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Abstract: We evaluated the relevance of plasma homocysteine (HC) and the TT genotype of the
methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism (rs1801133) in sickle cell disease
(SCD) and associated vaso-occlusive crisis (VOC) and ischemic stroke (IS). We identified in Embase
and Medline 22 studies on plasma HC and 22 on MTHFR genotypes. Due to age-related HC
differences, adult and paediatric SCD were separated: 879 adult SCD and 834 controls (CTR) yielded a
neutral effect size; 427 paediatric SCD and 625 CTR favoured SCD (p = 0.001) with wide heterogeneity
(I2 = 95.5%) and were sub-grouped by country: six studies (Dutch Antilles n = 1, USA n = 5) yielded
a neutral effect size, four (India n = 1, Arab countries n = 3) favoured SCD (p < 0.0001). Moreover,
249 SCD in VOC and 419 out of VOC yielded a neutral effect size. The pooled prevalence of the
MTHFR TT genotype in 267 SCD equalled that of 1199 CTR (4.26% vs. 2.86%, p = 0.45), and in 84 SCD
with IS equalled that of 86 without IS (5.9% vs. 3.7%, p = 0.47); removal of one paediatric study
yielded a significant effect size (p = 0.006). Plasma HC in paediatric SCD from Middle East and India
was higher, possibly due to vitamin deficiencies. Despite its low prevalence in SCD, the MTHFR TT
genotype relates to adult IS.

Keywords: homocysteine; methylenetetrahydrofolate reductase; MTHFR TT genotype; sickle cell
disease; vaso-occlusive crisis; ischemic stroke

1. Introduction

Sickle cell disease (SCD) is a severe haemoglobinopathy characterised at the molecular
level by a valine to glutamic acid substitution at position 6 in the β-globin chain: the
homozygous mutation affects both β-globin chains yielding haemoglobin (Hb) SS that at
low oxygen tension polymerises into a fibrous mesh that changes the normal discoid shape
of red cells into a sickle shape [1]. At the clinical level, the erythrocyte shape change leads
to acute vaso-occlusive crises (VOC) in the microcirculation that are typical of SCD [2]; as
more crises accrue, patients may develop a chronic vasculopathy within the pulmonary,
the cerebral, and the peripheral circulation, leading to pulmonary hypertension, ischaemic
strokes (IS), and leg ulcerations [3]. Moreover, SCD patients have a greater risk of venous
thromboembolism than the general population [4]. Additional factors that contribute to
the VOC are the intravascular haemolysis and the neutrophil–platelet aggregates in the
pulmonary circulation, both of which cause oxidation [5,6], complement, and coagulation
activation [7,8].
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Homocysteine (HC) is a sulphur-containing amino acid whose fate is either re-methylation
to methionine or trans-sulphuration to cystathionine according to the different enzymes that
control the two pathways: in particular, a polymorphism in the methylenetetrahydrofolate
reductase (MTHFR) C677T gene (rs1801133) codes for an enzyme that has reduced activity to
convert 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate generating less methyl
groups required for the re-methylation of HC to methionine; therefore, HC reaches toxic
intracellular and plasma concentrations ultimately favouring thrombosis [9] and vascular
damage [10]. The present systematic review and meta-analysis explores the possible contribu-
tion of plasma HC and of the MTHFR genotypes to SCD and some of its clinical manifestations.

2. Results

The database search identified 149 citations; as shown in our flowchart (Figure 1), we
finally considered 44 articles, 42 of which were full papers [11–52] plus one thesis [53] and
one abstract [54] that examined the relationship between HC, MTHFR, and SCD and that
were included in our systematic review and meta-analysis. In particular, Table 1 shows
the studies that investigated plasma HC in SCD (22 case-control and 2 cohort studies),
Table 2 shows the studies that investigated MTHFR TT and cystathionine beta synthase (all
case-control), and Table 3 shows the studies that investigated the MTHFR TT genotype in
relation to clinical features of SCD (all cohort studies).
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Table 1. Demographics and clinical features of the case control and cohort studies on plasma homocysteine.

Ref. Author/Year Ethnicity CTR F/M Age HC
SCD

F/M Age HC HC FA B12 VOC IS HU NOS
SS SC/βthal

No. No. Years µmol/L No. No. No. Years µmol/L Method

x ± SD x ± SD x ± SD x ± SD

Case control studies

[11] van der Dijs
1998

Dutch
Antilles 20 10/10 9 ± 4 10.9 ± 3.5 27 15/12 8 ± 4 12.5 ± 5 HPLC nor nor 7

[12] Balasa 1999 USA 198 8.3 ± 4.9 6 ± 3.1 40 12.8 ± 6.2 6.5 ± 3 HPLC nor nor y y 6

[13]
Rodriguez-

Cortes
1999

USA 73 6.1 ± 2.7 120 51/69 10.5 ± 5 5.2 ± 2.5 HPLC nor na y 6

[14] Lowenthal
2000 USA 16 36 ± 12 9.7 ± 3.7 37 12 30/19 30.5 ± 9 16.8 ± 7.9 HPLC high nor 5

[15] Balasa 2002 USA 110 63/47 10.8 ± 4.29 7.5 ± 2.1 77 43/34 11.1 ± 5.2 8.25 ± 3.4 HPLC nor B6 y 5

[16] VanderJagt
2002 USA 77 40/37 13.3 ± 3.0 9.9 ± 5.6 77 37/40 13.4 ± 3.6 9.5 ± 3.35 FPIA na na 4

[17] Dhar 2004 USA 75 50/25 42 ± 13 8.5 ± 3.1 63 8/9 63/27 37 ± 12 9.7 ± 4.2 ELISA high nor y 7

[18] Segal 2004 USA 11 8/3 8.3 ± 3.7 4.3 ± 1.03 17 9/8 9.8 ± 3.9 5.4 ± 0.96 HPLC nor nor exc 6

[19] Abbas 2011 Iraq 25 13/12 14.4 ± 7.69 18.65 ± 4.56 6 0/20 10/16 14.3 ± 7.6 44.52 ± 23 HPLC nor nor 5

[20] Ajayi 2012 USA 57 33/24 464 ± 14 9.12 ± 0.9 20 7/2 9/20 34 ± 10 8.35 ± 2 na high na y 8

[21] Pandey 2012 India 60 23/37 11.2 ± 5.3 8.7 ± 4.25 40 16/24 11.2 ± 5.3 25.7 ± 8.24 ELISA na na 5

[22] Al-Nuzaily
2014 Yemen 20 8/12 8.6 ± 4.6 8.9 ± 1.8 5 1/4 6.9 ± 3.0 20.8 ± 6.9 ELISA na na 5

[23] Olaniyi 2014 Nigeria 30 16/14 26 ± 4.8 9.13 ± 0.75 60 28/32 26 ± 5 5.79 ± 0.65 HPLC low low y 6

[24] Nnodim 2015 Nigeria 100 13.6 ± 4.8 100 5–30 24.2 ± 6.2 Spectro na na y 4

[25] Abdelsalam
2016 Sudan 200 26.25 ± 5.25 4.92 ± 1.77 200 29.5 ± 5.5 6.47 ± 2.08 ELISA na na 4

[26]
Knox-

Macaulay
2018

Oman 151 27/114 26.6 ± 10.7 11.55 ± 5.9 32 0/101 73/60 21 ± 5.7 8.05 ± 2.4 FPIA nor nor y exc 6

[27] Raouf 2017 Egypt 30 13/17 6.03 ± 2.64 18.8 ± 3.7 18 0/32 17/33 6.2 ± 2.5 44.6 ± 9 HPLC low nor y 5

[53] Ali 2019 Nigeria 26 12/14 27.6 ± 6.6 9.9 ± 2.5 55 28/27 24.8 ± 5.5 11.1 ± 3.4 ELISA nor nor y 6

[28] Higuera 2019 Venezuela 23 13/10 33 ± 7 9.43 ± 1.8 15 10/5 31 ± 7.6 6.97 ± 2.2 FPIA na na 5

[29] Meher 2019 India 50 32/18 21 ± 4 13.2 ± 4.4 120 61/59 24 ± 8 22.41 ± 7.78 Spectro na na y exc 7

[30] Uche 2019 Nigeria 96 51/45 30 ± 11 9.16 ± 4.29 96 51/45 29 ± 12 19.8 ± 19.7 ELISA na na y 5

[31] Ayoola 2020 Nigeria 33 16/17 24 ± 3 10.2 ± 4.1 44 3/0 21/23 25 ± 3.7 17.95 ± 5.3 ELISA na na 6
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Table 1. Cont.

Ref. Author/Year Ethnicity CTR F/M Age HC
SCD

F/M Age HC HC FA B12 VOC IS HU NOS
SS SC/βthal

No. No. Years µmol/L No. No. No. Years µmol/L Method

x ± SD x ± SD x ± SD x ± SD

Cohort studies

[32] Houston 1997 USA 99 53/46 19 11.1 ± 4 HPLC nor na y 6

[33] Al-Saqladi
2010 Yemen 102 46/56 7.2 2.8 ± 1.7 EIA nor nor 5

Abbreviations. Ref.: reference; No.: number; CTR: controls; F/M: female/male; HC: homocysteine; SCD: sickle cell; FA: folic acid; VOC: vaso-occlusive crisis; IS: ischaemic stroke; HU:
hydroxyurea; NOS: Newcastle–Ottawa Scale; SD: standard deviation; SS: homozygous haemoglobin S; SC/βthal: hemoglobin SC/βthalassaemia; na: not available; nor: normal; exc:
excluded; HPLC: high-performance liquid chromatography; FPIA: fluorescence polarisation immunoassay; ELISA: enzyme-linked immunosorbent assay; Spectro: spectrometry; EIA:
enzyme immunoassay.

Table 2. Demographics and clinical features of the case control studies on methylenetetrahydrofolate reductase TT and cystathionine beta synthase genotypes.

Ref.
Author/Year Ethnicity CTR F/M Age M-TT

SCD
F/M Age M-TT

VOC NOSSS SC/βthal

No. No. Years No. No. No. No. Years No.

x ± SD x ± SD

[34] Andrade 1998 Brazil 137 2 73 53/20 40/33 35 ± 13 0 4

[35] Romana 2002 Guadalupe 203 6 314 314 7 y 5

[36] Fawaz 2004 Saudi Arabia 105 40/65 32.2 ± 15 4 87 87 49/38 23.1 ± 14.1 8 5

[37] Al-Absi 2006 Bahrain 156 76/80 27.8 ± 15.1 10 106 106 38/68 15.8 ± 9.8 5 4

[38] Nishank 2013 India 150 17 ± 6.8 0 150 150 16 ± 6 22 5

[39] Kangne 2013 India 130 16.5 ± 11 4 180 126/54 78/102 16.5 ± 11 1 y 5

[40] Sedki 2015 Egypt 40 1 40 3 y 4

[54] Saad 2017 Egypt 40 3 40 13/27 2 y NE

[41] Nefissi 2018 Tunisia 100 1 64 35/29 38/26 3–27 1 6

[42] Adelekan 2019 Nigeria 96 51/45 29.3 ± 10.3 0 96 96 51/45 29.3 ± 10.3 1 7

CBSin68 CBSin68

[35] Romana 2002 Guadalupe 203 2.2 2 317 7 4 4

[43] El-Gawhary 2017 Egypt 42 0 1 53 0 NE

Abbreviations. Ref.: reference; No.: number; CTR: controls; F/M: female/male; M-TT: methylenetetrahydrofolate reductase TT genotype; SCD: sickle cell disease; VOC: vaso-occlusive
crisis; SS: homozygous haemoglobin S; SC/βthal: hemoglobin SC/βthalassaemia; NOS: Newcastle–Ottawa Scale; NE: not evaluable; CBSin68: cystathionine beta synthase in68.
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Table 3. Demographics and clinical features of the cohort studies on the methylenetetrahydrofolate
reductase TT genotype.

Ref.
Author/Year Ethnicity

SCD
F/M Age M-TT + ve IS + ve AVN + ve VOC + ve NOS

SS SC/βthal

No. No. No. Years No. No. No. No.

x ± SD

[44] Zimmerman
1998 USA 76 9/1 32/54 23 ± 15 0 16 14 5

[45] Cumming
1999 Jamaica 96 26/22 7–36 1 48 5

[46] Driscoll 1999 USA 53 14/39 2–17 1 18 5

[47] Kutlar 2001 USA 107 66/41 31.9 1 45 4

[48] Adekile 2001 Kuwait 33 8 12.8 ± 8.6 1 7 6

[49] Filho 2011 Brazil 94 46/48 6.6 4 24 7

[50] Jacob 2011 * Brazil 48 20/23 19–59 2 1 59 4

[51] Italia 2014 @ India 80 30 20 ± 8 1 6 21 6

[52] Merghani 2015 Sudan 96 60/36 11 ± 9.2 1 34 5

Abbreviations. Ref.: reference; No.: number; SCD: sickle cell disease; F/M: female/male; M-TT: methylenetetrahy-
drofolate reductase TT genotype; +ve: positive; IS: ischaemic stroke; AVN: avascular necrosis; VOC: vaso-occlusive
crisis; NOS: Newcastle–Ottawa Scale; * 49 patients on hydroxyurea; @: calculations on SS patients only.

2.1. Effect Size of Homocysteine in Sickle Cell Disease

Pooled data from 22 case control articles yielded 1269 SCD participants and 1481 con-
trols; the effect size favoured SCD (p = 0.009) with wide heterogeneity (I2 = 96.2%, p < 0.0001)
(Supplementary Figure S2): sensitivity analysis using age as a moderator factor indicated
that the effect size (the average standard difference between HC means) favoured paediatric
rather than adult participants (coefficient −0.068, 95% CI −0.117, −0.019, p = 0.006). We
therefore examined the two groups separately.

2.2. Effect Size of Homocysteine in Adult Sickle Cell Disease

Pooled data from 12 case control studies yielded 879 adult SCD and 834 controls; the
effect size was neutral with wide heterogeneity (I2 = 95.6%, p < 0.0001) (Figure 2). Sensitivity
analysis by meta-regression including year of publication, sample size, mean age of SCD
participants, female to male ratio, and NOQAS, changed neither effect size nor heterogene-
ity (Table 4A). Sensitivity analysis by subgroups including ethnicity of the SCD patients,
methods of HC determination, B12 and folic acid measurement, presence, and absence of
VOC, revealed a slightly decreased heterogeneity by method of HC measurement, but no
change in effect size (Table 4B).
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Table 4. Sensitivity analysis in the adult sickle cell disease/control comparison for plasma homocysteine.

(A) Sensitivity Analysis by Meta-Regression

Studies No. CC 95% CI p Value

Year of publication 12 −0.0006 −0.108, 0109 0.99
Sample size 12 0.101 −0.003, 0.024 0.13

Mean age of SCD
participants 12 0.014 −0.124, 0.163 0.80

Female/male ratio 10 0.032 −0.343, 0.279 0.83
NOQAS 12 −0.136 −0.365, 0.092 0.24

(B) Sensitivity Analysis by Subgroups

Subgroup Studies No. Heterogeneity Effect Size

No. % p Value p Value

By ethnicity
USA 3 87.8 0.0001 0.55

Africa 6 97.8 0.0001 0.74
Other 3 97.5 0.0001 0.83

by HC assay
HPLC 2 99.1 0.0001 0.5
ELISA 5 78.5 0.001 0.0001

Spectrometry 2 81.9 0.01 0.0001
FPIA 2 61.1 0.19 0.005

by vitamin B12
Normal 4 91.0 0.0001 0.47

Low 2 98.6 0.0001 0.20
Not reported 6 93.9 0.0001 0.002

by folate
Normal 5 89.1 0.0001 0.79

Low 1
Not reported 6 93.9 0.0001 0.002

by vaso-occlusive
crisis
Yes 6 98.3 0.0001 0.81
No 6 92.8 0.0001 0.29

Abbreviations. CC: correlation coefficient; CI: confidence interval; SCD: sickle cell disease; NOQAS: Newcastle–
Ottawa Quality Assessment Scale; USA: United States of America; HC: homocysteine; HPLC: high-performance
liquid chromatography; ELISA: enzyme-linked immunosorbent assay; FPIA: fluorescent polarisation immunoassay.

2.3. Effect Size of Homocysteine in Childhood Sickle Cell Disease

Pooled data from 10 case-control studies yielded 427 children with SCD and 625 con-
trols: the effect size favoured SCD (p = 0.001) with wide heterogeneity (I2 = 95.5%,
p < 0.0001) (Figure 3A). Sensitivity analysis by meta-regression showed that the sample
size, female to male ratio and mean age of participants slightly explained the heterogeneity
variance (Table 5A) as well as the methods of HC determination (Table 5B).

Subgroup analysis on the study from the Dutch Antilles [11] and the five studies from
USA [12,13,15,16,18] revealed a neutral effect size with moderate heterogeneity (I2 = 45.9%,
p = 0.1) (Figure 3B) that fully disappeared after removal of the one outlier study that
favoured the effect size [18] (Figure 3C). Instead, subgroup analysis on the three studies
from Arab countries [19,22,27] and one from India [21] revealed a significant effect size with
elevated heterogeneity (I2 = 84%, p < 0.0001) (Figure 3D). Of these four studies, one reported
normal average serum B12 and folate concentrations [19], one reported a low average folate
but did not measure B12 [27], and the other two measured neither vitamin [21,22]; when
we grouped together the latter two studies, the heterogeneity dropped to low (I2 = 15.2%,
p = 0.15) with a significant effect size (p < 0.0001), though the studies were carried out in
relatively distant countries, India [21] and Yemen [22], respectively.
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Table 5. Sensitivity analysis in the paediatric sickle cell disease/control comparison for plasma
homocysteine.

(A) Sensitivity Analysis by Meta-Regression

Studies No. CC 95% CI p Value

Year of publication 10 0.185 0.133, 0231 <0.0001
Sample size 10 −0.022 −0.041, 0.024 0.027

Mean age of SCD
participants 10 −0.286 −0.566, −0.006 0.045

Female/male ratio 9 −1.939 −3.671, −0.206 0.028
NOQAS 12 −0.136 −0.365, 0.092 0.24

(B) Sensitivity Analysis by Subgroups

Subgroup Studies No. Heterogeneity Effect Size

No. % p Value p Value

By HC Assay
HPLC 7 94.3 0.0001 0.01
ELISA 2 15.3 0.27 0.0001
FPIA 1 na na na

Abbreviations. CC: correlation coefficient; CI: confidence interval; SCD: sickle cell disease; NOQAS: Newcastle–
Ottawa Quality Assessment Scale; USA: United States of America; HC: homocysteine; HPLC: high-performance
liquid chromatography; ELISA: enzyme-linked immunosorbent assay; FPIA: fluorescent polarisation immunoassay.

2.4. Effect Size of Homocysteine on Vaso-Occlusive Crisis

We pooled data from two paediatric [12,33] and six adult studies [23,24,26,29,32,53]
comprising 249 participants in crisis and 419 unmatched participants in steady state;
two studies included patients with IS as part of their VOC, one dealing with children [12]
and one with a mix of children and adults [32], both from USA. The effect size was
neutral with wide heterogeneity (I2 = 91.7%, p < 0.0001) (Supplementary Figure S3A).
After removal of the study from India [29], the effect size remained neutral with a slightly
reduced heterogeneity (I2 = 87.1%, p < 0.0001) (Supplementary Figure S3B); further removal
of the studies from Nigeria [23,24,53] shifted effect size to steady state SCD with reduced
heterogeneity (I2 = 52.7%, p = 0.09) (Supplementary Figure S3C).

2.5. Effect Size of Methylenetetrahydrofolate Reductase in Sickle Cell Disease

Data from 12 studies including 1267 SCD patients and 1199 controls revealed that the
pooled prevalence of the MTHFR TT genotype was relatively similar in the two groups
(4.26% vs. 2.86%, p = 0.45) with low heterogeneity (I2 = 28.6%, p = 0.16) (Figure 4); subgroup
analysis on the three studies from the Americas [12,15,35] yielded nil heterogeneity (I2 = 0%,
p = 0.54), with a neutral effect size (plot not shown); likewise, subgroup analysis on the four
African studies [40–42,54] yielded nil heterogeneity (I2 = 0%, p = 0.89) and neutral effect size;
subgroup analysis on the two Arab studies [36,37] and on the two Indian studies [38,39]
yielded medium (I2 = 56.8%, p = 0.12) and high heterogeneity (I2 = 90.5%, p = 0.001),
respectively, without changing the effect size.

Data from three studies including 237 SCD patients and 351 controls revealed that
the pooled prevalence of the MTHFR 1298CC genotype (rs10948059) in SCD was double
of that of controls (9.7% vs. 4.2%, p = 0.047) with low heterogeneity (I2 = 12.4%, p = 0.31)
(Supplementary Figure S4).

2.6. Effect Size of Cystathionine Beta Synthase in Sickle Cell Disease

Data from two studies including 370 SCD patients and 245 controls revealed a similar
pooled prevalence of the homozygous CBS in68 between the two groups (1.9% vs. 1.2%,
p = 0.83), with medium heterogeneity (I2 = 28.7%, p = 0.23).
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2.7. Effect Size of Methylenetetrahydrofolate Reductase in Vaso-Occlusive Crisis

Data from six studies including 321 patients in crisis and 228 out of crisis revealed that
the pooled prevalence of the MTHFR TT genotype was slightly higher in VOC than in the
steady state (2.41% vs. 0.87%, p = 0.22) with no heterogeneity (Figure 5).
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2.8. Effect Size of Methylenetetrahydrofolate Reductase in Ischaemic Stroke

Six studies investigated the relation between ischemic stroke (IS) and MTHFR TT:
two of these had no MTHFR TT genotypes in the positive and negative IS groups [34,44]
and were not considered. Hence, data from four studies including 84 SCD patients with
ischemic stroke and 186 without ischemic stroke revealed a similar pooled prevalence of
MTHFR TT between the two groups (5.9% vs. 3.7%, p = 0.47) with medium heterogeneity
(I2 = 32.6%, p = 0.21); however, removal of the study with the youngest participants [49]
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revealed a significant effect size (p = 0.006) with no heterogeneity (Figure 6). Two studies
did not report the age of the participants [40,54].
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2.9. Effect Size of Methylenetetrahydrofolate Reductase in Avascular Necrosis

Data from two studies including 52 patients with avascular necrosis of the femoral
heads and 76 patients without such feature a higher pooled prevalence of the MTHFR TT
genotype in the latter group (3.9% vs. 1.97%, p = 0.66) with no heterogeneity (I2 = 0) [plot
not shown].

2.10. Age at Presentation of Vaso-Occlusive Crisis

Three studies revealed an earlier age at VOC presentation in MTHFR TT carriers: the
first showed that 78.1% (50/64) of MTHFR TT patients developed the 1st VOC between
0–3 years of age, compared to only 6.9% (6/86) of wild types within the same age range [38];
the second revealed a median age at onset of any VOC at 15 months in MTHFR TT (n = 2)
compared to 42 months in wild type (n = 12) [40] and the third revealed a median age at
onset of any VOC at 6 months of age in MTHFR TT (n = 3) compared to 24 months of age
in wild type (n = 19) [54]. The data of these three studies could not be pooled because of
their incomplete data representation and different data expression; in particular, on the
website of the relevant journal all pages were split into two halves, one half-printed, one
half-blank [40].

3. Discussion

Our preliminary sensitivity analysis revealed a different behaviour between adult and
paediatric SCD; hence, we carried out the meta-analysis on these two populations separately.
With regards to adult SCD, the overall effect size was neutral with a high heterogeneity
unexplained by the extensive sensitivity analysis, but for a slight effect of the methods
of plasma HC measurements; this consistency favours the reliability of the SCD/control
comparison as the heterogeneity remained elevated for each of the explanatory factors
evaluated, but it leaves unresolved the issue of HC in adult SCD.

The method of HC determination marginally explained the heterogeneity of paedi-
atric SCD, but the subgroup analysis revealed that the standardized mean difference in
plasma HC between patients and controls from USA was neutral, supported by the lack of
heterogeneity between studies; at variance, the three studies from Arab countries [19,22,27]
and the one from India [21] revealed a significant effect size with elevated heterogeneity.
An effect of vitamin B deficiency cannot be ruled out as one study declared normal av-
erage serum B12 and folate serum concentrations [19] and one reported a low average
folate without measuring vitamin B12 [27] while the remaining two measured neither
vitamin [21,22].
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Although the intracellular and plasma HC concentrations are genetically determined,
they are also influenced by environmental factors, such as age, gender, lifestyle, nutrition,
physical activity, smoking, and medication [55]. In this respect, food fortification with
folic in USA could explain the lack of heterogeneity in the paediatric studies from USA
though the fortification occurs unevenly across ethnic groups, being less valid in Afro
Caribbeans [56], and it does not necessarily translate into lower plasma HC concentra-
tions [57], as food insecurity is still an issue for the SCD population in the USA [58]. On
the other hand, a decade-old meta-analysis revealed that malnutrition and under-nutrition
are common in SCD children from the Middle East, possibly a consequence of the poor
knowledge of the nutritional status of Arab paediatric patients [59]; this reflects in micro
and macro nutritional deficiencies leading to greater disease severity and poorer quality of
life, a situation not dissimilar from adult Arab SCD patients [60]. A previous meta-analysis
on the relation between HC and SCD concluded that plasma HC could be considered a
bio-marker of SCD as the calculated effect size favoured SCD, but the authors investigated
neither the source of the heterogeneity nor performed any subgroup analysis, leaving their
results unsupported and open to criticism [61].

With regards to VOC, our meta-analysis found a neutral effect size between SCD
children and controls, the wide heterogeneity decreasing after removal of the studies
from India [29] and from Nigeria [23,24,53], implying that these latter contributed to
the heterogeneity, possibly via the same nutritional and vitamin deficiencies alluded to
earlier [62]. It should be noted that in the VOC comparison, SCD patients were unmatched,
preventing the capture of the same genetic, oxidative, and nutritional background of the
participants before and after crisis, that might have allowed a better interpretation of
the results.

With regards to MTHFR TT, the pooled prevalence of this genotype was low and
relatively similar between SCD and controls, and even if the prevalence of the other
MTHFR 1298CC genotype was double of that of controls, the contribution of both genes to
the clinical manifestations of SCD remains dubious; having excluded a study that mixed
adult and paediatric patients [49], the pooled prevalence of MTHFR TT in patients with
ischemic stroke was higher than non-stroke controls, but still at a relatively low 5.9%. The
pooled prevalence of MTHFR TT in patients with any VOC was 2.4%, non-significantly
higher than patients in steady state whereas the pooled prevalence of MTHFR TT was
lower in patients with avascular necrosis than in patients without.

In a two-year-old meta-analysis on the same topic [63], the author used the reces-
sive allelic frequency [64] to demonstrate a significant 1.81 odds ratio of developing any
VOC with low heterogeneity. Our effect size for any VOC was neutral and without het-
erogeneity, but the effect size for ischemic stroke was significant and devoid of hetero-
geneity. Given that three of the articles on ischemic stroke were present in the previous
meta-analysis [40,45,49], one wonders whether a subgroup analysis would have modified
the author’s conclusions [64].

Overall, our meta-analysis supports neither an involvement of plasma HC in SCD
and its clinical manifestations, nor a definite role for the MTHFR TT genotype, the pooled
prevalence of which is low, even if associated with ischemic stroke.

However, this does not mean that MTHFR has no relevance in SCD: a recent arti-
cle demonstrated that the co-inheritance of HbSS and MTHFR TT negatively affects the
antioxidant capacity of SCD patients [65]: indeed, a low MTHFR activity reduces the
production of 5-methyl tetrahydrofolate, leading to lower plasma and erythrocyte folate
concentrations [66] and to a decreased antioxidant effect against superoxide anion [67].

It has been noted that when the MTHFR TT genotype, itself associated with oxida-
tive stress, is present in patients with other diseases characterised by oxidative stress,
it may contribute to an earlier age at onset of the other disease. This is the case of the
primary antiphospholipid syndrome: two separate cohorts from Southern Italy show that
primary antiphospholipid antibody (PAPS) patients carrying the MTHFR TT genotype
developed their vascular occlusion 16 years and 27 years earlier than PAPS carriers of
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MTHFR CT + CC [68,69]. Similarly, MTHFR TT positive patients suffering from multiple
sclerosis, a disease characterised by oxidation [70], developed their disease below 30 years
of age, 4 years earlier than MTHFR CC+CT patients [71].

While scrutinising the citations for this systematic review, we came across this anticipa-
tion phenomenon in three articles [38–40]. Therefore, despite a low prevalence of MTHFR
TT in SCD, this genotype may still affect morbidity and quality of life at a significantly
earlier age. This anticipation phenomenon deserves an interpretation.

A purely vascular interpretation may derive from studies showing that cultured hu-
man venous endothelial cells (HUVEC) exposed to high concentrations of extracellular HC
generate HC-thiolactone, an active metabolite able to acylate free amino groups allowing
the incorporation of HC into proteins in a process called homocysteinylation [72]; such
post-translationally modified proteins lose their functions and acquire cytotoxic and pro-
inflammatory properties, contributing to the atherothrombotic tendency associated with
severe hyperhomocysteinemia [73].

A purely erythrocytic interpretation may derive from the observation that intra-
erythrocyte Hb S recycling between ferric and ferryl iron generates an oxidative envi-
ronment conducive to irreversible post-translational modification of the βCys93 into cysteic
acid and to the ubiquitination of the Hb β-Lys-96 and β-Lys-145 side chains and of the mito-
chondria [74,75]; whether elevated intra-erythrocytic HC induces S-homocysteinylation of
βCys93 and contributes to premature sickling is an attractive hypothesis not tested so far.

Moreover, intracellular HC may induce endoplasmic reticulum stress, that up-regulates
MTHFR via the transcriptional activator NF-κB, but if the MTHFR TT is up-regulated, the
endoplasmic stress will not be quenched by a reduction of intracellular HC, rather it will
be sustained and further contribute to a decreased intracellular antioxidant capacity [76].

Additionally, the coincidental oxidative [77] and nitrative stress [78] that characterise
SCD, particularly during active crisis, can inhibit cystathionine beta synthase [79], prevent-
ing the entry of HC through the trans-sulphuration pathway; this will lead to elevation
of intracellular and plasma HC that at toxic concentrations may further inhibit CBS via
a disulphide redox mechanism [80], perpetuating its own elevation and eventually con-
tributing to recurrent VOC and to long term vascular damage [3,7], the latter characterized
amongst others by ischemic stroke even in the paediatric age range [81].

Our meta-analysis has several limitations: (1) many studies included a mix of HbSS,
HbSC, and HbS-β0thal that may have weakened certain relationships; (2) plasma HC was
measured only once in all articles, precluding the assessment of its persistence and therefore
of its long-term clinical consequences; (3) the studies on VOC compared unmatched patients
in and out of crisis, weakening the value of the comparison; (4) plasma HC and the MTHFR
genotypes have not been evaluated with regards to SCD vasculopathy; (5) we cannot
discount a degree of publication bias, the evaluation of which by an empirical graphical
method can be misleading and inappropriate for observational studies [82,83].

4. Methods
4.1. Search Strategy

For the purpose of the systematic review, the Medline database was screened from
inception to July 2022 using the Medical Subject Headings (“sickle cell disease”[All fields]
OR “sickle cell anemia”[All fields] AND (“homocysteine”)[All fields] AND (“methylenete-
trahydrofolate reductase” [All fields]) AND (“cystathionine beta synthase”) [All fields];
the EMBASE database was screened from inception to present with “sickle cell disease”
OR “sickle cell anemia”/exp AND “homocysteine”/exp AND “methylenetetrahydrofolate
reductase”/exp AND “cystathionine beta synthase”/exp. To reduce the effect of possible
publication bias, we used the same search terms in natural language to screen the Grey
Literature via the DANS EASY Data Archive, as well as Google, looking for additional
citations. We finally hand-searched the reference list of all papers subsequently included in
the systematic review to ensure we had not missed any relevant articles.
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4.2. Inclusion Criteria

We included in our meta-analysis: (1) retrospective, cross-sectional, and prospective
case-control or cohort studies addressing the difference in mean plasma HC between SCD
patients and controls (CTR) or between patients with and without different clinical mani-
festations of SCD, as well as the prevalence of MTHFR and CBS polymorphisms between
SCD and CTR or between patients with and without different clinical manifestations of
SCD; (2) studies in which plasma HC was measured by validated and published method;
(3) articles written in any language.

4.3. Exclusion Criteria

We excluded from our meta-analysis: (1) case studies, prevalence studies, and reviews;
(2) articles not comparing SCD patients with healthy CTR; (3) plasma HC not measured
with validated methods. Two investigators (PRJA and AA) checked independently the
resulting citations for relevancy and removed duplicates (via EndNote); A.A., M.C., M.G.,
and V.M. screened all titles and abstracts, excluded the irrelevant ones, and applied the
eligibility criteria to the relevant ones in order to include the appropriate studies. P.R.J.A.
and F.G. also screened the reference list of retrieved papers for papers that could have
been missed.

4.4. Data Extraction

A.A., M.C., M.G., and V.M. independently extracted data from the articles that con-
sidered: year of publication, study design, sample size, demographic data, SCD subtype,
follow-up, outcome means, and corresponding dispersion measures (standard deviations
or confidence intervals). The 2020 PRISMA guideline was followed to ensure transparency
of identification, selection, appraisal, and synthesis of the studies included in the systematic
review and meta-analysis [84]. We did not subscribe the systematic review to a registry
because our data derive from case-control observational studies with no intervention, with
no specified protocol other than what was extracted as described Tables 1–3.

4.5. Evaluation of the Quality of the Studies

The quality of the studies included in the meta-analysis was assessed by the Newcastle
Ottawa Quality Assessment Scale (NOQAS) for observational case-control and cohort
studies [85]. The three major domains (selection of cases and controls, comparability of the
groups and verification of either the exposure or outcome of interest) yield a score ranging
between 0 and 8, the higher the score the better the methodological quality. F.G. and VM
independently scored the selected articles and input the results into an electronic form; any
discrepancies were resolved by consensus or via a third party (P.R.J.A.). The inter-rater
agreement between the two assessors was high (Cohen kappa 0.74, 95% CI 0.697, 0.880).

4.6. Outcome Measures

The primary outcomes were the pooled standardized mean differences of HC between
SCD patients and healthy controls and within different clinical subgroups of SCD; the
secondary outcome was the difference in the pooled prevalence of subjects with different
MTHFR polymorphisms between SCD and healthy controls or between SCD with different
clinical manifestations.

4.7. Statistical Analysis

The statistics was carried with the Comprehensive Meta-analysis software (Version 3,
Englewood, NJ 2013, USA). Since the estimates derived from observational studies, we
employed random effects meta-analyses for continuous outcomes [86] and Peto’s odds
ratio to compare prevalence between groups as it performs well with rare events [82].
Heterogeneity between study results was evaluated by the I2 statistics: an I2 value of
0% indicates no heterogeneity; values less than 25% indicate low, between 25% and 50%
moderate, and over 50% high heterogeneity [83]. Sensitivity analyses were not predefined
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at this stage but investigated according to heterogeneity. Publication bias was assessed by
the empirical funnel plot (Supplementary Figure S1) [87,88].

5. Conclusions

The minimal heterogeneity of plasma HC in children from USA compared to children
from the Middle East and India suggest that geographical factors linked to local nutritional
patterns may account for this difference, though individual studies were insufficiently
powered to address the number of factors that may influence plasma HC [56]. The MTHFR
TT genotype seems related to IS, but whether the latter developed in the context of pre-
existing cerebral vasculopathy or as an ex-novo occurrence in unaffected cerebral vessels is
unclear. Despite the low prevalence of MTHFR TT, the latter genotype might affect age at
onset of VOC. All these issues should be re-evaluated on properly designed prospective
studies that should take into account the knowledge on the regulation of the enzymatic
pathways that control intracellular HC levels.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms232314641/s1, Figure S1: Funnel Plot of Standard Error by Std diff. in
means; Figure S2: Plasma homocysteine in sickle cell disease; Figure S3A: Plasma homocysteine by
vaso-occlusive crisis; Figure S3B: Plasma homocysteine by vaso-occlusive crisis; Figure S3C: Plasma
homocysteine by vaso-occlusive crisis; Figure S4: Methylenetetrahydrofolate reductase 1298CC in
sickle cell disease.
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