
Road to Microservices

ANA ISABEL GOMES MOREIRA BASTOS FONSECA
Outubro de 2022

A Road to Microservices

Ana Isabel Fonseca

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Informatics
Engineering, Specialisation Area of Software Engineering

Supervisor: Isabel Azevedo
External Supervisor: Vasco Oliveira

Porto, October 13, 2022

iii

Dedicatory

"(...)E foi perguntar-me a mim mesmo se realmente tinha alguma coisa para dizer que
valesse a pena; para sentar-me a escrever.

Esse foi o grande momento da minha vida, em que, numa situação complicada, bastante
difícil, eu tomo uma decisão arriscada.

Efetivamente...se há um momento na minha vida que é um momento-chave, é esse, o
momento de decisão. Não perguntar a ninguém "E agora o que é que eu faço?", que foi
coisa que nunca perguntei a ninguém.

"E agora o que é que eu faço? Dê-me um conselho." Nunca pedi conselhos a ninguém.
Também não os dou. A não ser que me peçam. E ainda assim, com muitas reservas.

Pois...É agora ou nunca que vou saber, finalmente, se eu sou escritor ou não sou escritor...e
tinha 60 anos, meu caro"

- José Saramago, do documentário José e Pilar

v

Abstract

This document intends to elucidate the complexity of microservices decomposition and this
its inherent process of implementation.

Developments in technology and design, achieving higher performance, reliability, or lowering
costs are valid reasons to consider controlling the product’s quality by guaranteeing its
conformance with established characteristics and standards. Control is made possible by
adding quality control, inspection routines, and trend analysis to a manufacturing process.
These techniques are established in the Quality field academically and business-wise.

Repeat Part Management (RPM) is software that allows users to apply these techniques effi-
ciently and has brought value to the company. However, RPM has been growing, and issues
have emerged due to customer needs - accumulated technical debt. These ever-growing
modifications are common through different business areas, and architectures’ research evo-
lution has accompanied them. This demand for highly modifiable, rapid development, and
independent systems has resulted in the adoption of microservices.

There is a concern for existing systems for decomposition due to the characteristics of
microservices, which encourages approach/technique research. This architecture promotes
legacy system analysis to map current functionalities and dependencies between components.

Furthermore, critical concepts in a microservices architecture are researched and imple-
mented in a new system that encompasses Repeat Part Management’s functionalities.

This thesis explores the microservices’ architecture evolution with an already defined mature
domain in quality assessment.

Keywords: Microservices, Design, Architecture, Pattern, Antipatterns, Migration, Decom-
position

vii

Resumo

Este documento pretende especificar a complexidade do processo de decomposição em mi-
crosserviços e do seu processo de implementação.

Avanços na tecnologia e design, alcançar melhor performance, ou a confiabilidade do produto,
ou diminuir custos são justificações válidas para considerar controlar a qualidade do produto
e, inerentemente, garantir a sua conformidade com as características previamente definidas
e com padrões da indústria. É possível garantir controlo sob os produtos ao acrescentar,
ao processo produtivo, métodos de controlo de qualidade, rotinas de inspeção e análise de
tendências (de desvio). Estas técnicas estão bem estabelecidas academicamente e, de um
ponto de vista do mercado, na área da Qualidade e garantia da qualidade.

O Repeat Part Management (RPM) é um software que permite aos seus utilizadores a
utilização eficiente destas técnicas de qualidade, o que resulta numa adição de valor para
a empresa. Porém, devido às crescentes necessidades dos clientes, alguns problemas têm
sido identificados - relacionados com o conceito de acumulação de technical debt. Esta
crescente necessidade de alteração é comum em diversas áreas de negócio, e a investigação
de soluções arquiteturais tem acompanhado esta pesquisa. Esta solução arquitetura pode
ser caracterizada pela facilidade de sistemas facilmente modificáveis, pelo rápido desenvolvi-
mento e implementação, e pela independência dos serviços decompostos.

Aquando de uma migração para microsserviços num sistema maturo, existe uma maior
preocupação na decomposição da aplicação e definição dos serviços dada a característica
dos microsserviços, o que incentiva a uma pesquisa detalhada sobre as técnicas de decom-
posição. Pela mesma razão, esta arquitetura incentiva ao mapeamento e documentação das
dependências entre serviços e componentes e o estudo da aplicação legacy.

Para além disto, estes conceitos, e a sua implementação devem ser planeados, justificados
e documentados, o que explica a complexidade do processo de migração e implementação,
que deve ter em consideração as funcionalidades existentes no Repeat Part Management.

Dessa forma, esta tese explora a implementação desta arquitetura numa aplicação matura
na área de Garantia de Qualidade.

ix

Acknowledgement

À minha mãe e ao Panos por serem pacientes.

À Cooperativa por estar presente por todas as fases do desespero.

À Maria por partilhar as minhas dores.

Ao Renato pelo ombro e as necessárias pausas.

Ao Xavier e ao Chamusca por me animarem.

Tornaram este processo significativamente mais fácil.

xi

Contents

List of Figures xv

List of Tables xvii

List of Acronyms xix

1 Introduction 1
1.1 Context . 1
1.2 Problem . 2
1.3 Objectives . 4
1.4 Methodology . 5
1.5 Document Structure . 5

2 Legacy Context 7
2.1 Manufacturing Quality . 7

2.1.1 Quality in Manufacture . 7
2.1.2 Quality Control . 8

2.2 Business Domain . 8
2.2.1 CAM2 . 8
2.2.2 Repeat Part Management (RPM) 9
2.2.3 Relation between CAM2 and RPM 12

2.3 Stakeholders Overview . 15

3 State of the Art 17
3.1 Architectural Evolution . 17
3.2 Microservices . 18
3.3 Architectural Patterns Research . 21

3.3.1 Research Results . 23
3.3.2 Design Patterns . 25

3.4 Decomposition Research . 26
3.4.1 Research Protocol Definition . 26
3.4.2 Conducting the Search for Primary Studies 28
3.4.3 Screening . 29
3.4.4 Classification System . 30
3.4.5 Data Extraction and Aggregation 30

3.5 Analysis and Report . 30
3.5.1 Research Question 1 (RQ1) . 31
3.5.2 Research Question 2 (RQ2) . 32

4 Value Analysis 35
4.1 Innovation Process . 35

xii

4.2 Front End of Innovation (FEI) . 36
4.2.1 Opportunity Identification . 36
4.2.2 Opportunity Analysis . 37
4.2.3 Idea Genesis . 37
4.2.4 Idea Selection . 38
4.2.5 Concept Development . 42

4.3 Value Analysis . 42
4.3.1 Value for the Customer . 42
4.3.2 Perceived Value . 42
4.3.3 Value Proposition . 43

4.4 Business Model Canvas . 44

5 Design 47
5.1 Design . 47

5.1.1 Attribute Driven Design (ADD) 48
5.1.2 Architectural Drivers . 48
5.1.3 Functional Requirements . 50

5.2 System Decomposition Alternatives . 51
5.2.1 Decomposition by Business Capability Alternative 51

5.3 Applied Decomposition . 52
5.3.1 Responsibility Separation . 52
5.3.2 Document Service Domain Model 53
5.3.3 Report Service Domain Model . 54
5.3.4 Session Service Domain Model . 57

6 Implementation 59
6.1 Logical View . 60
6.2 Process View . 61
6.3 Development View . 62
6.4 Physical View . 66
6.5 Patterns Implementation . 66

6.5.1 Domain-Driven Design . 66
6.5.2 Database Per Service . 68
6.5.3 OpenAPI . 69
6.5.4 API Gateway . 69
6.5.5 Containerization . 71

7 Experimentation and Evaluation 73
7.1 Hypothesis Identification and Evaluation Indicators 73
7.2 Validation by Stakeholders . 73
7.3 Hypothesis Evaluation . 74
7.4 Questionnaire Answers Analysis . 75

7.4.1 Identified Issues Section . 76
7.4.2 Microservices Implementation Adequacy Section 78

7.5 Hypothesis Calculation . 80

8 Conclusion 81
8.1 Goal Achievement . 81
8.2 Threats to Validity . 82
8.3 Future Work . 82

xiii

A Task Goals 89
A.1 Tasks . 89

B Auxiliary AHP Data 91
B.1 Random Index (RI) Table . 91
B.2 Criteria Normalized Matrices . 91

C Architectural Patterns Research Results 93
C.1 Monitoring Patterns . 93

D RPM’s Third Party Software 95
D.1 Third Party Software . 95

E Conducting the Search for Primary Studies 97
E.1 Primary Studies . 97

F Evaluation 99
F.1 Stakeholder Questionnaire . 99

xv

List of Figures

1.1 Relation between CAM2 and RPM . 3
1.2 Problem Context Diagram . 3
1.3 Thesis Tasks Overview . 4

2.1 Control Server Domain Model . 11
2.2 Screw [Adapted from [27]] . 12
2.3 RPM Plugin in CAM2 . 12
2.4 Feature and Business Flow (BPMN) . 13
2.5 Application’s Capabilities regarding the domain (BPMN) 14

3.1 Microservices and its effect on development [Retrieved from [57]] 19
3.2 Domain Driven Design Overview [Retrieved from [44]] 21
3.3 Systematic Mapping Study Process [Adapted from [74]] 26
3.4 Classification System . 30

4.1 Value Concept . 35
4.2 New Concept Development Model . 36
4.3 Decision Hierarchy Diagram . 39
4.4 Business Model Canvas . 45

5.1 Functional Requirements . 50
5.2 Legacy Use Cases . 51
5.3 Decomposition by Business Capability - Logical View Alternative 52
5.4 Context Map . 53
5.5 Document Microservice Domain Model 54
5.6 Report Content Example . 55
5.7 Report Microservice Domain Model . 56
5.8 Session Microservice Domain Model . 57

6.1 4+1 model [Adapted from [50]] . 59
6.2 Implemented Logical View Diagram . 60
6.3 Logical View Alternative (with Message Broker) 60
6.4 CleanArchitecture Overview [Adapted from [78]] 61
6.5 Process View Diagram . 62
6.6 Report Solution Development View Diagram 63
6.7 Document Solution Development View Diagram 63
6.8 Create Report Sequence Diagram . 65
6.9 Implemented Deployment View . 66
6.10 Entity Framework in Report (Business Logic) 67
6.11 Context Database Set . 67
6.12 Creating Report Model (Database Context) 68
6.13 OpenAPI Config Code . 69

xvi

6.14 OpenAPI Report Controller Registration 69
6.15 Ocelot Basic Implementation [Adapted from [64]] 70
6.16 Ocelot Basic Routing Example . 71

7.1 Job Title Division . 75
7.2 Project Division . 75
7.3 Microservices Adequacy Answers (2.1) . 76
7.4 Microservices Responsibility Answers (2.2) 77
7.5 Functionality Implementation Answers (2.3) 77
7.6 Microservices General Experience Answers (2.4) 78
7.7 Microservices Pattern Adequacy Answers (3.1) 78
7.8 System Modularity Answers (3.2) . 79
7.9 System Modifiability Answers (3.3) . 79
7.10 System Maintainability Answers (3.4) . 80

F.1 Questionnaire Introductory Text . 99
F.2 About You Introductory Text . 99
F.3 About You Questions . 100
F.4 Expectations Introductory Text . 100
F.5 Expectations Questions - Part 1 . 101
F.6 Expectations Questions - Part 2 . 101
F.7 Implementation Introductory Text . 102
F.8 Implementations Questions - Part 1 . 102
F.9 Implementations Questions - Part 2 . 102

xvii

List of Tables

2.1 CAM2 features list . 9
2.2 RPM’s Legacy Responsibilities . 10
2.3 Stakeholders, their interest, and priority [Adapted from [77]] 15

3.1 SOA and Microservices Incompatibility [Adapted from [16]] 18
3.2 Pattern/Solution Research Aggregation 23
3.3 Research Question 1 (RQ1) . 27
3.4 Research Question 2 (RQ2) . 27
3.5 Inclusion and Exclusion Criteria . 28
3.6 Screened Studies . 29
3.7 Sources classified according to pre-defined system 30

4.1 Fundamental Scale by Saaty [Retrieved from [73]] 39
4.2 Identified Criteria Comparison Matrix . 40
4.3 Identified Criteria Comparison Matrix Normalized 40
4.4 Identified Criteria Priority Vector . 40
4.5 Relevance Comparison Matrix . 41
4.6 Scalability Comparison Matrix . 41
4.7 Usability Comparison Matrix . 41
4.8 Reliability Comparison Matrix . 41
4.9 Benefits and Trade-Offs regarding the longitudal perspective of value for the

customer . 43

5.1 Ubiquitous Language Definition . 48
5.2 ADD Concepts [85] . 48
5.3 Project Concerns . 49
5.4 Project Constraints . 49
5.5 Project Quality Attributes . 50
5.6 Services and Responsibilities . 52

7.1 Approval scale . 74
7.2 About You Data Aggregation . 76
7.3 Per Question and Overall Average V alues 80

8.1 Goal Achievement . 81

A.1 Architectural drivers and non-functional requirements relation 89
A.2 Architectural drivers and functional requirements relation 89

B.1 Random Index (RI) Table [Adapted from [62]] 91
B.2 Relevance Comparison Normalized Matrix 91
B.3 Scalability Comparison Normalized Matrix 91
B.4 Usability Comparison Normalized Matrix 91

xviii

B.5 Reliability Comparison Normalized Matrix 91

D.1 Third Party Software in the Legacy System 96

E.1 Primary Studies . 97
E.2 Primary Studies (continued) . 98

xix

List of Acronyms

API Application Programming Interface.

FEI Front End of Innovation.

ISO International Organization for Standardization.

NCD New Concept Model.
NPD New Product Development.

QA Quality Assurance.
QC Quality Control.

RPM Repeat Part Management.

SPC Statistical Process Control.

VA Value Analysis.

1

Chapter 1

Introduction

This document documents and describes the decision-making process inherently present in
software design. Analyzing current academic and grey literature consensus was essential to
identify good practices and patterns related to microservices and fulfill the identified goals.

This chapter introduces the thesis context, the problem, accompanied by an overview of
the essential concepts, goals definition, the research methodology inherent to theoretical
investigation, and the utilized approach to the solution development.

1.1 Context

Maintaining or developing new functionalities can get challenging when an application grows
[81]).

Growth, most likely, is accompanied by increasing technical debt that limits scaling and
software improvement, which is related to past limited (by time or resources) architectural
decisions [60]. Netflix and Amazon’s softwares were initially built on a monolithic-based ar-
chitecture, which is excellent for quick launches, proof of concepts, and simple applications
similar to RPM’s initial development. However, monolithic architectures accumulated tech-
nical debt as these applications grew (number of users and, inherent, number of transactions
and data) [71].

Each application identified its problems:

• Netflix pinpointed difficulty in maintaining data reliability as the cause of its service
unavailability - their goal was to improve availability, scalability, and response time;

• Amazon’s application development cycle was suffering from increasing bottlenecks
which affected functionality evolution;

Netflix solved these issues by migrating to microservices, which simplified the development
process. Microservices translated into multiple API services that communicated efficiently
so that, in the case of failure, it would be easier to debug and, inherently, fix these issues.
Creating and testing new services or functionalities would be a relatively low-impact process
[66].

In Amazon’s specific context, when migrating its two-tier monolithic application to mi-
croservices, their focus was on organization structure, Amazon used two fundamental rules:
developer teams must be small and entirely responsible for their service. These rules ex-
plained further in chapter 3 (section 3.2) and the implementation of continuous delivery
allowed Amazon to return value to customers faster and more flexibly [71].

2 Chapter 1. Introduction

RPM’s developers identified difficulty in functionality expansion and difficulty debugging the
application in case of unavailability. These are the same issues encountered in the explained
case studies, which were solved by implementing microservices and considering migration
patterns.

This thesis focuses on the implementation process of microservices on a greenfield appli-
cation [84], specifically its inherent design decisions and trade-offs. As a result, a possible
solution evolved by analyzing these existing services and splitting them, by responsibility, into
independently deployed, cooperative, more minor services (Microservices) [81].

This architecture style allows for faster system build, horizontal scaling, and readability.
However, its implementation is not superficial, given that it entails a detailed lifecycle plan,
which includes responsibility concerns separation, decomposition, monitorization, continuous
integration and deployment configuration, and service communication. These concerns make
up the complexity of this architecture and explain the increased maintenance effort. Chapter
2 complements this contextualization.

1.2 Problem

Quality Assurance (QA) helps establish trust with consumers by ensuring specified require-
ments in the manufacturing process and, inherently, guarantying product reliability [35]. QA
formalized practices have been encouraged by the International Organization for Standard-
ization (ISO), which develops industry standards based on consensus [43]. On the other
hand, as a segment of the quality measurement process, Quality Control (QC) relates to
inspection, which is a more "operational" requirement [18].

As part of QC, inspections allow corporates to detect anomalies during manufacturing by
identifying deviations from previously defined industry criteria [72]. The inspection concept
represents the measurement and analysis process of a product’s characteristics [72].

FARO is an imaging company that provides 3D digital measurement tools and software,
including the CAM2 software, which suits repeat inspection plans and Statistical Process
Control (SPC) analysis [30]. CAM2’s list of features includes Repeat Part Management
(RPM), which comprises RPM Control Station, RPM Control Server, and RPM Control
Center. This system allows inspection programs to be published, run, and analyzed.

• Control Server: saves published documents (programs), related files, and results.

• Control Station: runs and shows a list of published documents (programs).

• Control Center: deals with result analysis; it shows every document present in the
server, inspection notifications, and process warnings.

RPM, as CAM2, has been growing since 2018, when it was released. Four years later,
RPM’s three components have become difficult to maintain and modify. Migrating to a
Microservices architecture presented an opportunity to achieve faster scaling and increase
RPM’s responsibility.

Decomposition to Microservices is a complex process, hindered by limited knowledge and lack
of scientific consensus on decomposition strategies, and its evaluation, which is discussed
further in section 3.5 [38] [51][52][17]. Therefore, it requires documentation exploration
and research-paper analysis on design patterns, antipatterns, and decomposition techniques.

1.2. Problem 3

Furthermore, requirements must be analyzed and documented to identify clear objectives
for the implementation process.

In figure 1.1 the relationship between CAM2 and RPM can be seen directly. As said previ-
ously, the control server acts as a database, the control center presents data in a visually in-
tuitive way using Statistical Process Control (SPC), and the control station visually presents
the inspection process. Furthermore, in section 2.2.3 there is complementary information
about the CAM2 and RPM connection.

Figure 1.1: Relation between CAM2 and RPM

Figure 1.2 emphasizes this thesis target purpose, Repeat Part Management, also known as
the legacy system, encompasses N functionalities, which must be identified and documented.
Subsequently, by functionality analysis, a decomposition strategy and design is proposed for
the system, which must be developed in accordance to the Microservices Architecture, and
must be able to fulfill these defined functionalities. Figure 1.2 represents, at the top the
legacy system which encompasses a N number of functionalities that must be considered,
to be reproduced, when designing and implementing this decomposition.

Figure 1.2: Problem Context Diagram

4 Chapter 1. Introduction

1.3 Objectives

RPM has grown over these last years and has gradually accumulated technical debt, hinder-
ing modification processes and continuous delivery. Also related to technical debt, increased
tightness in coupling between CAM2 and RPM’s components has decelerated development,
which can explain an increase of breaking changes. Breaking changes translate code modifi-
cations or alterations that negatively affect other services or functionalities. These are this
thesis’ objectives:

• Tackle Microservices evolution: propose a decomposition strategy and design using
the Microservices Architecture by utilizing practices and design patterns approved by
peer-reviewed documentation.

– While considering the legacy RPM application and its already available and main-
tained three components.

• After decomposing, validate design proposition, while considering the architecture’s
ecosystem and lifecycle: design (decomposition and requirement engineering), build,
deployment, maintenance, and management.

Figure 1.3 presents further description on the thesis and project tasks. These can be cor-
related to architectural drivers. Requirements are defined by TN, where T is Task, TF if is
functional task and N is an identifiable number,

These are the identified tasks, and their identification.

Figure 1.3: Thesis Tasks Overview

Implementation encompasses these requirements, which are equally important as to achieve
success. Considering that this thesis focus heavily on decomposition strategies, it is crucial
that the decomposition process is documented and related to the defined drivers, which will
be specified in F.

1.4. Methodology 5

1.4 Methodology

Given the initial stage of this project and its dependency on a legacy domain, it is essential to
recognize application stakeholders, understand their motivations for this change, analyze the
current solution’s structure, and aggregate domain knowledge. At this phase, the problem
must be identified and described.

Additionally, it is crucial to identify and gather techniques and good practices regarding
Microservices’ lifecycle, so it is possible to assert and avoid excessive implementation, given
the project’s initial state. Furthermore, developing decision-making documentation will help
identify potential trade-offs inherent in alternative solution consideration.

A methodology was employed to ensure the solution’s validity when filtering and analyzing
field papers, ensuring that the several sources used to produce this document are reliable
and adequate. In general, criteria were applied to used resources, such as having a clear
preference for peer-reviewed sources (scientific articles and books) in lieu; and analyzing
studies’ abstracts, keywords, and introduction throughout the document’s research process.
The approach splits into these stages:

1. Initially, a breakdown of the surrounding industrial and quality assurance legacy context
was performed and correlated with FARO and their hardware and software products.

2. A Narrative Literature Review (NLR) was carried out in section 3.3 regarding microser-
vices’ migration architectural patterns, which aimed to identify current practices, pre-
ventable mistakes, and the corresponding solutions regarding the total development
cycle. It presents a taxonomy for these practices that allowed for further research
planning and identifies research lacking in a crucial stage of development.

3. A Systematic Mapping Study was performed related to the design stage of the de-
velopment cycle, specifically, a methodological literature review proposed by Alberto
Sampaio that intends to gather and identify all documentation/resources concerning
the search goal [74]. The Review’s goal was to identify decomposition practices in
microservices migration which is related to the design stage.

In each section related to research, there is an explanation of objectives and an introduction
to methodology. After each review, a presentation of the followed approach is explained.

1.5 Document Structure

This document is split into 7 chapters:

This chapter provides project contextualization and thesis field of study. Based on the
problem’s definition, it presents the established goals, work methodology and approaches.

The Context chapter displays further domain and business model contextualization by spec-
ifying theoretical concepts necessary to understanding the software’s business applications
regarding quality assurance and repeated inspections. Furthermore, it presents the legacy
system’s current functionality, basic workflow, defining component responsibilities, and do-
main model. Chapter 2 also clarifies the relationship between CAM2 and RPM (and its’
components).

Following, the State of the Art aggregates essential theoretical concepts regarding the mi-
croservices architecture, specifying a taxonomy of patterns and antipatterns and related

6 Chapter 1. Introduction

approaches to design. Furthermore, relevant information about the microservices architec-
ture and its characteristics and used approaches. Specifically, in chapter 3 the Narrative
Literature Review and the Systematic Mapping Study are documented.

Chapter 4 refers to value analysis, a theoretical description of the new concept development
model, and, inherently, identified and defined idea and opportunity, and concept develop-
ment. Additionally, it presents the Business Model Canvas, which relates to defining the
customer segments, value proposition, channels, customer relationships, revenue streams,
key resources, activities, partners, and cost structure.

Chapter 5 encompasses the Design phase of this thesis by describing how the design was
performed, the considered alternatives and trade-off discussion.

Chapter 6 presents the Implementation phase, which specifies the considered alternatives.
The architecture is documented by using the 4+1 model.

Furthermore, chapter 7 encompasses this thesis’ evaluation strategy, which is validation by
stakeholders, which entails the analysis of a developed questionnaire filled by FARO’s, and
specifically RPM’s stakeholders, which are defined in section 2.3.

Lastly, chapter 8 includes general conclusions, specifying project goals achievement, threats
to validity, and future work.

7

Chapter 2

Legacy Context

This chapter describes Repeat Part Management’s existing domain and contextualizes the
legacy application’s main field of action, namely quality control. Furthermore, an overview
of the legacy applications’ structure is presented along with its correlation with CAM2.

2.1 Manufacturing Quality

This section presents critical concepts regarding the manufacturing quality process and its
importance in facilitating domain understanding - specifically, terms such as Quality Assur-
ance, Quality Control, Inspection, and statistical process control (SPC). This is crucial in
understanding RPM’s purpose and business model.

FARO offers a wide range of products, hardware, and software solutions. The company
developed several measuring devices regarding the hardware offers, namely 3D-Coordinate
Measuring Machines (CMM) to measure shapes and parts with high precision. It produces
lasers, which provide non-contact measurement accuracy important in quality control pro-
cesses.

This thesis focuses on CAM2 and, particularly, Repeat Part Management regarding the
software offer, which is the target of the microservices migration.

FARO operates in different domains [32], such as: production, assembly, product design,
modeling, construction, preservation, and forensic analysis; however, this thesis concentrates
on quality control and inspection, given that it is FARO’s main application field.

2.1.1 Quality in Manufacture

There are several definitions of product quality in manufacturing, given the different char-
acteristics of product requirements throughout the industry. ASQ, an organization that
focuses on providing expertise, tools, and solutions to its members in their industry fields
[4], defines quality as a subjective concept and specifies two technical meanings [5]:

1. "The characteristics of a product or service that bear on its ability to satisfy stated or
implied needs"

2. "A product or service free of deficiencies"

Both meanings reference customer satisfaction and product functionality by guarantying its
conformance with provided and previously defined requirements. Nevertheless, ASQ adds
that Joseph Juran, a renowned business consultant in quality management, defines quality
as "fitness for use" [5].

8 Chapter 2. Legacy Context

Joseph Juran additionally outlined five factors to assure quality in manufacturing [47]: Who
uses the product; How they use it; Possibility/Probability of danger; Consumers’ and pro-
ducers’ resources; Consumer quality perception; From there, three components: planning,
control, and improvement, relating to the industry’s quality processes [22].

Quality Assurance (QA) corresponds with the planning component; it focuses on defect
identification and prevention and relates to the International Standard Organization (ISO)
9000 standards, which defines this stage as confidence in requirement fulfillment [5]. This
concept emphasizes the manufacturing process and its tools’ quality. Additionally, the act
of giving confidence translates to assurance.

Quality Control (QC), according to Joseph Juran [5], emerged to widen quality approaches.
QC allowed for a decisive distinction between detection and prevention (or pro-active control)
in quality processes, given their compliance with ISO standards. "Control" inherently implies
corrective responses, which indicates a technical approach to quality - inspections.

2.1.2 Quality Control

Although assurance (QA) and control (QC) are inherently related, QC focuses on fulfilling
the requirements during operations [46]. Monitoring the manufacturing process allows cor-
porates to prevent additional costs by helping detect errors in the manufacturing process
and, inherently, preventing further deviations. Additionally, it guarantees product quality
before reaching the end consumer.

Quality Control must include monitoring performance, comparing goals with actual results,
and having a reactive posture towards them, making it the top priority in the Quality Process
components [46]. Inspections are made to compare these manufactured results to the
previously defined theoretical values by choosing a sample, measuring, analyzing, and testing
it [5].

Statistical Process Control (SPC) is a QC technique that uses statistical tools to check the
product’s "fitness for use." It requires randomness or variability in the choosing process of
inspected samples [68]. By being consistently monitored and analyzed, these inspections
allow businesses’ to detect and react to conformance deviation [46].

2.2 Business Domain

In this section CAM2 and RPM are identified and their correlation is described explicitly,
which complements the information in section 1.2.

2.2.1 CAM2

CAM2 Software platform is the FARO’s solution suited for quality assurance and inspection
routines, fitted to manage and analyze repeated inspections. As mentioned in the Quality
Control section, enabling businesses to capture measurements and document them facili-
tates error detection and cost prevention. Furthermore, it encourages enterprises’ informed
decision-making by automating complete documentation and automating inspection routines
and analysis with SPC.

2.2. Business Domain 9

Besides part inspection routines and quality control, CAM2 has other application fields, such
as machines, tools, parts verification/calibration, and reverse engineering for prototyping,
which are not crucial to the domain of RPM given its own context.

CAM2’s listed features are [31]:

• Repeat Part Management: ensures inspection consistency by allowing defined inspec-
tion routines to run.

• Control Center: inspection trend analysis based on SPC.

• Simultaneous Measurement: allows for multiple device measuring.

• Metrology-grade Meshing: displays visually appealing metrology information.

• Scanning Profiles: fast selection of the suitable device and inspection routine to run.

• Geometric Dimensioning and Tolerancing (GD&T): GD&T-based results display.

• Universal CAD file Import.

• Alignment Wizard: Aligning the theoretical part with the measured one allows for
comparison.

• Line Deviation Highlights: meaningful use of colors to highlight tolerance analysis.

FARO distributes two versions of the Software (Full and Probing). Table 2.1 provides a
version comparison of features [29].

Features

Operate with contact devices
Operate with non-contact devices
Device relocation
CAD import
Constructions and dimensions
Coordinate systems
Alignments
GD&T
Point cloud editing
Point cloud analysis
Report Generation
Repeat Part Management (RPM)

Table 2.1: CAM2 features list

2.2.2 Repeat Part Management (RPM)

Repeat Part Management (RPM) is an application that enables pre-programmed repeat
part inspections to run, then storing its results and analysis, which later facilitates trend
analysis. RPM is available in InTouch, which manages application distribution, prerequisites,
downloading, installation, updating, and execution according to the users’ product key.

As stated previously, three applications that communicate to complete the quality process
make part of this stand-alone application. Inherently, they have different responsibilities,
which Table 2.2 specifies.

10 Chapter 2. Legacy Context

Component Responsibilities

Control Server
Repository for programs (inspection routines) and
report data. To interface this component CAM2
has a RPM tab.

Control Station
Loads and runs inspection programs that were
published to the Control Server. Report gener-
ation, later stored in Control Server.

Control Center
Browser-based; it displays historical inspection
data in meaningful graphs; it allows access to
component reports and trend graphs.

Table 2.2: RPM’s Legacy Responsibilities

Figure 2.1 presents the Repeat Part Management’s domain model, representing the object’s
relationships - retrieved from the control server’s analysis.

The document is the main object that encapsulates the theoretical representation of objects
(CadFile), the list of created programs (Inspection) retrieved from CAM2, representing one
or more inspection activities, such as alignments or feature measurements, and the document
report template (ReportTemplateFile).

Traditionally, as explained previously in section 2.1.2, an inspection includes measurement
activities, which is this object’s goal by connecting it to the object’s features (Feature); fur-
thermore, these inspections are, consensually, repeated through the manufacturing process,
which is represented by the object Session that represents each of the program’s repetitions.

An object’s feature represents a specific, measurable part of it, which will, then, be compared
to the defined theoretical measurements. These measurements eventually define the actual
part as in or out of tolerance to be further analyzed by on-sight technicians - the tolerance
values (defined in CAM2) are kept in the Statistic object/objects for each feature.

The Session object, representing one repetition of the defined program, encompasses each
session’s Report according to the session’s results. These results are calculated in runtime
and kept in Session Feature and Session Statistic and used by Report and, eventually, by
Control Center, which encompasses several analyzable displays of these data.

In appendix D you can find the legacy’s solution third party softwares.

2.2. Business Domain 11

F
ig

ur
e

2.
1:

C
on

tr
ol

Se
rv

er
D

om
ai

n
M

od
el

12 Chapter 2. Legacy Context

2.2.3 Relation between CAM2 and RPM

This section presents business-related concepts which help clarify the business and architec-
tural relation between CAM2 and RPM.

It is adequate to consider CAM2 as a primary system, which allows the client’s engineers
to open CAD files or create further documents. By opening this CAD File, the engineer is
automatically creating an FCD File, similar to a zip-like structure.

A crucial feature of CAM2, which allows the connection to RPM, is creating programs. A
program is CAM2’s concept term that corresponds with the Inspection concept (for further
explanation, the used term will be Inspection).

Creating an inspection: When a user intends to automize a repeated quality inspection
they create an inspection on CAM2 by adding the desired tasks (one or more). A specific
example would be:

In a given manufacturing company that intends to automize the process of inspecting a
part of a given product - e.g., in a company that produces screws that wants to automize
the process of inspecting a screw (related to the company’s quality control process), it is
required to open the CAD File of the specific product (CAM2) and creates an inspection
for that screw, which can contain tasks like measuring the diameter of the screw’s head
(d), the length of the shank (c), the curve of the screw’s thread (a), or others such as the
alignment task. Figure 2.2 presents values d, c, and a.

Note: The alignment task overlaps the theoretical measurements present in the CAD File
with the measured and actual object (in this case, the screw).

Figure 2.2: Screw [Adapted from [27]]

Besides having the specific CAD File, the FCD file can contain crucial complemental informa-
tion and files, such as images, tolerance values, report information, and feature specification
defined within CAM2. As shown in Figure 2.4, the client has the possibility of publish-
ing this document (that must have at least one inspection). The client’s feature: publish
a document - saves the relevant characteristics of the document to RPM, such as fea-
tures, statistics, tolerances, report information, and inspections (represented in figure 2.5
in CAM2’s process). This feature is available through RPM Plugin in CAM2, as shown in
figure 2.3.

Figure 2.3: RPM Plugin in CAM2

2.2. Business Domain 13

F
ig

ur
e

2.
4:

Fe
at

ur
e

an
d

B
us

in
es

s
F
lo

w
(B

P
M

N
)

14 Chapter 2. Legacy Context

F
ig

ur
e

2.
5:

A
pp

lic
at

io
n’

s
C

ap
ab

ili
ti
es

re
ga

rd
in

g
th

e
do

m
ai

n
(B

P
M

N
)

2.3. Stakeholders Overview 15

2.3 Stakeholders Overview

Knowing the RPM software was developed for a technological fair and that its primary goal
was to showcase new concepts in technology, it is possible to infer that it provoked a fast-
paced development of a PoC that showcased the main features. This application evolved and
grew through the years, which accumulated technical debt and created a Service-Oriented
Architecture, which is deployed as a monolith.

This section intends to show the process of identifying problems in the legacy architecture.
A sequence of techniques was applied to determine a list of doable requirements for project
implementation.

An important part of identifying functional and non-functional requirements is recognizing
relevant people who hold interest and influence over the project - in this case, Repeat Part
Management. Larry Smith’s approach to identifying stakeholders and pondering on their
internal impact was adopted and is seen in table 2.3 [77]. The identified stakeholders are
already filtered according to availability.

Name Interest Priority

Project Manager (RPM)
Reduce Overall Costs; Improve overall pro-
ductivity;

1

Developers (including QAs)
Improve project’s maintainability; Reduce
technical debt; Project breaking changes
related to deployment;

2

Project Manager (CAM2)
Reduce technical debt; Lessen the breaking
changes charge to RPM’s team;

3

Table 2.3: Stakeholders, their interest, and priority [Adapted from [77]]

Stakeholders identification allowed for general viewpoints identification (within the CAM2
and RPM team) and expectation recognition.

These are the current expectations about the new solution regarding management’s identified
issues:

• Develop a solution that enables scalability;

• The solution must foster the development of new features;

• Significant training needed for new employees (project readability);

These are the current solution problems identified by the development team:

• Greater difficulty in developing new functionalities;

• Greater difficulty debugging the system and inherently fixing issues;

• Considerable efforts are required to maintain code and resolve breaking changes;

• Significant training needed for new employees;

CAM2’s interested parties have these expectations from migration:

• A total fusion of the two projects;

• Remove the RPM Plugin and insert its features onto CAM2;

17

Chapter 3

State of the Art

To design an adequate solution for the problem presented previously (Chapters 1 and 2), it
is crucial to analyze the current knowledge on microservices migration and the approach’s
inherent patterns. This chapter intends to understand what is already known about these
concepts and present them. Furthermore, within the Architectural Evolution section, the
Service-Oriented Architecture (SOA) is presented, given the relation between the concept of
service-orientation and microservices to clarify the distinction between the two architectural
styles.

3.1 Architectural Evolution

Microservices derive from the concept of modularizing large monolithic applications into
services, which is not unique to this architectural style. This section intends to define
service-orientation and explain its evolution.

The definition of service, according to Thomas Erl, is a task (function) that may be per-
formed relatively isolated from others; "it is a container of related capabilities.". Services
comprise a body of logic, which can be invoked, if available. As a pattern, service-orientation
states that a substantial problem would benefit from decomposition (into several minor con-
cerns). Thomas introduces the concept of service composition, which corresponds to a set
of services that provide the same functionality, coinciding with a business task or process
[26].

These definitions relate to the Service-Oriented Architecture (SOA). SOA, mainly, differs
from microservices in its implementation, but resembles it by principle [16]. Table 3.1
encompasses several application concerns, which diverge from microservices to SOA, which
was screened from the Cerny et al. 2017 study to only encapsulate relevant content [16].

Deployment, as listed in microservices, is individual (per service), which explains the industry
relation with containers and automated deployment [16]. Architectural decisions must abide
by its scope - while SOA focuses on the enterprise, and developing reusable services -
Microservices focuses on guaranteeing that its services are successful at the one purpose
they intend to fulfill, explaining why SOA’s services’ are larger [16]. By distributing the
system’s responsibilities into services, microservices differ from the centralized management
of SOA. Related to the individual deployment of services, data storage, in microservices,
is created per service, SOA, by centralizing responsibilities (business rules), usually detains
one large database. Furthermore, microservices are usually easier to understand concerning
design [41].

18 Chapter 3. State of the Art

Concern Microservices SOA
Deployment Individual Deployment Monolithic Deployment
Architecture Scope Per Project Enterprise
Service Management Distributed Centralized
Data Storage Per Unit Shared Persistence

Versioning Integrated with architecture
Maintains different versions of
services

Business Rules
Located in each individual ser-
vice

Integrated in the Enterprise

Service Size Small to medium size Large infrastructure

Table 3.1: SOA and Microservices Incompatibility [Adapted from [16]]

3.2 Microservices

While Conway planned to list the flaws in distributed teams in his Law, Conway’s Law also
offered a theoretical basis for Microservices’ implementation. It introduced awareness to
communication efficiency, particularly communication channels and work division, iterative
development processes, independent developer teams, and team size [67].

Four laws result in Conway’s Law, which are [67]:

1. System design replicate’s the organization’s structure: Concerning the complexity
of communication between developer teams, Conway implied that organizations’ struc-
ture should reflect the system to prevent constant redressing and facilitate information
flow.

2. There is never enough time to do something right, but there is always enough
time to do it over: Information Flow affects early design decisions, which reiterates
that a company’s structure must be a facilitator to prevent further technical debt.

3. Create independent subsystems to reduce communication costs: By defining clear
communication boundaries between services, its architectural decisions will be more
suitable to its responsibilities and functionalities.

4. Large systems tend to disintegrate during development, qualitatively more so
than small systems: According to standard Agile practices, architecture evolution
should be iterative to guarantee error tolerance.

Conway, then, paved the way for microservices main characteristics by relating them to the
organization’s structure. Microservices are defined by their functionality aspect (services),
communication mechanisms (REST/HTTP), modularization, and independence [37] [11].

Figure 3.1 graphically represents the effects of this architecture in the further development
process by emphasizing Conway’s Law in the organization’s structure and the implementa-
tion of DevOps. Additionally, It represents these characteristics as essential assets in this
architecture. Fundamentally, this figure advocates that to achieve successful software de-
velopment within the microservices architecture, the business’ organization must be aligned
with the necessary services, and the responsibility for its Continuous Delivery process must
lay with the teams.

3.2. Microservices 19

Figure 3.1: Microservices and its effect on development [Retrieved from [57]]

Application developers must build bridges with abstract business ideas to achieve a concrete
system - or the design process deals with inherent software complexity [9]. The design of
a given system relates to actual domain elements and their relations by defining properties
and a given set of structures [9], which enables quality attributes requirements’ satisfaction,
emphasizing that the design process must consider theoretical quality attributes and trade-
offs to achieve a successful application.

When migrating to a microservices architecture, a critical concern is the decomposition of
an extensive application into a set of functional services [9]. Given that, it structures the
system’s build (unit of deployable modules) as a group of components representing these
services. Each service corresponds to different business capabilities.

Services are standalone Application Programming Interface (API) that fit useful functional-
ities and are independently deployable. Additionally, microservices within the same architec-
ture must be loosely coupled by guaranteeing that all interactions happen through the API.
Limiting interactions allows developers to change these services without impacting others
[9].

This section’s intended purpose is to present crucial concepts and clarify the unique char-
acteristics of the microservice architecture presented in the previous section 3.1. These
are the relevant characteristics regarding microservices, which may not be unique to this
architecture:

Modularity

Microservices focus on splitting an application into smaller components, which provides
means for abstraction. Modularity, as component granularity, allows system management
to become more efficient by splitting responsibilities. These modules are then independently
deployed, which allows for the system to be developed with multiple technologies.

To properly achieve modularity, the legacy system must have defined services boundaries that
must be fully independent, which means that each service must be completely responsible for
their defined boundary. As described previously, the organization’s structure must be aligned

20 Chapter 3. State of the Art

to these defined contexts in order to enable cohesion. Modularity enables modifiability by
making services replaceable. Robert C. Martin defined two principles that can be adapted
and applied to the modularity concept [9] and [54]:

• Single Responsibility Principle: this principle emphasizes that component’s respon-
sibilities must be well defined since it promotes small services of increased stability
[9];

• Common Closure Principle: by keeping domain concepts that are updated or required
for the same reason in the same microservice, it is possible to avoid the nano services’
antipattern;

Domain-Driven Design

Planning is essential when designing good software [44], particularly in Microservices. How-
ever, several questions are raised, specifically about services size. While some articles suggest
that the number of lines of code is an appropriate measure for microservices partitioning, this
idea does not consider that microservices allow for different technology use, which affects
this number’s variation [44].

Domain-Driven Design allows a better understanding of the high-level concepts that compose
a system’s architecture, complementing Business Capabilities by introducing several patterns.

The defined concept in section capabilities, business capabilities might not be enough to
guarantee that these services can not be considered nano or mega according to the defined
antipatterns [44]. These antipatterns may result in further orchestration and communication
issues. DDD offers standards that allow developers to identify microservices and their sizes.

Figure 3.2 represents these patterns and how they relate, specifically:

• Domain Model: contains the different entities and processes that are involved parties
in defined business functionalities.

– Bounded Contexts: As stated previously, DDD defines business domain con-
cepts as objects in a given system. Bounded contexts determine boundaries
within a specific business capability/functionality. These contexts do not need to
be isolated; however, to maintain their integrity, communication between depen-
dent microservices should be well-defined (through APIs) [65].

– Aggregate: defines logical boundaries in a specific context. Aggregates affect
task coordination when in the same transaction. It implies that to change an
object within an aggregate, it must go through the defined aggregate root -
which must be a domain entity [44].

• Ubiquitous Language: As previously mentioned, the structure of an organization
must be related to the software’s architecture, which helps limit the necessary com-
munication between teams since they shouldn’t share domain responsibilities. However,
this can still happen, corroborating the need for a ubiquitous language—furthermore,
the need to communicate to other stakeholders also encourages this pattern.

Essentially, a set of domain experts creates a domain model, which must be encompassed in
the domain knowledge. The domain model must use ubiquitous language and be applicable
into every defined subdomain and to each related bounded context.

3.3. Architectural Patterns Research 21

Figure 3.2: Domain Driven Design Overview [Retrieved from [44]]

Maintainability

Independent services come with a set of benefits, however maintenance becomes more com-
plex. To maintain a system like microservices, testing and monitoring are essential to find
potential sources of failure - which, in a microservices environment, can be the service,
container, or network. This is leveled by the increased readability within the microservices
scope, which makes code more reusable and easier to change.

Regarding data consistency, in an environment which stores data in different databases there
are more risks, such as data redundancy.

Microservices’ maintainability must be intentionally considered while developing the system.

3.3 Architectural Patterns Research

This section aims to identify current practices and patterns used in Microservice Architecture
migration. It investigates five studies about applied patterns and recommended practices in
microservices, which propose different taxonomies for them. Academic and grey literature
were considered when researching this subject.

This review intends to gather knowledge on predictable microservice development problems
to determine possible solutions and implementable patterns.

This analysis intends to provide a taxonomy of the recognized patterns. The following
studies were identified during a research performed in January 2022, while only considering
documents published until January 2018:

"On the Study of Microservices Antipatterns: a Catalog Proposal" - (Tighilt et al.
2020)

22 Chapter 3. State of the Art

This document encompasses a systematic literature review of microservice-related docu-
mentation and an analysis of open-source projects (67) with the intent of cataloging the
identified antipatterns. These antipatterns are presented according to a taxonomy based on
the development cycle of a system (design, implementation, deployment, and monitoring).
Furthermore, this study presents possible solutions, benefits of application (refactoring), and
trade-offs for each antipattern. It also relies on an impact scale by assigning the architectural
antipatterns a high or low effect on the system’s quality.

"Migrating towards Microservices: Migration and Architecture" - (Carrasco et al.
2018)

Carrasco, Bladel, and Demeyer extrapolated architectural smells (antipatterns) by analyz-
ing academia and grey literature publications - a total of 58 documents. These architec-
tural smells are supported by a possible solution, which provides actionable information on
Microservices migration. Furthermore, this 2018 study proposes a more straightforward
taxonomy between architectural and migration smells/antipatterns.

"Design principles, architectural smells and refactorings for microservices: A multivo-
cal review" - (Brogi et al. 2020)

This 2020 study proposes that architectural bad smells threaten microservices’ principles.
By performing a systematic literature review of grey and academic documents they pro-
pose a pattern taxonomy based on the process viewpoint splitting them into independent
deployability, horizontal scaling, isolation of failures, and decentralization.

"Actual Use of Architectural Patterns in Microservices-Based Open Source Projects"
- (Márquez et al. 2018)

Márquez e Astudillo’s study extends previous documentation on microservices’ patterns by
analyzing known open-source projects (design and code review). Furthermore, it performs
a comparison between Service-Oriented Architecture and Microservices. This study iden-
tifies 12 categories for pattern description: Internet of Things (IoT), DevOps, Front-End,
Back-End, Orchestration, Migration, Communication, Behavior, Design, Mitigation, and
Deployment.

"Development Frameworks for Microservice-based Applications: Evaluation and Com-
parison" - (Dinh-Tuan et al. 2020)

Using their own experience, Hai, Maria, Mora, and Felix evaluated Microservices’ frame-
works according to their features, design patterns, and performance. This study specified
Integration patterns, Database, Observability, equivalent to other taxonomy’s monitoring
patterns, Cross-cutting concerns, which are comparable to the previously identified Deploy-
ment patterns, and Communication pattern, which only distinguishes between synchronous,
asynchronous, and remote procedure invocation Fault Tolerance.

Table 3.2 gathers the identified microservices’ patterns and which sources reference them.
[82] managed to encapsulate the patterns in fewer categorizations and in accordance with
the development cycle; therefore, patterns are presented using this approach. The Design
patterns individual categories relate to architectural specifications and the event of the
microservice’s development cycle to which they qualify, specified in section 3.4.

3.3. Architectural Patterns Research 23

Brogi et
al. [61]

Dinh-
Tuan et
al. [23]

Márquez
et al.
[53]

Carrasco
et al.[13]

Tighilt et
al. [82]

Total

API Gateway Yes Yes Yes No Yes 4
API Versioning No No No No Yes 1
Backend for
Front-End

No No Yes No No 1

Circuit Breaker Yes Yes Yes No Yes 4
Container Yes Yes Yes Yes Yes 5
CQRS Yes Yes No Yes No 3
CI/CD No Yes Yes Yes Yes 4
Database per Ser-
vice

Yes Yes Yes Yes Yes 5

Documentation No No No Yes Yes 2
Logging No Yes Yes No Yes 3
Monitoring Yes Yes Yes Yes Yes 5
Service Discovery Yes Yes Yes No No 3
Service Registry Yes Yes Yes No Yes 4

Table 3.2: Pattern/Solution Research Aggregation

3.3.1 Research Results

These five studies aim to identify bad practices in microservices migration and development.
Furthermore, they provide possible implementation strategies, patterns, or/and solutions to
the identified architectural smells. After analyzing the documents, it is possible to conclude:

• Lack of research on microservices obstacles/architectural smells during development,
given that most studies analyze published documents and maintained projects.

• All studies refer to systematic literature reviews (SLR) as a valid approach to software
engineering research.

• Lack of patterns or techniques related to the decomposition stage of the development
cycle.

This section specifies the identified patterns per the employed taxonomy (according to the
development cycle). The patterns related to the design stage are specified in section 3.3.2.
Furthermore, patterns related to the Monitoring stage are specified in appendix C since this
thesis’ goal is to focus on the design of the microservices.

These are the Implementation Patterns that were identified during the research:

1. Documentation: This practice is referenced in most reviewed sources, but it is not
considered a pattern; in [23], the practice of documenting is still an advocated prac-
tice. Documenting is generally a good practice in any architecture; however, given
service decoupling and independent deployment, microservice’s dependencies and ap-
plication overview can become lost, emphasizing this architecture’s need for this pat-
tern. Furthermore, considering Conway’s law and team structure proposition, having
no documentation might hinder communication between members. The recommended
approach to documentation is an API in-code framework; otherwise, team members
must be responsible for service documentation.

24 Chapter 3. State of the Art

2. Service Discovery: Endpoint-based service interactions occur when microservices in-
voke others by using source code hardcoded locations. In this case, invokers would not
locate these resources when scaling out by replicating services [61] and [82]. Service
Discovery can dynamically update microservices’ endpoints by tracking them with Ser-
vice Registry. However, implementing a service registry may affect service performance
[82] because it requires maintenance and might delay development.

These are the Deployment Patterns that were identified during the architectural:

1. API Gateway: Allowing communication between consumer applications and microser-
vices, also related to user access, is essential when implementing microservices. Simi-
lar to previously defined Endpoint-based service interactions, not implementing an API
gateway leads to direct consumer-microservice communication. In this situation, con-
sumer services must maintain and manage endpoints by being aware of the system’s
structure [82]. Similar to Service Discovery, implementing this pattern requires im-
plementing a new microservice that needs further maintenance and might slow down
response times [61].

2. API Versioning: In cases where multiple versions of an API are necessary, such as
major modifications, implementing API versioning guarantees that consumer changes
impact is lessened. This pattern allows this by communicating the version in the URI or
the header of a request. API Versioning also requires maintenance and documentation,
which may slow down response time.

3. Backend for Front-end: In cases where there is a need for customizable user in-
terfaces, such as Android and Desktop compatibility, the backend might not be in
accordance with different performances. Backend for Front-end creates a backend for
each environment, allowing for behavior and performance adaptation. Implementing
this pattern requires considering if it brings value, given the time needed for imple-
mentation [6].

4. Circuit Breaker: Wobbly service interactions occur when a microservice A, which
depends on one or more functionalities provided by Microservice B, does not prepare
for potential failures of B. Not preparing for losses on potentially core functionalities
may cause service failure and cascade failure if not contained. The circuit breaker is the
most common solution by wrapping service invocations which are then forwarded and
monitored. When the number of failed requests goes over previously defined values, it
will instantly send an error message to the invokers [61].

5. CQRS: Command and Query Responsibility Segregation (CQRS) separates read re-
quests from write requests by defining queries and commands in scenarios where per-
formance is required in data readings or when service integration is needed.Commands
change the state of a system, while queries only return results. This pattern em-
phasizes that methods can’t return messages and change them. However, before
implementing CQRS, it is essential to consider necessary team efforts [3].

6. DevOps and CI/CD: Development and delivery automated processes increase system
agility by affecting software quality and reducing increasing delivery efficiency.Slower
testing and deployment processes, error-proneness, and lack of coordination between
microservice are consequences of no version-control, unit, functional or integration
tests, automated delivery tools, or staging environments [13]. Pipelines must be
configurated and integrated independently in each microservice, facilitating system

3.3. Architectural Patterns Research 25

tracking and debugging. Furthermore, testing is faster given the use of automated
approaches. However, implementation requires significant effort and resources [82].

7. Database per Service: Shared persistence is discouraged by every referenced source.
This antipattern occurs when microservices access and modifies the same database.
[61] proposed three solutions that apply similar principles that limit microservice data
access to only essential information.

• Splitting the database requires less intervention; however, this approach isn’t
always possible to apply and may lead to increased efforts in maintaining data
consistency.

• Implementing a data manager microservice that becomes the only responsible
service to manage the database.

• The [82] can be recognized when microservices share too much information or
cyclic dependencies are identified. Sharing persistence can signal this smell, which
creates an opportunity for service merging [61]. However, this service may not
always be applicable given that microservices should only fulfill one business ca-
pability [82], further explained in section 3.4.

3.3.2 Design Patterns

In this section the techniques/approaches to microservices’ decomposition, associated with
the Architectural Pattern Research in section 3.3, are identified and described:

1. Decomposing by Subdomain

• A subdomain is a Domain-Driven Design (DDD) concept related to a specific
business’ domain element [57]. The goal is to separate the domain model for each
subdomain. Each subdomain is related to a bounded context, a DDD concept
explained in section 3.4. Evans categorizes subdomains into three classifications:
subdomains are considered as Core if they are differentiators and deemed the most
valuable to the business, Supporting if they relate to core domains but are not
differentiators; finally, there are Generic subdomains, which are usually not directly
associated with the business domain and usually implemented independently [28].

2. Decomposition by Business Capability

• Business Capabilities capture stable functionalities that generate value for a com-
pany by disregarding how they are executed [70]. Chapter 2 provides context on
FARO’s field, which becomes essential when identifying RPM’s business capabil-
ities. The result of the identification process is usually not sharp. Addressing ca-
pabilities systematically guarantees that nano and mega services antipatterns are
not a potential threat to the architecture’s success [8]. Microservices should serve
the identified business capabilities individually, encouraging system maintainabil-
ity and modifiability. These characteristics result from independent deployments,
a more straightforward debugging process, and minor-impact improvements re-
garding other services [70]. These business capabilities must later correspond to
developer teams’ responsibilities regarding Conway’s Law to ensure the identi-
fied benefits [70]. The organization must undergo purpose, business processes,
and structure analysis to identify these capabilities, beginning by identifying a
high-level domain model [57].

26 Chapter 3. State of the Art

3.4 Decomposition Research

This section intends to complement the architectural pattern research by identifying and ag-
gregating existing approaches and techniques to decomposition by performing a Systematic
Mapping Review (SMR), which is a common practice in software engineering research, by
applying Alberto Sampaio’s method [74]. Figure 3.3 represents the proposed process, which
is split into six stages. While the order of these should be respected, it is possible to return
to any stage and revisit a decision. These are the steps description:

1. Protocol and definition of the research questions: this stage’s outcome is a rigorous
protocol, which allows other researchers to replicate it;

2. Conducting the search for primary studies: this stage aggregates all papers and
must encompass all relevant information;

3. Screening: screening focuses on selecting adequate papers by applying the previously
defined criteria;

4. Classification system: the purpose of this stage is to organize the selected papers
following the defined research questions;

5. Data extraction and aggregation: after organizing the studies in the previous step,
this step focuses on extracting and recording data;

6. Analysis and Report: analyze the map, draw necessary conclusions, and describe
possible threats to validity;

Figure 3.3: Systematic Mapping Study Process [Adapted from [74]]

3.4.1 Research Protocol Definition

As described previously, this section establishes the mandatory protocol and research ques-
tions regarding this mapping study. By clearly establishing a protocol this study becomes
reproducible [74].

Boundaries

Having already performed a Narrative Literature Review (NLR) regarding architectural pat-
terns and smells allowed for a scoping of existing literature regarding microservices. Fur-
thermore, the crucial resources are reports on migration processes, resources focused on
design patterns and smells from decomposition strategies, and similar Systematic Literature
Reviews.

3.4. Decomposition Research 27

Given the scope of the thesis study, only digital libraries will be used, specifically B-On,
IEEE Xplore, and ACM Digital Library, given the advanced search feature applicable to their
repositories. This review must only consider articles published after 2018 to certify that only
the latest techniques and approaches are regarded.

Research Questions

As reported previously in section 3.3.1 after scoping microservices it was possible to conclude
that there was a lack of research regarding methodological decomposition patterns and issues
regarding the migration process. However, NLR can be inadequate in gathering knowledge
and understanding a more specific area, such as decomposing strategies in a microservices
architecture migration process.

Sampaio suggests a commonly used framework for building evidence-based practical ques-
tions, which should be searchable: PICOCS (Population, Interventions, Comparison, Out-
comes, Context) [74]. By using the PICOC framework, the outcomes were tables 3.3 and
3.4.

The research question in table 3.3 focuses on the main research conclusion from the NLR
by concentrating on identifying common techniques in decomposition processes. While the
research question present in table 3.4 is focuses on avoiding issues related to decomposition.

Research Question What are the most common techniques for decomposition in
microservices migration processes?

Population Articles about actual migration processes, resources focused
on decomposition and related patterns or smells.

Intervention Identify techniques, methods or approaches related to the de-
composition of an established system.

Comparison The existing and common approaches are Decomposition by
Business Capability or by Subdomain.

Outcome Mentioned and applicable approaches or techniques and the
details of applicability to projects.

Context Articles regarding microservices migration processes and de-
sign.

Table 3.3: Research Question 1 (RQ1)

Research Question What are the preventable architectural and implementation
smells of decomposition processes in microservices?

Population Articles/Reports on actual migration processes, and resources
regarding architectural smells and other related issues.

Intervention Determine common issues and smells within the decomposi-
tion process in the migration to a microservices architecture.

Comparison Already analyzed smells and preventable mistakes are mostly
related to implementation.

Outcome Identifying avoidable problems and their specific solutions.

Context Articles regarding microservices migration processes and de-
sign.

Table 3.4: Research Question 2 (RQ2)

28 Chapter 3. State of the Art

Inclusion and Exclusion Criteria

During this stage, it is crucial to define criteria per the specified research questions. Sampaio
suggests coding every criterion and giving it a specific identification to more directly guide
the screening process [74]. Table 3.5 encompasses the defined Inclusion (I) and Exclusion
(E) Criteria to be applied to the found studies.

Criterion Description
I1 Studies that describe the migration process to microservices specifically.

I2 Resources that provide techniques or approaches regarding decomposition
of legacy systems.

I3 Resources that identify architectural smells and patterns regarding the
microservices architecture.

E1 Resources published before January 2018.
E2 Resources that are not written in English or Portuguese.
E3 Studies that are do not mention microservices migration processes.
E4 Studies that are not available in full (pdf format).
E5 Studies that focus on brownfield migration processes.

Table 3.5: Inclusion and Exclusion Criteria

Search String

The search strategy encompasses the definition of a search string that aligns with the
previously defined criteria and research questions, as intended by Sampaio’s methodology
description [74]. This string specifies mandatory words in a given study. In this specific case
the used words (and their inherent derivates - e.g. decompose, decomposition, decomposed)
and synonyms which may be used in the same context are: microservice, migration or refac-
toring, decomposition, strategies or techniques or practices, patterns, design or achitecture.

During the research process within the used research libraries, this string is applied to the
advanced search mechanisms from the chosen digital libraries:

[microservice*] AND [migrat* OR refactor*] AND [decompos*] AND [strateg* OR techni*
OR practic*] AND [pattern*] AND [design* OR architectur*] AND [Publication Date:
(01/01/2018 TO 08/31/2022)]

3.4.2 Conducting the Search for Primary Studies

The second step to the Systematic Mapping Study method is to apply the defined search
string to the chosen digital libraries, specified during the review protocol definition in section
3.4.1. As specified in the boundaries subsection of the protocol, only accessible resources
published after January 2018 are considered. This search was conducted on the 28th of
August 2022 and its results were: ACM Digital Library with 8 results, IEEE Xplore has
4 results, and B-On had a total of 7 results, In total the primary studies search found 19
studies, given that there weren’t any duplicates. The full list of found resources is in appendix
E.

3.4. Decomposition Research 29

3.4.3 Screening

This step’s outcome is a list of resources/studies that adequate according to the defined
inclusion and exclusion criteria. This exclusion task encompasses the analysis of the title,
abstract, and keywords of each study to which the criteria are applied. In case of uncertainty
it is possible to consider reading the conclusion. In table 3.6 it is possible to analyze the
screened list of studies.

ID Title Author(s) Publication
Year

S1
A dataflow-driven approach to identifying mi-
croservices from monolithic applications

Shanshan Li, He
Zhang, Zijia Jia,
Zheng Li, Cheng
Zhang, Jiaqi Li,
Qiuya Gao

2019

S2
Analysis of the criteria adopted in industry to
extract microservices

Luiz Carvalho,
Alessandro Garcia,
Wesley K. G. As-
sunção, Rafael de
Mello

2019

S3
An experience report on the adoption of mi-
croservices in three Brazilian government insti-
tutions

Welder Luz, Everton
Agilar, Marcos César
de Oliveira, Carlos
Eduardo R. de Melo

2018

S4
Are we speaking the industry language? The
practice and literature of modernizing legacy
systems with microservices

Thelma Colanzi,
Aline Amaral, Wesley
Assunção, Arthur
Zavadski

2021

S5
GreenMicro: Identifying Microservices From
Use Cases in Greenfield Development

Deepali Bajaj, Anita
Goel, S. C. Gupta

2022

S6
How Can We Cope with the Impact of Mi-
croservice Architecture Smells?

Xiang Ding, Cheng
Zhang

2022

S7
Identification of microservices from monolithic
applications through topic modelling

Miguel Brito, Jácome
Cunha, João Saraiva

2021

S8
Microservice Decomposition via Static and Dy-
namic Analysis of the Monolith

Alexander Krause,
Christian Zirkelbach,
Wilhelm Hasselbring,
Stephan Lenga, Dan
Kröger

2020

S9
Modernizing Legacy Systems with Microser-
vices: A Roadmap

Daniele Wolfart,
Wesley K. G. As-
sunção, Ivonei F.
da Silva, Diogo
Domingos

2021

S10
Unsupervised learning approach for web appli-
cation auto-decomposition into microservices

Muhammad Abdul-
lah, Waheed Iqbal,
Abdelkarim Erradi

2019

Table 3.6: Screened Studies

30 Chapter 3. State of the Art

3.4.4 Classification System

At this stage a classification system must be presented with the intent of classifying the
screened studies. Furthermore, classification must match the previously defined research
questions [74]. Figure 3.4 presents the adequate categories to classify and analyze data.

Figure 3.4: Classification System

3.4.5 Data Extraction and Aggregation

This stage intends to extract and record data from the previously screened studies and to
classify it according to the previously defined system. From research question 1 (RQ1),
the documents that mention approaches and techniques and the problems related to these
approaches. Research question 2 (RQ2) splits into identified preventable smells or problems
and their solutions.

Table 3.7 organizes sources by defined categories, in accordance with the research questions.

Categories Source ID

RQ1 Identified Approaches or Techniques S1, S2, S4, S5, S6, S7, S8, S10
Problems with Approaches/Techniques S1, S2, S6, S7, S9, S10

RQ2 Identified Smells or Problems S2, S3, S4, S6, S9
Solutions for Smells/Problems S2, S6, S9

Table 3.7: Sources classified according to pre-defined system

3.5 Analysis and Report

In this section, and as the last step of the proposed methodology, data was extracted,
presented, and analyzed. It intends to answer the previously defined research questions,
which is the reason behind its organization, which means that, this section will be split
by research question. In each segment both categories will be analyzed. Throughout this
analysis, studies are referenced through the unique identifiers presented in section 3.4.3.

Although some studies are referenced in more than one category, to avoid just paraphrasing
due to category inherent similarity, some sources have been reported only in one section.

3.5. Analysis and Report 31

Every source study identifies microservices migration as a crucial "prerequisite" [51], which
is expected to guarantee the microservice’s modular scope, given that the migration process’
success is highly dependent on the chosen and appropriate approach.

3.5.1 Research Question 1 (RQ1)

This research question encompasses the identified approaches and problems within those or
other approaches whether by applying them into a case study, analysing already existing and
implemented systems, or implementing decomposed systems. It is relevant to mention that
most studies reference the previously identified decomposition patterns (section 3.3.2) as a
foundation for the proposed methods.

S1 proposes a dataflow-driven approach to decomposition that encompasses 4 steps:

• Requirements definition: this step only entails functional requirements (business logic).

• As this is a dataflow-driven method, the processes’ flows must be specifically defined
(as this is a crucial step for decomposition).

• Identify dependencies between processes and datastores.

• Decompose system and identify candidate microservices.

This approach was then implemented in a case study project, which raised some potential
limitations regarding heavy reliance on dataflow diagrams, which raises concerns on their
definition and management, omission of other important factors, such as frequency of com-
munication and performance, and method efficiency.

S5 proposes a methodology for decomposition in greenfield systems based on use case
analysis, given the lack of legacy code. This study applies this approach to four applications
which demonstrated successful results. It focuses on assessing functional requirements and
clustering associated use cases by then applying a clustering algorithm to a previously defined
similarity matrix. S5 references a lack of scientific consensus on decomposition acceptance
criteria (and evaluation) [7].

S7 proposes a microservice identification approach through topic modelling (domain defined
concepts). One of this models’ concerns is modularity quality (conceptual and structural),
which is relevant within the microservices scope. This study also references lack of efficiency
in its process related to the vast amount of work regarding permutations, due to their
abstraction limitations [10].

S8 proposes the visualization of the monoliths (legacy system) live tracing to identify
bounded contexts via dynamic analysis. This is done by employing a static software analysis
tool to map source code packages for identifying "ambiguities in the corresponding service
boundaries" [49]. This study does not refer any limitations with its work.

In a more traditional representation, S9 proposes that the starting point for decomposition is
responsibility definition (for each microservice) and promotes the decomposition by business
capability approach. Furthermore, it encourages the use of the Single Responsibility Principle
(SRP), which is predictable due to microservice’s modular scope [86].

S10 proposes an automatic decomposition process for web applications that specifically
targets scalability and performance system characteristics. This method accesses application
logs and from them proposes microservices mapped URLs. This method was implemented
in an actual web application on a cloud infrastructure. However, implementation was not

32 Chapter 3. State of the Art

efficient at all and needed several experiments in order to formulate a possible answer, which
is reflected in the conclusion: "Building an automated solution to improve the performance
of a legacy monolithic web application is a challenging task", because, as stated previously,
building successful automated support platforms is not probable because it always omits
specific system characteristics, whether that is performance or scalability [1].

Most proposed non-traditional studies require a lot of planning and documentation, which is
not particularly efficient and, therefore, not attractive for companies who wish to accelerate
implementation. This issue was actually raised by [51].

3.5.2 Research Question 2 (RQ2)

This research question will focus on addressing issues with migration processes and, if rel-
evant, their existing/proposed solutions to mitigate the effects, based mostly on applied
specialist surveys and systematic mapping studies.

S2 focuses on considered criteria when decomposing a legacy system into microservices, it
generally reports a lack of software support for this process and states that "it is unlikely we
will able to design appropriate techniques and tooling support for microservice extraction".
Furthermore, as it is relevant the most analyzed characteristics were (by order of relevancy)
[14]:

• Cohesion which specialists report only analyzing it manually an being a key factor for
identifying domain entities.

• Coupling which specialists report having difficulty analysing dynamically, due to lack
of software support, as previously mentioned.

• Requirement analysis is the third most important criteria, specifically specialists fo-
cused mostly on functional requirements and mainly their performance, regarding non-
functional.

Most of this study’s smells focused on lack of supporting software for the modularity scope
of microservices decomposition.

S3 analyzes the decomposition and migration process of three governmental systems and
surveying participants. It firstly states that the bigger problem with this architecture and its
implementation was automation, given the necessary requirements for maintenance, even
while proving to be beneficial for these systems. They state that management’s involve-
ment with migration will facilitate and benefit decomposition, which inherently increases
the chance of migration success. Furthermore, S3 reports a lack of scientific consensus on
decomposition and its evaluation criteria (which some identified source studies tackle) [52].
S1 corroborates this limitation by stating that there are no comprehensive metrics/methods
that support decomposition or system evaluation [51].

S4 tries to analyze a potential bridge between practicioners and theoreticals with a survey
designed for industrial and academic investigation. This study identifies a close relation
between what is applied with what is suggested by academic researchers. It states that the
industry opts for an incremental approach to migration and usually decompose systems by
business capability, which is related to other identified methods inefficiency (stated in 3.5.1)
[17].

General lack of tools in software migration compel practitioners to work alongside (and
closely) with theoreticals [52] [17].

3.5. Analysis and Report 33

S6 analyzes the impact of architectural smells in the microservices architectural type by
performing a systematic review. This study reinforces the single responsibility principle (SRP)
and modularity scope of this architecture by suggesting that decomposition must be carefully
planned and that microservice independence management must consider data migration to
ensure migration success. These solutions try to mitigate mismanagement, macro and nano
services, and high coupling.

S9 promotes a microservices roadmap that mentions every step of the implementation pro-
cess, this research question addresses decomposition difficulties, which is specified as one of
the steps to the process. This study suggests that incremental implementation is the best
approach by specifying that "due to the complexity of this activity, practitioners will learn
how to do it better for each microservice decoupled from the legacy" [86].

35

Chapter 4

Value Analysis

This chapter presents this thesis’ primary goal Value Analysis (VA). It is relevant to state that
value is a subjective term when considered from different perspectives, such as consumer,
manufacturer, and designer ([80]). Nevertheless, value must be measurable and possible by
pondering expectations.

Figure 4.1: Value Concept [80]

Lawrence Miles, the founder of the value identification methodology, stated that value is
influenced by performance and cost ([59]). Consequently, the value increases when the cost
decreases while maintaining performance or increases within the consumer’s acceptable price
range. Then, performance and cost relate to the product’s functionality to raise the value
to customers.

However, Thiry states that value has evolved to a more "customer-oriented notion" ([80])
and defines it with performance/fitness and resources (product’s cost, human resources,
and capabilities).

Defining and evaluating a product’s value is relevant given the market’s characteristics,
mainly competition ([59]), to maintain the product’s long-term relevancy.

4.1 Innovation Process

Koen states that the innovation process (New Concept Model (NCD)) entails three dis-
tinct stages: or Front End of Innovation (FEI), New Product Development (NPD), and
Commercialization ([48]).

Figure 4.2 identifies three components that define NCD, namely:

• The engine is fueled by effective leadership and the internal aspects of the company,
although research hasn’t yet corroborated this factor as critical to success ([63]).

36 Chapter 4. Value Analysis

• In the above layer, the FEI stage defines its five key elements, further explained in
section 4.2.

• The circle’s border represents external factors that affect every stage of NCD, such
as strategies, competition, and organizational structure.

Figure 4.2: New Concept Development Model [Adaptation from [48]]

Front End encompasses all activities before New Product Development, although they are
complementary stages. Contrary to the NPD stage, which entails formal actions, the front
end is usually unpredictable and unstructured.

4.2 Front End of Innovation (FEI)

As a part of the New Concept Development Process, the Front End of Innovation (FEI)
represents every development element until the concept’s approval. FEI does not limit
element definition order or combination, which means that redoing activities is usual and
can prevent further costs and project cycle time growth. These characteristics are possible
given to the tight coupling between elements ([39]).

4.2.1 Opportunity Identification

Opportunity identification in a given business field translates into the process of detecting
previously unknown market deficiencies. Deficiencies range from competitive threats to
technological advantages to production improvements affecting cost and time variables. It
should also encompass the required resources to achieve effective and efficient concept
progression ([39]).

Given its uncertain characteristics, Opportunity Identification’s essence stands on proper
methods and sources that may be formal or not, such as road mapping, technology trend
analysis, competitive intelligence analysis, customer trend analysis, market research, and
scenario planning.

These methods focus on identifying teams’ insight, capabilities, and skills about the project,
organizing business strategies to recognize competitive threats, and envisioning the uncertain
future in a systematized approach ([39]).

4.2. Front End of Innovation (FEI) 37

As explained previously in section 1.2, RPM’s developers have focused on maintaining the
solution; however, developers have identified issues related to accumulated technical debt
throughout the continued development.

Other companies that have already gone through this migration process implemented mi-
croservices’ to tackle common issues, such as maintainability and modifiability. There-
fore, and given the identified references of successful restructuring processes, this migration
presents itself as a solution for FARO.

4.2.2 Opportunity Analysis

This element explores identified opportunities to assess if they are worthy of pursuit by
gathering market interest and technological information. These efforts can be a part of
a formal process or iterative to reduce the concept’s attractiveness uncertainty and assess
business capability ([39]).

Methods and approaches are the same as opportunity identification, although they are fo-
cused on resource management and detail on attractiveness in Analysis. Opportunity Analysis
encompasses ([39]):

• Strategic Framing: contextualize the new concept into the company’s market.

• Market Segment Assessment: framing the identified opportunity into the defined mar-
ket segment.

• Competitor Analysis: focuses on researching and planning for competitive advantage
and determining competitors.

• Customer Assessment: targets customer problems.

It is typical to return to this element to complement identified knowledge.

Throughout the Context and State-of-the-Art chapters (chapters 2 and 3), the reasoning
behind choosing microservices as a solution for presented legacy system problems is pre-
sented.

The main challenges are scalability, modifiability, and maintainability, which hinder the devel-
opment process of the application. Developers have identified increased latency in creating
new functionalities and cloud implementation limitations regarding system complexity.This
solution aims to tackle accumulated technical debt by facilitating the application’s readabil-
ity and deployment process, ultimately facilitating modifiability and functionality delivery to
clients.

4.2.3 Idea Genesis

By Cambridge’s definition, genesis is "the origin of something" ([34]). Accordingly, Idea
genesis represents the birth and development of ideas and is a relatively unstable element of
NCD. It benefits from functional teams and stakeholders’ direct participation in the iterative
discussions that may affect opportunity identification, emphasizing that NCD is a nonlinear
process ([39]).

This element must encourage participants’ creativity, specifically by pondering particular
ideas or concept deficiencies. Idea Genesis can happen through formal activities such as

38 Chapter 4. Value Analysis

brainstorming or, in contrast, through communicated failed attempts in developments or
specific customer requests.

Several steps are necessary to achieve the proposed solution, specifically:

• Aggregate information on good practices and patterns regarding the microservices
implementation;

• Map the legacy application’s architecture and identify its issues;

• Define and describe good practices regarding RPM’s decomposition and define the
microservices - additionally, this must encompass a responsibility definition for each
service;

• Implement at least two microservices using the identified patterns, determining trade-
offs by considering service communication, data consistency, and established system
issues;

• Determine good practices regarding the implementation of monitorization and contin-
uous documentation and implement them by identifying trade-offs;

4.2.4 Idea Selection

Ideas are typically abundant in businesses, which creates a need for methodologies that
support idea filtration. However, having limited information in the early stages hardens
establishing a formal decision process ([39]). The remaining elements of FEI are necessary to
make better decisions by identifying influencing factors and new directives from the company.

The decision, at this stage, encompasses some risk, given the emotional characteristics of
the initial trigger, which usually is an individual’s judgment ([39]). However, ideas can fade
if businesses do not allocate resources, such as funding or human resources, representing
management support.

Businesses must ensure expectation management to maintain a positive mindset and ap-
proach by encouraging creativity and making ideas more attractive.

Saaty defined the Analytic Hierarchy Process (AHP) in 1980, used for decision-making by
enabling the determination of idea selection and the reason behind it ([73]).

AHP can be partitioned into four steps ([73]):

1. First, define the problem and determine which decision needs to be determined.

2. Next, structure the decision hierarchy tree, as seen on figure 4.3, by dividing it from
top to bottom as:

• Goal: Choose the methodology to use;

• Criteria: The defined criteria are also present in the Experimentation and Evalu-
ation chapter (chapter 7) - relevance, scalability, usability, and reliability;

• Alternatives: The choices of methodology to fulfill the proposed goal;

3. Construct comparison matrices that evaluate each criterion in comparison with an-
other;

4. Finally, apply calculations regarding priorities to every defined criterion;

4.2. Front End of Innovation (FEI) 39

Figure 4.3: Decision Hierarchy Diagram

Image 4.3 define criteria that can be further specified as:

• Relevance: determining if the identified solution addresses the legacy issues;

• Scalability: does the solution address scalability;

• Usability: considering system readability and its inherent modifiability characteristic;

• Reliability: considering downtime is lower than up-time and if these characteristics
are monitored;

The next stage focuses on comparing these criteria, however AHP focuses on creating a
tangible (fundamental) scale for idea criteria (table 4.1). This scale is applied into table 4.2,
which is then normalized in table 4.3 for further calculations.

Level Definition Description
1 Equal Importance The two methodologies contribute equally for the goal

3 Weak Importance
It is possible to identify a small improvement when com-
paring these methodologies

5 Strong Importance
It is possible to identify a large improvement when com-
paring these methodologies

7 Very Strong Importance
It is possible to identify a massive improvement when
comparing these methodologies

9 Certain Importance The difference between each methodology is very clear
2,4,6,8 Mediators These are applied when searching for middle ground

Table 4.1: Fundamental Scale by Saaty [Retrieved from [73]]

40 Chapter 4. Value Analysis

Furthermore, four criteria were identified, which means that, for the purpose of the AHP:

n = cr iter ia quantity = 4

Relevance Scalability Usability Reliability
Relevance 1 1/2 1/3 1/6
Scalability 2 1 2 1/3
Usability 3 1/2 1 1/5
Reliability 6 3 5 1

Total 12 5 25/3 17/10

Table 4.2: Identified Criteria Comparison Matrix

Relevance Scalability Usability Reliability
Relevance 1/12 1/10 1/25 5/51
Scalability 1/6 1/5 6/25 10/51
Usability 1/4 1/10 3/25 2/17
Reliability 1/2 3/5 3/5 10/17

Table 4.3: Identified Criteria Comparison Matrix Normalized

Table 4.4 results from the calculation of the average of each row. This values were defined
considering management’s perspective and direction.

Relative Priority
Relevance 0.080
Scalibility 0.201
Usability 0.147
Reliability 0.572

Table 4.4: Identified Criteria Priority Vector

According to [20], it is crucial to validate the consistency ratio (CR) value, which requires
the presented formula’s calculation, given that its value should be less than 0,1, with M
being the Criteria Comparison Matrix (table 4.2) and PV being the Priority Vector (table
4.4):

M × PV = λmax × PV ⇔

⇔ λmax =

0.32483

0.84567

0.60190

2.39

 /PV ⇔ λmax =

0.32483

0.84567

0.60190

2.39

 /

0.080

0.201

0.147

0.572

⇔

⇔ λmax = (
0.32483

0.080
+ (
0.84567

0.201
+
0.60190

0.147
+
2.39

0.572
)/4⇔ λmax = 4.1351

4.2. Front End of Innovation (FEI) 41

Then, with this value it becomes possible to calculate the consistency ratio (CR) by calcu-
lating the Consistency Index (CI) and using the predefined value of RI, which was retrieved
from table ?? in appendix B.1, in accordance to the number of criteria.

CR =
CI

RI
IC =

λmax − 4
4− 1 = 0, 045033

CR =
0, 045033

0, 90
≃ 0, 05004

The same comparison principle is then applied to every identified criteria regarding the
alternative solutions, which were specified by considering what was clarifies by management.
Table 4.5 focuses on comparing the solutions regarding the relevance criterion.

Maintain Current Solution Implement Microservices Priority
Maintain Current Solution 1 1/6 7/12
Implement Microservices 6 1 7/2

Table 4.5: Relevance Comparison Matrix

Table 4.6 evaluates which solution facilitates scalability the most.

Maintain Current Solution Implement Microservices Priority
Maintain Current Solution 1 1/5 3/5
Implement Microservices 5 1 3

Table 4.6: Scalability Comparison Matrix

Table 4.7 focuses on usability aspects.

Maintain Current Solution Implement Microservices Priority
Maintain Current Solution 1 1/4 5/8
Implement Microservices 4 1 5/2

Table 4.7: Usability Comparison Matrix

Finally, table 4.8 considers reliability on these systems.

Maintain Current Solution Implement Microservices Priority
Maintain Current Solution 1 1/2 3/4
Implement Microservices 2 1 3/2

Table 4.8: Reliability Comparison Matrix

These matrices are then normalized in order to calculate priorities, which are available in
appendix B.2, to construct the priority matrix, which is then multiplied to the Priority Vector
to calculate priority.

42 Chapter 4. Value Analysis

[
1/7 1/6 1/5 1/3

6/7 5/6 4/5 2/3

]
×

0.080

0.201

0.147

0.572

 =
[
0.2645

0.7350

]

It is possible to conclude that the best alternative is the implementation of microservices,
in accordance with the criteria analysis via AHP.

4.2.5 Concept Development

As the only gate between FEI and NPD, the concept definition element results in investment
plans and a business proposition that usually address the company’s goals and the projects’
fitness regarding corporate strategies while pondering inherent risk factors.

Currently, the legacy application is already commercialized by FARO. This migration process
will improve the solution by tackling identified issues, specifically project modifiability and
maintainability.

4.3 Value Analysis

This section focuses on identifying and describing the potential value offered by this solution.
As presented previously in this chapter, value is a subjective term that can vary in accordance
with the point of view. However, there are common characteristics regarding the definition
of value, specifically: performance, capability, appeal, and cost.

4.3.1 Value for the Customer

The Repeat Part Management application includes three extremely tightly coupled services,
which harden system debugging. The consequence of this is human resource allocation to
resolve constant breaking changes, which translates into not being able to allocate them
into the innovation of the application.

The system’s no readability and tight-coupling characteristics reflect an increased latency
in delivering value (new functionalities) to the customer in the long term, reflecting on the
business’s market value.

Clearly defining responsibilities in microservices allows developers to quickly pinpoint the
causalities and fix them, allowing management to allocate them to other planned tasks,
positively impacting the business’ market value.

Microservices will allow developers to follow management’s goals for RPM, defined in section
2.3.

4.3.2 Perceived Value

Woodall represents perceived value as a client’s comparisons of benefits and trade-offs in a
longitudinal perspective by splitting it into four temporal positions ([87]).

These perceived values for the customer positions are related through time and are:

4.3. Value Analysis 43

1. Ex Ante predicts how clients perceive the solution and how they ponder benefits before
purchase;

2. Transaction value translates into the real-time trade experience expectation;

3. Ex Post reflects the perceived value after acquiring the solution;

4. Disposition reflects the attributed value to the solution after extensive use;

In table 4.9 these temporal positions are presented regarding this thesis’ solution proposition.

Benefits Trade-offs

Ex Ante
Knowledge Aggregation; Decoupling
of Services; Lifting of Restrictions re-
garding innovation;

Complexity regarding the implemen-
tation of microservices encompasses
a significant amount of time and ef-
fort regarding research;

Transaction
Code readibility; Services clear re-
sponsibility definition; Documenta-
tion regarding this new solution;

Costs regarding training developers;
Costs regarding maintenance; Com-
pany’s resource allocation for imple-
mentation;

Ex Post
Increased readability of the system;
Increase in productivity; Greater scal-
ability of the application;

Resource allocation costs;

Disposition
Greater ability to pinpoint issue
causalities; More frequent value de-
livery; Project readability;

Maintenance and Development
Costs; Costs regarding resources
such as cloud-environment

Table 4.9: Benefits and Trade-Offs regarding the longitudal perspective of
value for the customer

4.3.3 Value Proposition

Communicating the value proposition allows businesses to efficiently articulate the benefits
of the proposed solution per the described client’s problem by contextualizing it with the
available alternatives and the target client.

This thesis focuses on implementing a microservices-based application on a brownfield do-
main based on Repeat Part Management (RPM), which has accumulated technical debt,
according to the developers’ team. The technical debt created several issues in the develop-
ment cycle of the legacy application. It hindered the new functionalities innovation process
given the latency regarding debugging and issue fixing. Furthermore, the amount of breaking
changes increased, which relates to the gradual tightening of application coupling.

Repeat Part Management’s development became increasingly limited, which restricted progress
and specific goals such as the eventual implementation of a cloud-based environment (AWS).

Implementing this architecture is complex and must entail knowledge aggregation on migra-
tion design patterns and good practices. This solution will allow developers and management
to implement planned functionalities by facilitating project readability and loosening service
coupling; additionally, given the characteristics of this architecture, this solution allows devel-
opers to be aware of errors and quickly pinpoint failure causalities. Maintaining the current
solution as an alternative to this implementation would only encourage further technical debt
accumulation.

44 Chapter 4. Value Analysis

The goal is to tackle the challenges of developers and management brought on by the legacy
application and the inherent accumulation of technical debt.

4.4 Business Model Canvas

Alexander Osterwalder proposed the Business Model Canvas to contribute to business model
conceptualization ([63]). It comprises nine different elements, which display the value analy-
sis graphically by describing how means are combined to deliver value to identified customer
segments ([63]).

• Key Partners: Identify key partners by pondering their motivations and intentions
in optimizing the solution—additionally, critical suppliers from whom resources are
acquired.

• Key Activities: Identify critical actions to achieve the proposed value addition.

• Key Resources: Determine the required human or physical resources to guarantee
project development and, inherently, the proposed value.

• Cost Structure: Considering development costs related to physical and human re-
sources to encourage contemplation on cash flow.

• Revenue Streams: It is essential to determine the leading direct/indirect investors of
this proposed value regarding the cost structure.

• Value Proposition: Define this concept’s immediate value proposition by determining
the customers’ problems (which this concept solves).

• Customer Relationships: Define the customers’ association expectation to the value
proposers - and how they will be involved.

• Customer Segments: Determine who will be most affected by these modifications
and, inherently, interested customers.

• Channels: Define possible communication approaches with the client regarding how
they will be involved in development.

Figure 4.4 represents the application of this model on the thesis’ solution.

4.4. Business Model Canvas 45

Key
Partners

FARO.
Information Sources.
Microsoft.

Key
Activities

Research.
Decomposition.

Microservices Design
and Development.

DevOps
Configuration.

Key
Resources
Developer Team.
Sphere Cloud’s

Services.
Public

Documentation.
Legacy System.

Value
Proposition

Allow Cloud database
implementation.

Improved
development time.

Responsibility
definition in

microservices.

Improvements in
the application’s

scalability.

Allow Multi-User
Access to

Documents.

Customer
Relationships

Evaluation of
system

complaints.

Requirement
gathering.

Channels

JIRA.
Confluence.

Team Meetings.
Project Meetings.
Microsoft Teams.

Customer
Segments

Developer teams
at FARO.

Product Owner.

Cost Structure

System infrastructure costs (Cloud storage).
Infrastructure Costs (Equipment and Software).

Human Resources.

Revenue Streams

FARO’s internal investment;

Figure 4.4: Business Model Canvas

47

Chapter 5

Design

As discussed previously, designing the architecture of an application is generally a complex
concern, however, in microservices, it becomes specially concerning given the inherent de-
composition process. In this section architectural drivers, as well as their specific interest in
the project, the functional requirements are presented and described, as well as the proposed
design to be implemented and its inherent trade-offs.

5.1 Design

This section consists on presenting alternative designs to the defined requirements and direct
referencing related to used design patterns by applying researched techniques. Furthermore,
the ubiquitous language will be provided as to make domain concepts clear.

By defining the architectural drivers for this solution it is easier to implement them and
relate them to design decisions, which will be possible by using their identification (ID).

Ubiquitous Language

As explained previously in section 3.2, particularly in the Domain-Driven Design subsection,
the business model, and its inherent concepts, is directly related to the system, which
encourages teams to share terms and ease communication. In table 5.1 these relevant
terms are presented.

Concept Description
Program A set of repeated tasks inherent to a quality inspection.

Document
General information relevant to Repeat Part Manage-
ment.

Statistics
Abstract Object related to inspection statistics (e.g.
low tolerance).

Feature
A feature represents a detail of a whole part (e.g. the
face of a cube).

Session A session represents a single program run.

Session Readings
A session may encompass readings of given features
(e.g. the length of the cube’s face).

Report
A review document of one or several sessions and their
readings.

Spc
While still standing as Statistical Process Control, Spc
is a complex object that entails several crucial values for
application in quality assurance.

48 Chapter 5. Design

Warning Rule
These rules delineate what are the adequate values for
given spc values.

Table 5.1: Ubiquitous Language Definition

5.1.1 Attribute Driven Design (ADD)

Attribute Driven Design (ADD) is a methodology for designing and documenting a software
architecture concerning quality attribute requirements. This approach is meant to be applied
iteratively. However, given that this project focuses on decomposition, one cycle is sufficient
[85].

ADD introduces two crucial concepts: inputs and outputs. Inputs are functional require-
ments, design constraints, and quality attributes (usually identified by stakeholders, defined
in section 2.3). Outputs are system roles, responsibilities, properties, and software relation-
ships. Table 5.2 identifies these input and output concepts and their definitions.

Concept Definition
Functional Requirements Identify system functionalities and specify needs.

Design Constraints Stakeholders’ decisions that have an immediate im-
pact on the final architectural design.

Quality Attributes Requirements that indicate patterns exhibited
throughout the system.

Role and Responsibilities Aggregation of provided functionalities, data, or in-
formation.

Properties Software elements might have relevant additional in-
formation such as name, type, protocols, or others.

Software Relationship Specification of element association.

Table 5.2: ADD Concepts [85]

Throughout this section these concepts will be utilized to describe system context, design,
and decisions - by specifying project concerns, quality attributes, and constraints. Given
that this application will be developed without using code from the legacy application it is
a part of greenfield development, as stated previously, this means that all defined input and
output are assigned to the whole application [85].

5.1.2 Architectural Drivers

This section identifies requirements and their prioritization and their importance regarding
two factors, specifically stakeholders and project impact by using High (H), Medium (M), or
Low (L) rankings. As stated throughout the document, the goal for this approach is to design
a microservices-based application related to an already existing system, while disregarding
developed functionalities and approaches by focusing only on domain analysis and needed
functionalities.

The tables within this section will encompass requirement identification, description, and
priority. To clarify, priority will be presented as two letters (e.g. (H,L) - which would mean
that the requirement would be of high relevancy to stakeholders and low impact to the
project).

5.1. Design 49

Concern Definition

Design decisions that must be made, but are not stated explicitly in goals or requirements
are defined in table 5.3.

ID Concern Priority
CRN01 Project will only be developed by one person. (L,M)

CRN02
Legacy project code analysis and deep understanding of legacy do-
main.

(L,H)

CRN03 Frontend will not be implemeted. (L,M)

Table 5.3: Project Concerns

Constraint Definition

Project limitations or restrictions that concern technical or organizational aspects, which
usually limit alternatives are defined in table 5.4.

ID Constraint Priority

CON01
C# language and .Net framework are mandatory (versions are op-
tional).

(H,H)

CON02 Adopt open-source technologies. (H,M)

CON03
The application must follow principles and good practices related to
the microservices architecture.

(H,H)

CON04 The system must communicate through REST API. (L,H)
CON05 No access to CAM2’s source code. (L,H)
CON06 Database must be Relational and be developed with MySQL. (H,M)
CON07 The application must encompass all legacy system’s functionalities. (H,H)

Table 5.4: Project Constraints

Quality Attributes Definition

Quality attributes are valuable implementable characteristics for users and developers. The
table provides the required foundation for achieving quality (specifying that it does not
encompass every good practice, but only those specified by stakeholders). Table 5.5 en-
compasses an Attribute column, which represents the actual design concept to which the
description refers to.

ID Attribute Description Priority

QA01 Readability
Developers have recorded significant difficulty in un-
derstanding the used terms for concepts related to a
lack of an ubiquitous language.

(M,L)

QA02 Maintainability

Developers from both CAM2 and RPM teams have
recorded difficulty regarding legacy project naviga-
tion due to technical debt related to previous archi-
tectural decisions.

(H,L)

QA03 Modifiability
Stakeholders are trying to expand RPM’s functional-
ity, however adding new functionalities to the system
is becoming increasingly difficult.

(H,L)

50 Chapter 5. Design

QA04 Modularity
The new system must be in accordance to the single
responsibility principle.

(M,H)

Table 5.5: Project Quality Attributes

5.1.3 Functional Requirements

Figure 5.1 presents a total of 7 use cases, which are directly correlated to the legacy system,
considering CON07. This means that these functionalities represent available capabilities in
RPM’s legacy system. This is a further description of the presented use cases, which must
be designed and considered within the new system:

• UC1 Access published documents: As a client, I want to be able to see which are
the documents, which I have published through CAM2.

• UC2 Check for available programs: As a client, I want to be able to check what are
the defined programs for the published documents.

• UC3 Run Programs: As a client, I want to be able to run programs defined for
documents, in order to guarantee quality in the document’s part.

• UC3.1 Visualize running program: As a client, I want to visualize the running pro-
gram, while I manually execute tasks, in order to keep track on the program’s process.

• UC4 Check for program’s results statistics: As a client, I want to be able to register
the results of the programs I ran and their history, in order to guarantee the quality of
my products throughout time.

• UC5 Create reports regarding results: As a client, I want to be able to create reports
related to the result’s statistics, in order to keep records of products inspections.

• UC5.1 Choose a report template from existing options: As a client, I want to
choose a report template from a list, in order to guarantee efficiency in documentation.

Figure 5.1: Functional Requirements

Due to time constraints, implementing all the Use Cases was not possible, the chosen
use cases to implement were: UC1, UC2, UC5, and UC5.1, given their correlation and
characteristics, chosen after the design phase described further in section 5.2.

5.2. System Decomposition Alternatives 51

5.2 System Decomposition Alternatives

This section will present the chosen decomposition strategy and subsequent alternatives,
related to the decomposition systematic mapping study done on chapter 3 (section 3.4).

Considering the characteristics of this architecture, specified in section 3.2, applying decom-
position based on technical aspects may lead to highly coupled services, thus hindering the
development process. Furthermore, it is essential to be aware of Nano and Mega Microser-
vices, described by [82], which may also affect service coupling. This explains why some
approaches were discarded when highly automatic in scope, or when these approaches are
unavailable (private software).

5.2.1 Decomposition by Business Capability Alternative

To better understand RPM’s legacy domain in figure 5.2 are the main subdomains that it
provides. This is a general view of the functionality pool available in the legacy system which
must be decomposed as to be available in the microservices-based architecture.

The client is able run defined programs (U1), view those inspections statistics throughout
time (U2), generate reports concerning those statistics and general information (U3), and
access published documents (U4).

Figure 5.2: Legacy Use Cases

By following the Decomposition by Business Capability pattern, identified in section 3.3.2,
the decomposition of this application would simply be put as shown in figure 5.3, where
each main capability directly translates into a service with defined responsibilities. However,
it seems that RPM’s context is not broad enough to guarantee this approach’s success,
given that it is used to decompose more business abstract systems. Furthermore, applying
this strategy can hinder system in a long term perspective given that it does not consider
complex component relationships and might result in a nano or macro service.

52 Chapter 5. Design

Figure 5.3: Decomposition by Business Capability - Logical View Alternative

For further decomposition strategies to be used as alternatives it is necessary to define the
domain model, and its inherent bounded contexts (defined further in section 3.2), which
may define clear limits within the domain that can act independently with their own entities,
value objects, and aggregates.

5.3 Applied Decomposition

In this section, the applied decomposition will be specified and detailed. The final domain
model, its bounded contexts, and aggregates, which were formulated with the Decomposition
by Subdomains approach presented previously and agreed upon managements’ referral.

5.3.1 Responsibility Separation

Table 5.6 directly describes the defined services’ responsibilities. As there are two relevant
front end use cases, it is relevant to underline the fact that this is not the thesis goal and it
will not be implemented, however, responsibilities for their implementation are defined.

Service Responsibility

Document Service

This service will be fully responsible in keeping
program information updated as well as general
information about sessions, so It is capable to al-
low program running visualization.

Report Service This service is responsible for creating, managing,
and storing generated reports.

Session Service

Session Service is responsible for managing pro-
gram running data, particularly relevant to SPC,
furthermore, It will be responsible for program
run’s statistics visualization.

Table 5.6: Services and Responsibilities

Context Map

In the microservices architecture, it is very important that relationships between bounded-
contexts are well-defined, as well as their integrations - this is done by presenting a context
map. Figure 5.4 represents the identified bounded contexts and their relationships and

5.3. Applied Decomposition 53

dependencies. It represents the Session Context, Document Context, and Report Context,
which have specific relationships between them.

The Report Context is particularly dependent on data from Sessions and conforms to its
data model, this means that this Report Context (Downstream) accepts what the Ses-
sion (Upstream), which means that the upstream, although having its own domain model,
conforms to what the upstream sends. This happens with the document context also.
Upstream-Downstream relationships define that upstream contexts are independent from
the downstream, while the downstream is not but does not expose its domain to upstream.

As the Session context and the Document context also share a relationship, the Session
is more independent in a domain model perspective and it need an Anti-Corruption Layer
(ACL) to guarantee that data is consistent and updated with other contexts. The Document
context encompasses the general information about defined programs, which are use in
Session, however, Session does not conform its domain making this ACL necessary.

Figure 5.4: Context Map

5.3.2 Document Service Domain Model

Figure 5.5 presents the document’ bounded context, which splits into two aggregates: the
Program aggregate and Document aggregate. Each aggregate has its own aggregate root
to ensure consistency by being the only entry point for the aggregate’s operations - these
roots are usually identified by the «Root» stereotype, generally at the top of the object.

As this context is responsible for keeping program information updated regarding programs
and past sessions it entails objects related to both of these. Specifically, the document ag-
gregate encompasses the Document object, which is an Entity, and the CadFile and FcdFile,
which have all the information related to the product or part depicted in the Document.

The Program aggregate encompasses general information about document activity, such as
Program(s) and their activities (Activity), which can be related to some specific feature
(defined in CAM2) and has a related measuring Device. Given that a Program can be
ran several times, each time is represented by a Session. Although the Session Service is
responsible for the Session and Statistical Information, having the information about the

54 Chapter 5. Design

success is relevant for the business. For that reason, the Session entity is related to Session
Statistics, which relate to each feature’s Statistic(s).

Figure 5.5: Document Microservice Domain Model

5.3.3 Report Service Domain Model

Figure 5.7 represents the domain model for the Report context, which is divided into two
Aggregates related to: Report aggregate and Feature aggregate. The Feature aggregate
relates to details of the whole part (described in the ubiquitous language table in section
5.1), while the Report aggregate focuses on organizing data according to Report’s data
necessities.

The report aggregate has an aggregate root Report, which represents the whole report
object, which must have an associated template (chosen in CAM2, but fully kept in the
RPM system). Session Information, which is related to the first part of the Report (general
information section) is an Entity that keeps information about the used device (which can
be changed from the one kept in Document Service), Inspection general information, the
Organization and File Names, and contact information.

The Feature aggregate keeps every information related to the next section of the report
(statistical section). As every statistic is presented concerning each feature, it made struc-
tural sense to make Feature the root for it and associate a Statistics object that keeps the
represented domain primitives.

Figure 5.6 shows a real-life report scenario, specifically the feature section, in which:

• Features: Circle 1, Circle 3, Circle 5, Circle 7, ...

• Statistics: Represented by the aggregation of all the values, such as Actual, Nominal,
dev, ...

5.3. Applied Decomposition 55

The chosen names for these objects are related to actual used variables, which makes it
easier to understand their placement and usefulness within the domain.

Figure 5.6: Report Content Example

56 Chapter 5. Design

F
ig

ur
e

5.
7:

R
ep

or
t

M
ic

ro
se

rv
ic

e
D

om
ai

n
M

od
el

5.3. Applied Decomposition 57

5.3.4 Session Service Domain Model

This domain focuses on the session context, which responsibility is to manage program
running, its data, and necessary SPC calculations for analytics facilitation. This service is
also split into two aggregates which have mostly split responsibilities: Session Readings and
Spc Data.

The Session Readings is responsible for keeping program run data, while SpcData has the
responsibility for calculations, which explains why most of this domain entails domain primi-
tive values, mainly used for actual functionality calculations and not too much business logic.
Session Readings encompasses Measured Data, related to several features (SessionFeatur-
eReadings), which have several statistical values, and must have a tolerance state f relevant
for session information.

Currently, there is only a unique set of rules regarding WarningRuleSet, which is implemented
as an abstract to facilitate future implementation of other rule sets.

Figure 5.8: Session Microservice Domain Model

59

Chapter 6

Implementation

After identifying the design decisions in the previous chapter, this chapter’s goal is to present
the proposed solution´s development approaches and the achievement of the requirements
approach. As said previously, the front-end is not this thesis goal or responsibility, which
means it isn’t implemented.

This section presents architecture software descriptions based on multiple and concurrent
views, also known as the 4+1 model. These are the model’s views [50]:

• Logical View: intends to contextualize the system’s functionalities and identify com-
munication protocols and software design elements (e.g. component diagram).

• Process View: defines responsibility and logical element’s collaboration.

• Development View: defines observable dependencies and coupling between software’s
packages in a developer’s perspective.

• Physical View: also known as deployment view, which defines the physical implanta-
tion of nodes.

• Scenarios View: defines use cases workflow by describing sequences of interactions
between software elements.

Figure 6.1 represents these architectural views and their relations:

Figure 6.1: 4+1 model [Adapted from [50]]

60 Chapter 6. Implementation

6.1 Logical View

A component perspective is shown in Figure 6.3, which specifies the decomposed system.
As said previously, only CRUD functionalities were developed regarding the implemented
microservices, which means that implementation did not encompass external application
relationships. Any further implementation decisions about components presented in this
system are presented in section 6.

As seen in Figure 6.3, two of the identified decomposed microservices were implemented,
chosen for their domain’s low coupling, given that the implementation of a message broker
was not this thesis’ focus. Furthermore, the database per service pattern was used in
accordance with microservices good practices.

Figure 6.2: Implemented Logical View Diagram

These microservices share common data, such as Document identification (DocumentID),
which means that when a report is generated (and the identification must be checked) the
Document Service must confirm that the DocumentID is valid. This can be implemented
through a HTTP request to the Document API, however, when other microservices are
developed and added into the system this implementation can become quite inefficient (re-
garding performance), which might justify the implementation of a Message Broker.

Figure 6.3: Logical View Alternative (with Message Broker)

6.2. Process View 61

Message Brokers enable systems to communicate by translating messages into a protocol,
which is specially useful when these services are written in different languages, which is not
necessarily relevant in these context currently, given the CON01 and CON06 constraints
defined in table 5.4. Message Brokers are also able to validate and route these messages. A
relevant pattern is the Publisher/Subscriber, which distributes messages according to which
services are subscribed to it.

6.2 Process View

Clean Architecture, formerly known as onion architecture is a domain centered approach to
dependency organization. A common software practice that deals with application complex-
ity is introducing layers [78].

All project dependencies should be directed toward the Core project, which serves as the de-
sign’s focal point in the Clean Architecture. Interfaces, Aggregates, Entities, Value Objects,
Domain Exceptions, and Domain Validators should all be part of the Core project.

The majority of the dependencies on outside resources for your application ought to be
implemented in classes provided in the Infrastructure project. These classes ought to im-
plement the Core interfaces. Multiple Infrastructure projects (such as Infrastructure.Data)
may make sense if you have a very large project with a lot of dependencies, but for most
projects, one project with multiple components is sufficient. The following should be a part
of the infrastructure project: Repositories, Database Context, External Services,...

The Web application is the solution’s entry point and deals with API endpoints, controllers,
and, if necessary the frontend.

Figure 6.4: CleanArchitecture Overview [Adapted from [78]]

Figure 6.5 specifies the used layers in the architecture of the report and document services,
similar to the onion architecture, which is commonly used in C# projects, that should be
concerned with dependency flow [78]. This diagram encompasses the report and docu-
ment solution’s software elements. The displayed components: Web, Core, and Infrastruc-
ture were developed considering the clean architecture rules explained previously. However,
SharedKernel, a DDD concept, holds common types, which are tipically referenced by Core.
In this case, the SharedKernel encompasses the Response and Request layer and the Base
classes, specifically Base Entity and Base Value Object.

62 Chapter 6. Implementation

Figure 6.5: Process View Diagram

6.3 Development View

In the process view, it was possible to understand the general components of each solution
(when referring to "solution" it relates to the project’s actual structure, also known as the
actual .sln file in C# solution).

Figures 6.6 and 6.7 represent the structure of the application in a development perspective,
as they are the same, by presenting specific components of these projects.

The web project is responsible for controllers and API endpoints and represents the entrance
point for this project. The infrastructure project relates to data and data management by
encompassing services, repositories, migrations, and the database’s context. The core is
responsible for all business logic, and is split into aggregates, and domain validators (guar-
antee object validity within the system). Furthermore, the SharedKernel has the DTOs
alternatives which are the Requests and Responses, and the general Base Classes (Entity
and ValueObject).

6.3. Development View 63

Figure 6.6: Report Solution Development View Diagram

Figure 6.7: Document Solution Development View Diagram

As the component dependencies are the same in both solutions, the sequence diagram
example focuses only on creating a report and is partially presented in figure 6.8. From an

64 Chapter 6. Implementation

external client (machine or actual client) a request is sent (HTTP POST request) to Repeat-
Part Management’s API gateway, which main goal is to forward it into the responsible service
to be processed.

Services’ point of entry are the defined controllers (in this specific UC the ReportController),
which then coordinate these requests. The request is in JSON format, which is changed
to a Request form before proceeding into the service. This is due to the use of the Re-
quest/Response objects, commonly used in C#, which can facilitate the possible integration
of a message broker and replaces Data Transfer Objects (DTOs). While having an identical
purpose, Request and Response classes usually improve system readability and are specific
to functionalities, making it a bad practice to reuse the same data transfer object for every
request/response, which also increases workload and decreases reusability - implemented
due to the microservice’s size and responsibility-spectrum size.

This request is then sent to the responsible service through it’s interface (IReportService
in this UC’s specific instance). This service is then responsible for creating the necessary
object models (Report), which must then be saved in the database. This object is then sent
to the responsible repository’s interface - repository pattern is used for data and domain
model mediation.

The report creation is the chosen example of the system’s flow given that it was structured to
be consistent and it represents the general use case. The only non-represented components
are the interfaces (hidden for diagram simplification) - services and repositories are always
accompanied by a respective interface, this means that controllers do not access service
but their interfaces; the same happens between services and repositories, given that services
access the repositories respective interfaces. Furthermore, controllers, services, and repos-
itories are created for each aggregate root, which means that, in the Report Microservice
there are two of each: ReportController, ReportService, ReportRepository, FeatureCon-
troller, FeatureService, and FeatureRepository (and the service’s and repositories respective
interfaces).

6.3. Development View 65

F
ig

ur
e

6.
8:

C
re

at
e

R
ep

or
t

Se
qu

en
ce

D
ia

gr
am

66 Chapter 6. Implementation

6.4 Physical View

Figure 6.9 represents the physical view of the implemented system, which describes how the
system is containerized. It is important to reference that the containers platform used was
Docker for it’s already extensive use in FARO.

Given the modularity scope of the microservices architecture, the evident choice of container-
ization is individual implementation. This approach supports the concept of low coupling by
allowing for future modifications without affecting other containers.

However, this approach implies some maintenance drawbacks related with implementation
and security costs, given that these containers may be increasingly susceptible when deployed
into web environments - such as the legacy system.

Figure 6.9: Implemented Deployment View

6.5 Patterns Implementation

In this section, implemented patterns, previously identified in chapter 3 and within the im-
plementation views, are discussed, as well as their inherent trade-offs.

6.5.1 Domain-Driven Design

Domain-Driven Design was extensively applied by using Entity Framework Core (EF Core)
in development. This framework works similarly to an Object Relational Mapper by enabling
developers to work with databases directly with the defined domain model and facilitating
database management [58].

Figure 6.10 is an example of how this framework can be directly used in models with annota-
tions, represented on top of each variable within the brackets. EF Core allows developers to
define domain identification (Key), foreign keys, mandatory variables, and can actually allow
developers to define complex relational relationships (many-to-many), and object reference.

6.5. Patterns Implementation 67

Figure 6.10: Entity Framework in Report (Business Logic)

Furthermore, EF Core allows for database access through a defined model, which is defined
in each microservice’s context. This context allows querying and saving data [58]. Querying
and saving data is done in the repositories which instance the database context.

Figure 6.11 represents how the collection of entities that may be queried are set with Db-
Set<>.

Figure 6.11: Context Database Set

Figure 6.12 shows how the model was created in the context object of the specific mi-
croservice (DocumentContext and ReportContext). The defined model must already be
normalized (considering relational databases).

68 Chapter 6. Implementation

Figure 6.12: Creating Report Model (Database Context)

6.5.2 Database Per Service

As microservices are known for scope modularity, having a database per service will encourage
loose coupling by independent deployment and scalability. This means that in an architecture
which scope entails the Single Responsibility Principle, it is crucial that data storage is in
accordance to concern separation. By combining modular containerization, databases remain
somewhat agnostic to services, and services can be easily scalable (while using the same
database), something that is explained further in section 6.5.5. Also allowing databases to
be implemented differently (management system: relational, non-relational, ...).

Having different databases per service allows developers to encourage loose coupling and
facilitates scalability, however, fault tolerance becomes a bigger concern, for instance, if a
given requests requires two microservices, and the connection to one of the microservice’s

6.5. Patterns Implementation 69

database goes offline, then there should be a fault tolerant approach, such as circuit breaker,
presented in section 3.3, which was not implemented.

6.5.3 OpenAPI

Microservices require documentation, however this is a laborious task, given that software
updates are reoccurring and documentation maintenance is mostly neglected. For that
reason, implementing automated documentation is a necessary to allow teams to understand
a system capabilities. OpenAPI allows RESTful APIs to define and display itself with minimal
amount of logic [76].

OpenAPI is initiated in the Web project of each solution, where the project dependencies
and main method are defined. Figure 6.13 shows the straightforward implementation.

Figure 6.13: OpenAPI Config Code

OpenAPI mainly works with annotations, that are implemented in the entry-points to the
solution (the controller defined requests). First, each controller must be registered, which
is represented in figure 6.14. This figure also shows that OpenAPI allows for routing cus-
tomization, which was used with Ocelot, explained further in section ??, to redirect requests
as well as increasing project readability.

Figure 6.14: OpenAPI Report Controller Registration

6.5.4 API Gateway

As defined in section 3.3, an API gateway is a point of entry to the services themselves. It
allows for dynamic service instances and their locations definition. This means that when
requests arrive at this point, they are routed to the appropriate service. This increases
system complexity, which must be maintained.

Ocelot defines a point of entry to the defined microservices, particularly for systems devel-
oped in .Net, however, it is reliable in a REST based system. The implementation of two
microservices makes the implementation of the Ocelot API gateway presented in figure 6.15.

70 Chapter 6. Implementation

Figure 6.15: Ocelot Basic Implementation [Adapted from [64]]

Ocelot routing is based on these relevant concepts:

• UpstreamPathTemplate: defines the gateway’s URL from which request are received
then redirected to downstream.

• UpstreamHttpMethod: REST methods (such as GET, PUT, POST).

• DownstreamPathTemplate: microservice’s endpoint that receives and is responsible
for the request.

• DownstreamScheme: used protocol for communication.

• DownstreamHostsAndPorts: defines URL and the ports for microservices and receive
requests.

These are used in figure 6.16 that shows the Get Reports routing example, which allows
the requests to be redirected through. Specifically, a request is received in the upstream
https://localhost:4001/apigateway/reports and is then redirected to the api’s downstream
defined port https://localhost:4002/api/reports.

6.5. Patterns Implementation 71

Figure 6.16: Ocelot Basic Routing Example

6.5.5 Containerization

As referred previously in section 6.4, containerization was implemented in a modular ap-
proach, give the microservice approach. In the implemented microservices, the used databases
were created through Docker client, given that it is a simple process. First, a MySQL
docker image was downloaded and customized with the microservice name (container name,
container password, and ports were edited), which must be defined within Dockerfile that
actually builds the container image, then it is possible to deploy and connect to it via Docker
Desktop.

Specifying ports and Dockefile is mandatory and very useful for connecting the database
container to the application container via docker-compose file - generally running a multi-
container system.

Regardless of the architectural style, it is a good practice to have one process in each
container, given that each container has to encompass the necessary information about the
process to manage and run it, however, microservices’ modular and scalable scope encourages
the use of the container per service approach, given that it allows for multiple versions to
be implemented, individual scalability (having more than one applications running over the
same database), and easier maintainability [21].

73

Chapter 7

Experimentation and Evaluation

This section presents the hypothesis investigation enumeration, their evaluation indicators,
and how they are applied. Furthermore, this chapter’s intention is to present a description
of the adopted evaluation method, specifically by validation of stakeholders.

7.1 Hypothesis Identification and Evaluation Indicators

As previously mentioned, this thesis aims to identify good engineering practices and design
patterns to apply in a microservices migration process, facilitating the system’s modifiability
and maintenance. Furthermore, identifying possible trade-offs in the implementation process
and document decisions.

The Null Hypothesis (H0) evaluates the thesis’ not perceived as valuable assets outcomes
in the field. In contrast, the Alternative Hypothesis (H1) evaluates beneficial results.

• Null Hypothesis (H0):

– The system decomposition does not fulfill microservices evolution expectations.

– Stakeholders experience the legacy system’s identified problems in the proposed
solution;

– The solution does not comply with microservices principles;

• Alternative Hypothesis (H1):

– The system decomposition fulfills microservices evolution expectations.

– Stakeholders do not experience the legacy system’s identified problems in the
proposed solution;

– The solution complies with microservices principles;

7.2 Validation by Stakeholders

The identified hypothesis describes the possibility of no observable changes to the system
and will be evaluated with this methodology.

Stakeholders validation is related to design adequacy and the already existing standard of
comparison’s performance that creates previous expectations. These derive from already
established personal knowledge on the outcomes of "probabilistic situations" [36]. A ques-
tionnaire will be presented to stakeholders to test identified criteria satisfaction.

74 Chapter 7. Experimentation and Evaluation

Considering that a great effort was made to identify system issues, it becomes necessary
to evaluate the success of the implementation’s outcomes. The stakeholders are a specific
group that accompanied the project’s development and were trusted to provide reliable
feedback. This group comprises different profiles within RPM’s context, such as managers,
developers and quality assurance engineers with diverse experience with the legacy system,
emphasizing that the questionnaire must be abstract and not compromise inquiry reliability.

Questions in the implemented questionnaire will be directly related to the defined hypothesis
in section 7.1. These are the three topics that are present in the questionnaire:

• Questions regarding expectation fulfillment regarding microservices;

• Questions regarding the effect of the microservices in identified legacy problems;

• Questions regarding microservices principles implementation and identification;

The questionnaire is split into three sections, excluding the introduction. The first section
entails a profile group of questions, which intend to clarify the stakeholder’s job title, their
experience, and their context within the company. The second section focuses on under-
standing use case validity and their adequacy considering initial identified issues. Finally, if the
participant does have experience with microservices he is directed to a third and last section,
which focuses on the implementation itself and its adequacy regarding microservices archi-
tecture theoretical specifications, specifically DDD, modularity/single responsibility principle,
modifiability and maintainability.

As explained, the focus population of the questionnaire is FARO’s employees who work with,
or indirectly with, with RPM’s legacy system. By being sent directly to them.

The questionnaire will entail scale responses between 0 and 5, with 0 being the lowest and
five being the highest. The goal is to compare the average answer to the pre-determined
average, which facilitates determining if stakeholders are satisfied. Table 7.1 specifies this
scale.

Strongly Disapprove Disapprove Neutral Approve Strongly Approve
1 2 3 4 5

Table 7.1: Approval scale

By using this scale it is possible to assert if the proposed solution is considered adequate
for the problem by stakeholders, presented in section 1.2, which includes RPM’s team,
CAM2’s team (for their knowledge on the legacy application and issue identification), and
management from both teams. The questionnaire’s flow is available in appendix F.

7.3 Hypothesis Evaluation

As explained previously in section 7.1, H0 is the null hypothesis and means that the proposed
solution is not adequate, in contrast, H1 represents adequacy. As this adequacy is evaluated
by stakeholders through a questionnaire, the answer distribution will be presented. More
specifically, H0 and H1 can be defined as:

H0: Stakeholders do not find the proposed solution adequate, when H0: µ ≤ 3

H1: Stakeholders find the proposed solution adequate, when H1: µ > 3

7.4. Questionnaire Answers Analysis 75

The value of µ is calculated as the average of the answered questions, if that value is higher
than 2.5, it confirms that the solution is adequate.

7.4 Questionnaire Answers Analysis

In this section, the answers to the questionnaire will be presented, analyzed and conclusions
will be drawn considering the defined hypothesis. As said previously, the questionnaire can
be seen fully in appendix F.

As the "About You" section focused on profiling the participant, the information that is pos-
sible to retrieve from the questionnaire, in which 11 answers were submitted from the CAM2
and RPM team, specifies the participant’s experience, current job title, and the project in
which they are working in. The responses from the questionnaire varied, considering the
different positions within the team (junior and senior) this is the fluctuation table 7.2. From
the 11 submissions, 2 submissions are from Quality Assurance Engineers (QA), 2 are from
management (decision making positions), and the remaining 7 are from software developers,
which can be seen graphically in graph 7.1.

Figure 7.1: Job Title Division

Furthermore, 3 of the 11 people work directly in Repeat Part Management, and 8 work in
CAM2. This distinction is related to team and project size, given that RPM’s full team had
2 software developers, 1 QA, and 1 manager (who is currently working in another position
in the company), which is specified in figure 7.2

Figure 7.2: Project Division

76 Chapter 7. Experimentation and Evaluation

Furthermore, from the participants submission data it is possible to conclude that man-
agement has increased experience (17 and 20 years), QA Engineers have 10 an 8 years
of experience, and Software Developers are unevenly distributed, due to the existing levels
distinction. Table 7.2 aggregates this data so it is easier to understand how it is distributed.

Experience years Job title Project
12 QA Engineer Repeat Part Management
5 Software Developer CAM2
7 Software Developer Repeat Part Management
3 Software Developer Repeat Part Management
17 Management CAM2
2 Software Developer CAM2
8 QA Engineer CAM2
20 Management CAM2
12 Software Developer CAM2
6 Software Developer CAM2
5 Software Developer CAM2

Table 7.2: About You Data Aggregation

The remaining part of this section will be divided into the two most relevant sections of
the questionnaire, which are crucial to evaluate the project’s adequacy regarding the defined
hypothesis: Identified Issues Section and Microservices Adequacy Section.

7.4.1 Identified Issues Section

Initially, the participants, that have access to the Design and Implementation chapters (chap-
ters 5 and 6) are asked to rate if they agree with the adequacy of the microservices archi-
tecture. The results for this architectural questions are presented in table 7.3, that specifies
a total of 8 strongly agree and 3 agree. This result was anticipated given that this archi-
tectural style was included within the presented drivers in section 5.1.2 as it was requested
initially.

Figure 7.3: Microservices Adequacy Answers (2.1)

7.4. Questionnaire Answers Analysis 77

The requirements and design was a part of this section given that within developer teams
there is knowledge basis on how to structure and present software architecture. Furthermore,
both teams work with RPM’s legacy system and are aware of the functionality pool, which
was also presented in the requirements section in chapter 5.

So by analysing 7.4 and 7.5 it is possible to conclude that the participants abide by what was
designed for RPM’s legacy documented functionalities. Specifically, 9 people strongly agree
that these functionalities were well-documented and adequately represent business needs
and 8 people strongly agree and 3 people agree that the designed solution is prepared for
the documented functionalities - which guarantees a certain level of trust within the design
phase.

Figure 7.4: Microservices Responsibility Answers (2.2)

Figure 7.5: Functionality Implementation Answers (2.3)

Furthermore, as said previously, Microservices experience within the Faro context and, more
specifically, the RPM’s legacy context, is scarce, which makes it relevant for the question
presented in 7.6, because, to answer questions in the next section, it is important that people
have some knowledge on how microservices are implemented. However, this question also
reduces our participant pool to 7 people in total for the implementation adequacy section.

78 Chapter 7. Experimentation and Evaluation

Figure 7.6: Microservices General Experience Answers (2.4)

7.4.2 Microservices Implementation Adequacy Section

From the previous section the participant population reduced to 7, which represent the ones
that have any knowledge (theoretical or practical) on the microservices architecture and can
give an informed opinion on the designed and implemented solution, which they had access
to.

To proceed this section’s first question was related to decomposition, which is associated
with the design phase, by analysing figure 7.7 it is possible to assert that 6 people strongly
agree that the designed solution applied DDD correctly, specifically concepts such as aggre-
gates, bounded contexts, or entities, and 1 person agrees.

Figure 7.7: Microservices Pattern Adequacy Answers (3.1)

The next few questions relate to pattern consideration during the implementation and de-
composition phases. Figure 7.8 relates to system modularity, and specifies that the answer
must consider containerization (docker implementation, specified in chapter 6) and decom-
position (design and concern distribution), in this questions the answers were all towards
strongly agree, which is understandable given the applied containerization approach, which
allows separate deployment of the system components.

7.4. Questionnaire Answers Analysis 79

Figure 7.8: System Modularity Answers (3.2)

Figure 7.9 represents the modifiability question, which was one of the concerns identified y
stakeholders initially. The purpose of this question is to understand the code and project
readability and navigability, which may or not facilitate the process of adding or changing
existing the system. In this question, 5 people strongly agree and 2 people agree with this
characteristic.

Figure 7.9: System Modifiability Answers (3.3)

Figure 7.10 relates to the maintainability characteristic which is associated with support and
preservation of a system’s ecosystem, so testing, deployment, or monitoring.

Maintainability is particularly laborious when compared to a monolith or a SOA architectural
style because it takes more time to test a high number of small services, which need or-
chestration or other communication approaches (which is not the scope of this thesis) that
require testing; furthermore, services can fail, and even if having more services means that it
is somewhat fault-tolerant, it also means that the system must be prepared for when one of
them is down to guarantee that the application does not fail completely. Deployment comes
with its own downside, which is that to deploy the whole application the various components
must be deployed separately.

80 Chapter 7. Experimentation and Evaluation

The explained reasoning is able to clarify why the answers to this question were mainly
neutral (5 answers) or agree (2 answers). These downsides were previously discussed during
development.

Figure 7.10: System Maintainability Answers (3.4)

7.5 Hypothesis Calculation

This section focuses on calculating the hypothesis by calculating the average value for each
of the presented questions from the relevant sections, which are sections 7.4.1 and 7.4.2,
that is why the identifiers start with 2 or 3. The values presented in table 7.1 are related
to the used values for these calculations. Table 7.3 has all the average values per question
and the overall average which will be the one considered to evaluate the hypothesis.

Question identification Average
2.1 4.73
2.2 4.82
2.3 4.73
3.1 4.86
3.2 5
3.3 4.71
3.4 3.29

Total Average 4.59

Table 7.3: Per Question and Overall Average V alues

The overall average value is:

µ = 4.59

This value is higher than 3, which means that H0 is refuted and that the stakeholders find
the proposed solution to be adequate.

81

Chapter 8

Conclusion

This chapter intends to clarify project achievements regarding defined requirements pre-
sented in chapter 5. Any adversities or complications regarding this thesis development are
described here.

8.1 Goal Achievement

This section will ponder on thesis goals achievement presented in chapter 1 in section 1.3.
Regarding implementation achievements the final proposed solution is able to guide a future
integration into a production environment, since it is currently a standalone system.

The established goals were to develop an application using the Microservices architecture
by utilizing practices and design patterns conidering the legacy RPM system (1), apply a
decomposition strategy and a PoC (Proof of Concept) regarding the designed application
(2), which are presented in table 8.1, that combines the used methodology.

Goal ID Goal Description Achievement

1
Design a modular system
that considers the legacy
RPM application.

Achieved

2
Decompose and evaluate
the system.

Achieved

Table 8.1: Goal Achievement

As presented in the table above, 1 is totally achieved as presented in chapter 3 and 6,
furthermore the second goal is also achieved, given that the initial goal was to decompose
and design, is presented in chapter 6. However, the system was applied as a PoC system,
with the intention of future integration in Faro’s context.

The first goal was to design a system that considers the legacy system, the second goal was
to decompose the system, which is documented in section 5.3 and its description is located
within chapter 6. Finally, both goals were positively evaluated by the stakeholders with a
4.73 average, presented in chapter 7.

82 Chapter 8. Conclusion

8.2 Threats to Validity

When considering the research, design, and implementation processes of thesis develop-
ment, there are some relevant factors that hindered or impacted the taken and documented
decisions and were not specified, such as:

• As the proposed internship was a target for alterations due to internal changes, the
team that tackled RPM’s maintenance presented a lack of general availability for fur-
ther domain knowledge and technical support, which impacted the implementation,
given that it was mainly done independently. Furthermore, gathering relevant informa-
tion about a system with low communication frequency with developers can become
less efficient;

• Low availability also made it a challenge to test this solution in a production environ-
ment in the set time frame;

• Developed use cases, specified in section 5.1.3, and as shown in the implementation
chapter do not rely on each other, almost fully. This means that some relevant
microservices patterns/strategies were not implemented, such as a message broker;

• As gathered previously, a big architectural smell regarding microservices migration is
lack of microservices knowledge, because that may mean that future implementation
may go further away from the microservices scope. In the RPM original team there was
a low level of knowledge on migration strategies and maintenance of this architecture,
which may hinder its internal implementation;

• Another threat to validity is the mandatory technological pool, which limits options
related to microservices environment and did create a learning curve.

8.3 Future Work

Even though the previously identified goals were mostly achieved, as pondered in section
8.1, there are improvement prospects, regarding production environment testing. These are
some of the possibilities:

• As this PoC was developed with the intent of integration, the recommendation of
strategy would be the Strangler Pattern, which can be described as an iterative way
of integrating systems, by replacing old code with new services (in the microservices
specific case).

• As the increase of functionality will also involve more service communications Event
Based Microservices is a good solution for communicating standalone microservices
by applying the orchestration strategy.

• Furthermore, increasing the number of services will inherently be accompanied by the
need for monitoring.

• As explained through Conway’s Law, implementing microservices and the organiza-
tion’s structure are intimately related, which means that the teams’ organization should
be revised in order to apply this architecture and for it to be assimilated.

• Faro has CI/CD expert engineers, which must be able to apply a rigorous methodology
that is understandable by all and guarantees the quality of the solution.

83

Bibliographic References

[1] Muhammad Abdullah, Waheed Iqbal, and Abdelkarim Erradi. “Unsupervised learning
approach for web application auto-decomposition into microservices”. In: Journal of
Systems and Software 151 (2019), pp. 243–257. issn: 01641212. doi: 10.1016/j.
jss.2019.02.031. url: https://doi.org/10.1016/j.jss.2019.02.031.

[2] About DotNetZip. url: https://documentation.help/DotNetZip/About.htm.
[3] Nish Anil et al. Applying simplified CQRS and DDD patterns in a microservice |

Microsoft Docs. Sept. 2021. url: https://docs.microsoft.com/en-us/dotnet/
architecture/microservices.

[4] ASQ. url: https://asq.org/about-asq.
[5] ASQ. Letter Q - Quality Glossary of Terms, Acronyms Definitions with Letter Q |

ASQ. url: https://asq.org/quality-resources/quality-glossary/q.
[6] Backends for Frontends pattern - Cloud Design Patterns | Microsoft Docs. url: https:

//docs.microsoft.com/en-us/azure/architecture/patterns/backends-for-
frontends.

[7] Deepali Bajaj, Anita Goel, and S. C. Gupta. “GreenMicro: Identifying Microservices
from Use Cases in Greenfield Development”. In: IEEE Access 10.January (2022),
pp. 67008–67018. issn: 21693536. doi: 10.1109/ACCESS.2022.3182495.

[8] Luciano Baresi and Martin Garriga. “Microservices: The Evolution and Extinction of
Web Services?” In: Microservices: Science and Engineering (Jan. 2020), pp. 3–28. doi:
10.1007/978-3-030-31646-4_1. url: https://link.springer.com/chapter/10.
1007/978-3-030-31646-4_1.

[9] Leonard Bass, Paul Clements, and Rick Kazman. “Software Architecture in Practice
(3rd Edition)”. In: Architecture (2013), p. 528.

[10] Miguel Brito, Jácome Cunha, and João Saraiva. “Identification of microservices from
monolithic applications through topic modelling”. In: Proceedings of the ACM Sym-
posium on Applied Computing (2021), pp. 1409–1418. doi: 10.1145/3412841.
3442016.

[11] Vincent Bushong et al. On microservice analysis and architecture evolution: A sys-
tematic mapping study. Sept. 2021. doi: 10.3390/app11177856.

[12] C++ libraries from vcpkg repository. url: https://vcpkg.info/port/polyclipping.
[13] Andrés Carrasco, Brent Van Bladel, and Serge Demeyer. “Migrating towards microser-

vices: Migration and architecture smells”. In: IWoR 2018 - Proceedings of the 2nd In-
ternational Workshop on Refactoring, co-located with ASE 2018 (Sept. 2018), pp. 1–
6. doi: 10.1145/3242163.3242164. url: https://doi.org/10.1145/3242163.
3242164.

[14] Luiz Carvalho et al. “Analysis of the Criteria Adopted in Industry to Extract Mi-
croservices”. In: Proceedings - 2019 IEEE/ACM Joint 7th International Workshop on
Conducting Empirical Studies in Industry and 6th International Workshop on Software
Engineering Research and Industrial Practice, CESSER-IP 2019 (2019), pp. 22–29.
doi: 10.1109/CESSER-IP.2019.00012.

84 Bibliographic References

[15] Castle Core, including Castle DynamicProxy, Logging Services and DictionaryAdapter.
url: https://github.com/castleproject/Core.

[16] Tomas Cerny, Michael J Donahoo, and Jiri Pechanec. “Disambiguation and Compar-
ison of SOA, Microservices and Self-Contained Systems”. In: (2017). doi: 10.1145/
3129676.3129682. url: https://doi.org/10.1145/3129676.3129682.

[17] Thelma Colanzi et al. “Are we speaking the industry language? The practice and
literature of modernizing legacy systems with microservices”. In: ACM International
Conference Proceeding Series October (2021), pp. 61–70. doi: 10.1145/3483899.
3483904.

[18] Lance Coleman. The ASQ Certified Quality Auditor Handbook. 2020. isbn: 978-1-
951058-09-8. url: https://asq.org/quality-resources/quality-assurance-
vs-control.

[19] Continuous-LINQ. url: https://kandi.openweaver.com/csharp/ismell/Continuous-
LINQ.

[20] Geoff Coyle. “THE ANALYTIC HIERARCHY PROCESS (AHP)”. In: (2004).
[21] Arjav Dave. How to Run Multiple Containers with Docker Compose. Apr. 2022. url:

https://www.freecodecamp.org/news/run- multiple- containers- with-
docker-compose/.

[22] Joseph DeFeo. The Juran Trilogy: Quality Planning | Juran. Apr. 2019. url: https:
//www.juran.com/blog/the-juran-trilogy-quality-planning/.

[23] Hai DInh-Tuan et al. “Development Frameworks for Microservice-based Applications:
Evaluation and Comparison”. In: ACM International Conference Proceeding Series
(Nov. 2020), pp. 12–20. doi: 10.1145/3393822.3432339.

[24] Mathias Douglas. AutoMapper/LICENSE.txt at master · AutoMapper/AutoMapper ·
GitHub. 2010. url: https://github.com/AutoMapper/AutoMapper/blob/master/
LICENSE.txt.

[25] ElementFlow, FluidKit.Controls C (CSharp) Code Examples - HotExamples. url: https:
//csharp.hotexamples.com/examples/FluidKit.Controls/ElementFlow/-
/php-elementflow-class-examples.html.

[26] Thomas Erl. Service-Oriented Architecture. Ed. by Greg Wiegand. Mark Taub, Dec.
2016. isbn: 978-0-13-385858-7. url: https://sd.blackball.lv/library/Service-
Oriented_Architecture__Analysis_and_Design_for_Services_and_Microservices_
(2017).pdf#page=296&zoom=100,37,45.

[27] Essentra Components US. What are screws heads, drives and threads? Sept. 2021.
url: https://www.essentracomponents.com/en-us/news/guides/what-are-
screws-heads-drives-and-threads (visited on 09/09/2022).

[28] Eric Evans. “Domain-Driven Design Reference: Definitions and Pattern Summaries”.
In: (2011), p. 62. url: https://books.google.com/books/about/Domain_Driven_
Design_Reference.html?hl=pt-PT&id=ccRsBgAAQBAJ.

[29] FARO. “FARO ® CAM2 ® Software”. In: (2021). url: www.faro.com.
[30] FARO. FARO® CAM2® 3D Measurement Software. url: https://www.faro.com/

en/Products/Software/CAM2-Software.
[31] FARO. FARO® CAM2® 3D Measurement Software. url: https://www.faro.com/

en/Products/Software/CAM2-Software.
[32] FARO. Values | Company Profile. url: https://www.faro.com/en/About-Us/

Company-Profile/Our-Values.
[33] Fluorescence-Tools/mapack: Linear algebra library for .NET. url: https://github.

com/Fluorescence-Tools/mapack.

Bibliographic References 85

[34] GENESIS. url: https://dictionary.cambridge.org/pt/dicionario/ingles/
genesis.

[35] Alexander Gillis. What is Quality Assurance? - Definition from WhatIs.com. url: https:
//searchsoftwarequality.techtarget.com/.

[36] Gianluigi Guido. “Customer Satisfaction”. In: Wiley Encyclopedia of Management
(Jan. 2015), pp. 1–8. doi: 10 . 1002 / 9781118785317 . WEOM090287. url: https :
//onlinelibrary.wiley.com/doi/10.1002/9781118785317.weom090287.

[37] Stefan Haselböck, Rainer Weinreich, and Georg Buchgeher. “Decision guidance mod-
els for microservices - Service discovery and fault tolerance”. In: vol. Part F130524.
Association for Computing Machinery, Aug. 2017. isbn: 9781450348430. doi: 10.
1145/3123779.3123804.

[38] Stefan Haselböck, Rainer Weinreich, and Georg Buchgeher. “Decision Guidance Mod-
els for Microservices: Service Discovery and Fault Tolerance”. In: Proceedings of the
Fifth European Conference on the Engineering of Computer-Based Systems. ECBS
’17. Larnaca, Cyprus: Association for Computing Machinery, 2017. isbn: 9781450348430.
doi: 10.1145/3123779.3123804. url: https://doi.org/10.1145/3123779.
3123804.

[39] Cornelius Herstatt and Birgit Verworn. “The ‘Fuzzy Front End’ of Innovation”. In:
Bringing Technology and Innovation into the Boardroom (2004), pp. 347–372. doi:
10.1057/9780230512771_16.

[40] Humanizr/Humanizer. url: https://github.com/Humanizr/Humanizer.
[41] IBM Cloud Team. SOA vs. Microservices: What’s the Difference? May 2021. url:

https://www.ibm.com/cloud/blog/soa-vs-microservices (visited on 09/04/2022).
[42] ironfede/openmcdf: Microsoft Compound File .net component - pure C. url: https:

//github.com/ironfede/openmcdf.
[43] ISO - Developing standards. url: https://www.iso.org/developing-standards.

html.
[44] Munezero Josélyne et al. Partitioning Microservices: A Domain Engineering Approach.

May 2018.
[45] Json.NET - Newtonsoft. url: https://www.newtonsoft.com/json.
[46] Joseph Juran, John Wood, and Michael Wood. Critical Evaluations in Business and

Management. 2005. url: https://books.google.pt/books?hl=pt-PT&lr=&id=
v_fprq_XtFAC&oi=fnd&pg=PA50&dq=quality+control&ots=uDVqz- VPtk&
sig=Yn2ts_Xs7BueSDXxFQAgX8v3Ln0&redir_esc=y#v=onepage&q=quality%
20control&f=false.

[47] John Klaess. 3 Definitions of Quality in Manufacturing and Why They Matter |
Tulip. Oct. 2021. url: https://tulip.co/blog/definitions- of- quality-
in-manufacturing/.

[48] P. Koen et al. “Providing Clarity and A Common Language to the “Fuzzy Front End””.
In: http://dx.doi.org/10.1080/08956308.2001.11671418 44 (2 2016), pp. 46–55.
issn: 08956308. doi: 10.1080/08956308.2001.11671418. url: https://www.
tandfonline.com/doi/abs/10.1080/08956308.2001.11671418.

[49] Alexander Krause et al. “Microservice Decomposition via Static and Dynamic Analysis
of the Monolith”. In: Proceedings - 2020 IEEE International Conference on Soft-
ware Architecture Companion, ICSA-C 2020 (2020), pp. 9–16. doi: 10.1109/ICSA-
C50368.2020.00011. arXiv: 2003.02603.

[50] Philippe Kruchten. “Architectural Blueprints-The "4+1" View Model of Software Ar-
chitecture”. In: IEEE Software 12 (6 1995), pp. 42–50.

86 Bibliographic References

[51] Shanshan Li et al. “A dataflow-driven approach to identifying microservices from
monolithic applications”. In: Journal of Systems and Software 157 (2019). issn: 01641212.
doi: 10.1016/j.jss.2019.07.008.

[52] Welder Luz et al. “An experience report on the adoption of microservices in three
Brazilian government institutions”. In: ACM International Conference Proceeding Se-
ries (2018), pp. 32–41. doi: 10.1145/3266237.3266262.

[53] Gaston Marquez and Hernan Astudillo. “Actual Use of Architectural Patterns in Microservices-
Based Open Source Projects”. In: Proceedings - Asia-Pacific Software Engineering
Conference, APSEC 2018-December (July 2018), pp. 31–40. issn: 15301362. doi:
10.1109/APSEC.2018.00017.

[54] Robin Martin. Designing object-oriented C++ applications using the Booch method.
Englewood Cliffs, N.J. : Prentice Hall, 1995.

[55] Math.NET Numerics. url: https://numerics.mathdotnet.com/.
[56] MIConvexHull. url: https://designengrlab.github.io/MIConvexHull/.
[57] Microservices.io. Decompose by business capability. url: https://microservices.

io/patterns/decomposition/decompose-by-business-capability.html.
[58] Microsoft. Entity Framework Core. May 2021. url: https://learn.microsoft.com/

en-us/ef/core/.
[59] Lawrence Miles. Techniques of Value Analysis and Engineering. 3rd ed. Miles Value

Foundation, June 2015, pp. 1–4. isbn: 0070419264, 9780070419261. url: https:
//books.google.pt/books?hl=pt-PT&lr=&id=XxhbDwAAQBAJ&oi=fnd&pg=PT17&
dq=Value+Analysis&ots=btXeLwpcNF&sig=TYPvhHKOlhV36LhqUC8yyQp2lJg&
redir_esc=y#v=onepage&q=Value%20Analysis&f=false.

[60] Keith Murphy. What Is Technical Debt and How to Manage It. June 2021. url: https:
//www.outsystems.com/blog/posts/technical-debt/.

[61] Davide Neri et al. “Design principles, architectural smells and refactorings for mi-
croservices: a multivocal review”. In: Software-Intensive Cyber-Physical Systems 35
(1-2 Aug. 2020), pp. 3–15. issn: 25248529. doi: 10.1007/S00450- 019- 00407-
8/FIGURES/5. url: https://link.springer.com/article/10.1007/s00450-019-
00407-8.

[62] Susana Nicola. “ANÁLISE DE VALOR INESC-TEC”. In: (2021).
[63] Christian Nielsen. Frameworks for understanding and describing business models. Mar.

2014. url: https://www.researchgate.net/publication/273634456_Frameworks_
for_understanding_and_describing_business_models.

[64] Tom Pallister. Ocelot Documentation Release 1.0.0. 2022.
[65] Neil Peterson and Adam Boeglin. Domain analysis for microservices. Dec. 2021. url:

https://docs.microsoft.com/en-us/azure/architecture/microservices/
model/domain-analysis.

[66] John Piela. Why Netflix Moved to a Microservices Architecture | ProgrammableWeb.
Apr. 2016. url: https://www.programmableweb.com/news/why-netflix-moved-
to-microservices-architecture/elsewhere-web/2016/04/02.

[67] Johnson Pontus and Mathias Ekstedt. “The grand unified theory of software engi-
neering”. In: (2005), p. 235. url: https://books.google.com/books/about/The_
grand_unified_theory_of_software_eng.html?hl=pt-PT&id=TLcceL3NEiMC.

[68] Peihua Qiu. Introduction to Statistical Process Control. CRC Press, 2013. url: https:
//books.google.pt.

[69] QR.net - Your QR code generator to create QR codes. url: https://qr.net/.
[70] Chris Richardson. Microservices patterns with examples in Java. Manning Publications,

2019. isbn: 1638356327.

Bibliographic References 87

[71] Anna Rud. Why and How Netflix, Amazon, and Uber Migrated to Microservices:
Learn from Their Experience – HYS Enterprise. July 2019. url: https://www.hys-
enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-
to-microservices-learn-from-their-experience/.

[72] J. P. Russel. The ASQ auditing handbook. fourth. William A. Tony, 2012. url: https:
//pdfroom.com/books/the-asq-auditing-handbook-principles-implementation-
and-use/Pe5xQj0GdnN.

[73] Thomas L Saaty. “Decision making with the analytic hierarchy process”. In: Int. J.
Services Sciences 1 (1 2008), pp. 83–98.

[74] Alberto Sampaio. “Improving Systematic Mapping Reviews”. In: ACM SIGSOFT Soft-
ware Engineering Notes 40.6 (Nov. 2015), pp. 1–8. issn: 0163-5948. doi: 10.1145/
2830719.2830732. url: https://dl.acm.org/doi/10.1145/2830719.2830732.

[75] Serilog — simple .NET logging with fully-structured events. url: https://serilog.
net/.

[76] Smartbear. OpenAPI Specification. url: https://swagger.io/specification/.
[77] Larry W Smith. “Project Clarity Through Stakeholder Analysis”. In: (2000). url: www.

stsc.hill.af.mil.
[78] Steve Smith. Common web application architectures | Microsoft Learn. Sept. 2022.

url: https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-
apps-azure/common-web-application-architectures.

[79] César Souza. The Accord.NET Framework. 1999. url: http://accord-framework.
net/license.txt.

[80] Michel Thiry. Project Management Institute A Framework for Value Management
Practice. 2nd. Project Management Institute, Inc, 2013. isbn: 9781628250183. url:
www.PMI.org.

[81] Johannes Thönes. “Microservices”. In: IEEE Software 32 (1 Jan. 2015). issn: 07407459.
doi: 10.1109/MS.2015.11.

[82] Rafik Tighilt et al. “On the Study of Microservices Antipatterns: A Catalog Proposal”.
In: ACM International Conference Proceeding Series (July 2020). doi: 10.1145/
3424771.3424812.

[83] Ken Tucker, Corey Vincent, and Nigel Sampson. Caliburn.Micro. url: https : / /
caliburnmicro.com/.

[84] John Wade. Greenfield vs. Brownfield Software Development. Sept. 2018. url: https:
//synoptek.com/insights/it-blogs/greenfield-vs-brownfield-software-
development/.

[85] Rob Wojcik et al. “Attribute-Driven Design (ADD), Version 2.0 Software Architecture
Technology Initiative”. In: (2006). url: http://www.sei.cmu.edu/publications/
pubweb.html.

[86] Daniele Wolfart et al. “Modernizing legacy systems with microservices: A roadmap”.
In: ACM International Conference Proceeding Series (2021), pp. 149–159. doi: 10.
1145/3463274.3463334.

[87] Tony Woodall. “Conceptualising ’Value for the Customer’: An Attributional, Structural
and Dispositional Analysis”. In: Academy of Marketing Science Review 12 (Jan. 2003).

89

Appendix A

Task Goals

A.1 Tasks

The goal is to directly relate these tasks to them whether the relation is due to implication
(drivers implicates the implementation of given requirement), due to its significance in im-
plementation, or even influence/awareness in implementation. In table A.1 those relations
are set for the non-functional requirements, while in table A.2 the functional requirements
are specified.

Requirement Concern Constraint QA
T1 CRN03 QA01 | QA02

T2 CRN01 | CRN03 CON03
QA02 | QA03 |
QA04

T2.1. CRN01 | CRN03 CON03
QA01 | QA03 |
QA04

T3 CRN03 | CRN05 CON03
QA01 | QA02 |
QA03 | QA04

T3.1. CRN01 | CRN04
| CRN05

CON03
QA01 | QA02 |
QA03 | QA04

Table A.1: Architectural drivers and non-functional requirements relation

Requirement Concern Constraint QA

TF1 CRN01 | CRN03
CON01 | CON02 |
CON03

QA01 | QA02 |
QA03 | QA04

TF2 CRN02 | CRN04
CON01 | CON03 |
CON04 | CON06

QA01

TF3 CRN04
CON01 | CON02 |
CON03 | CON04

QA02 | QA04

TF4 CRN02
CON02 | CON03 |
CON04 | CON06

QA02 | QA04

TF5 CRN01 | CRN02
| CRN05

CON03 | CON04
QA01 | QA02 |
QA03 | QA04

Table A.2: Architectural drivers and functional requirements relation

91

Appendix B

Auxiliary AHP Data

B.1 Random Index (RI) Table

Table B.1 encompasses the reference values for Indexes.

1 2 3 4 5 6 7 8
0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.42

Table B.1: Random Index (RI) Table [Adapted from [62]]

B.2 Criteria Normalized Matrices

Tables B.2, B.3, B.4, and B.5 represent the normalized matrices values.

Maintain Current Solution Implement Microservices Priority
Maintain Current Solution 1/7 1/7 1/7
Implement Microservices 6/7 6/7 6/7

Table B.2: Relevance Comparison Normalized Matrix

Maintain Current Solution Implement Microservices Priority
Maintain Current Solution 1/6 1/6 1/6
Implement Microservices 5/6 5/6 5/6

Table B.3: Scalability Comparison Normalized Matrix

Maintain Current Solution Implement Microservices Priority
Maintain Current Solution 1/5 1/5 1/5
Implement Microservices 4/5 4/5 4/5

Table B.4: Usability Comparison Normalized Matrix

Maintain Current Solution Implement Microservices Priority
Maintain Current Solution 1/3 1/3 1/3
Implement Microservices 2/3 2/3 2/3

Table B.5: Reliability Comparison Normalized Matrix

93

Appendix C

Architectural Patterns Research
Results

C.1 Monitoring Patterns

This section specifies patterns used in the monitorization process of the development cycle,
which tracks modifications and behavior.

1. Distributed Logging: Microservices produce information logged to local storage, lim-
iting database usage, hindering data aggregation, and inherently analyzing it. Imple-
menting logging systems responsible for log aggregation in a single repository allows
for easier consistency maintenance in the formatting and monitoring process. How-
ever, log repositories require infrastructure configuration and uniformization of logging
([82]).

2. Monitoring: Given the basis of the microservices concept as communicating services
that fulfill one business capability ([82]), their behavior and performance monitorization
becomes essential to guarantee availability. The implementation of logging solely is not
sufficient in the absence of health checking approaches.Insufficient monitoring hinders
failure tracking and causes identification ([82]). It is essential to consider that this
pattern also requires configuration, maintenance, and microservice refactoring.

95

Appendix D

RPM’s Third Party Software

D.1 Third Party Software

This section presents, in table D.1 the legacy solution’s third party softwares.

Software Description

Accord Framework
The core of the Accord.NET Framework, which contains ba-
sic classes such as general exceptions and extensions used by
other framework libraries ([79]).

AutoMapper
A convention-based object to object mapper that uses a fluent
configuration API to define mapping strategies and algorithm
to match source destination values ([24]).

Caliburn Micro

A small yet powerful famework designed for building applica-
tions across XAML platforms. Its strong support for MV*
patterns will enable you to build your solution quickly, without
the need to sacrafice code quality or testability ([83]).

Castle Core
Castle Core, including DynamicProxy, Logging Abstractions
and Dictionary Adapter ([15]).

Continuous LINQ

Continuous LINQ is a .NET Framework 3.5 extension that
builds on the LINQ query syntax to create continuous, self-
updating result sets. With Continuous LINQ, you write a
query and the results of that query are continuously updated as
changes are made to the source collection or items within the
source collection. CLINQ has tremendous value in GUI devel-
opment and is especially useful in binding tofiltered streams of
data such as financial or other network message data ([19]).

DotNetZip
DotNetZip is a fast, free class library and toolset for manip-
ulating zip files. Use VB, Csharp or any .NET language to
easily create, extract, or update zip files ([2]).

FluidKit Controls
This is a WPF library containing a powerhouse of controls,
frameworks, helps, tools, etc. for productive WPF develop-
ment ([25]).

Humanizer
Humanizer meets all .NET needs for manipulating and dis-
playing strings, enums, dates, times, timespans, numbers and
quantities ([40]).

96 Appendix D. RPM’s Third Party Software

MIConvexHull

This project is a convex hull algorithm and library for 2D, 3D,
and higher dimensions. The code can also be used to compute
Delaunay triangulations and Voronoi meshes of the input data
([56]).

Mapack
Mapack is a .NET class library for basic linear álgebra compu-
tations ([33]).

Math.NET Numerics

Math.NET Numerics is the numerical Foundation of the
Math.NET project, aiming to provide methods and algorithms
for numerical computations in science, engineering and every
day use ([55]).

Newtonsoft.Json
Json.NET is a popular high-performance JSON framework for
.NET [45].

OpenMCDF
This is managed by .net component that allows client applica-
tion to manipulate COM structured storage files, also known
as Microsoft Compound Document Format files ([42]).

Polyclipping

The Clipper library perfoms clipping and offsetting for both
and polygons, All four Boolean clipping operations are sup-
ported – intersection, union, difference and exclusive-or. Poly-
gons can be of any shape including self-intersecting polygons
([12]).

QrCode.Net
The goal of the project is providing na easy to use, fully man-
aged .NET library for handling QR code according to ISO/IEC
18004 ([69]).

Serilog Simple .NET logging with fully-structured events ([75]).

Table D.1: Third Party Software in the Legacy System

97

Appendix E

Conducting the Search for Primary
Studies

E.1 Primary Studies

In this section the primary studies are listed in tables E.1 and E.2 by alphabetical order.

Title Author(s) Publication
Year

A dataflow-driven approach to identifying mi-
croservices from monolithic applications

Shanshan Li, He Zhang,
Zijia Jia, Zheng Li,
Cheng Zhang, Jiaqi Li,
Qiuya Gao

2019

Analysis of the criteria adopted in industry to ex-
tract microservices

Luiz Carvalho, Alessan-
dro Garcia, Wesley K.
G. Assunção, Rafael de
Mello

2019

An experience report on the adoption of microser-
vices in three Brazilian government institutions

Welder Luz, Everton Ag-
ilar, Marcos César de
Oliveira, Carlos Eduardo
R. de Melo

2018

Are we speaking the industry language? The prac-
tice and literature of modernizing legacy systems
with microservices

Thelma Colanzi, Aline
Amaral, Wesley As-
sunção, Arthur Zavadski

2021

Deployment and communication patterns in mi-
croservice architectures: A systematic literature
review

Işıl Aksakalli, Turgay Çe-
lik, Ahmet Burak Can,
Bedir Tekinerdoğan

2021

Extraction of Configurable and Reusable Mi-
croservices from Legacy Systems: An Exploratory
Study

Luiz Carvalho, Alessan-
dro Garcia, Wesley K.
G. Assunção, Rodrigo
Bonifácio

2019

GreenMicro: Identifying Microservices From Use
Cases in Greenfield Development How Can We
Cope with the Impact of Microservice Architec-
ture Smells?

Deepali Bajaj, Anita
Goel, S. C. Gupta

2022

Table E.1: Primary Studies

98 Appendix E. Conducting the Search for Primary Studies

Title Author(s) Publication
Year

How Can We Cope with the Impact of Microser-
vice Architecture Smells?

Xiang Ding, Cheng
Zhang

2022

Identification of microservices from monolithic
applications through topic modelling

Miguel Brito, Jácome
Cunha, João Saraiva

2021

Leveraging the Layered Architecture for Microser-
vice Recovery

Pascal Zaragoza,
Abdelhak-Djamel Se-
riai, Abderrahmane
Seriai, Anas Shatnawi,
Mustapha Derras

2022

Microservice Decomposition via Static and Dy-
namic Analysis of the Monolith

Alexander Krause,
Christian Zirkelbach,
Wilhelm Hasselbring,
Stephan Lenga, Dan
Kröger

2020

Modernizing Legacy Systems with Microservices:
A Roadmap

Daniele Wolfart, Wes-
ley K. G. Assunção,
Ivonei F. da Silva, Diogo
Domingos

2021

Monolith to Microservice Candidates using Busi-
ness Functionality Inference

Shivali Agarwal, Rau-
nak Sinha, Giriprasad
Sridhar, Pratap Das,
Utkarsh Desai, Srikanth
Tamilselva, Amith
Singhee, Hiroaki Naka-
muro

2021

Mono2Micro: a practical and effective tool for
decomposing monolithic Java applications to mi-
croservices

Kalia Anup, Rahul Jin
Xiao, Maja Saurabh
Sinha

2021

MSN: A Playground Framework for Design and
Evaluation of MicroServices-Based sdN Con-
troller

Sisay Arzo, Domenico
Scotece, Riccardo Bas-
soli, Daniel Barattini,
Fabrizio Granelli, Luca
Foschini, Frank Fitzek

2022

On revisiting energy and performance in microser-
vices applications: A cloud elasticity-driven ap-
proach

Igor Fontana de Nardin,
Rodrigo da Rosa Righi,
Thiago Lopes

2021

QoS-aware placement of microservices-based IoT
applications in Fog computing environments

Samodha Pallewatta,
Vassilis Kostakos, Ra-
jkumar Buyya

2022

The parallel agile process: Applying parallel pro-
cessing techniques to software engineering

Raffo David, Doug
Rosenberg, Barry W.
Boehm, Bo Wang. Kan
Qi

2019

Unsupervised learning approach for web applica-
tion auto-decomposition into microservices

Muhammad Abdullah,
Waheed Iqbal, Abdelka-
rim Erradi

2019

Table E.2: Primary Studies (continued)

99

Appendix F

Evaluation

F.1 Stakeholder Questionnaire

In this appendix, the stakeholder questionnaire will be presented by section. The ques-
tionnaire is split into three sections, disregarding the introduction, which has no related
questions.

Figure F.1 is the presented introductory text.

Figure F.1: Questionnaire Introductory Text

When clicking next, it redirects the participant to the next section, which focuses on acquiring
the participants profile. It’s description is in figure F.2 and questions in figure F.3.

Figure F.2: About You Introductory Text

100 Appendix F. Evaluation

Figure F.3: About You Questions

When the participant is finished with the about you mandatory questions, the questionnaire
goes to the Expectation Fulfillment section, present in figures F.4, F.5, and F.6.

Figure F.4: Expectations Introductory Text

F.1. Stakeholder Questionnaire 101

Figure F.5: Expectations Questions - Part 1

Figure F.6: Expectations Questions - Part 2

If during the previous Expectations section, the participant confirmed microservice experi-
ence, the questionnaire redirects to a third section: Evaluation regarding Implementation,
which is presented in figures F.7, F.8, and F.9.

102 Appendix F. Evaluation

Figure F.7: Implementation Introductory Text

Figure F.8: Implementations Questions - Part 1

Figure F.9: Implementations Questions - Part 2

