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Abstract

The growing usage of digital microphones has generated an increased
interest in the topic of Acoustic Anomaly Detection (AAD). Indeed,
there are several real-world AAD application domains, including work-
ing machines and in-vehicle intelligence (the main target of this research
project). This paper introduces three deep AutoEncoders (AE) for
unsupervised AAD tasks, namely a Dense AE, a Convolutional Neu-
ral Network (CNN) AE and Long Short-Term Memory Autoencoder
(LSTM) AE. To tune the deep learning architectures, development data
was adopted from public domain audio datasets related with work-
ing machines. A large set of computational experiments was held,
showing that the three proposed deep autoencoders, when combined
with a melspectrogram sound preprocessing, are quite competitive and
outperform a recently proposed AE baseline. Next, on a second exper-
imental stage, aiming to address the final in-vehicle passenger safety
goal, the three AEs were adapted to learn from in-vehicle normal
audio, assuming three realistic scenarios that were generated by a
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synthetic audio mixture tool. In general, a high quality AAD dis-
crimination was obtained: working machine data – 72% to 91%; and
in-vehicle audio – 78% to 81%. In conjunction with an automotive
company, an in-vehicle AAD intelligent system prototype was fur-
ther developed, aiming to test a selected model (LSTM AE) during
a pilot demonstration event that targeted the cough anomaly. Inter-
esting results were obtained, with the AAD system presenting a high
cough classification accuracy (e.g., 100% for front seat locations).

Keywords: Acoustic anomaly detection, Unsupervised learning, Deep
Autoencoders, Industrial and in-vehicle data, One-class learning.

1 Introduction

Due to advances in Information and Communications Technology (ICT) there
is an increasing amount of physical processes that are collected in a digital
form. In effect, currently there is a widespread usage of interconnected sensors
that can capture diverse real-world phenomena (e.g., images, sound, temper-
atures). All this data can be used by Artificial Intelligence (AI) and Machine
Learning (ML) to extract valuable analytics. A particularly relevant ML task
is anomaly detection, which intends to distinguish abnormal events from nor-
mal ones [1, 2]. For instance, the early detection of operating machines with
defects in industrial processes by using ML can potentially reduce maintenance
time and costs, prevent or reduce production stops, and increase the safety of
human operators that operate the machines [3, 4]. Moreover, anomaly detec-
tion by ML is valuable for future shared self-driving vehicles [5]. Given that
there will be no human drivers, there is a need to automatically monitor the in-
vehicle conditions in terms of the health, safety and comfort of its passengers.
Thus, an intelligent system can analyze in-vehicle sensor data (e.g., images,
sound) aiming to detect anomalies and potentially trigger actions (e.g., calling
for assistance) [6].

The focus of this work is on ML methods for Acoustic Anomaly Detection
(AAD) [7], which aims to detect abnormal behaviors using audio data. Several
studies addressed this issue as an unsupervised ML task, since data labeling
is highly costly and time consuming, requiring a large manual effort that is
subject to errors [8]. Unsupervised AAD can be achieved by adopting an one-
class learning [9, 10], by assuming ML algorithms such as Isolation Forest (IF)
[11, 12] and One-Class Support Vector Machines (OC-SVM) [8, 13]. Moreover,
following the success of Deep Learning, there has been a growing usage of
neural network architectures for AAD. In particular, AutoEncoders (AE) are
becoming popular for one-class AAD [14, 15]. When compared with other ML
approaches (e.g., IF and OC-SVM), AE present the advantage of requiring a
lower computational effort [16, 17], which is a valuable asset for designing AAD
intelligent systems capable of working with operating machines and vehicles.
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This work is set within a larger R&D project that addresses an unsuper-
vised in-vehicle intelligence using multiple data sources (e.g., images, sound,
particles) and that includes the Bosch Car Multimedia S.A. (BCM) company.
This paper presents the full research related with the in-vehicle AAD compo-
nent of the R&D project, which corresponds to a large extended version of
a previously published conference paper [18]. The main goal is to detect in-
vehicle AAD, such as passengers arguing, coughing or an accidental breaking
of glass. As previously argued [6], audio data is very scarce within this domain
and there are no public domain datasets. Thus, in an initial stage, in order
to tune and compare different AE methods, a different application domain
scenario was approached by assuming public data related with toy and real
working machines [18], as provided by the ToyADMOS [19] and the MIMII
[20] datasets. Following on good results obtained in previous studies [2, 21–
23], three different AE architectures were adjusted and compared: deep Dense
AE, Convolutional Neural Network (CNN) AE and Long Short-Term Mem-
ory Autoencoder (LSTM) AE. During the machine sound experiments, the
popular Mel Frequency Energy Coefficients (MFECs) [24, 25] were adopted to
preprocess the audio. For benchmark purposes, the obtained results were com-
pared with a baseline AE architecture that was recently proposed [26]. Next,
on a second stage the R&D project in-vehicle scenario was targeted. In a previ-
ous conference paper [6], a synthetic in-vehicle sound simulator was developed,
aiming to perform a realistic mixture of abnormal and normal audio clips with
normal car driving background sound. To evaluate the usefulness of the gener-
ated in-vehicle data, the same work [6] performed an initial comparison study
using: two sound preprocessing methods, MFECs and a combination of three
features (e.g., Mel Frequency Cepstral Coefficients); and two AE architectures,
a deep Dense AE and LSTM AE. This paper uses the three synthetic datasets
that were created by the in-vehicle sound simulator and it assumes the MFEC
sound preprocessing method that obtained better results in both [18] and [6]
studies. A total of three AE AAD methods are compared (Dense AE, LSTM
AE and CNN AE). When compared with [6], the proposed AEs include an
improved LSTM AE architecture (e.g, with Batch Normalization layers) and
a novel CNN AE. Moreover, this paper presents new results regarding a pilot
demonstration experiment that was conducted at BCM, involving a selected
AAD method (LSTM AE), the cough abnormal use case and a two-day human
testing (e.g., involving business managers, journalists and students).

The paper is organized as follows: section 2 describes the sound datasets,
the audio preprocessing, the proposed AAD AE architectures and the evalua-
tion process. Section 3 presents the experiments conducted and and obtained
results. Finally, the main conclusions are discussed in section 4.
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2 Materials and methods

2.1 Audio data

This work considers several unsupervised learning experiments related with
two application domain datasets. One considers an industrial environment and
the other consists of in-vehicle audio data. Each domain data was originally
recorded using a distinct Sample Rate (SR): 16,000 Hz for the sound machines
and 44,100 Hz for the in-vehicle audio. It should be noted that the AAD
methods do not work directly with the raw data but with a preprocessed
Fast Fourier Transformation (FFT) that is associated with a reduced input
dimension (see section 2.2).

The industrial data is related with parts of the ToyADMOS [19] and the
MIMII [20] datasets, consisting of the normal and anomalous operating sounds
of six types of toy/real machines, as obtained from the Detection and Classifi-
cation of Acoustic Scenes and Events (DCASE) 2020 challenge [26]. The data
is divided into two parts (development and evaluation) for 6 different machine
types: ToyCar, ToyConveyor, Slider, Pump, Fan, and Valve.

The ToyCar and ToyConveyor data belong to ToyADMOS dataset. This
dataset involves miniature machines (toys) that were damaged deliberately to
record anomalous behavior. As for the MIMII Dataset, the sounds are recorded
from different industrial machines, aiming to resemble a real-life scenario. In
the development datasets, each machine type has 4 different specific machines,
except for ToyConveyor, which has only 3.

The machine sound datasets include normal and anomalous labels that are
available for the test data, allowing to estimate the AAD performance of the
ML models. Regarding the evaluation data, it contains audio for new machines
(new IDs) in each machine type, both for model training and testing. Table 1
summarizes the analyzed datasets for the industrial application domain. It
should be noted that a different number of approximately 10 second Waveform
Audio File (WAV) files is used for each machine (column Test).

Regarding the in-vehicle audio, it is related with a synthetic sound simu-
lator that was developed using the Python language [6]. The simulator works
as a sound mixture tool that uses background recordings (194 sound files) and
acoustic scenes relative to a set of predefined normal and abnormal behav-
iors (short audio clips). Each generated synthetic audio file had a duration
of 60 seconds and it was randomly sampled from the whole raw car driving
audio data. The background clips were manually labeled, allowing to identify
two relevant subclasses: radio on - 160 clips; and radio off - 34 clips. The rare
events were related with audio clips with a few seconds that were collected
from two public sources: Freesound1 search engine and Librivox2. The col-
lected audio clips were associated with the 7 use cases from the R&D project:
anomaly events - people arguing, breaking a window or coughing; and nor-
mal events - reading a book, singing, talking or using a smartphone (e.g.,

1https://freesound.org/
2https://librivox.org/

https://freesound.org/
https://librivox.org/
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Table 1 Summary of the working machine AAD datasets.

Development Evaluation

Machine Audio Files Machine Audio Files

ID Train Test ID Train Test

Toy Car

01 1000 614 05 1000 515
02 1000 615 06 1000 515
03 1000 615

07 100 515
04 1000 615

Toy Conveyor
01 1000 1200 04 1000 555
02 1000 1155 05 1000 555
03 1000 1154 06 1000 555

Fan

00 911 507 01 911 426
02 916 549 03 916 458
04 933 448

05 1000 458
06 915 461

Pump

00 906 243 01 903 2016
02 905 211 03 606 213
04 602 200

05 908 348
06 936 202

Slider

00 968 456 01 968 278
02 968 367 03 968 278
04 434 278

05 434 278
06 434 189

Valve

00 891 219 01 679 220
02 608 220 03 863 220
04 900 220

05 899 500
06 892 220

texting). Table 2 summarizes the retrieved audio events: the type of Use case,
if it is an Anomaly and the total number of audio clips (column Clips). In
the table, the last three columns are related with the three generated AAD
datasets: Mix3 – includes radio on sound and assumes a smaller in-vehicle size;
Mix6 – similar to Mix3 but assumes a larger vehicle interior size (e.g., van);
Mix6NR – similar to Mix6 but does not include radio on background sound
(NR stands for “No Radio”). For the three datasets, the training and test sizes
are shown in seconds.

2.2 Audio feature extraction

This research assumes a spectral analysis to extract features from the audio
signals, which is a popular approach to preprocess audio [27]. In particular, a
feature for audio signal processing named Mel Frequency Energy Coefficients
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Table 2 Summary of the in-vehicle AAD datasets created in [6].

Use case Anomaly Clips Split Class Mix3 (s) Mix6 (s) Mix6NR (s)

Background 194
train normal 4200 4200 4200
test normal 1800 1800 1800

Arguing X 32
train

normal 3443 3469 3521
anomaly 757 731 679

test
normal 1460 1434 1470
anomaly 340 366 330

Breaking Window X 64
train

normal 3572 3577 3787
anomaly 628 623 413

test
normal 1546 1541 1530
anomaly 254 259 270

Cough X 49
train

normal 3774 3807 3888
anomaly 426 393 312

test
normal 1671 1638 1670
anomaly 129 162 130

Reading 67
train normal 4200 4200 4200
test normal 1800 1800 1800

Singing 47
train normal 4200 4200 4200
test normal 1800 1800 1800

Talking 71
train normal 4200 4200 4200
test normal 1800 1800 1800

Using Smartphone 13
train normal 4200 4200 4200
test normal 1800 1800 1800

(MFECs) is addressed, which are log-energies derived directly from the filter-
banks energies. This feature provided good results in detecting different audio
sounds and classification of sounds in previous studies [22, 28, 29]. For demon-
stration purposes, fig. 1 exemplifies the original sound waveforms for normal
and abnormal Fan machine events, while fig. 2 displays the same sound events
when using the MFEC representation. Visually, it becomes clear that there are
more signal differences between normal and abnormal events when adopting
the MFEC transformation.
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Fig. 1 Examples of machine Fan ID 00 sound waveforms.
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Fig. 2 Mel Scale representation for machine Fan ID 00 normal and abnormal examples
using the energy values (MFECS).

To prepare the features for two of the explored deep learning architectures,
namely the Dense and LSTM AE, some operations were made. In this research,
and similarly to the DCASE competition [26], the two AEs work with sound
samples with a length of one second (for training and testing). Thus, Audio
data were buffered in fixed-length 1-second intervals with a 50% overlap. For
each audio buffer obtained, the segment was then divided into F = NFFT

SR
ms analysis Frames (F ), with 50% overlap, with 128 MFECs being extracted
from the magnitude spectrum of each frame. The NFFT denotes the length
of the FFT window and SR denotes the sound sample rate (in Hz). In this
work, the NFFT window length is fixed to 1024, while the SR is application
domain dependent (16,000 Hz for the working machines and 44,100 Hz for the
in-vehicle audio). In this way, NF =5 time-frames are concatenated to form
a 640-dimensional input vector for each sound second segment, as shown in
fig. 3. The JAX python module [30] was used to implement this sound pre-
processing procedure. The module uses the GPU cores to read, process and
extract MFECs directly from the sound waveforms.

As for the Convolution Neural Network (CNN) AE, it requires a slightly
different feature extraction method. The CNN model mainly uses images as
an input for the model and it requires much more computation than the other
AEs. Therefore, in order to reduce the computational effort, a different pre-
processing approach is assumed, in which only 128 MFECs are extracted for a
complete training audio file (with several seconds) by considering F = NFFT

SR
ms frames with a 50% overlap. This generates one image per audio file of size
NF × 128 as shown in fig. 4. The NF parameter denotes the total number of
frames, each with a F time length, for a particular sound file size and when
assuming a 50% overlap. In order to perform the same test comparison that
was executed for the other AEs, during the testing phase the test audio files
are first divided into shorter one second segments, thus computing a distinct
MFEC image for each segment.

2.3 Autoencoder Architectures

AEs compress numeric input features into a lower dimensional space, named
latent space, and then output back the original input signal. An AE is com-
posed of two main components, an encoder that computes the latent space,
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Fig. 3 Feature extraction procedure for the Dense and LSTM AE.

via a nonlinear transformation, and a decoder that attempts to reconstruct
the reverse transformation [31, 32]. Thus, the AE performs a regression task,
aiming to minimize the reconstruction error, which is defined as the difference
between the original numeric input vector and the AE output [33]. It is often
assumed that normal and anomalous events follow different distributions, thus
AEs are typically trained to learn the normal multi-dimensional space of the
data by using only normal event records. The reconstruction error can then be
used to detect class anomalies by assuming a threshold value (Th), such that
an anomaly is considered positive if the reconstruction error is higher than the
threshold [31, 32].

All proposed AEs are trained and tested with MFEC processed sound seg-
ments (section 2.2), each with a one second length. In order to select the best
AE architectures, several preliminary experiments were conducted by consid-
ering only development data from the first application domain data (working
machine datasets). The best configuration (in terms of the reconstruction
error) was selected by varying elements such as the number of hidden layers
and units per layer. Once the neural architecture was selected, it was fixed
and applied to all datasets. For both AEs, the training only uses normal event
sounds.

The first proposed architecture consists of a deep fully-connected (thus
Dense) AE (top of fig. 5), which was adopted in the baseline AE proposed in
[26]. The best preliminary results were achieved by a Dense AE that includes
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Fig. 4 Feature extraction procedure for the CNN AE.

encoder and decoder components with four fully-connected layers with 512 hid-
den units, followed by a Batch Normalization, with all neural nodes using the
popular ReLU as activation function. The Batch Normalization layer allows
reduce the internal covariate shift, discarding the need of dropout, and nor-
malizes the inputs for each batch of data [34]. As for ReLU, it presents the
advantage of non-saturation of its gradient, which greatly accelerates the con-
vergence of stochastic gradient descent compared to other activation functions,
including logistic or hiperbolic tangent [35]. The bottleneck layer is set as one
fully-connected layer with 8 hidden units, resulting in an 8-dimensional latent
space.

Recently, CNNs have achieved promising results on many AAD bench-
marks [36–38]. By integrating 2D convolutional operations in an AE structure,
CNN AEs are capable of learning the spatial structure of the input features
and reconstruct them while taking into account their spatial structural pat-
terns. Based on this property, the second proposed deep learning architecture
for the unsupervised AAD task consists of a deep CNN AE (shown in the
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Fig. 5 Proposed AE Network architectures: Dense AE (top) and CNN AE (bottom).

bottom of fig. 5). With such an architecture, the AAD task is handled as a com-
puter vision problem by exploring image-like time-frequency representations
of audio. The encoder and decoder networks are comprised of convolutional
blocks, each consisting of 2D Convolution and Batch Normalization layers,
using ReLU as the activation function. The encoder network is composed by a
stack of five convolutional layers with 32, 64, 128, 256, and 512 convolutional
filters, kernel sizes of 5, 5, 5, 3, and 3 to capture local patterns, and strides
of (1, 2), (1, 2), (2, 2), (2, 2), and (2, 2), respectively. The feature size map is
reduced throughout the encoder by the convolution operation stride. The bot-
tleneck consists of a layer with 40 convolutional filters, reducing the encoder
feature maps to a 40-dimensional compressed input representation. Concern-
ing the decoder network, it starts from the bottleneck layer (the latent space)
and then it includes several hidden layers, which attempt to reconstruct the
latent space representation back into the original input. To avoid computa-
tional memory issues, during the training of the CNN AE, the data generator
of the Keras Python module is adopted, which feeds just one image at the
time into the CNN AE.

The LSTM is a special type of deep Recurrent Neural Network (RNN)
that solves the “short-term memory” problem through a mechanism of gates



Deep Autoencoders for Acoustic Anomaly Detection 11

that manage to regulate the flow of information [39, 40]. Since the LSTM
neural network tends to provide good results when modeling temporal data,
this work proposes an LSTM-AE architecture for AAD tasks, as presented
in fig. 6. In this AE, the encoder and decoder components are composed of
LSTM layers. Similarly to the simpler AE, each component is composed of a
stack of five LSTM layers with Lh cells followed by a Batch Normalization
(BN) layer per stack. As for the activation function for each LSTM layer, it
consists of the Exponential Linear Unit (ELU) activation function that sat-
urates better for negative net inputs and diminishes the vanishing gradient
issue, therefore enabling a faster learning [41]. The LSTM architectures tend
to produce exploding gradients given the accumulation of gradients unrolled
over hundreds of input time steps. To solve this issue, Batch Normalization
(BN) layers were adopted, as suggested in [42]. There is also a bottleneck layer
with Lb hidden cells, where Lb < Lh. This layer is preceded by a LSTM layer
with the same size (Lb), which acts as a bridge, preparing the data to be
decoded. Since the decoder network is designed to unfold the encoding com-
ponent, the decoder layers were stacked in the reverse order of the encoder
ones. The selected number of hidden nodes per layer is shown in fig. 6 (e.g.,
Lh =128, Lb =8).
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Fig. 6 Proposed LSTM structure.

Regarding the training algorithm used to train AE architectures, it consists
of the Adam optimizer, which also was used in [26], using a learning rate of
0.001. All three AE types were trained to minimize the Mean Squared Error
(MSE) between input and its reconstruction (the loss function). The training
procedure was iterated up to a maximum of 100 epochs. In each epoch, 10%
of training data was randomly divided for validation purposes, allowing to
monitor the evolution of the reconstruction error. If the MSE does not improve
on validation data after 10 epochs, an early stopping is activated, ending the
training process and storing the weights of the model that achieved a lower
reconstruction error on validation data. As for the batch size, for both Dense
AE and LSTM AE architectures it was set to 512, while for the CNN AE
architecture it was set to 64.

Once the AE is trained, the MSE reconstruction error for an unseen sound
sample i (related with a short length of one second) is used as the decision
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score (di):

MSE i =

∑I
j=1(xi,j − x̂i,j)

2

I
(1)

where xi,j and x̂i,j denote the desired input value and estimated AE output
for the i-th data instance and j-th input or output node and I denotes the
total number of the AE inputs (and outputs). The reconstruction MSE error
is used as the decision score di = MSEi, where higher reconstruction errors
should correspond to a higher anomaly probability.

2.4 Evaluation

Given that a binary classification task is approached, the predictive perfor-
mance is evaluated by adopting two popular AAD metrics that are based on
the Receiver Operating Characteristic (ROC) analysis, namely the Area Under
the ROC Curve (AUC) and partial-AUC (pAUC) [19, 20]. The ROC curve
shows the False Positive Rate (FPR) versus the True Positive Rate (TPR)
for different threshold values (Th). In this research, the positive class is the
anomaly.

The AUC measure represents the overall ML discrimination performance,
while pAUC focuses on a particular range of interest from the ROC curve,
defined in this work as the FPR values from 0 to 0.1, which reflects in a model
with fewer false alarms. Quality values for both measures are not influenced by
unbalanced data, which in occurs in the AAD datasets. The AUC and pAUC
values can be interpreted as follows: 50% performance of a random classifier;
60% - reasonable; 70% - good; 80% - very good; 90% - excellent; and 100% -
perfect [43].

As mentioned in section 2.3, the three AE architectures were set by using
development data from the working machine application domain datasets. A
single AE model was fit (using training data) and then evaluated (using test
data) for each operating machine type (e.g., ID 04 for Toy Car) and in-vehicle
mixture dataset (e.g., Mix3).

3 Results

The proposed AE architectures were implemented in the Python programming
language, using the TensorFlow-GPU library [44]. The computational exper-
iments were conducted using two different GPUs (Titan Xp and 1080Ti). To
evaluate the model performance, both AUC and pAUC metrics were used, as
defined in section 2.4.

3.1 Working machine audio

Table 3 presents the obtained predictive results for each specific machine, also
showing the average value for each machine type. For comparison purposes, the
Baseline system results from [26] are also provided in the table. The obtained
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Table 3 Comparison of AUC and pAUC results for all AE architectures for each machine
(best average values are denoted in bold)

Machine Machine Baseline Dense AE CNN AE LSTM AE

Type ID AUC (%) pAUC (%) AUC (%) pAUC (%) AUC (%) pAUC (%) AUC (%) pAUC (%)

ToyCar

1 81.36 68.40 83.87 72.64 81.59 71.88 80.97 66.67
2 85.97 77.72 87.56 80.35 85.46 79.92 85.56 68.89
3 63.30 55.21 63.12 55.02 62.73 55.08 68.43 58.13
4 84.45 68.97 88.60 76.68 82.38 69.60 87.16 73.02

Average 78.77 67.58 80.79 71.17 78.04 69.12 80.53 66.68

ToyConveyor

1 78.07 64.25 81.67 69.41 79.90 62.71 77.10 60.82
2 64.16 56.01 68.04 58.31 67.78 54.85 64.09 54.84
3 75.35 61.03 79.59 63.64 80.11 62.53 80.02 63.50

Average 72.53 60.43 76.43 63.79 75.93 60.03 73.74 59.72

fan

0 54.41 49.37 56.73 49.72 51.77 49.05 52.53 49.14
2 73.40 54.81 79.60 54.00 72.71 55.51 79.72 59.03
4 61.61 53.26 70.11 54.11 62.60 52.80 61.35 52.06
6 73.92 52.35 81.69 55.15 80.05 53.19 86.90 58.65

Average 65.83 52.45 72.03 53.25 66.78 52.63 70.13 54.72

pump

0 67.15 56.74 66.94 56.83 66.37 54.95 66.09 54.99
2 61.53 58.10 60.77 60.31 54.31 53.58 60.54 58.51
4 88.33 67.10 87.00 66.32 94.64 77.26 97.15 86.32
6 74.55 58.02 77.53 60.32 76.97 58.05 76.00 56.35

Average 72.89 59.99 73.06 60.94 72.07 60.96 74.95 64.04

slider

0 96.19 81.44 96.12 82.30 98.86 94.47 96.23 81.10
2 78.97 63.68 79.55 64.42 84.06 69.33 82.41 61.94
4 94.30 71.98 95.44 76.14 97.69 87.82 92.98 65.38
6 69.59 49.02 77.22 49.56 86.46 53.16 75.93 49.32

Average 84.76 66.53 87.08 68.10 91.77 76.20 86.89 64.44

valve

0 68.76 51.70 74.61 52.28 78.69 52.59 81.10 53.91
2 68.18 51.83 76.68 52.72 85.02 55.92 78.98 53.11
4 74.30 51.97 79.58 50.96 82.59 53.68 81.58 52.46
6 53.90 48.43 57.78 48.73 69.03 50.22 66.76 50.04

Average 66.28 50.98 72.16 51.17 78.83 53.10 77.11 52.38

results show that the proposed three AEs tend to outperform the Baseline sys-
tem, which achieved best results in just 2 of the 23 analyzed specific machines
(for the pump machine IDs 0 and 2). As for the comparison between the three
AEs, there is no clear winner. The Dense AE obtained the best average values
(for both AUC and pAUC measures), regarding the Toycar, Toyconveyor and
fan machines. Turning to the CNN model, the best AAD results values were
obtained for the slider and valve machines. Regarding the LSTM AE architec-
ture, the fitted models obtained the best average AAD predictive performance
for the pump machine. Overall, it should be noted that when considering the
AUC measure, a high quality anomaly class discrimination was achieved by
the proposed AEs, since most AUC values are above 70%.

To further demonstrate the quality of the obtained results, the left graphs of
fig. 7 exemplify some of the ROC curves related with the machine sound AAD
results (table 3). For each curve, two distinct thresholds were selected, allowing
to compute two confusion matrices, as shown in the right plots of fig. 7. In
the plots, the more sensitive and lower threshold (with its respective confusion
matrix) is colored in green, while the more specific and higher threshold point
is colored in red. From each confusion matrix, it is possible to compute several
classification measures [45], such as the known Accuracy, Precision and Recall
statistics that are presented in table 4.
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Fig. 7 Machine sound ADD examples of ROC curves (left graphs) and confusion matrices
related with two thresholds (right plots).

Table 4 Class label prediction results for the threshold example values from fig. 7.

Classification measure

Model Th Accuracy Precision Recall

LSTM-AE ToyConveyor ID 3
2.634 51.2% 38.4% 96.9%
2.798 73.3% 56.7% 56.3%

LSTM-AE Fan ID 6
2.364 92.4% 92.2% 98.6%
2.610 59.9% 94.0% 52.1%

LSTM-AE Slider ID4
2.836 95.0% 93.6% 98.9%
3.251 61.9% 93.9% 43.3%

3.2 In-vehicle audio

After evaluating the performance of the three AEs that were tuned using
working machine data, the same architectures were explored for the targeted
in-vehicle domain. Given the need to design a real working intelligent AAD
system, the computational effort required by the three AE architectures when
assuming the same server (Titan Xp GPU) was also recorded. The obtained
results are presented in table 5 and include the training (Train, in s) and
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prediction (Predict) times (in ms). It should be noted that the previously
Baseline method is not included in this table because it was specifically devel-
oped for the working machine audio and this learning method is not directly
available, only the machine AAD predictions. An analysis of table 5 shows

Table 5 Comparison of AUC and pAUC results for all AE architectures for each
in-vehicle dataset (best average values are highlighted in bold).

Audio AAD Train Predict
AUC pAUC

Mixture Model Time (s) Time (ms)

Mix3
Dense AE 4861 0.7 73.08 56.87
LSTM AE 8243 25.7 77.27 60.29
CNN AE 4565 53.13 78.14 65.71

Mix6
Dense AE 3564 0.8 72.21 56.96
LSTM AE 8015 25.7 78.27 60.81
CNN AE 19605 55.83 77.24 62.19

Mix6NR
Dense AE 1010 6.0 77.56 57.38
LSTM AE 8293 31.1 78.54 58.57
CNN AE 5009 53.23 81.34 64.69

that the CNN AE obtained the best AAD predictive performance (when con-
sidering both AUC and pAUC measures) for the Mix3 and Mix6NR scenarios.
The LSTM AE outperformed the Dense and LSTM AEs in terms of the AUC
values for the Mix6 dataset. As for the Dense AE, this deep learning architec-
ture obtained the worst AUC and pAUC values for the three tested in-vehicle
datasets. Overall, it should be noted that a high quality AAD discrimination
was achieved, with the best AEs producing an AUC values of 78% (Mix3 and
Mix6) and 81% (Mix6NR). Regarding the computational times, the Dense AE
is in general the fastest method, tending to require less training and infer-
ence (prediction) effort. The LSTM AE architecture requires a stable training
effort for all three datasets (around 8,000 s) and the second fastest inference
(predict) time. The CNN AE requires the highest training time for the Mix6
dataset. Moreover, it also presents the highest AAD inference time for all in-
vehicle datasets. For demonstrative purposes, fig. 8 presents the full ROC curve
for the Mix 6 LSTM AE model and two confusion matrices associated with a
more sensitive (green color) and a more specific (red color) threshold values.

The in-vehicle results were shown to the BCM company, which provided a
very positive feedback. In addition to the computational experiments carried
out, there was the opportunity to test one algorithm in a real environment,
as part of a pilot event promoted by BCM. The microphone used for this
test was a Mic Array UMA-8-SP, which is a multi-channel USB microphone
paired with a digital audio amplifier. This sensor has seven high performance
Micro Electro Mechanical System (MEMS) microphones configured in a circu-
lar arrangement to ensure high quality voice capture for heterogeneous types
of applications. For this real-world experiment, the microphone was installed
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Fig. 8 In-vehicle ADD example of a ROC curve (left graph) and confusion matrices related
with two thresholds (right plot).

behind the rear-view mirror of the car. The left of fig. 9 shows a photograph of
the microphone placement inside the vehicle used for the event demonstration,
which was connected into a laptop that executed the AAD intelligent system
(shown at the bottom of the same photograph).

Fig. 9 Photographs of the in-vehicle AAD system (left) and its computational interface
prototype (right) adopted during the BCM pilot demonstration.

Cough was the abnormal use case chosen by BCM to test the pilot, since
this action is more easy to simulate by humans. Moreover, in contrast with
the Breaking Window event, it does not impact physically in the in-vehicle
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environment, allowing repeated cough executions for both single and multi-
ple users. Given that the pilot real in-vehicle environment contained a higher
level of ambient noise when compared with the synthetic in-vehicle datasets,
the BCM company collected several hours of real audio data before the pilot
demonstration and by using the demonstration vehicle under different condi-
tions (e.g., stopped with engine, air conditioner and radio on and off). To select
the ADD model, the Mix6 scenario was considered from the synthetic in-vehicle
datasets, since it is more closely related with the expected BCM demonstra-
tion environment (e.g., large vehicle, possibly with radio on). Table 6 details
the individual LSTM AE and CNN AE results (the best AAD architectures
reported in table 5) for each abnormal use case (Cough, Argument, Breaking
Window) when considering the Mix6 data. For the pilot use case (Cough), the
LSTM AE obtained the highest AUC value (85%). Considering that LSTM
AE model also requires less computational effort (in both training and pre-
diction times, see table 5), it was the AE architecture selected for the event
demonstration and that was further trained with the collected BCM audio.

Table 6 LSTM AE and CNN AE subset test results for each anomaly use case when
using the Mix6 data.

Use Case
AAD
Model

AUC pAUC

Cough
LSTM-AE 85.15 71.85
CNN-AE 83.37 72.69

Argument
LSTM-AE 88.89 77.59
CNN-AE 93.44 83.56

Breaking Window
LSTM-AE 71.15 53.01
CNN-AE 66.67 56.79

The right of fig. 9 shows the computational interface prototype that was
created for demonstration. The top of the photograph shows the evolution of
the reconstruction errors coming from the LSTM AE algorithm. Every second
(x-axis), the exact errors are plotted in a graphical window (top of the photo-
graph) and also shown in the console (bottom of the photograph). Since the
demonstration was planned to be experimented by different types of persons
(e.g., business managers, journalists, school students) during a two day period,
two anomaly thresholds (shown as horizontal colored lines in the graphical
plot) were defined: yellow – symbolizing some certainty of an anomaly, set as
the maximum reconstruction error (MSE=120) that was obtained when using
the validation data from the Mix6 dataset (it only includes normal data); red
– higher threshold that defines a stronger anomaly event and that was set
empirically, prior to the pilot execution, when configuring the real in-vehicle
AAD system setup. It should be noted that the BCM in-vehicle audio contains
a higher level of ambient noise, thus the pilot reconstruction errors are much
higher when compared with the synthetic in-vehicle computer experiments.

During the event demonstration, the AAD system algorithm behaved as
expected, tending to accurately detect a cough. In order to measure the results,
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Table 7 Accuracy obtained by the AAD system during the demonstration event

Cough location Air Conditioner Radio Windows Engine %Accuracy
Driver seat

On Off Closed On
100

Front passenger 100
Back Seats 90
Driver seat

On On Closed On
100

Front passenger 100
Back Seats 80
Driver seat

On On Open On
100

Passanger 100
Back Seats 80

3 scenarios were created, all assuming a non moving vehicle: 1 – radio off and
windows closed; 2 – radio on and windows closed; and 3 – radio on and windows
open. For each scenario, 3 person positions were assumed: driver seat, front
passenger seat and back seats. For each position, a total of 10 coughs were
generated. The obtained average AAD system classification accuracy results,
when considering the first threshold (yellow colored in he right of fig. 9), are
presented in table 7. Overall, a high quality AAD performance was achieved,
ranging from 80% (third scenario, back seats) to 100% (all front driver and
passenger seat experiments).

4 Conclusions

In this paper, three AutoEncoder (AE) deep learning architectures are pro-
posed for an unsupervised Acoustic Anomaly Detection (AAD) task: a Dense
AE, a Convolutional Neural Network (CNN) AE and a Long Short-Term
Memory Autoencoder (LSTM) AE). The three AE architectures were first
applied to six different real-world industrial machine sound datasets. Using
development records from the datasets and sound energy features from mel-
spectrograms to preprocess the raw sounds, several preliminary experiments
were conducted in order to tune the AE hyperparameters, namely in terms
of hidden layers and nodes and activation functions. Then, the selected AE
architectures were trained and tested using the evaluation instances from the
public domain datasets. Overall, competitive results were obtained by the pro-
posedAEs when compared with a recently baseline AE architecture [26]. Then,
on a second experimentation stage, the previously tuned AE architectures
were adapted to model audio from a different application domain of in-vehicle
intelligence, which was the main target of the joint research with Bosch Car
Multimedia S.A. (BCM). In particular, three in-vehicle usage scenarios were
explored by assuming a synthetic and realistic in-vehicle sound simulator [6].
In both application domains (working machines and in-vehicle), a high qual-
ity AAD discrimination was obtained, ranging from 72% to 91% (working
machine data) and from 78% to 81% (in-vehicle audio). In particular, the best
in-vehicle results were obtained by the CNN and LSTM AEs. In collaboration
with the BCM company, an AAD intelligent system prototype was developed,
assuming a selected LSTM AE model (trained with one of the synthetic sound
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mixtures) for a real in-vehicle pilot demonstration that involved the cough use
case. A very positive feedback was obtained, with the AAD intelligent sys-
tem presenting a high cough detection accuracy (e.g., 100% for the front seat
passengers).

As future work, different deep learning architectures for AAD will be
explored, such as Variational AEs [46]. Furthermore, the effect of using audio
data augmentation techniques (e.g., pitching, time-shifting, Generative Adver-
sarial Networks) or signal frequency filtering tools will also be studied, aiming
to further improve the AAD results.
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