
Expressing Sensor Network Interaction Patterns
using Data-Driven Macroprogramming ∗

Animesh Pathak‡, Luca Mottola#, Amol Bakshi‡, Viktor K. Prasanna‡, and Gian Pietro Picco†
‡University of Southern California #Politecnico di Milano †University of Trento

{animesh,amol,prasanna}@usc.edu mottola@elet.polimi.it picco@dit.unitn.it

Abstract

Wireless Sensor Networks (WSNs) are increasingly be-
ing employed as a key building block of pervasive com-
puting infrastructures, owing to their ability to be embed-
ded within the real world. So far, pervasive applications
for WSNs have been developed in an ad-hoc manner using
node-centric programming models, focusing on the behav-
ior of single nodes. Instead, macro-programming models
provide much higher levels of abstractions, allowing devel-
opers to reason on the sensor network as a whole.

In this paper, we demonstrate how a wide range of in-
teraction patterns commonly found in pervasive, embedded
applications can be expressed using ATaG, a data-driven
macro-programming language. To support this, we show-
case real-world applications developed in ATaG, and con-
sider both homogeneous, sense-only scenarios, and hetero-
geneous settings involving actuation on the environment un-
der control.

1. Introduction

Recent technological advances have made wireless sen-
sor networks (WSNs) a viable solution for embedded sens-
ing and actuation [1]. The WSN devices can be easily em-
bedded within the physical world, thus realizing the vision
of “disappearing” computing [16]. However, there are sev-
eral important issues still to be resolved before achieving
that vision. Among them, ease of programming is a key
challenge.

Existing solutions in the field of programming WSNs
can be broadly classified as either node-centric- or macro-
programming. In the former approach, the programmer
must translate a global behavior into local actions on a node,
e.g., as message exchanges, and express these actions using
low-level programming languages like nesC [7]. Although
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this allows cross-layer optimizations, the required expertise
makes this approach unsuited to developing sophisticated
applications in large-scale sensor networks. Conversely, the
objective of macro-programming is to allow the program-
mer to reason on the sensor network as a whole, and write
a distributed application without explicitly managing con-
trol, coordination, and state maintenance. The global be-
haviors specified using macro-programming are then auto-
matically synthesized into software for each node in the tar-
get environment. Existing proposals in the field of macro-
programming include the Kairos [8] system and the Regi-
ment [13] functional language.

In this paper, we demonstrate how different interac-
tion patterns taken from pervasive, embedded applications
can be expressed concisely using ATaG (Abstract Task
Graph) [3], a data-driven macro-programming language de-
scribed in Section 2. To showcase the expressivity of ATaG
in describing a range of different coordinated behaviors, in
Section 3 we examine interaction patterns characterized by:

• Hierarchical Data Collection: one of the most com-
mon behaviors found in mainstream WSN applica-
tions, where mostly homogeneous nodes are usually
employed [10].

• Localized Interactions: relevant to applications like
target tracking, and characterized by asynchronous
triggering of operations [6] when specific conditions
are met.

• Actuation Driven by Sensing: requiring a concise de-
scription of control loops in heterogeneous systems [4]
composed of sensors and actuators with different capa-
bilities.

To make our illustration more concrete, we refer to the de-
velopment of a relevant set of real-world applications as ex-
amples. The contribution of this paper is to demonstrate that
data-driven abstractions and constructs of ATaG are able to
specify the aforementioned interaction patterns effectively,
while easing the programming task.
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Sampler

Temperature

[nodes-per-instance: 1]

[periodic:10]

Cluster-Head

[area-per-instance:10 sq. m]

[anydata]

local domain

Figure 1. A sample ATaG program.

To complement our discussion, Section 4 briefly sketch
the process of compiling ATaG programs, and the kind of
distributed run-time support the compiler targets. Finally,
Section 5 concludes with our plans on finalizing the devel-
opment of the ATaG framework.

2. The ATaG Macroprogramming Language

The Abstract Task Graph (ATaG) model and language
provide a mixed declarative-imperative approach to the de-
velopment of networked embedded applications. At its core
are the notions of abstract task and abstract data item. The
former is a logical entity encapsulating the processing of
one or more data items, which represent the information it-
self. The flow of information between tasks is defined in
terms of their input/output relations. To achieve this, ab-
stract channels are used to connect a task to a data item
when the task produces that item, or vice versa when the
task consumes it. The programmer then specifies the pro-
cessing of data items within tasks using an imperative pro-
gramming language such as Java. To express the interac-
tions between tasks, programmers are provided the abstrac-
tion of a shared data pool, to which each single task either
outputs data, or is notified when some data of interest is
available. A dedicated API is provided in support of these
operations.

Figure 1 illustrates an example ATaG program, specify-
ing a simple cluster-based communication pattern. Sensors
within a cluster take periodic temperature readings, which
are collected by the corresponding cluster-head. The for-
mer aspect is encoded in the Sampler task, while the latter
is represented by the Cluster-Head task. The Temperature
data item is connected to both tasks using a channel origi-
nating from the Sampler task, and a channel directed to the
Cluster-Head, as required by the application semantics.

Tasks are annotated with firing and instantiation rules.
The former specify when the processing in a task must be
triggered. In our example, the Sampler task is triggered ev-
ery 10 seconds. The any-data firing rule requires the
invocation of Cluster-Head whenever at least one data item

is ready to be consumed on any of its incoming channels.
A further firing rule named all-data can be used to
defer the task firing until at least one data item is avail-
able on all the incoming channels. The placement of tasks
on real nodes is governed using instantiation rules. The
nodes-per-instance:q construct used in this exam-
ple requires the task to be installed once every q nodes in the
system. As q = 1 in the example, the Sampler task is instan-
tiated on every node. Instead, the area-per-instance
construct is used for the Cluster-Head to partition the ge-
ographical space, and deploy one instance of the task for
each partition.

In pervasive, sensing/acting scenarios, the processing in
a task may depend on the node capabilities, e.g., when dif-
ferent sensors and actuators are both present in the system.
To account for this, nodes export a list of attributes describ-
ing their characteristics, for instance, the sensors they are
equipped with. Developers are then given the ability to con-
trol the placement of tasks on nodes by expressing boolean
conditions over these attributes, e.g., requiring the presence
of a specific sensing device. Sample use of these constructs
will be presented in Section 3.

Abstract channels are annotated to express the specific
interest of a task in a data item. In our example, the Sampler
task generates data items of type Temperature kept local
to the node where they have been generated. Conversely,
the Cluster-Head uses the domain annotation to gather
data from the temperature sensors in its cluster. This con-
struct binds to some system partitioning, e.g., that obtained
by area-per-instance, and associates the tasks run-
ning in the same domain. Alternative constructs allow to
express interests within a specific neighborhood, ranging
from a maximum number of network hops (or maximum
geographical distance) to all the tasks in the system (the lat-
ter being specified with the all-nodes annotation).

Instantiation rules for tasks and channels annotations
jointly define logical scopes, i.e., set of tasks sharing com-
mon characteristics and interests, and communicating with
each other. The scopes can be computed by combining the
task and channel annotations in the ATaG program. The in-
stantiation rules select the nodes in the system where the
tasks are to be assigned depending on their characteristics.
On the other hand, the channel annotations bind these dif-
ferent tasks according to their interests in terms of commu-
nication. In our example, the domain annotation lets tem-
perature sensors communicate with the Cluster-Head ob-
tained from area-per-instance. Remarkably, all the
interaction patterns in the present version of ATaG can be
modeled as communication within logical scopes. This en-
ables an easy implementation of the underlying distribution
aspects using middleware-level abstractions exporting this
same notion. More details on this will be given in Section 4.



Sampler

Strain

[nodes-per-instance: 1]

[periodic:10]

Compressor

[area-per-instance:10 sq. m]

[anydata]

locallocal domain

Compressed Data

Collector

[one-on-node-ID:0]

[anydata]

localall-nodeslocal

Figure 2. An ATaG program for landslide de-
tection.

3. Application Case Studies

In this section, we put forth the contribution of this pa-
per by focusing on a set of interaction patterns commonly
seen in pervasive, embedded applications (introduced in
Section 1), and demonstrate the flexibility by which ATaG
can express these by means of application case studies.

3.1. Hierarchical Data Collection

The largest fraction of currently ongoing projects in
sensor networks perform data gathering of some kind.
In the general case, data generated by sensors is com-
pressed in-network before being sent out to a base sta-
tion. The domain channel annotation, combined with the
area-per-instance instantiation rule, provide a very
concise way of representing this behavior. The following
application illustrates this fact.

Sample Application: Landslide Detection. In [15], the
authors have proposed a novel application of WSNs to de-
tect landslides. They deploy strain detecting sensors all over
the landscape, which detect strain patterns in the ground.
The communication pattern follows a traditional cluster-like
paradigm. The data is first routed to a close cluster-head
where it is compressed, and then ultimately routed to a base
station.

ATaG Program. The ATaG program for landslide detec-
tion, shown in Figure 2, consists of three tasks. The commu-
nication of the Strain data item from the Sampler to Com-
pressor task is similar to our example in Section 2. The
Compressor converts the strain readings of all the nodes in
its domain to a CompressedData abstract data item. Fi-
nally, the Collector task, located only at the base station
(node 0 here, as per the corresponding instantiation rule),
collects the compressed data for generating alerts using the
all-nodes.

3.2. Localized Interactions

Nodes in a WSN are often required to interact with
other nodes in their vicinity before making decisions.

These localized interactions [6] are one of the fac-
tors differentiating WSNs from traditional distributed sys-
tems, where the geographical location of the processors
is immaterial. Such local interactions can be repre-
sented in ATaG using the neighborhood-hops and
neighborhood-distance channel annotations. These
interactions are useful in a wide variety of scenarios, e.g.,
tracking a moving object or finding the contour of an oil
spillage. The following target-tracking example illustrates
our point.

Sample Application: Target Tracking. Target tracking is
a well-studied problem in the sensor network domain. As
an example, we look at an application similar to the work
being done on VigilNet [9]. Our sample application con-
sists of magnetometer-equipped sensors deployed in a bat-
tlefield. The main aim is to detect the presence and loca-
tion of targets and send the information to the base station.
In our case, only the perimeter sensors sample their sur-
roundings initially, while the internal ones do not. When
the perimeter sensors detect a target, they alert the nearby
sensors who begin sampling their surroundings. The nodes
sensing a moving object execute a leader election protocol
to identify a specific node declaring to own the target. This
will be responsible for logging the data related to that target,
and report to the base station.

ATaG Program. Our ATaG program for target track-
ing is shown in Figure 3. The Perimeter Sampler is
in charge of the initial monitoring on the perimeter of
the controlled area. Therefore, it is the only task that
should be running at system start-up. To specify this,
we use start@init as firing rule. Furthermore, to
require its instantiation only on perimeter nodes, we use
nodes-per-instance:1@perimeterNodes as
instantiation rule. In this case, perimeterNodes is
a placeholder for a boolean predicate defined over the
node attributes. We are indeed assuming each node has
an associated boolean attribute isPerimeterNode,
and the aforementioned placeholder is defined as
perimeterNodes ::= isPerimeterNode = TRUE . The
whole construct defines a scope in the system, where only
Perimeter Sampler tasks should be installed. When such a
task detects a target within range, it reports its readings as a
Target Entered data item in a 10 meter radius. The latter as-
pect is specified in the neighborhood-distance:10
channel annotation, again defining a (different) scope
where the data should be disseminated.

The Inner Sampler task is similar to the Perimeter Sam-
pler, except that it is instantiated on non-perimeter nodes.
When it receives a Target Confirmed data item, it starts sam-
pling the surroundings periodically and produces a Target
Detected data item to be consumed by its neighbors in a 10
meter radius.



Perimeter Sampler

Target Entered

[nodes-per-
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[start@init][periodic:10]

Verifier

Target 

Confirmed

[nodes-per-instance:1]

[anydata]
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Inner Sampler

Target 

Confirmed

[nodes-per-

instance:1@nonPerimeterNodes]

[periodic || anydata]

neighborhood-

distance:10

local

neighborhood-

distance:10 m
local

local
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[any-data]

all-nodes

Figure 3. An ATaG program for target track-
ing.

The Verifier task runs on each node, and implements the
leader election protocol. Its decision is based on the Tar-
get Entered and Target Detected data items, which convey
the magnetometer readings at the nodes where they are pro-
duced. Specifically, the Verifier matches the reading on a
node with that of others in a 10 meter radius, and decides
whether the node is indeed the leader, i.e., it owns the target,
depending on the location of the strongest reading. When
a Verifier knows that it owns a target, it produces two data
items. The Target Confirmed data item serves to induce pe-
riodic sensing in nodes that are in a 50 meter radius (the
scope of this data item can be tuned according to the ex-
pected speed of the object being tracked). The Target Info
data item is sent to the base station for logging purposes.

The Collector task runs only on a single node (node 0)
and is responsible for collecting the target position from the
sensor field using the Target Info data item.

3.3. Actuation Driven by Sensing

The WSN community is rapidly exploring the use of
sense-and-act systems and the issues involving the closure
of the control loop. A commonly seen construct in these
applications is that data collected from the sensors in a re-
gion is used to make a decision about actions to be taken
in a possibly different region. Examples of such systems
include traffic control and fire-fighting in a building. The
above mentioned behaviors can easily be specified with dif-
ferent sensing and actuating tasks, connected by processing
tasks. We elaborate our ideas by the following example.

Sample Application: Building Management. One of the
oft-cited examples of pervasive computing is the so-called
smart building [14], which can manage itself. Part of this
task is the management of the HVAC (heat, air-conditioning

Humidity Sampler

Humidity

[nodes-per-

instance:1@humiditySensor]

[periodic:10]

Collector

Action

[partition-per-instance:1/floor]

[anydata]

domainlocal

HVAC Controller

[nodes-per-

instance:1@hvacActuator]

[anydata]

locallocal
domain

Temperature 

Sampler

Temperature

[nodes-per-

instance:1@temperatureSensor]

[periodic:10]

local
domain

Figure 4. An ATaG program for building envi-
ronment management.

and ventilation) system. WSNs have been proposed as a so-
lution to this problem recently [5]. We consider a set of
nodes spread across a building, with each node possibly at-
tached to a temperature sensor, a humidity sensor and an
actuator that can control the temperature and humidity of a
region.

ATaG Program. Figure 4 graphically describes our ATaG
program. To handle heterogeneity, we make use of the
same, extended instantiation rules described in the previous
application. To that end, we assume the nodes in the system
declaring, among their attributes, the sensors or actuators
they are equipped with. The placeholders temperatureSen-
sor, humiditySensor, and hvacActuator are defined accord-
ing to these attributes. For instance, the former is defined as
temperatureSensor ::= temperature ∈ equippedSensors ,
where equippedSensors is a node attribute describing the
set of sensing devices attached to a node. The Temperature
Sampler and Humidity Sampler—simply instantiated on
the corresponding node type—sample their surroundings
and generate Temperature and Humidity data items.

In addition, we want a single Collector task to be the
guardian of each section of the total deployment area,
thus being in charge of the local control loop in that sec-
tion. In this example, we have chosen to instantiate one
Collector on each floor. To express this, we further as-
sume the nodes also declare the floor where they are de-
ployed as an attribute. Based on this, we can achieve
a per-floor partitioning of the system. The instantiation
rule partition-per-instance:1/floor relies on
this partitioning, and express the requirement of instanti-
ating one Collector task on each floor. Similarly to the
area-per-instance construct, this partitioning can be
used as a domain. In this case, it binds the Collector task to
the humidity and temperature sensors on the same floor, so
that the former can collect data from the latter. Again, the
domain construct defines logical scopes composed of the
Collector task on a floor and either Temperature Sampler or
Humidity Sampler tasks on the same floor.

After processing the data, the Collector produces a com-
mand for the actuating tasks in the form of an Action data
item. The HVAC Controller task is placed on all nodes of
type hvacActuator and responds to the Action data item
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Figure 5. The compilation process.

by adjusting the temperature/humidity controls.

4. The ATaG Compilation Framework

The ATaG Compiler is in charge of converting the high-
level description of the application to the node level code,
targeting a specific API made available by an underlying
run-time system, as shown in Figure 5. This section de-
scribes the compilation process using the application de-
scribed in Section 3.1 as an example.

Input. The input to the compiler consists of a) the Abstract
Task Graph, consisting of a set of abstract tasks, a set of ab-
stract data items and a set of abstract channels; b) the imper-
ative part of each abstract task, and c) the description of the
target network. In this respect, the minimum information re-
quired by the compiler is the number of nodes in the system.
Other information such as location of each node may be re-
quired if the program uses spatial task-instantiation primi-
tives such as area-per-instance. Node attributes are
needed if the programmer defines predicates over them to
handle heterogeneity, as we described in Section 3.

Output. In Section 2 we mentioned how communication
between ATaG tasks can be modeled in terms of logical
scopes. In accordance with this, we decided to use Logi-
cal Neighborhoods [12, 11] as the target API of the com-
pilation process, and as the underlying support to manage
communication among the nodes. With Logical Neighbor-
hoods, the physical neighborhood of a node is replaced with
a logical notion of proximity, where one can determine the
(logical) neighbors of a node using applicative information.
This is achieved by expressing a boolean predicate over
node attributes, that acts as a membership function for the
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Figure 6. Task assignment for landslide de-
tection.

set of nodes included in a logical neighborhood. To inter-
act with the nodes in a neighborhood, a message-passing
API is provided, supported by an efficient routing mecha-
nism at the network level [11]. Scoping in ATaG can be
naturally mapped to logical neighborhoods, since the con-
cept of node attribute in ATaG is essentially the same as in
Logical Neighborhoods, and the instantiation rules can be
easily converted to boolean predicates. This way, the job of
the ATaG compiler is simplified, as it targets a node-level
abstraction already providing a logical layer on top of the
physical topology.

Besides the calls to the Logical Neighborhoods API, the
output of the compiler also includes the list of tasks to be
run on each node, their firing rules, the data items to be
handled at each node.

Compilation Process. For our landslide detection exam-
ple, Figures 2 and 6 illustrate the input program and net-
work respectively. The target network is a 27 node sys-
tem spread over a region of 40 sq. m. The compilation
process takes place in a stepwise manner. First, the ab-
stract tasks in the ATaG program are instantiated accord-
ing to the annotations used by the programmer. For exam-
ple, in our application, the nodes-per-instance:1
instantiation rule of the Sampler task results in 27 instan-
tiations of the task, one for each node. For primitives
such as area-per-instance:10 sq. m., four in-
stances of the Compressor task are generated, one for each
region bordered by the dotted lines. Note that the number
of instantiated tasks generated depends on the number of
nodes in the target network in the former and the total de-
ployment area of the WSN in the latter case.

The second step in compilation is the assignment of the
tasks instantiated above to nodes. Since the location of tasks



will govern communication patterns and therefore, the en-
ergy dissipated by the system, we believe that there is a rich
space of optimizations possible in this step.

Figure 6 illustrates a task allocation generated by the
above mentioned compilation process for the application
described in Section 3.1 on a particular network. In this
case, the Sampler task is instantiated on all nodes and it not
shown. The Compressor task is instantiated on nodes 6, 9,
17 and 24, and the Collector task is assigned to node 0. The
presence of the tasks on the nodes is indicated by the sym-
bols + and * next to the node IDs. Note that this is not the
only assignment possible for this ATaG program. For exam-
ple, the Compressor task on node 6 can be assigned to any
node in the top-left square (node 1, for example), and still
the system generated will be functionally compliant to the
ATaG program. This fact is the basis of our future direction
of research, where we will explore the effects of various task
assignment techniques and develop optimizations based on
them.

In our project on data-driven macroprogramming [2], we
are developing many such applications and measuring the
amount of effort involved from the application designer’s
side.

5. Conclusion and Future Work

In this work, we demonstrated how common interactions
patterns coming from pervasive, embedded applications can
be described using the ATaG language. We carried out this
exercise in both homogeneous and heterogeneous scenarios.
The latter are of great importance for the upcoming sense-
and-actuate systems, where we claim data-driven macro-
programming well fits. We also gave a brief overview of
the compilation process that converts macro-programs into
node-level code, and of the middleware-level support we in-
tend to use to support communication.

Our future work is in two directions: firstly, we are work-
ing on a full end-to-end application development framework
for macro-programming sensor networks, and secondly, we
are looking at the possible optimizations in the compilation
process.
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