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ABSTRACT

A projective billiard is a polygon in the real projective plane
with a circumconic and an inconic. Similar to the classical
billiards in conics, the intersection points between the ex-
tended sides of a projective billiard are located on a family
of conics which form the associated Poncelet grid. We ex-
tend the projective billiard by the inner and outer billiard
and disclose various relations between the associated grids
and the diagonals, in particular other triples of projective
billiards.
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Trojka projektivnih biljara

SAŽETAK

Projektivni biljar je poligon u realnoj projektivnoj ravnini
koji ima upisanu i opisanu koniku. Poput klasičnih bilja-
ra u konikama, sjecǐsta produljenih stranica projektivnog
biljara se nalaze na familiji konika koje tvore pridruženu
Ponceletovu mrežu. Proširujemo projektivni biljar unutar-
njim i vanjskim biljarom i otkrivamo mnoštvo veza izmedu
pridruženih mreža i dijagonala, posebice drugih trojki pro-
jektivnih biljara.

Ključne riječi: elipsa, biljar, kaustika, Ponceletova mreža,
biljarsko kretanje

1 Introduction

A billiard is the trajectory of a mass point in a domain
called billiard table with ideal physical reflections in the
boundary. Already for two centuries, billiards in ellipses
(see Figures 1, 2, 8) and their projectively equivalent coun-
terparts have attracted the attention of mathematicians, be-
ginning with J.-V. Poncelet [4] and C.G.J. Jacobi [3] and
continued, e.g., by S. Tabachnikov, who addresses in his
book [10] a wide variety of themes around this topic. Com-
puter animations carried out recently by D. Reznik [5]
stimulated a new vivid interest on these well studied ob-
jects.

We focus on projective generalizations called projective
billiards. This term stands for planar polygons P1P2P3 . . .

with a circumconic e and an inconic c called caustic. Not
all projective billiards are projectively equivalent to Eu-
clidean billiards (see, e.g., Figure 9), and not in all cases
exist periodical polygons between the conics e and c .
However, in all cases the intersection points between ex-
tended sides define a family of conics which form the as-

sociated Poncelet grid. The goal of this paper is to demon-
strate that in a quite natural way any given projective bil-
liard defines two more projective billiards with associated
Poncelet grids. It will be demonstrated that not only the
conics of these grids, but also configurations of related
lines deserve our interest.

It needs to be pointed out, that the computation of the bil-
liards’ vertices can only be carried out either iteratively or
with the help of Jacobian elliptic functions (see, e.g., [8]).
Therefore, it is not straightforward to obtain results on ver-
tices and their respective j-th followers for any given inte-
ger j > 1. Often such assertions are equivalent to identities
in terms of elliptic functions (see, e.g., [9, Section 5]).

Structure of the article. In Section 2 we introduce the
three Poncelet grids associated respectively with a projec-
tive billiard and its inner and outer polygons. Section 3 is
devoted to the conics e( j), c( j), and r( j) of the three grids.
In Section 4 we recall results on the envelopes of diagonals
and determine the points of contact. Finally in Section 5,
we study the configuration of the l-th diagonals of the pro-
jective billiards inscribed respectively in e( j), c( j), and r( j).
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2 A triple of Poncelet grids

Figure 1: Periodic billiard P1P2 . . .P5 inscribed in the
ellipse e along with the polygon Q1Q2 . . .Q5 of contact
points with an ellipse c as caustic, the polygon F1F2 . . .F5
of contact points with q , and the polygon R1R2 · · · ∈ r
which is polar to P1P2 . . .P5 w.r.t. e .

Let P1P2P3 . . . be a polygon with circumconic e and in-
conic c in the real projective plane. Then there exists an
associated Poncelet grid. We follow the notation in [7]
and denote intersection points between extended sides1 for
i, j = 1,2, . . . as

S( j)
i :=

{
[Pi−k−1,Pi−k]∩ [Pi+k,Pi+k+1] for j = 2k, and
[Pi−k,Pi−k+1]∩ [Pi+k,Pi+k+1] for j = 2k−1 .

(1)

For fixed j, the points S( j)
1 ,S( j)

2 , . . . are located on a conic
e( j) which belongs to the dual pencil (range, in brief)
spanned by e and c . This is due to a result of M. Chasles
in 1843 (note, e.g., [7, Theorem 3.5]).

If the polygon P1P2 . . . is N-periodic, then we can con-
fine to 1 ≤ j ≤ [N−3

2 ], since for even N the locus e( j) with
j = N−2

2 is a line which has the same pole with respect
to (w.r.t., for short) e and c . Under the billiard motion of
P1P2 . . . , i.e., the variation of the vertices along the circum-
conic e while c remains fixed, each conic e( j) of the Pon-
celet grid remains fixed as well (note [7, Theorem 3.6]).2

In the classical case of a Euclidean billiard P1P2 . . . in a
conic e , the conics e( j) are confocal with e and the caustic
c (Figure 2). If for a given ellipse e the caustic c is an el-
lipse, then the billiard is called elliptic and the conics e and

c intersect in two pairs of complex conjugate points. Oth-
erwise we obtain a hyperbolic billiard with a hyperbola as
caustic (Figures 6 and 7). Then the two conics share four
real points.

2.1 The outer polygon

The tangents tP1 , tP2 , . . . to the circumconic e at the vertices
P1,P2, . . . of a projective billiard define a polygon R1R2 . . .
called outer polygon in [5]. This polygon is polar to
P1P2 . . . w.r.t. e and therefore inscribed in a conic r which
is polar to c w.r.t. e (Figure 1). Similar to (1), the vertices
R( j)

i of the associated Poncelet grid are points of intersec-
tion between tangents to e and denoted for j = 1,2, . . . as
given below:

R( j)
i :=

{
tPi−k ∩ tPi+k+1 for j = 2k, and
tPi−k ∩ tPi+k for j = 2k−1,

=

{
[Ri−k−1,Ri−k]∩ [Ri+k,Ri+k+1] for j = 2k, and
[Ri−k−1,Ri−k]∩ [Ri+k−1,Pi+k] for j = 2k−1,

(2)

hence k =
[

j+1
2

]
(note Figure 2).

Figure 2: Periodic billiard P1P2 . . .P8 in the ellipse e with
the net of tangent lines to e at the vertices.

2.2 The inner polygon

Beside the Poncelet grids associated with the pairs of con-
ics (e,c) and (r,e), there is a third Poncelet grid. This time
we focus on the polygon of contact points Q1,Q2, . . . of the
sides of P1P2 . . . with the caustic c . The polygon Q1Q2 . . .

1Note that XY denotes the segment bounded by the points X and Y , while [X ,Y ] denotes the connecting line.
2Beside the conics e( j), j = 1,2, . . . , the Poncelet grid contains a second family of conics. In the case of classical billiards with ellipses e, c and e( j),

the remaining conics are confocal hyperbolas (see, e.g., [7, Figures 5 or 6]) which vary under the billiard motion. However, here we focus only on e( j).
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is called inner polygon in [5]. The vertices of the associ-
ated Poncelet grid are defined as

Q( j)
i :=

{
[Qi−k−1,Qi−k]∩ [Qi+k,Qi+k+1] for j = 2k,
[Qi−k−1,Qi−k]∩ [Qi+k−1,Qi+k] for j = 2k−1

(3)

(note Figure 4).

The extended sides of the polygon Q1Q2 . . . envelop a
conic q which is polar to e w.r.t. c . The line [Qi−1,Qi] con-
tacts q at the c-pole Fi of the tangent tPi to e at Pi . There-
fore, in the case of a Euclidean billiard it is the point of
intersection between the chord [Qi−1,Qi] and the normal
to e at Pi (Figure 1). The latter is the locus of poles of the
tangent tPi w.r.t. the conics of the confocal family.

Lemma 1 Referring to the previous notation, the circum-
conic r of the polygon R1R2 . . . with sides tangent to e at Pi
is polar to c w.r.t. e . The inconic q of the polygon Q1Q2 . . .
with circumconic c is polar to e w.r.t. c . In the billiard
case (Figure 1), RiQi is orthogonal to c at Qi , and FiPi is
orthogonal to e at Pi .

Lemma 1 reveals that also the conics q and r are invariant
under the billiard motion along e . Clearly, if the original
projective billiard P1P2 . . . is periodic, then Q1Q2 . . . and
R1R2 . . . are periodic, too.

A polygon with circumconic e and inconic c can be pe-
riodic even when the two conics share two real and two
complex conjugate points. An example is depicted in Fig-
ures 5 and 9 with the two conics as circles. Such poly-
gons P1P2 . . . are called bicentric. They were first treated
in 1828 by Jacobi [3] in the case where c lies in the inte-
rior of e . In [6] various invariants of bicentric polygons are
proved for the case that the circles e and c are either nested
or disjoint.

3 More projective billiards in the three Pon-
celet grids

In the case of Euclidean billiards P1P2 . . . in the plane or
on the sphere (see [7, Fig. 7]), the tangents to e at Pi and
those to e( j) at S( j)

i are angle bisectors of extended sides of
P1P2 . . . . Therefore, the net of extended sides of P1P2 . . .

is circular with the points R( j)
i as centers of incircles of

quadrilaterals (Figure 2). This result dates back to [1] in
2018. Below we present a generalization.

Theorem 1 Given a projective billiard P1P2 . . . , then for
each j = 1,2, . . . the vertex R( j)

i of the Poncelet grid associ-
ated with the outer polygon R1R2 . . . is located on the tan-
gents to e( j) at S( j)

i and S( j)
i+1. The points R( j)

1 ,R( j)
2 , . . . be-

long to a conic r( j) which is contained in the range spanned

by e and r . The polar conic of r( j) w.r.t. e( j) is the envelope
of the extended sides of the polygon S( j)

1 S( j)
2 . . . .

Figure 3: N-periodic billiard with N = 8. In the proof of
Theorem 1 we focus on the quadrilateral formed by the
tangents from S(2)1 and S(2)8 to the caustic c .

Figure 4: The contact points of the sides of the polygon
S( j)

i S( j)
i+1 . . . with their envelope c( j) are the vertices Q( j)

i of
the Poncelet grid associated with Q1Q2 . . . . In other words,
the projective billiard S( j)

i S( j)
i+1 . . . has Q( j)

1 Q( j)
2 . . . as its in-

ner billiard.

Proof. According to (1), the extended sides [Pi,Pi+1] and
[Pi+ j+1,Pi+ j+2] through S( j)

i+k for k =
[

j+1
2

]
and [Pi−1,Pi]

and [Pi+ j,Pi+ j+1] through S( j)
i+k−1 form a quadrilateral with

Pi,Pi+ j+1 ∈ e and S( j)
i+k−1,S

( j)
i+k ∈ e( j) as pairs of opposite

vertices (see the case j = 2, N = 8 and i = 7 in Figure 3).
All four sides are tangents of the caustic c, while the con-
ics and e, e( j) and c belong to a range. According to the
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mentioned result by Chasles and its extension in [7, The-
orem 3.5]), the tangents to e at Pi and Pi+ j+1 and the tan-
gents to e( j) at S( j)

i+k−1 and S( j)
i+k are concurrent. By (2), their

meeting point is R( j)
i+k−1 (see Figure 2). After increasing all

subscripts by 1, we obtain the analogue result for R( j)
i+k.

The Poncelet grid associated with R1R2 . . . contains conics
r( j) passing through the vertices R( j)

1 ,R( j)
2 , . . . . All conics

r( j) belong to the range spanned by e and r and are motion
invariant, too. Since the polar line of R( j)

i ∈ r( j) w.r.t. e( j)

is the line [S( j)
i ,S( j)

i+1], the polar conic c( j) of r( j) w.r.t. e( j)

envelops the polygon S( j)
1 S( j)

2 . . . . �

Theorem 2 Referring to the previous notation, the sides
of the polygon S( j)

1 S( j)
2 . . . contact the enveloping conic c( j)

at the vertices Q( j)
1 ,Q( j)

2 , . . . . Hence, the envelope c( j) co-
incides with the conic of the Poncelet grid associated with
Q1Q2 . . . (Figure 4).

Proof. We replace the polygon P1P2 . . . inscribed in e and
circumscribed to c by the polygon R1R2 . . . inscribed in
r and circumscribed to e . Then by virtue of Theorem 1,
the side [R( j)

i ,R( j)
i+1] contacts the envelope e( j) at the point

S( j)
i . This implies for our original polygon P1P2 . . . that
[S( j)

i ,S( j)
i+1] contacts the envelope c( j) at the vertex Q( j)

i
of the Poncelet grid associated with the j-th diagonals of
Q1Q2 . . . . �

Figure 5: Periodic projective billiard P1P2 . . .P6 in the bi-
centric case with the hyperbolas e(1) (red), r(1) (green),
c(1) (blue), and the ellipse r (green).

Figure 6: A periodic hyperbolic billiard P1P2 . . .P10 along
with the polygons S(1)1 S(1)2 . . .S(1)10 (red), Q(1)

1 Q(1)
2 . . .Q(1)

10

(blue), R(1)
1 R(1)

2 . . .R(1)
10 (green), and the respective circum-

conics e(1), c(1) and r(1).

Figure 7: Twofold pose of a periodic hyperbolic billiard
P1P2 . . .P10 with c(1), e(1), and r(1).

Corollary 1 Let P1P2 . . . be a projective billiard with
R1R2 . . . and Q1Q2 . . . as respective outer and inner poly-
gon. Then for fixed j ∈ {1,2, . . .}, the vertices S( j)

1 ,S( j)
2 , . . .

on the conic e( j) of the Poncelet grid associated with
P1P2 . . . form another projective billiard with the poly-
gons R( j)

1 R( j)
2 . . . as outer billiard with circumconic r( j) and

47



KoG•26–2022 H. Stachel: A Triple of Projective Billiards

Q( j)
1 Q( j)

2 . . . as inner billiard with the inconic c( j), which is
polar to r( j) w.r.t. e( j).

The Figures 5–7 illustrate that the triples (c( j),e( j),r( j))
can look quite different in comparison with (c(1),e(1),r(1))
or (c(2),e(2),r(2)) in Figure 4.

As shown at the hyperbolic billiard in Figure 6, the conic
r(1) passes through the intersection points of the hyper-
bola e(1) with e . This follows from particular poses with
a twofold covered billiard (see Figure 7): When P1 ∈ e is
specified at an intersection point3 with the caustic c , then
P2 coincides with P10 as well as with S(1)1 and R(1)

1 . There
is a general statement in the background:

Theorem 3 Referring to the previous notation, for each
j = 1,2, . . . the conics r( j), e( j) and e belong to a pencil.
The same is true for the three conics e( j), c( j) and c (Figure
5).

Proof. We argue with help of the complex extension of the
real projective plane. Whenever the point R( j)

i+k = tPi ∩ tPi+ j

for k = [ j+1
2 ] is located on e , then follows R( j)

i+k = Pi = Pi+ j

and consequently S j+k = [Pi−1,Pi]∩ [Pi+ j,Pi+ j+1] = R( j)
i+k.

This means that each point of intersection between e and
r( j) belongs also to e( j). Therefore, if e and r( j) share four
mutually different points, then e( j) belongs to the pencil
spanned by r( j) and e .

The remaining cases with intersection points of higher or-
der between r( j) and e can be seen respectively as a limit
where some of the four intersection points tend to coin-
cidence. It cannot happen that in the limit the symmetric
coefficient matrices of the three conics become linearly in-
dependent when everywhere else in the neighborhood they
are linearly dependent.

The second statement follows just by replacing the triple
(r( j),e( j),e) by (e( j),c( j),c). �

4 Diagonals

In view of the envelopes of the j-th diagonals [Pi,Pi+ j+1] of
our polygon P1P2P3 . . . , we recall from [9] a result which
was first stated in 1822 by V.-P. Poncelet [4] and reproved
in 1828 by C.G.J. Jacobi for the case of nested circles e and
c . Moreover, we recall from [9] how to find the envelop-
ing points. However, the proofs of the Theorems 1 and 2 in
[9] cover only the cases of elliptic and hyperbolic billiards,
where affine scalings are available between involved con-
ics. The following theorem addresses the general case.

Theorem 4 Let P1P2P3 . . . be a polygon inscribed in the
conic e and circumscribed to the conic c with contact
points Q1,Q2,Q3, . . . . Then for fixed j = 1,2, . . . , the enve-
lope of the j-diagonals [Pi,Pi+ j+1] is a conic he| j included
in the pencil spanned by e and c , provided that in the
particular case of N-periodic billiards with even N holds
j ≤ [N−3

2 ].
The diagonal [Pi,Pi+ j+1] contacts he| j at the intersec-
tion with the adjacent j-th diagonals [Qi−1,Qi+ j] and
[Qi,Qi+ j+1] of the inner billiard Q1Q2Q3 . . . (Figures 8 or
9).

Proof. (i) According to (1), the extended sides [Pi,Pi+1]

and [Pi+ j+1,Pi+ j+2] intersect at the point S( j)
i+k+1, k := [ j

2 ],
on the conic e( j), which belongs to the range spanned by
e and c . The restriction on j in the periodic case as men-
tioned in Theorem 4 excludes the case where e( j) is a line.

The polarity in the caustic c transforms this into the follow-
ing statement: The connecting lines [Qi,Qi+ j+1] envelop a
conic hc| j which belongs to the pencil spanned by c and
the polar conic q of e w.r.t. c (Figures 1 and 8). In order
to obtain the first part of our statement, it is sufficient to
replace the polygon Q1Q2Q3 . . . inscribed in c and circum-
scribed to q by the original polygon P1P2P3 . . . with the
circumconic e and the inconic c .

Figure 8: Envelopes he|1, hc|1 and hr|1 of the diagonals of
the periodic elliptic billiard P1P2 . . .P5 and of its inner and
outer polygons Q1Q2 . . . and R1R2 . . . . Triples of these di-
agonals together with that of F1F2 . . . meet at 15 points in
the interior of P1P2 . . . .

3Twofold covered poses of projective billiards arise when one vertex is specified either as a point of intersection between the circumconic e and the
inconic c or as the contact point with a common tangent between e and c (note the gray pose in Figure 5).
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Figure 9: In the bicentric case with circumcircle e and in-
tersecting incircle c (blue) the envelope of the first diag-
onals (green solid) of the periodic polygon P1P2 . . .P6 is
the circle he|1 (green) with contact points T1,T2, . . . . The
hyperbola e(1) (pink) and the diameter e(2) belong to the
associated Poncelet grid.

(ii) The point of contact between [Qi,Qi+ j+1] and the en-
velope hc| j is the c-pole of the tangent to e( j) at S( j)

i+k+1 . By

virtue of Theorem 1, this tangent passes through R( j)
i+k and

R( j)
i+k+1 . Hence, the requested point of contact is the meet-

ing point of the polar lines of S( j)
i+k+1, R( j)

i+k and R( j)
i+k+1 w.r.t.

c .

The c-polar line of S( j)
i+k+1 is the diagonal [Qi,Qi+ j+1].

Since by (2) the point R( j)
i+k is the intersection of the tan-

gents to e at Pi and Pi+ j+1, the c-polar of R( j)
i+k connects

the contact points Fi and Fi+ j+1 of respective sides of the
polygon Q1Q2 . . . with its envelope q . After increasing all
subscripts by 1, we obtain [Fi+1,Fi+ j+2] as the c-polar of
R( j)

i+k+1.

In order to prove the second claim, it is sufficient to replace
the polygon Q1Q2 . . . with the inconic q by the polygon
P1P2 . . . with the inconic c and the contact point Fi+1 of the
side [Qi,Qi+1] by the contact point Qi of the side [Pi,Pi+1].

�

In Figure 8, the particular case j = 1 is depicted along
with the configuration of the j-th diagonals of R1R2 . . . ,
P1P2 . . . , Q1Q2 . . . , and F1F2 . . . with triples of concurrent
lines. The depicted enveloping conics hr|1, he|1 and hc|1
of the j-th diagonals of R1R2 . . . , P1P2 . . . and Q1Q2 . . . in
Figure 8 reveal that we obtain a sequence of triples of con-
ics like (r,e,c). This reminds on sequences of billiards as
presented in [2].

Corollary 2 Let P1P2 . . . be a projective billiard with
R1R2 . . . and Q1Q2 . . . as outer and inner polygon, while

F1,F2, . . . are the contact points of the inner polygon with
its inconic q . Then the j-th diagonals of Q1Q2 . . . are the
sides of another projective billiard, where the j-th diago-
nals of P1P2 . . . are the sides of the outer polygon and that
of F1F2 . . . sides of the inner polygon (Figure 8).

For later use we record a consequence of the Theorems 2
and 4:

Lemma 2 Referring to the previous notation, the conic
he| j is polar to c( j) w.r.t. the caustic c . The enveloping

point of [S( j)
i ,S( j)

i+1] is the c-pole{
Q( j)

i of d := [Pi−k,Pi+k+1] for j = 2k, and

Q( j)
i+1 of d := [Pi−k+1,Pi+k+1] for j = 2k−1 .

The line d is a j-th diagonal of P1P2P3 . . . and a diagonal
of the quadrilateral consisting of the tangents drawn from
S( j)

i and S( j)
i+1 to the caustic c .

The composition of the polarities in c and e is a collinear
transformation κ . It takes Qi to Ri and by (3) and (2) Q( j)

i

to R( j)
i for all i . Moreover, it sends c to r and c( j) via he| j to

r( j) and the envelope of the j-th diagonals of Q1Q2 . . . to
the envelope of j-th diagonals of R1R2 . . . (Figure 8). Lines
with equal poles w.r.t. e and c remain fixed under κ as for
example the axes of symmetry of e in the case of classical
billiards.

5 Configurations of lines related to the Pon-
celet grids

The term ‘Poncelet grid’ usually stands for a configuration
of conics, which are confocal in the particular case of Eu-
clidean billiards. Below we demonstrate that a Poncelet
grid is also combined with a configuration of lines.

The following theorem deals with the l-th diagonals of the
polygon S( j)

1 S( j)
2 . . . inscribed in the conic e( j) of the Pon-

celet grid associated with P1P2 . . . and circumscribed to the
conic c( j). Note that in the case l = j we obtain extensions
of the sides of the original billiard P1P2 . . . .

Theorem 5 The l-th diagonal [S( j)
i ,S( j)

i+l+1] of the polygon

S( j)
1 S( j)

2 . . . inscribed in e( j) contains three meeting points
of at least five l-th diagonals of other polygons of the three
involved grids (Figure 10):
(i) The contact point with the envelope of the l-th diagonals
of S( j)

1 S( j)
2 . . . is common to [Q( j)

i−1,Q
( j)
i+l ], [Q

( j)
i ,Q( j)

i+l+1] as
well as for j = 2k to [Qi−k−1,Qi−k+l ] and [Qi+k,Qi+k+l+1]
and for j = 2k−1 to [Qi−k,Qi−k+l+1] and [Qi+k,Qi+k+l+1].
(ii) The intersection point with the preceding diagonal
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[S( j)
i−1,S

( j)
i+l ] belongs also to [R( j)

i−1,R
( j)
i+l ], as well as for even j

to [Pi−k−1,Pi−k+l ] and [Pi+k,Pi+k+l+1] and in the odd case
to [Pi−k−1,Pi−k+l ] and [Pi+k−1,Pi+k+l ]. A similar result
holds for the follower [S( j)

i+1,S
( j)
i+l+2].

Proof. (i) The first statement is a direct consequence of
Theorem 4, applied to the projective billiard S( j)

1 S( j)
2 . . .

with the circumconic e( j) and the inconic c( j).

In order to prove the second statement of (i), we ap-
ply Lemma 2 to the polygon S( j)

i S( j)
i+l+1S( j)

i+2(l+1) · · · ∈ e( j),

which is formed by l-th diagonals of S( j)
1 S( j)

2 . . . , but also
by diagonals of a certain type in the polygon (or the
union of polygons) with the caustic c and the side lines
[S( j)

i ,S( j)
i+ j+1]. Hence, the contact point of [S( j)

i ,S( j)
i+l+1] with

the envelope of the l-th diagonals is the c-pole of a diago-
nal in the quadrilateral formed by the tangents drawn from
S( j)

i and S( j)
i+l+1 to c . According to (1), these tangents con-

tact c respectively{
for j = 2k at Qi−k−1, Qi+k and Qi−k+l , Qi+k+l+1 ,

for j = 2k−1 at Qi−k, Qi+k and Qi−k+l+1, Qi+k+l+1 .

Due to the rules of the polarity w.r.t. c , the requested pole
is the intersection of the connections of respective contact

points, i.e., [Qi−k−1,Qi−k+l ]∩ [Qi+k,Qi+k+l+1] for even j
and [Qi−k,Qi−k+l+1]∩ [Qi+k,Qi+k+l+1] for odd j .

(ii) From Theorem 4 applied to r( j) and e( j) follows that
the contact point of [R( j)

i−1,R
( j)
i+l ] with the envelope of the

l-th diagonals of R( j)
1 R( j)

2 . . . is common to [S( j)
i−1,S

( j)
i+l ] and

[S( j)
i ,S( j)

i+l+1].

In order to prove the second statement, we replace in
Lemma 2 the pair of conics (c, e( j)) by (e, r( j)) and apply
this result to the polygons R( j)

i R( j)
i+l+1R( j)

i+2(l+1) . . . formed

by l-th diagonals of R( j)
1 R( j)

2 . . . . Hence, the contact point
of [R( j)

i−1,R
( j)
i+l ] with the envelope of these l-th diagonals is

the e-pole of a diagonal d in the quadrilateral formed by
the tangents drawn from R( j)

i−1 and R( j)
i+l to e . According to

(2), the requested diagonal d of the quadrilateral connects
the points

tPi−k−1 ∩ tPi−k+l and
{

tPi+k ∩ tPi+k+l+1 for j = 2k,
tPi+k−1 ∩ tPi+k+l for j = 2k−1,

The e-pole of d is the intersection of the connections of re-
spective contact points with e, which confirms the claim.

�

Figure 10: Each l-th diagonal [S( j)
i ,S( j)

i+l+1] of the projective billiard S( j)
1 S( j)

2 . . . in e( j) contains three meeting points with
at least four other l-th diagonals of involved polygons (Theorem 5). Here the case j = 2 and l = 1 of a periodic elliptic
billiard P1P2 . . .P9 is depicted; note the diagonal S(2)1 S(2)3 (red).
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