
Demo Abstract: Programming Wireless Sensor Networks with
Logical Neighborhoods: A Road Tunnel Use Case

Luca Mottola
Politecnico di Milano, Italy

mottola@elet.polimi.it

Gian Pietro Picco
University of Trento, Italy

picco@dit.unitn.it

1 Motivation and Scenario
Wireless sensor networks (WSNs) involving actuation are

increasingly envisioned in a range of fields [1]. Among
these, there is considerable interest in leveraging off WSNs
to improve safety in road tunnels [4]. Researchers are envi-
sioning tunnels equipped with WSN nodes that gather physi-
cal readings such as temperature and light, monitor the struc-
tural integrity of the tunnel, and sense the presence of vehi-
cles to detect a possible traffic congestion. Based on sensed
data, the system operates a variety of devices, such as ven-
tilation fans inside the tunnel, and traffic lights at the en-
trances. For instance, when a sensor detects the presence
of a fire in a sector, the fans in the same sector are activated,
and the traffic lights are turned red to prevent further vehicles
from entering the tunnel.

To implement similar systems, dedicated programming
abstractions and communication protocols are needed, as the
presence of heterogeneous nodes and a highly decentralized
form of processing make mainstream solutions (e.g., [5]) no
longer applicable. These are usually designed with homoge-
neous nodes in mind, and focus on a system-wide, centralized
task (e.g., data gathering at a single sink). This approach is
impractical in systems involving actuation, as it may nega-
tively impact on latency and resource consumption [1]. In-
stead, in our tunnel scenario the processing involves mostly
subsets of nodes sharing similar characteristics, e.g., all the
nodes controlling a fan in a specific tunnel sector. Therefore,
the programmer must be provided with appropriate abstrac-
tions to “slice” the system based on the application require-
ments. We tackled the above problem with Logical Neigh-
borhoods [7, 8], a programming abstraction that allows to
redefine a node’s neighborhood based on logical properties
of the nodes, regardless of their physical position.

2 Logical Neighborhoods
Logical neighborhoods are defined using a declarative

programming language we designed, called SPIDEY. This
is conceived as an extension of existing WSN programming
frameworks. Programmers interact with the nodes in a log-
ical neighborhood using an API that mimics the traditional
broadcast-based, message-passing communication facility.
Instead of the nodes within radio range, the message re-
cipients are now the nodes matching a given neighborhood

Copyright is held by the author/owner(s).
SenSys’07, November 6–9, 2007, Sydney, Australia.
ACM 1-59593-763-6/07/0011

node template Actuator
static Function
static Type
static Location
dynamic BatteryPower

create node tl from Actuator
Function as "actuator"
Type as "traffic_light"
Location as "entrance_east"
BatteryPower as getBatteryPower()

Figure 1. Node definition and instantiation.

neighborhood template TrafficLights(loc)
with Function = "actuator" and

Type = "traffic_light" and
Location = loc

create neighborhood tl_east
from TrafficLights(loc: "entrance_east")
max hops 2 credits 30

Figure 2. Neighborhood definition and instantiation.

definition. Therefore, programmers still reason in terms of
neighboring relations, but retain control over how these are
established. A dedicated and yet efficient routing mechanism
enables communication in a logical neighborhood. Our cur-
rent implementations target the Contiki [2] and TinyOS [3]
operating systems.

The definition of logical neighborhoods is based on two
concepts: nodes and neighborhoods. Nodes represent the
portion of a real node’s features made available to the def-
inition of any logical neighborhood. Their definition is en-
coded in a node template, which specifies a node’s exported
attributes. This is used to derive instances of logical nodes,
by specifying the actual source of data. Figure 1 reports a
fragment of SPIDEY code to define a template for a generic
actuator, and instantiate a logical node controlling a traffic
light. To this end, the node attributes are bound to expres-
sions in the target language.

A logical neighborhood is defined using predicates on
node templates. Analogously to nodes, a neighborhood is
first defined in a template which essentially encodes the cor-
responding membership function, and then instantiated by
specifying where and how the template is to be evaluated.
For instance, Figure 2 illustrates the definition of a neighbor-
hood which includes the nodes controlling the traffic lights
on a specific tunnel entrance. The template is instantiated so
that it evaluates only on nodes that are at a maximum of 2
(physical) hops away from the node defining the neighbor-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55225137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 3. Pictorial illustration of a logical neighborhood.

hood, and by spending a maximum of 30 “credits”. The lat-
ter is an application-defined notion of communication costs,
which exposes the trade-off between accuracy and resource
consumption. The more credits are attached to a logical
neighborhood, the higher is the coverage of the system as
well as the resources spent to achieve that coverage. More
details on the SPIDEY language are in [8].

A pictorial representation of the logical neighborhood
concept is provided in Figure 3. The black node is the one
defining the logical neighborhood, and its physical neighbor-
hood (i.e., nodes lying within its radio range) is denoted by
the dashed circle. The grey nodes are those satisfying the
predicate in a neighborhood template. However, the nodes
included in the neighborhood instance are only those lying
within 2 hops from the sending node, as specified through
the hops clause during instantiation in Figure 2.

Sending messages to a logical neighborhood is
accomplished with a modified version of the tra-
ditional broadcast communication primitive, as
in send(Neighborhood n,Message m). This is sup-
ported by a dedicated routing protocol, illustrated in [7].
3 Demonstration Highlights

To demonstrate a sample tunnel scenario, we use 20+
TMote Sky nodes [6] to model three tunnel sectors, as il-
lustrated in Figure 4. We decrease the transmission power to
create a multi-hop scenario in a limited space. As for actu-
ation, we modified some of the nodes to control externally
attached devices. Specifically, 12 V mini-fans and lights are
used to model the fans inside the tunnel and the traffic lights
at the entrances. For practical reasons, fire and presence sen-
sors are “implemented” with light sensors, triggered using
flashlights. Our setup is shown in Figure 5. Based on this
setup, we showcase various use cases involving different log-
ical neighborhood definitions, such as:
Use case 1: when presence sensors recognize a traffic jam

on a lane, the fans are activated along the same lane
from that location to the corresponding entrance, and
the traffic light is turned red only on that lane. Figure 4
depicts the nodes involved in this case.

Use case 2: when light sensors read values above a safety
threshold, the lights at the corresponding tunnel en-
trance are activated to avoid shadowing effects, and im-
prove the visibility to drivers entering the tunnel.

Use case 3: when fire sensors detect the presence of fire in
a sector, the fans in the same and adjacent sectors are
activated, and the traffic lights are turned red on both
ends of the tunnel.

Our demonstration also involves two laptops. One is used
for illustration purposes, showing relevant code snippets and
a high-level descriptions of the processing involved. Instead,
the second laptop is moved inside the network to overhear

Presence

Sensor

Fire

Sensor

T
ra

ffi
c

 L
ig

h
t 

C
o

n
tr

o
ll

e
r

1st Tunnel Sector

Light

Controller

Fan

Controller

L
ig

h
t 

S
e

n
s

o
r

Sender

Receiver

Receiver

Receiver

2nd Tunnel Sector 3rd Tunnel Sector

Figure 4. Nodes involved in use case 1.

Figure 5. Setup and nodes controlling fans and lights.

packets in different positions. This lets the audience observe
the current network topology, as well as understand how our
routing protocol operates. Further, we plan to give flashlights
to the public, to let them interact with our demo directly.
Acknowledgements. This work is partially supported by the
European Union under the IST-004536 RUNES project.
4 References
[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and

actor networks: Research challenges. Ad Hoc Networks
Journal, 2(4):351–367, October 2004.

[2] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a light-
weight and flexible operating system for tiny networked
sensors. In Proc. of the 1st IEEE Wkshp. on Embedded
Networked Sensors, 2004.

[3] J. Hill et al. System architecture directions for net-
worked sensors. In ASPLOS-IX: Proc. of the 9th Int.
Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, 2000.

[4] P. Costa et al. The RUNES middleware for networked
embedded systems and its application in a disaster man-
agement scenario. In Proc. of the 5th Int. Conf. on Per-
vasive Communications (PERCOM), 2007.

[5] S. Madden et al. TinyDB: an acquisitional query pro-
cessing system for sensor networks. ACM Trans.
Database Syst., 30(1), 2005.

[6] MoteIV Technology, www.moteiv.com.

[7] L. Mottola and G. P. Picco. Logical Neighborhoods: A
programming abstraction for wireless sensor networks.
In Proc. of the the 2nd Int. Conf. on Distributed Comput-
ing on Sensor Systems (DCOSS), 2006.

[8] L. Mottola and G. P. Picco. Programming wireless sen-
sor networks with Logical Neighborhoods. In Proc. of
the 1st InterSense Conf., 2006.


