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smell, sweet taste) could be useful in designing new foods and experiences that trigger
specific positive reactions in consumers, and therefore in reducing sugar consumption
among the population.

It has been suggested that the use of electroencephalography (EEG) techniques can
be useful for marketing and sensory sciences because the activation of certain regions of
the brain can offer information about people’s unfiltered response, providing evidence
associated with the emotions and unconscious feelings of consumers [9]. The stimulation
of gustatory, olfactory, and trigeminal receptors while eating triggers a cascade of reactions
that will ultimately cause a neuronal activation in specific regions of the brain [10]. Part
of this neuronal activation can be measured using EEG techniques, which are based on
the reading of the electrical potentials detected in the scalp of the person, and that will be
registered in electroencephalograms. Using EEG allows to collect immediate processing
data of the presented stimuli (e.g., a taste or an odorant) to be gathered from fluctuations in
brain signal frequencies [11].

Various methodologies have been reported to study the EEG as a tool to record
responses to taste and olfactory stimuli. Andersen et al. [12] used a panel with 24 volunteers
to study the grand-average evoked potentials associated with different sweeteners (sucrose,
aspartame, and acesulfame K solutions), which were placed in the center of the tongue of the
volunteers using a programable pump. These authors recorded 3 s responses and repeated
the recording procedure 62 times (average) per volunteer. Mouillot et al. [13] assessed the
gustatory evoked potentials (GEPs) elicited by different sweeteners in 20 subjects, also
collecting the self-reported response to the stimuli and looking for relationships between
conscious and unconscious responses. Results indicated that the brain response to different
sweetness was significantly different by substance, although the self-reported response
of volunteers was not useful to classify the sweet substances. Both studies focused on
different gustatory stimuli, but no other sweet stimuli were assessed (e.g., sweet odors).
Crouzet, Busch, and Ohla [14] linked patterns of neuronal response of 16 volunteers
with self-reported taste perception using electroencephalographic data: the tastes that
consumers discriminated with higher clarity were those that generated a stronger and
more differential brain signal. These authors used a four-alternative forced-choice taste
discrimination task followed by the analyses of the global field power and global map
dissimilarity of the electrophysiological brain responses. Regarding olfactory stimuli,
different electrophysiological studies have been conducted, showing the complexity of
the matter and the need for including self-reported responses to better understand the
whole cognitive process of olfaction [15]. Placidi et al. [16] studied brain response to
remembering unpleasant odors, focusing on the gamma and alpha bands (32–42 Hz and
8–30 Hz, respectively) and the P4, C4, T8, and P8 channels, but no odorants or volatile
compounds were assessed in this study. Kroupi et al. [17] investigated the alterations in
brain activity during the stimulation with six hedonically-different odors and showed
that odor pleasantness could be predicted with EEG data when a subject-specific classifier
was trained, and that some generic patterns were observed when subject-independent
analysis was performed. Although different investigations have been conducted to better
understand brain activity while exposed to an odorant, none of them considered that
some aromas can share descriptors and responses with taste stimuli (e.g., sweetness) or
researched potential common mechanisms.

Although several studies have been conducted to investigate the non-conscious re-
sponse to different sweet tastes [12,13] and to different odorants [15], to date, no studies
have been published comparing the EEG response to sweet-taste and sweet-aromatics in
food matrices. The present study was developed to explore the neurological response
processes associated with the sucrose-sweet taste and a sweet-related aroma (vanillin)
exposure in food matrices, and to study whether the implicit response (EEG) could be
correlated with the explicit response. In addition, a sample including sucrose and vanilla
was added to explore the response to sweet flavor. Different flavors were also added in the



Sensors 2022, 22, 6787 3 of 14

experimental design (dimethyl sulfide, cayenne) to determine if the classifications of sweet
taste/aroma were different from those of other taste/aroma categories.

2. Materials and Methods
2.1. Participants

Eighteen healthy subjects (age mean = 29.6 ± 5.1; 10/8 women/men, respectively)
participated in the present study. The number of volunteers was similar to the one reported
by other authors studying EEG response [18]. Participants were recruited via the Basque
Culinary Center (BCC, Donostia-San Sebastián, Spain) consumers’ database. Explicit and
implicit recordings were performed on different days; therefore, participants attended
BCC’s dependences twice. The study design was presented to, assessed, and approved
by the Basque Country Drug Research Ethics Committee (reference number: PS2019050),
and was conducted according to the Declaration of Helsinki. All subjects were properly
informed about the research protocol and signed an informed consent to participate in the
study. Only non-smoker volunteers with self-reported normal taste perception participated
in the study. Participants were asked to not drink coffee/tea or eat at least 2 h before
the study.

2.2. Samples

Although the aim of the study was to explore the EEG responses to sweet taste, sweet
aroma, and sweet flavor, 2 non-sweet stimuli were included in the paradigm to test if the
sweet category could be clearly differentiated from other odor/flavor categories and had
common response patterns. Therefore, different stimuli, olfactory and gustatory, were
chosen to determine the implicit and explicit responses.

For the olfactory stimuli, 2 volatile compounds representing 2 different aromatic cate-
gories were selected: (1) vanillin (97%, Merck, MO, USA), an organic compound present
in vanilla, representing sweet aromatics; and (2) dimethyl sulfide (DMS) (99%, Merck,
MO, USA), a sulfurous organic compound that is related to canned corn or cooked veg-
etables [19]. Odor stimuli were presented in 2 mL microcentrifuge tubes containing small
cotton balls impregned with 600 µL of the corresponding diluted chemical compounds
(1000 mg L−1). Stimuli were prepared ensuring a suprathreshold level; odor threshold for
vanillin and DMS are 53 and 0.84 µg L−1, respectively [20].

For the taste and flavor stimuli, to favor a gradual release of the flavor without chewing
or significantly moving the mouth, several food matrices were proposed and tested with
the advice of EEG technology experts (ANT Neuro, Hengelo, The Netherlands). Chewing
and/or swallowing movements could generate much noise in the EEG signal, therefore
making EEG data analysis difficult. A marshmallow-like matrix was chosen (1.5 cm cubes)
because it maintained a soft texture that melted slowly in the mouth without the need
to chew. Three different formulas were prepared: a sweet-taste marshmallow with 44%
sucrose, a sweet-flavor marshmallow with 27% of sucrose and 0.75% vanillin essence
(Eurovanille, Gouy-Saint-André, France), and a non-sweet flavor marshmallow with a
1% of cayenne powder. Although cayenne contains capsaicin, an irritant that may trigger
different brain reactions [21], this ingredient was chosen to ensure a completely different
reaction to sweet stimuli.

Therefore, the final paradigm included a set of 2 odor and 3 flavor stimuli which
were tested at least 3 times, in random order and blinded condition (participants were not
informed of the descriptor associated with the stimuli they were about to assess, although
they could guess its nature—smell/taste—when receiving the instruction to open their
mouths to assess the taste/flavor ones), by each volunteer during the EEG and self-reported
recording sessions (Figure 1).
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Figure 1. Example of one of the randomized paradigms during the EEG recordings. Legend: open
and closed eyes periods were common in all participants; the rest of the sequence was presented in at
least 3 different random orders to each participant.

2.3. Implicit Response

The experiment was held in an isolated dark room to prevent external cues interfer-
ences (visual and acoustic). During recording, volunteers were sitting in a comfortable
armchair, and received instructions on how they should behave to test each type of sample:
odor samples (opened microcentrifuge vials) were placed 2 cm from the volunteer’s nos-
trils for 30 s while deeply but normally breathing; for the marshmallow (msm) samples,
volunteers had to keep the corresponding sample in the center of their tongue for 60 s, time
enough for the taste and flavor release, and also to collect a segment of signal long enough
to allow cutting some seconds linked to heavy movements at the beginning of the task
(e.g., closing the mouth) if needed. Participants were instructed not to chew or swallow the
msm samples, but to let them melt in their mouths. Before repeating the cycle of the set of
samples (Figure 1), the volunteers were allowed to rest for at least 5 min and drink water,
avoiding saturation or desensitization of their senses. Depending on their own reported
state of saturation and tiredness, volunteers repeated the cycle from 3 to 5 times.

Implicit response was measured using a 64-channel dry electrode cap (ANT Neuro,
Netherlands) with electrodes positioned following the 10–20 system (Figure 2); ground
and reference channels were placed on the mastoid bones. Channel impedances and other
technical recommendations indicated by the manufacturer (ANT Neuro, Netherlands)
were followed prior to recording; sampling rate was 1024 Hz. Before starting with the
samples, volunteers were left resting in the room for few minutes, getting used to the space
and the cap, and then a 2 min open eyes segment and 2 min closed eyes segment were
recorded. Then, the EEG signal was recorded before (baseline), during (epochs), and after
the exposure to the different stimuli, always in closed-eyes mode. Resting periods of at
least 1 min were left between samples, when participants were allowed to drink water
and rinse their mouths. Each stimulus was presented to the subject at least 3 times in a
random order.
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Figure 2. The 64-channel electrode cap topographic layouts with extended 10–20 layout (shows nose
on top). Figure retrieved from Di Fronso et al. [22].

EEG Data Analysis

To characterize the differences among signal patterns related to sweet odor, taste,
and flavor stimuli, a workflow was developed and standardized from the recorded EEG
data amplitude in the time domain. Datasets were converted from ANT-neuro to EEGLab
format using Matlab EEGLab (MathWorks, Inc., Natick, MA, USA) and, consecutively, the
‘mne’ Python library was used for data processing [23]. To reduce data volume, sampling
rate was reduced from 1024 Hz to 512 Hz. Then, noise reduction was achieved by filtering
data with a high bandpass of 1 Hz and a low-pass filter with a cut-off frequency below the
power line (50 Hz). Differently from other investigations, all potential cognitive activity
involved in the perception processes was included in the data analyses, as suggested by
Kosters [24] (beta, 14–30 Hz; alpha, 8–13 Hz; theta, 4–7 Hz; and delta, 1–3 Hz).

Subsequently, an additional artifact removing step was performed by artifact subspace
reconstruction (ASR), a statistical anomaly detection method that assumes that non-brain
signals can be detected based on their deviant statistical properties [25]. The maximum
acceptable standard deviation used for artifact removal was set to 20 for each 0.5 s window
over all recorded signals. Then, to reduce any temporal drift unrelated to the experimental
question, a baseline correction was performed using a mean subtraction procedure where
the average voltage values of each electrode were calculated and then subtracted from the
whole signal. Finally, a total of 390 labeled epochs were extracted for associated labels at
each timestamp (vanilla ‘sweet-odor’, vanilla msm ‘sweet-flavor’, DMS ‘non-sweet odor’,
cayenne msm ‘non-sweet flavor’, basic msm ‘sweet-taste’; approximately 30 s for odor
stimuli and 60 s for taste and flavor stimuli; 18 individuals; at least 3 times each stimulus).
Data were grouped by event and statistical descriptors were calculated by epochs: average,
median, standard deviation, variance, maximum, minimum, skewness, and kurtosis.

Once the EEG signals were processed and the final dataset obtained, a data charac-
terization was carried out using unsupervised clustering techniques. The idea behind the
use of clustering was to find differential patterns in the signals able to distinguish either
between studied stimuli or even between subjects. To eliminate any type of bias in the
parameterization of the clustering algorithms, and therefore in the finding of patterns,
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a hyperparameter optimization was performed by grid search, which is an exhaustive
searching through a manually specified subset of the hyperparameter space of a clustering
algorithm. The evaluated hyperparameters were distance metric, number of clusters, and
clustering algorithm, giving a total of 216 different scenarios. The selection of the best
scenarios was carried out based on clustering performance metrics such as connectivity
within clusters, the Davies–Bouldin index, the Dunn index, the silhouette width, and the
balance between clusters by Monte Carlo cross-entropy ranking aggregation.

To determine and differentiate signal patterns related to olfactory and gustatory stim-
uli, descriptive modeling was carried out using rule-based decision trees which allowed to
characterize the different smells and flavors. This analytical technique has been previously
used to classify EEG signals [26]. A 100X cross-validation was used to test the descriptive
models’ performance.

2.4. Explicit Response

One of the objectives of the study was to identify the potential relationship between
the implicit and the explicit response to the sweet stimuli. Therefore, in addition to the EEG
recording, a questionnaire was used to collect self-related responses in a second tasting
session, conducted approximately one week after the EEG recording session. During
this session, ratings on overall liking (9-point hedonic scale; 1 = extremely dislike, and
9 = extremely like) and the emotions elicited by the samples using the SEFrOS lexicon
reported by Romeo-Arroyo, Mora, and Vázquez-Araújo [27] (15 cm linear scale with
anchors from ‘not at all’ to ‘very intense’), were asked. Explicit response sessions were
conducted in a taste room with individual booths and controlled environmental conditions
(21 ± 2 ◦C; 55 ± 5% RH); the illumination was a combination of natural and nonnatural
light (fluorescent).

Explicit Data Analysis

Results of the explicit responses to each emotional category elicited by the samples and
liking were inputted in ANOVA tests as dependent variables and using ‘sample’ as a factor.
Post hoc tests were conducted using Tukey’s HSD. In addition, a principal component anal-
ysis (PCA) was performed on the average ratings of each emotional category to visualize
not only the statistical difference of the groups, but also their similarity in the vectorial
space. Liking was used as a supplementary variable in the PCA analysis. In addition, to
study the implicit–explicit response relationship, an ANOVA test was conducted using
the factor ‘cluster’ from the hierarchical clustering analysis of the implicit response; it is
important to mention that these results should be considered tentative because the number
of individuals in each cluster was not equivalent. Statistical analyses of the explicit response
were performed using XLSTAT [28].

3. Results
3.1. Implicit Response

The key performance indicator (KPI) of data after all filtering, artifacts removal, and
processing was 98.8%, indicating a high quality of data. The KPI calculation included a
multidimensional approach in which data completeness, consistency, accuracy, correctness,
and outliers influence were ranked from 1 to 100 and averaged.

Data were modeled with three different clustering techniques, and the performance
of each of them was assessed using eight different distance measurements and different
distributions of the number of clusters; a total of 216 scenarios were tested. The best model
was identified by applying the Monte Carlo method searching, which showed that the best
clustering method was the hierarchical cluster with Canberra distance.

To explore potential groups of individuals with common/dissimilar brain patterns
for odor and taste/flavor classification, clustering techniques were first used to group
by participants. Hierarchical clustering analysis showed three clusters with different
brain responses to the samples. These clusters grouped the events of certain individuals
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that showed similar signals patterns for the samples. Cluster 2 (n = 4 individuals) was
characterized by low standard deviation values for CP2, CP6, FP2, CP1, and PO7 and low
maximum values in electrodes FC4, FPZ, and CP1. Cluster 1 (n = 6) had middle values, and
cluster 3 (n = 8) higher values in these positions. Studying the relationship among clusters
and epochs, the confusion matrix indicated that clusters 1 and 2 were closely related to odor
stimuli discrimination, while cluster 3 was more related to taste and flavor discrimination
(Figure 3). No further analyses were conducted within each of the clusters because of the
limited data points and because studying individuals’ variability was not one of the aims
of the research.
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To assess the discrimination capacity of the group ‘odor’ from ‘taste/flavor’, a decision
tree was calculated indicating both categories. The resulting decision tree, generated by the
‘rprt’ algorithm (recursive partitioning and regression trees; [29]), showed that variables
CP6, CPZ, and CP4 were useful to differentiate taste/flavor from odor stimuli (in the mouth
from orthonasal stimulation). The confusion matrix showed a great performance, with
88% balanced accuracy. Once odors had been discriminated from taste/flavors, a second
decision tree was calculated to assess odor stimuli classification (orthonasal stimulation).
PO6, POZ, and PO7 were found to be significant for ‘sweet-odor’ and ‘non-sweet odor’
discrimination (80% balanced accuracy). Finally, for taste/flavor discrimination (removing
odor stimuli signals from the model), a higher number of electrodes was significant: C2,
CP4, PO6, PZ, C6, CP5, PO7, and PO5, showing a higher complexity on the signal processing
task (79% balanced accuracy). Both ‘non-sweet flavor’ (cayenne msm) and ‘sweet-flavor’
(vanilla msm) were accurately classified, while ‘sweet-taste’ discrimination (basic msm)
was less precise. This result suggested that the presence of aromatic compounds together
with the gustatory (flavor) stimuli eased the classification task.

The decision trees used to study the stimuli classification showed that CP6 was
important to discriminate odor from taste/flavor; then, in the second level of the decision
tree, CPZ seemed to be also relevant, suggesting that the parietal region of the brain could
be associated with the odor and taste/flavor discrimination task (Figure 4).
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The confusion matrix associated with this whole descriptive model presented a 76%
balanced accuracy (Figure 5). ‘Non-sweet odor’, ‘sweet-flavor’ (vanilla msm), and ‘non-
sweet flavor’ (cayenne msm) were accurately classified by the model, although it was not
as effective in distinguishing ‘sweet’ from ‘non-sweet flavor’.
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When stimuli were grouped into ‘sweet’ and ‘non-sweet’, independently of their
sensory modality (odor, taste, flavor), O1, FC6, FC1, and P7 were the locations significant
for the discrimination of the different events, showing that the ‘sweet’ versus ‘non-sweet’
sensations were classified by different brain areas located at the temporal and parietal
lobes. The performance of this last descriptive model was also useful, showing a 71% of
balanced accuracy in the confusion matrix; due to being more general and including all
stimuli, this model presented slightly lower accuracy than the more specific ones (e.g., the
‘sweet’ vs. ‘non-sweet’ odors one).

3.2. Explicit Response and Its Relationship with the Implicit Response

Results of the ANOVA test on the explicit response data showed that liking was
significantly different for the samples (p < 0.05), being higher for the ‘sweet-odor’ sample
(vanillin) than the ‘non-sweet odor’ and ‘non-sweet flavor’ samples (DMS and cayenne
marshmallow). Samples with sweet taste and sweet flavors (marshmallows made with
sucrose and vanillin) were not different from the rest of the samples (Table 1), suggesting
that odor stimuli (orthonasal stimulation) could elicit stronger reactions. A similar
pattern was observed for the emotional categories, with the ‘sweet-odor’ sample being
significantly different than the ‘non-sweet odor’ and ‘non-sweet flavor’ samples for the
‘joyful’, ‘passionate’, ‘disgusted’, and ‘melancholic’ categories. The non-sweet samples,
for both odor and flavor stimuli, only elicited higher responses on the ‘disgusted’ emo-
tional category. The ‘sweet-flavor’ sample, characterized by a significant reduction of
sucrose content (if compared with the sweet taste sample) and an addition of vanillin
extract, was perceived as similar as the ‘sweet-taste’ sample for liking and all the emo-
tional categories. The addition of the aroma did not elicit a different reaction, although
the ‘sweet-odor’ sample with vanillin received higher scores for liking and the positive
emotional categories.

Table 1. ANOVA results for the liking and the 6 emotion categories in the 5 samples. Legend:
different letters within the same row indicate significant differences by Tukey’s HSD (p < 0.05).

Acceptance/
Emotion Category

Sample
p-ValueSweet-Odor

(Vanillin) Sweet-Flavor (Vanillin) Sweet-Taste
(Sucrose)

Non-Sweet
Flavor (Cayenne)

Non-Sweet Odor
(DMS)

Liking 7.5 a 6.2 ab 6.1 ab 4.5 b 4.3 b <0.05
Joyful 10.0 a 6.7 ab 6.1 ab 4.3 b 4.4 b <0.05

Passionate 9.2 a 4.6 b 5.0 ab 3.1 b 3.4 b <0.05
Disgusted 1.3 c 2.7 bc 3.1 bc 6.9 ab 8.8 a <0.001

Hungry/thirsty 6.8 4.2 3.9 4.8 2.7 0.170
Melancholic 6.1 3.1 2.9 2.8 3.5 0.145

Relaxed/calm 8.8 a 5.4 ab 5.8 ab 2.3 b 2.9 b <0.001

Figure 6 shows a PCA biplot of the results from the explicit response. The first two
principal components (PCs) explained 94.6% of the variance of the data. The ‘sweet-
odor’ sample was positively correlated with liking and the positive emotions categories
(e.g., joyful, passionate), whereas ‘non-sweet odor’ and ‘non-sweet flavor’ samples were
positively correlated with the negative emotions of the ‘disgusted’ group.

To study the implicit–explicit responses relationship, an ANOVA test was conducted
using ‘implicit cluster’ as factor, and the explicit responses as dependent variables. Only
the ‘hungry’ category was significantly different for the three studied clusters, being
significantly higher in cluster 1 than in cluster 3. These results should be considered
tentative because of the different ‘n’ in each cluster (four, six, and eight subjects in clusters 1,
2, and 3, respectively).
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4. Discussion

After the EEG analysis using artificial intelligence, it can be assumed that the EEG
data patterns observed during the training phase followed a consistent pattern for all
the participants. Therefore, the predictive model maintained its balanced accuracy when
adding data from new subjects for its evaluation. In general, predictive models resulted as
accurate to discriminate sensory modalities (odor–taste–flavor) and sweet from non-sweet
stimuli. Andersen et al. [12] found that EEG responses allowed to discriminate perceptually
similar sweet tastes and that the discrimination ability of the EEG data was related with
the discrimination ability of the individual, but not related to calorie content. Although
results of their research showed a similar grand-average evoked potential for the three
tested sweet tastes (aspartame, sucrose, and a mixture of aspartame and acesulfame K),
and therefore a similar brain response pattern for these substances, a within-participant
analysis on a single-trial level allowed to discriminate among responses. Mouillot et al. [13]
found different results, showing that sucrose, aspartame, and stevia generated differential
brain responses (gustatory evoked potentials, GEP) mainly detectable in the P1 latencies
(P1 being the first peak of the GEP) at PZ, CZ, FZ, FP1, and FP2 electrodes. Results of
the present study showed some positions related to sweet odor and flavors classifications,
some of them common with the ones reported by Mouillot et al. [13] and mainly located at
the central and parietal areas of the brain (CP6, CPZ).

Results of the present research also showed a potential flow of information of the
electrical signals through the brain when processing flavor and odor stimuli. A preliminary
idea of the topological route of brain activity could be pictured following the different
branches of the different decision trees, which showed the way that brain signals traveled
(see Supplementary Material for reviewing all decision trees and confusion matrices). The
inferred process of the analytic models showed that the brain channels CPZ, T7, and FT8
were the ones that provided a higher explanation of the variability of the data regarding the
differentiation between odor and taste. Then, signals were discriminated in two different
locations: the odor signals and its classification were at the rear areas of the brain (O1,
O2, PO6), while taste and flavor were associated with the central areas (PO3, C3, C2, C4).
Therefore, the process of events differentiation seemed to involve a sub-processing of
information in different regions of the brain. Based on a topological analysis of the direction
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of the signals, it was possible to see how different individuals’ brains were working to
classify the stimuli.

Crouzet et al. [14] showed that different taste neuronal response patterns, recorded
using a 64-channel EEG, were related to taste recognition and discrimination (salty, sweet,
sour, and bitter), and that this could, in turn, be related to perceptual decision-making.
Small, Gerber, Mak, and Hummel [30] showed than the same odor may produce differential
brain responses depending on whether it was experienced orthonasally or retronasally (in
the mouth). In addition, Kroupi et al. [17] demonstrated that odor pleasantness could be
predicted with EEG data, identifying mainly a subject-specific response and some generic
patterns. Results from the present study suggested that some response patterns were
related to specific sensory systems (odor, taste), similar to the taste recognition results
showed by these authors when studying different tastes and odors. In addition, the present
study showed other neuronal response patterns useful to predict sweet/non-sweet stimuli
classification, independently of the stimulated sensory system. Small et al. [31] showed,
using fMRI, that flavor perception and taste–smell integration was dependent on the
olfactory delivery mode (orthonasal vs. in the mouth), and on the previous experience
of the taste/smell combinations. Therefore, it is possible that similar recognition patterns
are shown when an individual is exposed to different sensory stimuli that he/she has
previously tasted together, and therefore grouped as a ‘sensory set’ (e.g., sweet taste with
vanilla odor). Although different individuals’ clusters were identified in the present study,
no further analyses were conducted in each of the clusters, because of the limited data
points, and because it was not the specific aim of the research. Future research could explore
the specific differences among clusters.

Different studies have reported EEG results to odor stimuli and its relationship with
elicited emotions. Davidson [9] suggested that the frontal lobe activation could be associ-
ated with emotions and feelings, using mainly the alpha band (8–13 Hz). On the contrary,
Martin [32] found theta activity to be related to attention/cognitive load when individuals
were exposed to olfactory stimuli. The present research looked for similarities between
liking and the emotional self-reported response to the implicit response recordings, but no
relationship was identified between explicit and implicit responses. EEG results seemed
to be related to the odor and flavor discrimination/recognition task and not to the self-
reported emotional response, and clusters of individuals were not associated with the
emotional response to the samples (ANOVA results using cluster as factor). A similar
pattern on the liking response and the ‘sweet’ vs. ‘non-sweet’ implicit response could be
intuited, but a higher number of responses would be needed to verify this trend.

The present study contributes to consumer neuroscience research in providing new
insights about odor and flavor stimuli brain processing, although extensive research is
needed to clarify if the implicit data was strictly related to the different sensory systems
activation or to the quality of the stimuli. Taste quality is among the first attributes
represented in the central gustatory system and detectable by EEG recordings [14], and
olfactory stimuli have been associated by different authors with activation/reduction
of brain activity, e.g., [32,33], but food stimuli are complex and difficult to study for
activating independent sensory systems. One of the limitations of the present study lies
on this complexity, considering the difficulty of designing a food matrix in which texture
would not significantly interfere with the aroma and taste release, or choosing the most
appropriate non-sweet stimuli (e.g., cayenne pepper causes irritation and can activate more
than gustatory and olfactory receptors). Niedziela and Ambroze [34] recently reported the
complexity of food neuroscience research, pointing out the need for a multidisciplinary
team to collect and analyze data. Further research is needed to propose new methodologies
and data analysis strategies to easy quality research development in this young field. De
Wijk and Noldus [35] suggested using implicit measurements in real context to capture
the total food experience from pre- to post-consumption, including, therefore, the physical
and social context impact on food perception. With that aim in mind, further studies
should be conducted to better understand the real nature of the collected data and their
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relationship with food perception and food-related decisions. Including placebos or blank
samples to emulate the different sensory modalities when studying a particular one (e.g.,
using a non-tasty marshmallow when assessing an odorant in the present research) could
improve the experimental design by better mimicking the experience of eating. In addition,
segmenting the signal by frequency band to build the model, instead of using the whole
amplitude, could provide additional data on the importance of each of the frequencies to
discriminate events.

5. Conclusions

EEG responses were recorded for different sweet and non-sweet stimuli belonging
to odor, taste, and flavor sensory modalities. Significant differences were found among
samples’ liking and the emotions elicited by the samples, and artificial intelligence tools
(‘rprt’ algorithm) allowed to classify stimuli by activated sensory system (odor/taste/flavor)
and nature of the stimuli (‘sweet’ vs. ‘non-sweet’ odors; ‘sweet-taste’, ‘sweet-flavor’ and
‘non-sweet flavor’; ‘sweet stimuli’ vs. ‘non-sweet stimuli’), but no clear relationship was
detected between explicit and implicit data. Further research is needed to clarify if the
data provided by the EEG recordings were somehow related to the specific quality of the
stimuli, to the task of recognizing and categorizing some stimuli to which respondents
were familiar, or to the way than the stimuli are detected, because ‘in-the-mouth’ activation
will elicit the triggering of tactile receptors, salivary glands, etc. Despite the limitations of
the present study, the presented results provide a first step in studying the relationship
between odor, taste, and flavor stimuli with a common descriptor—sweetness—and could
serve as a starting point in cross-modal implicit sensory research.
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www.mdpi.com/article/10.3390/s22186787/s1. Figure S1a. Decision tree of odor vs. taste/flavor
discrimination task.; Figure S1b. Confusion matrix of the descriptive model shown in Figure S1a;
Figure S2a. Decision tree of sweet odor vs. non-sweet odor discrimination task; Figure S2b. Confusion
matrix of the descriptive model shown in Figure S2a.; Figure S3a. Decision tree of taste/flavor
discrimination task (sweet taste, sweet flavor, and non-sweet flavor); Figure S3b. Confusion matrix of
the descriptive model shown in Figure S3a; Figure S4a. Decision tree of sweet (sweet odor, sweet taste
& sweet flavor) vs. non-sweet (non-sweet odor and non-sweet flavor) discrimination task; Figure S4b.
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