. This will involve a causal connec-
tion being formed between the visual system state that is correlated 
with red pellets and the behaviour of pecking and eating. This process 
will result in an arrangement which satisfi es Dretske’s conditions, and 
hence, according to Dretske, in the bird’s becoming disposed to perform 
the action of eating red pellets.

In this case, the visual system state would not merely carry infor-
mation about the presence of red pellets, but would come to be used as 
an indicator of red pellets. For Dretske, this means that it would come 
to represent the presence of red pellets. Alternatively, as he also puts 
it, it means that being in this internal state would amount to the bird’s 
“thinking”, or “believing”, that red pellets are before it.

This “thought” or “belief ” would then cause the behaviour of peck-
ing and eating. For Dretske, a crucial point is that it would cause this 
behaviour in virtue of its content (behaviour being caused by thought is 
not enough, because this could happen without content being relevant). 
This would be the case because the correlation between the state and 
the presence of red pellets—the relation that underlies content—would 
have been a contributing cause of the connection’s being established be-
tween the state and the behaviour. We would have a case of behaviour 
governed by thought, and therefore of agency.

As an infl uential account of content, mental causation and agency 
this picture has naturally been criticised.1 One important criticism of-
fered by Dennett (1991) is that it is not clear why the relationship be-
tween environmental conditions, internal states and behaviours must 
be established by learning rather than by evolution or design. A simple 
but unsatisfying response is that plants and simple artifacts would 
count as agents without the learning requirement. Thermostats are 
constructed so as to have internal states which correlate with low tem-
peratures, which cause heating-activation outputs. The scarlet gilia, 
a plant which Dretske (1999) uses as an example, has fl owers which 
change colour at the height of summer. It must therefore have some 
internal state which is correlated with the season, which is a proximal 
cause of this change. But in neither case is it appealing to say that the 
system is an agent, or that its output is “governed by thought”. Some 
further justifi cation might be achieved by saying that agents must be 
“autonomous” in the sense of Russell and Norvig (2010)—that is, that 
they must have a degree of independence from the knowledge of their 
designers, or more generally from the information which contributed to 
their initial forms. There is more to be said to fully justify the learning 

1 For criticisms which I will not discuss here, see Hofmann and Schulte (2014).
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requirement, but here I will grant Dretske the point, in order to con-
centrate on a different feature of his theory.

I claim that Dretske’s theory is insuffi ciently demanding because it 
entails that certain supervised learning-trained systems are agents.2,3 
For example, consider AlexNet (Krizhevsky et al. 2012), an image clas-
sifi er using a deep convolutional neural network which was one of the 
defi ning advances of the development of deep learning. AlexNet is 
trained to label images as belonging to one of 1000 categories, in the 
following way. First an image is drawn from the training set and given 
to AlexNet as an input. This causes the network to produce some out-
put, which takes the form of an assignment of probabilities to each of 
the categories. The correct label is provided, and the system uses gradi-
ent descent and backpropagation to adjust the network weights. This 
process is then repeated with further images from the training set, and 
the adjustments gradually increase the likelihood that the network 
will assign the highest probability to the correct label.

This may reasonably be described as a process of learning. The sys-
tem undergoes endogenous, systematic changes in response to feed-
back which improve its performance, and it does so because it has been 
designed to change in this way. Furthermore, this learning seems to 
result in a situation which satisfi es Dretske’s criteria. After it has re-
ceived some training, patterns of node activation in AlexNet will be 
correlated with type of input image—there may be some particular 
pattern correlated with images of pandas, for example. These patterns 
will cause AlexNet to produce particular kinds of outputs. The “panda” 
pattern will cause outputs which assign high probability to the “pan-
da” category, and low probability to other categories. This situation 
will arise because the “panda” patterns are correlated with images of 
pandas, so weight combinations through which these patterns cause 
“panda” outputs will tend to be preserved. So AlexNet learns to produce 
outputs selectively in response to features of its environment, via inter-
nal states which indicate these features.

This is a problem for Dretske’s account because AlexNet does not 
pursue any goal, and is not naturally described as an agent. It per-
forms the function of classifying images, but not every entity which 
performs a function is an agent (as illustrated by the case of the heart). 
In the next section I will contrast supervised learning with reinforce-
ment learning, which will allow me to give a more detailed analysis of 
this case.

2 Strikingly, Dretske (1993) writes that genuine artifi cial intelligence is 
impossible, because being artifi cial is incompatible with being a product of learning, 
and the latter is necessary for genuine intelligence. This is surprising because he 
mentions learning in connectionist systems in Explaining Behavior.

3 “Systems” here refers to particular implementations of algorithms—in this case, 
algorithms generated by the operation of implementations of further, supervised 
learning algorithms. Throughout this paper, when I suggest that artifi cial systems 
could be agents, my claim concerns implementations, not algorithms.



356 P. Butlin, Machine Learning, Functions and Goals

3. Supervised learning, reinforcement learning and 
agency
Machine learning problems and techniques are generally taken to be-
long to one of three classes: unsupervised learning, supervised learning 
and reinforcement learning. I consider only the latter two here, leav-
ing unsupervised learning aside. In this section I describe supervised 
learning and reinforcement learning, then identify a difference which 
matters for agency.

According to Russell and Norvig’s standard textbook on AI (2010: 
695),

The task of supervised learning is this:
 Given a training set of N example input-output pairs
   (x1, y1), (x2, y2), … (xN, yN),
Where each yj was generated by an unknown function y = f(x), discover a 
function h which approximates the true function f.

AlexNet is an example of a solution to a task of this form, because 
there is some function which takes each image in a labeled set to the 
correct label. An artifi cial neural network such as AlexNet can be seen, 
at each stage of training, as realising whatever function describes the 
transitions it is disposed to make from inputs to outputs. As AlexNet 
is trained this function comes to more closely approximate the true, 
target function.4

There are two noteworthy features of supervised learning which 
help to distinguish it from reinforcement learning. These both arise 
from the form of the training set, as a non-ordered set of input-output 
pairs. First, the feedback which the learning system receives, which 
drives its learning, specifi es the correct output for the input just pro-
vided. Second, the input which is provided on each occasion and the 
correct output for that input are independent of any other actual or 
potential inputs or outputs. In particular, the system’s outputs do not 
affect subsequent inputs.

Russell and Norvig defi ne reinforcement learning as follows (2010: 
830):

The task of reinforcement learning is to use observed rewards to learn an 
optimal (or near optimal) policy for the environment.

Rewards are a form of feedback in which a numerical signal, which 
can have a positive, negative or zero value, is provided to the learning 
system after it produces each output. In reinforcement learning the 
next input (which is called a “state”) depends probabilistically on the 
previous one and the system’s output (called an “action”). The optimal 
policy for the environment is defi ned as that which maximises expected 
cumulative reward.

4 For more on convolutional neural networks such as AlexNet, see Buckner 
(2019).
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Figure 1. Illustration of reinforcement learning from Sutton and Barto (2018).

This arrangement is illustrated in fi gure 1. Here the “agent” is the sys-
tem which undergoes reinforcement learning. At each time-step the 
system receives the state of the environment as input, produces an ac-
tion as output, and receives a reward and an observation of the new 
state. In reinforcement learning environments are made up of transi-
tion functions, which describe the probabilities of new states given pri-
or states and actions, and reward functions, which describe how much 
reward the agent will receive after each action.

An important advance in reinforcement learning from roughly the 
same period as AlexNet combined deep neural networks with a method 
called Q-learning to achieve human-level performance on Atari games 
(Mnih et al. 2015).5 We can call this system DQN (for “Deep Q-Net-
work”). As all reinforcement learning systems do, DQN receives both 
observations of the state of the environment and reward. Observations 
of the state of the environment take the form of maps of pixel values 
making up what would be displayed on a screen for human players, and 
reward is constituted by the game score. Outputs are actions possible 
for human players, such as producing the in-game effect of pressing 
a joystick button. DQN is trained separately on each game, losing its 
capacity to play one when trained on another.

To understand how DQN works, the most important element is the 
Q-learning algorithm. The function Q(s, a) is the action value function 
for the environment, describing how much cumulative reward can be 
expected to follow from taking action a in state s (which also depends 
on the system’s policy, i.e. the actions it will subsequently choose). This 
function is somewhat analogous to the target function f in supervised 
learning, in that a reinforcement learning system will behave optimally 
if it always selects the action that maximises the Q-function for the cur-
rent state. Analogously to AlexNet, DQN’s outputs are determined by 
maximising its current estimate of the Q-function. There is the signifi -
cant difference, though, that DQN is not given the true Q-value for the 
action it has just taken. Instead, it observes only the immediate change 
in the game score. This is very different, because—for example—an ac-

5 The description given here is simplifi ed in signifi cant respects; see Mnih et al.’s 
paper for more details.
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tion may cause no immediate change in the score, and yet be necessary 
to reach a state from which the highest scores are accessible.

Nonetheless, it is possible to use reward feedback to reach an ap-
proximation of the true Q-function. The method is to update estimated 
Q-values in the direction of the temporal difference error, given by the 
following formula:

  R + γ Q(s', a') – Q(s, a)

Here R is the reward, γ is a discount factor, Q(s', a') is the estimated 
value of the best action in the new state, and Q(s, a)—the value to be 
updated—is the estimated value of the action just taken in the previ-
ous state. The effect of this is that credit for rewards is passed back 
through the sequences of actions that lead to them.

Figure 2. Illustration of Q-learning.

For example, consider the partial environment shown in fi gure 2, 
and suppose that the agent receives a high reward in s4. In that case 
the temporal difference error for (s2, a4) is likely to be positive, so the 
agent’s estimate of Q(s2, a4) will be adjusted upwards. When the agent 
next performs a2 in s1, and thus reaches s2, this higher value of Q(s2, a4) 
will again likely mean a positive temporal difference error—because 
this will take the place of Q(s', a') in the formula—so the agent’s esti-
mate of Q(s1, a2) will be boosted. Credit for getting the high reward will 
be distributed back from a4 to a2 (and it could continue to be passed 
back in the same way). This could lead to the system forming a disposi-
tion to perform a2 rather than a3 in s1 even if the latter led to greater 
immediate reward. In this way, the actions in sequences which lead to 
high rewards come to be represented as having high Q-values.

Reinforcement learning differs from supervised learning in each of 
the two features mentioned above. First, the feedback which drives re-
inforcement learning does not specify the correct output for the input 
just received. Instead, it is made up of an observation of the next state 
and a reward signal. Second, the identity of the next state is not in-
dependent of the previous one—instead, it is affected by the previous 
state and the action just performed. This means that reinforcement 
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learning systems engage in interaction with their environments—
these are not just sources of inputs to which they must respond, but 
are also affected by their outputs in ways which affect their inputs 
in turn. In addition to these two features, in reinforcement learning 
there is a measure of success over episodes of interaction, and systems 
are equipped with algorithms which promote good performance on this 
measure. To perform well, in general, a reinforcement learning system 
must do more than just learn which actions yield most immediate re-
ward. It must also learn how to reach states from which high levels of 
reward are available. That is, it must learn to exploit the fact that its 
outputs affect which inputs it will receive.

I propose that reinforcement learning systems are agents because, 
in addition to satisfying Dretske’s conditions, they are capable of in-
strumental behaviour. To behave instrumentally is to produce outputs 
because these outputs contribute to good performance over episodes 
of interaction, such as by making it possible to access later rewards. 
Instrumental behaviour is both possible and necessary for reinforce-
ment learning systems for the reasons just described. In particular, Q-
learning and related methods produce instrumental behaviour because 
outputs come to be selected in virtue of their conduciveness to later 
rewards.

In contrast, AlexNet’s outputs cannot be instrumental because they 
have no effect on subsequent inputs. Even if they did have an effect, the 
learning method employed in AlexNet is not sensitive to sequences of 
inputs, outputs and subsequent inputs, so it could not learn to engage 
in instrumental behaviour. The gradient descent algorithm by which 
AlexNet’s weights are adjusted works by comparing the actual output 
for the current input with the correct output for that input. The feed-
back in supervised learning—that is, the information provided to the 
system which is affected by its outputs and which drives learning—
does not include the identity of the next input. This difference between 
AlexNet and reinforcement learning systems makes sense because for 
AlexNet good performance overall just consists in producing the cor-
rect output for each input. For reinforcement learning systems, what 
makes outputs correct is how they contribute to maximising reward.

This view can be captured by the following claim about agency:
Instrumental view: An entity is an agent if and only if:

i. It produces some of its outputs selectively in response to inputs, as 
a result of a process which includes learning.

ii. This process is sensitive to instrumental value, where this means 
that it is infl uenced by information about input-output-input con-
tingencies and functions to promote a specifi c form of feedback over 
episodes of interaction with the environment.

This view of agency combines two features: instrumentality in behav-
iour, and the learnt selectivity which Dretske describes. These two 
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features appear to be orthogonal, in that AlexNet learns to produce 
outputs selectively, but these are not instrumental, whereas a robot 
programmed to move effi ciently through a specifi c maze would produce 
instrumental outputs without learning. However, it would be a mis-
take to think of my account as made up of separate instrumentality 
and learnt-selectivity conditions. Instead, what is crucial for agency 
is that the learning process is sensitive to instrumental value, so the 
system learns to produce outputs selectively because they contribute to 
good performance over an episode of interaction. One of the examples I 
will discuss in the next section will serve to illustrate this point.

4. More on machine learning
In this section I will discuss a series of further examples involving ma-
chine learning. Subsections 4.1 and 4.2 will cover other varieties of rein-
forcement learning, and add more detail to my account of how this form 
of learning is related to agency. Subsection 4.3 will discuss the possibility 
of using supervised learning to mimic optimal behaviour in a reinforce-
ment learning-style environment; this case will prompt the clarifi cation 
to my view suggested at the end of the last section. Finally, in subsection 
4.4 I will comment briefl y on agency in large language models.

4.1 Varieties of reinforcement learning
In the theory of reinforcement learning, a distinction is often made be-
tween “model-free” and “model-based” methods. The difference is that 
model-based methods involve the system learning and using a repre-
sentation of the transition function, which can also be thought of as a 
model of the environment. Q-learning is a typical example of temporal 
difference learning, which is the most broadly-applicable form of mod-
el-free reinforcement learning. So in this subsection I will comment 
on varieties of reinforcement learning other than temporal difference 
learning, beginning by showing that systems which use typical model-
based methods satisfy Dretske’s conditions for agency and are capable 
of instrumental behaviour.

This claim can be illustrated by considering a model-based algorithm 
called R-Max (Brafman and Tennenholtz 2002). In this algorithm, look-
up tables are maintained which store estimates of the transition func-
tion and reward function for the environment (the use of look-up tables 
means that this method is only suitable for fi nite environments). The 
rows in the transition function table record information about the new 
state which is expected following each action in each initial state, and 
the rows in the reward function table record the reward which is ex-
pected in each state. Actions are selected by exhaustive calculation of 
the cumulative reward of their expected consequences, looking ahead a 
fi xed number of steps, with the action that begins the most rewarding 
sequence being chosen.
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A system using this algorithm would satisfy Dretske’s conditions 
because it would produce outputs selectively as a result of learning. 
After an initial period of exploration, such a system would develop dis-
positions to perform particular actions in particular states because its 
model would imply that these would lead to the greatest cumulative 
reward over the period to which its look-ahead extended. These actions 
would be caused by internal states correlated with states of the en-
vironment, and the causal links between internal states and actions 
would be explained by a combination of learning—which would estab-
lish the agent’s model of the transition function and reward function—
and reasoning—which would be used to select actions on the basis of 
the model.

Furthermore, the system would be capable of instrumental behav-
iour, because it would look ahead more than one step when selecting 
outputs. It would choose the actions which would allow it to maximise 
cumulative reward over multiple steps, meaning that its actions would 
be chosen for their contributions to good performance over episodes of 
interaction. The cases of temporal difference learning and model-based 
reinforcement learning illustrate that instrumental behaviour can 
be generated in different ways—either through learning algorithms 
which carry information about reward backwards through sequences of 
actions, or through action selection algorithms which use learnt models 
to look forward through such sequences.

A different form of model-free reinforcement learning is called Mon-
te Carlo control (Sutton & Barto 2018). Monte Carlo control is notable 
because, whereas the sensitivity to instrumental relationships between 
actions and subsequent states is more explicit in R-Max than in Q-
learning, this sensitivity is even less explicit in Monte Carlo control 
than in Q-learning. Monte Carlo control works in the following way. 
The system’s purpose is to maximise reward in an environment with an 
end-state, which it engages with repeatedly (Monte Carlo control only 
works in cases like this). It starts by following some fi xed policy many 
times, perhaps from a range of initial states. It records how much total 
reward it receives subsequent to each state-action pair on each occa-
sion, then estimates Q-values for the policy it has been following by 
taking the mean of each set of observations. Then it improves its policy 
by choosing actions with higher Q-values, and repeats the process.

Monte Carlo control involves learning to select outputs for their 
contributions to cumulative reward, and hence involves exploiting the 
fact that outputs affect subsequent inputs. However, it does not depend 
on the agent’s representing which states its actions lead to—either to 
feed into immediate updates as in Q-learning, or as part of the process 
of constructing a model. Instead, which states actions lead to infl uences 
how the system is updated by affecting the cumulative reward that fol-
lows actions. In this way, systems using this method are infl uenced by 
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information about instrumental relationships, so Monte Carlo control 
is suffi cient for agency.

However, systems designed to solve two other problems studied in 
the context of reinforcement learning are not generally agents. These 
are the problem of planning, and multi-armed bandit problems (Sutton 
and Barto 2018). Planning is using a model of an environment which 
has been provided by the programmer to fi nd an optimal policy. Plan-
ning is a crucial element of model-based reinforcement learning, but 
the capacity to plan does not suffi ce for agency, because it does not 
involve learning. Planners have little autonomy.

Multi-armed bandit problems are problems in which a number of 
outputs (“actions”) are available to a system, each of which leads sto-
chastically to a range of rewards, so that the system must learn which 
action is most rewarding. Systems for solving bandit problems are not 
generally agents, however, because the state of the environment does 
not change. So learning quickly about the relative values of outputs 
and maximising cumulative reward does not depend on exploiting the 
effects of outputs on subsequent inputs.

4.2 Reinforcement learning systems pre- and post-training
A further feature of reinforcement learning systems which calls for 
clarifi cation of my account is that they change over time. Their abili-
ties to navigate particular environments are gained only gradually, 
with this process often starting from an initial condition in which they 
select outputs randomly. In addition to this, engineers sometimes train 
systems with reinforcement learning only up to the point at which they 
reach a certain level of performance. After this the systems operate in 
the environment using a fi xed policy or model, learnt during the train-
ing phase.

Different approaches to theorising about agency would give differ-
ent verdicts on the status of reinforcement learning systems pre- and 
post-training. An approach which distinguished agents from non-
agents according to whether they have the capacity to learn to behave 
in the relevant way would claim that pre-training systems are already 
agents, but systems which have been “frozen” after training are agents 
no longer. Combining this approach with my proposal that sensitivity 
to instrumental value matters would yield the view that agents are 
those entities with the capacity to learn to produce outputs selectively 
for their instrumental value. However, an alternative approach might 
claim that agents are those entities which perform actions, and actions 
are those outputs which are caused in the right way. Although the for-
mer approach has some attraction, I favour the latter. For an output to 
be an action it must be produced because the system has undergone a 
process which includes learning and is sensitive to instrumental value. 
This entails that reinforcement learning systems become agents gradu-
ally as they learn, because learning gradually comes to play a greater 
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role in explaining their outputs. It also entails that post-training sys-
tems which can no longer learn are still agents, because they still pro-
duce outputs as the result of a process of the right kind.

This approach has two advantages. First, as I will explain further 
in section 5, it makes it possible to analyse agency as a form of norm-
governed activity, with the existence of the relevant norms grounded in 
history. Second, it is based on an analysis of actions as outputs which 
are caused in a certain way, and therefore subject to a certain form of 
explanation. It makes sense to use an account of action as the basis for 
a theory of agency, both because their capacity to perform actions is 
what is interesting about agents, and because not all outputs of agents 
are actions, so a substantive theory of action is needed in any case.

It may be objected at this point that I have not considered the pos-
sibility of an account of action which is based on proximal causes, such 
as reasoning which takes place “in the moment”, rather than on the 
more distal role of learning. An account of this kind would avoid the 
potentially troubling implication of my view that a relatively long his-
tory is required.6 One problem with accounts of this kind, however, is 
that they seem to have trouble distinguishing between AlexNet and 
DQN. Neither does much reasoning about which output to produce in 
response to a given input, but they still produce their outputs for very 
different reasons, and closer inspection of these shows important com-
monalities between DQN and model-based systems which do engage in 
in-the-moment reasoning.

4.3 Mimicing agents using supervised learning
It is sometimes argued that reinforcement learning is not necessary 
for agency on the grounds that it is possible to train a system by su-
pervised learning that will mimic the behaviour of any reinforcement 
learning agent. The optimal policy for an environment is a function 
from states to actions, so if we know this function we can train a system 
to approximate it by supervised learning. More generally, if we know 
how a given reinforcement learning system will behave in a given en-
vironment, we can describe its behaviour as a function from states to 
actions, and again use supervised learning to train a system to mimic 
it. I claim that supervised learning systems of this kind are not agents, 
because—as I have just argued—the status of an entity as an agent 
depends on its history, not just on its current dispositions.

6 A theory according to which a history of learning is required for agency faces 
the objection that a “swampman”—that is, a perfect replica of a living, adult human 
which emerges by chance from a swamp—would not immediately be an agent. I 
think this is the correct verdict on this case (see e.g. Millikan 1996, Shea 2018). See 
also McKenna (2016) and Zimmerman (2003) for discussions of other aspects of the 
role of history in agency.
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This case is notable because it shows that learnt selectivity and in-
strumentality need to be combined in the right way to yield an attrac-
tive theory of agency. Dretske’s theory entails that the status of an 
entity as an agent depends on its history because it requires an agent’s 
dispositions to be a product of learning. However, we have already seen 
that Dretske’s theory entails that supervised learning systems can be 
agents, so appealing to this theory alone will not justify a denial of 
agency in the present case. In addition to this, there is a sense in which 
the supervised learning “mimic” performs outputs for their instrumen-
tal value, because it is this value that explains why the reinforcement 
learning system performs them, or why they form part of the optimal 
policy. So neither Dretske’s conditions nor instrumentality alone dis-
tinguishes the system trained by supervised learning from the rein-
forcement learning agent which it mimics.

What does distinguish these two systems is that in reinforcement 
learning, the learning and reasoning that combine to determine the 
system’s policy are themselves sensitive to instrumental relationships. 
This sensitivity plays a role in the development (and thus, later, the 
causal history) of these systems, and thus contributes to explaining 
their actions. In the supervised learning case the learning process is 
insensitive to such relationships, which explain their actions only in 
so far as they play a role in the origin of the training data. One way 
to describe the difference is that in the supervised learning case talk 
of instrumental value would merely be an interpretative gloss on the 
meaning of the target function, while in the reinforcement learning 
case sensitivity to this value is built into the algorithm.

4.4 Large language models
I now turn to a fi nal example, which is Transformer-based large lan-
guage models such as GPT-3 (Brown et al. 2020) and PaLM (Chowdh-
ery et al. 2022). The basic form of these systems is as “foundation mod-
els” for language (Bommasani et al. 2021), which are trained on large 
quantities of data to predict the next word from a given sequence. This 
can be described as “self-supervised” learning because the data does 
not need to be labeled by humans. However, it is very like the super-
vised learning discussed so far. The system trains itself by generating 
a prediction for the next word, then observing the actual next word and 
using the difference to calculate weight updates. So the feedback that 
drives learning specifi es the correct output for the previous input. Fur-
thermore, whether the system samples inputs at random from a corpus 
or works its way through systematically, in the course of training its 
outputs do not affect its inputs.

Foundation models trained in this way on enough data, using the 
Transformer network architecture, are capable of producing remark-
ably fl uent language and performing challenging linguistic tasks 
(Brown et al. 2020, Chowdhery et al. 2022). Their capabilities are 
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sometimes further enhanced by various forms of fi ne-tuning, includ-
ing by reinforcement learning. For example, InstructGPT (Ouyang et 
al. 2022) is based on GPT-3 but fi ne-tuned by reinforcement learning 
for generic good performance in responding to prompts, as judged by 
human users.

Foundation models are not agents because they do not learn to pro-
duce outputs for their instrumental value. In training their outputs do 
not affect their future inputs, so it is impossible for them to learn to 
exploit such effects. This point is obscured by the way in which founda-
tion models are often used, which is to extend prompts by many more 
words, so as to generate texts of dozens or hundreds of words. When 
they are used in this way, foundation models’ outputs are immediately 
added to their inputs, so this is a situation in which agent-like capabili-
ties could be useful. But a language-producing system cannot produce 
individual outputs for the sake of facilitating subsequent outputs un-
less it has been subject to training in which its outputs affected subse-
quent inputs, and unless it has a way to evaluate sequences of outputs.

A complication to this picture is that some language models, such as 
those used for sentence-to-sentence translation, use an algorithm called 
“beam search” (Sutskever et al. 2014). One way in which a translation sys-
tem might work would be to select words to output one by one, based only 
on their probabilities conditional on the input and on previous words. How-
ever, it is intuitive that such a system would be outperformed by one which 
internally generated a sample of complete sentences and compared their 
relative probabilities, before committing to any output. This is what beam 
search involves: starting from a small number of likely fi rst words, the al-
gorithm explores branches of the trees of possible sentences that begin with 
those words. Beam search is not suffi cient for agency, however, because in 
the translation case the outputs of the system are whole sentences, and 
they are not selected for their effects on future inputs. It may be possible for 
foundation models to learn to do something like beam search in the course 
of selecting their outputs—to select words partly by looking at which words 
could follow them—but even this would not be agency if it was done solely 
as a means to maximising the likelihood of the next word, as opposed to 
infl uencing subsequent inputs.

Although they are not agents, foundation models are noteworthy 
because Transformers seem especially well-suited to learning to pre-
dict the next item in a sequence. This means that they can be used to 
learn to model environments and to predict the consequences of their 
actions. This is not suffi cient for agency, but it is a crucial step along 
one route to agency—the model-based method for selecting actions for 
their instrumental value. For example, consider a hypothetical chatbot 
based on a foundation model trained on human dialogue. This chat-
bot might be good at predicting how a human user would respond to 
some output, and thus how that output would affect the state of the 
conversation, making new outputs and subsequent responses possible. 
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Its predictive capacity would enable it to take instrumental actions, 
provided that it could also evaluate possible future conversation states 
and combine these abilities in action selection.

5. Selection, functions and goals
So far in this paper I have focused on descriptive differences between 
reinforcement learners and supervised learners. I have proposed that 
only reinforcement learners perform actions, because only their out-
puts are the result of processes which are sensitive to instrumental 
value. However, agency can also be seen—as I suggested in the intro-
duction—as a species of norm-governed activity (again, understanding 
norms merely as non-arbitrary standards of success or correctness). A 
potential advantage of my account of agency is that the differences in 
history which matter for agency could ground normative differences. 
This is the idea which I will develop in this section.

The idea that an entity’s history can give rise to norms to which 
its activities are subject is exemplifi ed by the selected-effects theory of 
biological function (Garson 2016). This theory, which is a mainstream 
view in the philosophy of biology, claims that if a component of some 
organism exists because it was selected for a certain activity, the func-
tion of the component is to perform that activity. This means that the 
activities of the component are subject to a norm; the component may 
either function correctly or malfunction (or perhaps it may function 
better or worse, according to a standard derived from its selective his-
tory). Building on this claim, and following other authors, I will argue 
that learning, as well as selection, can give rise to norms governing 
the activities of the entities which these processes modify. I will then 
propose that processes of learning or selection can give rise to different 
kinds of norms. As well as grounding the functions of components or 
traits, such processes can also give rise to goals, which entail norms 
governing the activities of whole systems.

The central idea of the selected-effects theory is that functions arise 
from “consequence etiology” (Shea 2018). In natural selection, traits 
with effects which contribute to greater reproductive success tend to 
persist and proliferate in populations, while those with other effects 
tend to die out. This means that natural selection is one context in 
which we can explain why traits exist by citing their effects—or, more 
precisely, the effects of prior tokens of their type—and therefore a con-
text in which a form of teleological explanation is consistent with natu-
ralism. Learning is like selection in this respect, because it involves 
the persistence of phenomena which have effects of the right kind. 
Training neural networks involves preserving those combinations of 
weights which have the right effects, and modifying those which have 
the wrong effects; and reinforcement learning involves only repeating 
those actions which contribute, through their effects, to greater cumu-
lative reward.
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However, not all situations in which something exists or persists as 
a result of its effects seem to give rise to functions. This was roughly 
the theory of function proposed by Wright (1973), and many appar-
ent counterexamples have been proposed. For example, a leak in a gas 
hose may persist because the gas poisons anyone who tries to repair it 
(Boorse 1976).

Rather than attempting to defend a more restrictive general theory 
of functions, Shea (2018) argues for a disjunctive account. He claims 
that natural selection and learning from feedback are both ways in 
which a feature can come to persist (be “stabilised”) in a population or 
system in virtue of its effects, which are such that the feature will then 
have the function of bringing about those effects.7 His rationale for in-
cluding learning is that, like natural selection, it is a means by which 
complex systems are developed and modulated in nature which make 
it possible for organisms to bring about outcomes robustly, especially 
by using representations. Shea’s project is to justify appeals to repre-
sentation in explanations in cognitive science, and he claims that this 
is justifi ed by the frequency with which we observe a certain abstract 
pattern: apparently-representational features are stabilised by natural 
selection and learning in the service of producing outcomes robustly.

This paper is not concerned with representations and focuses on 
non-biological learning. However, it remains true that learning from 
feedback, like natural selection, is a form of consequence etiology which 
can give rise to complex and cumulative adaptations and which enables 
systems to produce outcomes robustly. Furthermore, learning is—in all 
real cases—itself a trait which has origins either in natural selection 
or in the design of artifacts by intelligent agents. Forms of learning 
themselves have functions. This should give us greater confi dence in 
attributing norms in this context.

The analogy between natural selection and learning from feedback 
is not perfect, but to the extent that there is an analogy, these process-
es map onto one another in the following way. Natural selection acts on 
populations, while learning acts on “systems”—including human and 
animal minds and computer systems of various kinds. In natural selec-
tion, traits of organisms become more or less prevalent in populations, 
with some becoming near-universal for extended periods, while in 
learning features of systems such as behavioural dispositions or combi-
nations of network weights are preserved or modifi ed, with some stabi-
lised. Stability in both cases is a consequence of stable features of the 
environment. Reproduction and persistence or modifi cation are both 
determined by feedback. In natural selection, organisms bear combina-
tions of traits, these traits have effects on the environment, and these 
effects determine how many offspring the organisms will produce, thus 
causing traits to become more or less prevalent in the population. In 

7 Shea also claims that contributions to the persistence of an organism can 
ground functions, but this is less relevant to the issue at hand.
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learning, systems produce outputs, these prompt feedback from the en-
vironment, and this feedback determines which features of the system 
will persist or be modifi ed. The state of the environment which faces 
a new generation in the case of natural selection is analogous to the 
input to a learning system, and the traits of that generation are analo-
gous to the features that determine the system’s output.

Norm-generating processes of selection and learning therefore have 
the following fi ve elements: an entity with features which are pre-
served or modifi ed (a population or system); an environment; inputs 
from the environment to the entity; outputs with effects on the environ-
ment (with input-output transitions being determined by the features); 
and feedback from the environment, which determines which features 
are preserved or modifi ed. This account gives us an abstract framework 
within which functions and goals, and the processes which give rise to 
them, can be described.

Functions arise when features of the entity which is affected by se-
lection or learning are stabilised. The function of a stabilised feature 
of an organism or system is to perform the activity, or bring about the 
effect, that caused it to be stabilised. The effects of features cause them 
to be stabilised when they contribute to bringing about the right kind 
of feedback.

In contrast, systems come to have goals only in much more spe-
cifi c circumstances. What is crucial is how feedback leads to persis-
tence and modifi cation. In reinforcement learning, feedback consists of 
both reward and the next input. The system stores information about 
relationships between inputs and subsequent feedback, and uses this 
information in determining how to modify its features. Furthermore, 
these modifi cations follow rules which, in most environments, make a 
particular kind of feedback (greater reward) more likely. When these 
elements are in place, it is not only possible to explain the existence 
of features of the system in terms of the effects of their type, but also 
to explain some of the system’s outputs in terms of the contributions 
that they tend to make bringing about greater reward over episodes of 
interaction with the environment. This kind of explanation involves 
attributing goals to whole systems, because it is whole systems which 
interact with environments across episodes, by producing sequences of 
outputs. Systems with goals also have features with functions, but en-
tities with functional features do not always have goals, because they 
are not all formed by processes which respond to feedback in this spe-
cifi c way.

This account of goals is intended to be equivalent to my account of 
agency; all and only agents have goals in this sense. The systems with 
goals are those that perform actions, because actions are outputs that 
have been selected for their contributions to greater cumulative reward 
over episodes of interaction.

To test my proposal it would make sense to examine how it applies 
to biological cases. If the proposal implied that most animals are agents 
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while most other organisms, populations and sub-organismic systems 
are not, this would be some evidence in its favour. If it had other im-
plications this might be evidence against. However, for this purpose it 
would be important to bear in mind that the account of goals which I 
have just offered is not intended to describe what it is for a person to 
have a goal in mind when performing an action, or for an animal to 
behave in a goal-directed way (as opposed to habitually; Dolan & Day-
an 2013). Talk of goals and goal-directedness is widespread and these 
terms are used in several ways. Instead, I have offered an account of 
goals which is intended to mark a distinction between the norms gov-
erning agency and those governing other forms of activity. This is just 
one of the ways in which human activities can have goals.

6. Conclusion
I have argued that to be an agent an entity must come to produce out-
puts for their instrumental value. For this to be the case, the agent’s 
dispositions must arise from processes of learning or reasoning which 
are sensitive to instrumental value. That is, the modifi cations that 
arise in agents as a result of feedback from the environment must be 
modulated by information about relationships between outputs, inputs 
and subsequent reward. One source of support for this account comes 
from the idea that agents characteristically pursue goals. This means 
that an agent’s individual actions must be subject to standards of suc-
cess according to their conduciveness to the agent’s goals. The exis-
tence of such norms could be explained by the operation of learning and 
reasoning processes of the kind just described.8
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