
A Compilation Framework
for Macroprogramming Networked Sensors?

Animesh Pathak1, Luca Mottola2, Amol Bakshi1,
Viktor K. Prasanna1 and Gian Pietro Picco3

1 {animesh, amol, prasanna}@usc.edu,
Ming Hsieh Department of EE-Systems, University of Southern California, USA

2 mottola@elet.polimi.it,
Dipartimento di Elettronica ed Informazione, Politecnico di Milano, Italy

3 picco@dit.unitn.it,
Department of Information and Communication Technology, University of Trento, Italy

Abstract. Macroprogramming—the technique of specifying the behavior of the
system, as opposed to the constituent nodes—provides application developers
with high level abstractions that alleviate the programming burden in develop-
ing wireless sensor network (WSN) applications. However, as the semantic gap
between macroprogramming abstractions and node-level code is considerably
wider than in traditional programming, converting the high level specification
to running code is a daunting process, and a major hurdle to the acceptance of
macroprogramming.
In this paper, we propose a general compilation framework for a data-driven
macroprogramming language that allows for plugging in different modules im-
plementing various stages of compilation. We also demonstrate an actual instanti-
ation of our framework by showing an end-to-end solution for compiling macro-
programs. Our compiler provides the final code to be deployed on real nodes
as well as an estimate of the costs the running system will incur, e.g., in terms
of messages exchanged. We compared the auto-generated code against a hand-
coded version for the same application behavior to verify the outcome of our
compiler.

1 Introduction

Macroprogramming refers to a set of programming techniques whose objective is to in-
crease application developers’ productivity and allow non-expert programmers to write
distributed, sense-and-respond applications easily. Abstractions are provided to spec-
ify the high-level collaborative behavior at the system level. Most of the low-level de-
tails concerning state maintenance or message passing are intentionally hidden from
the programmer. As a result of this, macroprogramming is emerging as a viable tech-
nique for developing complex embedded applications, as demonstrated by the several
efforts [2, 11, 20] currently underway in this field.

? This work is partially supported by the European Union under the IST-004536 RUNES project
and by the National Science Foundation, USA, under grant number CCF-0430061.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55225123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Comparing node-centric and macro-
programming.

As illustrated in Fig. 1, the ease
of design provided by macroprogram-
ming comes at a cost when compared to
traditional node-centric programming.
In the former approach, application de-
velopers reason at a high level of ab-
straction, while the process of convert-
ing the high level representation to that
of the individual nodes is delegated
to a compiler. The higher the level of
abstraction, the more work needs to
be done by the compiler. This makes
the process of generating the final run-
ning code more difficult than in the
node-level compilers currently seen in
WSNs.

In the context of macroprogram-
ming for WSNs, we define compilation

as the semantics-preserving transformation of a high level application specification into
a distributed software system collaboratively hosted by the individual nodes. In [22],
we summarized the challenges faced by the designers of compilation frameworks for
macroprogramming languages. As illustrated in Sect. 3, the process of semantics-
preserving transformation itself involves addressing challenges of correct and efficient
conversion of representation. In addition, developers should be given the ability to ex-
press performance goals for the deployed system (e.g., in terms of expected network
lifetime or latency) that the compiler should consider in optimizing the configuration of
individual nodes and the allocation of different functionality to them.

In this paper, we present the design, implementation and evaluation of a compila-
tion framework to support macroprogramming. Specifically, we focus on a data-driven
macroprogramming model called the Abstract Task Graph (ATaG) [2], whose salient
features are described in Sect. 2. We make two contributions in this paper:

– We propose a general framework for compilation used for data-driven macropro-
gramming languages like ATaG. An overview of the compilation process is given in
Sect. 3. Our framework breaks down the process of converting the high-level spec-
ification to node-level functionality into a set of independent procedures—such as
optimizing the placement of functionality on the real nodes, or predicting commu-
nication costs. These different stages are connected through well-defined interfaces,
that allow for plugging in different modules implementing the various steps of com-
pilation. Our compilation framework is described in Sect. 4.

– We demonstrate the flexibility and generality of our framework by describing an
end-to-end solution for compiling ATaG macroprograms. Our proof-of-concept
compiler, obtained by instantiating the different modules in our framework, pro-
vides the code to be deployed on each node, as well as an estimate of the message
passing costs of the same. Moreover, the resulting code can be deployed on real
world nodes as well as in a simulation environment. As described in Sect. 5, the

functionality of our compiler is assessed by inspecting and comparing the auto-
generated code against a manually developed version of the same.

Compilation of macroprograms is still in its formative stages, and there is great
variety in both the current work and future directions in the community. A discussion
of related work is presented in Sect. 6. Section 7 concludes this paper.

2 ATaG: Abstract Task Graph

Macroprogramming of WSNs is an active area of research, with several programming
paradigms currently being investigated [2, 11, 20]. In this work, we focus on ATaG
(Abstract Task Graph) [2], a data-driven macroprogramming framework. ATaG includes
an extensible, high-level programming model to specify the application behavior, and a
corresponding node-level run-time support, called DART [1]. The compilation of ATaG
programs consists of mapping the high-level ATaG abstractions to the functionality
provided by DART. We now provide some background on these topics, as they represent
the inputs and outputs of the transformation process, respectively.

2.1 Programming Model

ATaG provides a data driven programming model and a mixed imperative-declarative
program specification. A data driven model provides natural abstractions for specifying
reactive behaviors, while declarative specifications are used to express the placement
of processing locations and the patterns of interactions.

��������� 	�

��	���	
�������
�	

� ����������� ����� � � ��� �"!#��$��%
& ')(*��+,����� ! �.-*� ��/��������� 0

� �����.� ����� $1% &�2�0

34� �15��6	1
67"8�	��9

� � ��:� �1��� ����� � � ��� � !���$���% &<; =�> ���� 0
� !���?���! � !�0

> �*$�!#> > ��:1� $�!#> �"@������% &#A =�> ����"B
CED�F�G H I1J G
KLI�F*M

CND*F G.H I*J�G
OPI�G I

CQD�F G�H I�J�G
RQS�I1TT�U�V

W T�F�G I�T�G.X I�G X Y�T
Z�[1V U

RQS�I1TT�U�V
CQTT�Y*G I�G X Y�T�F

\�X H X T�]^Z�[V U

Fig. 2. ATaG program for data-gathering

The concept of abstract
data items and abstract tasks
are integral to specifying ap-
plications in ATaG. The former
represents the information gen-
erated and communicated in the
system, while the latter is a logi-
cal entity encapsulating the pro-
cessing of one or more data
items. The processing within
a task is expressed using an
imperative language. The flow
of information between tasks is
defined by abstract channels,

which connect a task to a data item when the task produces that item, or vice versa
when the task consumes it. Not that in an ATaG program, a data item can have more
than one consumers, but only one producer.

Figure 2 illustrates an example ATaG program specifying a data gathering appli-
cation [5] for building environment monitoring. Sensors within a cluster take periodic
temperature readings, which are then collected by the corresponding cluster-head. The
former aspect is encoded in the Sampler task, while the latter is represented by Cluster-
Head. The Temperature data item is connected to both tasks using abstract channels.

Tasks are annotated with firing and instantiation rules. The former specify when the
processing in a task must be triggered. In our example, the Sampler is triggered every
10 seconds according to the periodic rule. Differently, the any-data rule requires
Cluster-Head to run when a data item is ready to be consumed on any of its incoming
channels. The instantiation rules govern the placement of tasks on real nodes, whose
characteristics (e.g., sensing device attached) are encoded using node attributes. The
nodes-per-instance:q@Device rule requires the task to be instantiated once
every q nodes equipped with a specific device. According to @TemperatureSensor,
the Sampler task in our example will be instantiated on every node equipped with a tem-
perature device. Differently, the programmer requires a single Cluster-Head to be in-
stantiated on every floor in the building. Thepartition-per-instance:1/Floor
construct is used for this purpose. Its semantics is to derive a system partitioning based
on the values of the node attribute provided (Floor). In this case, the programmer
requires only one task to be instantiated in each partition.

Abstract channels are annotated to express the interest of a task in a data item. In our
example, the Sampler task generates data items of type Temperature kept local to the
node where they have been generated. The Cluster-Head collects data not only from its
own partition (floor), but also from adjacent ones. The logical-hops:1(Floor)
annotation specifies a number of hops counted in terms of how many system partitions
can be crossed, independent of the physical connectivity. Since Temperature data items
are to be used within one partition (floor) from where they generated, they will be
delivered to cluster-heads running on the same floor as the task that produced them, as
well as adjacent floors.

2.2 Runtime System

Data delivery across logical scopes

Logical Neighborhoods

Transceiver

get() and put(), concurrent
access, reference counts

DataPool

Task code,
dependencies,

annotations

ATaGManager

UserTasknUserTask1

Sensors Actuators

...

Application level

System levelMedium access, physical layer

NetworkStack

Fig. 3. DART: Data-driven ATaG run-time system.

The node-level code output by
the ATaG compiler is designed
to run atop a supporting runtime
hiding the underlying, platform-
specific details. Figure 3 depicts
the architecture of our runtime
system [1]. The functionality is
divided into a set of modules to
facilitate customization to vari-
ous deployments.

The ATaGManager stores
the declarative portion of the
user-specified ATaG program
that is relevant to the particular
node. This information includes
task annotations such as firing

rule and I/O dependencies, and the annotations of input and output channels associated
with the data items that are produced or consumed by tasks on the node. The DataPool
is responsible for managing all instances of abstract data items produced or consumed

at the node. The LogicalNeighborhoods [17, 18] module handles data delivery by im-
plementing a dedicated routing scheme. In particular, the inputs to this module include
the data items and the scope specifications those are addressed to. A scope identifies, in
a logical manner, the nodes an item is addressed to by referring to the relevant node at-
tributes. For instance, a scope may specify all the nodes running the Cluster-Head tasks
deployed on first Floor as intended recipients. Finally, the NetworkStack is in charge of
communication with other nodes in the network, and manages the physical layer proto-
cols. Note that by itself, ATaG does not deal with fault tolerance. However, the runtime
system and compiler developers are free to provide the user with an implementation
that takes desired fault-tolerance requirements and support them by techniques such as
task migration.

3 Compilation of Data-Driven Macroprograms: Overview

In this section, we provide an overview of the compilation process using the application
given in Fig. 2 as example. Formally, an abstract task graph A(AT, AD, AC) consists
of a set AT of abstract tasks and a set AD of abstract data items. The set of abstract
channels AC can be divided into two subsets – the set of output channels AOC ⊆
AT ×AD and a set of input channels AIC ⊆ AD×AT . In our example, the Sampler
is AT1 and Cluster-Head is AT2, while Temperature is AD1. AOC is {AT1 → AD1}
and AIC is {AD1 → AT2}. The compiler generates a set of node-level programs based
on AT and the description N of the target system.

� �����

�

� �����

�	�
�
���

�	�
�
���

�	�
�
���

���������� �
�
����
 ��! "#!
 �

� � �%$
& � �'" �� "#! � "(!
 �

Fig. 4. An example illustrating the compilation process of our sample program.

Composition of Channels. Owing to ATaG’s purely data-driven programming model,
the developer only specifies relations between tasks and the data items they are produc-
ing (via AOC) and consuming (via AIC). While this provides a clean model to the
developer, traditional task allocation techniques work on task graphs with direct depen-

dency links between tasks. To address the problem of generating such task graphs, we
convert each path ATi → ADk → ATj to an edge ATi → ATj .

Since the channels in ATaG have logical scopes associated with them, composing
two channels into one poses its own set of challenges. The basic process of compos-
ing channels results in the (composed abstract channel) CACijk being annotated with
the union of three constraints. The first is that the node should have task ATj assigned
to it. The second(third) constraint is obtained by combining the instantiation rule of
ATi(ATj) with the annotation on the abstract channel connecting it to ADk. For in-
stance, in our example, after composition, AC121 is {(Cluster-Head is instantiated)
&& (Floor = Floor of Sampler or ±1)}. Depending on the complexity of scopes used
in the channels, the resultant constraint can be further simplified by set operations to
get a more compact constraint for the composed channel.

This task graph with composed channels is then instantiated on the given target net-
work. Figure 4 illustrates an example of a target network. The nodes are on three differ-
ent floors, and those marked with a thermometer have temperature sensors attached to
them.

ITaG: Instantiated Task Graph. The intermediate representation used for applying
task-allocation techniques is called the instantiated task graph (ITaG). It is a repre-
sentation of the target system, with the tasks assigned to each node and communicating
with each other. It consists of multiple copies of each abstract task specified in the ATaG
program, each assigned to a particular node. The (directed) edges of the ITaG connect
each task to the tasks that depend on it, i.e., the tasks that a) consume the data item
produced by it, and b) belong to the logical scope specified by the constraints in the
connecting composed channel. Formally, the ITaG I(IT, IC) consists of a set IT of
instantiated tasks and a set IC of instantiated channels. For each task ATi in the ATaG
from which I is instantiated, there are f(ATi, N) elements in IT , where f maps the
abstract task to the number of times it is instantiated in N . IC ⊆ IT × IT connects the
instantiated version of the tasks. The ITaG I can also be represented as a graph G(V, E),
where V = IT and E = IC. Additionally, each ITj in the ITaG has a label indicating
which node in N it is to be deployed on. This overlay of communicating tasks over the
target deployment allows us to use modified versions of classical techniques meant for
analysing task graphs.

In our example, since there are seven nodes with attached temperature sensors,
f(AT1, N) = 7. Similarly, f(AT2, N) = 3, since the Cluster-Head task is to be in-
stantiated once on each of the three floors. The figure shows one allocation of the tasks
in IT , with arrows representing the instantiated channels in IC (we have showed chan-
nels leading to only one instance of AT2 for clarity). Note that the although the ITaG
notation captures the information stored in the abstract task graph (including the instan-
tiation rules of the tasks and the scopes of the connecting channels) it does not capture
the firing rules associated with each task. The compiler’s task involves incorporating the
firing rule information while making decisions about allocating the tasks on the nodes.

In summary, the compiler is responsible for generating an efficient task placement,
ensuring that the composed channels are consistent with the semantics specified by the
application developer in the abstract channels, and configuring the runtime system mod-
ules. An added complexity in the compilation process is brought by the large space of

��������� 	�
�

� ������������� ���
����� �

������� ���

� ���!��� ����� ����"�#%$%�
& ��'!��� ��� #��

� ()� & "����%�!� #��
* +-, .0/21 .-354 62321 /768+9.93:-;-1 /-30<=3?>

1 :�@-.5/?A A :0+9/21 .9BCA /91 .?, D

E�!� FG#���HJIK�%� LM��� �M��� #�'

N�O �?� ���QP%� '%H7���
R LMS��0�T#��U� V��%�W�TS�'M��� �J�
��#!$�SYX ���G��'�$�LM���%�M� �%�

#�S��T�!SM�!Z[� X �%� \

"�#%�?��]��!� �J���T�%�^�� �!� _�'��%$J()�!�MH7�G��'!$
"�S!�?� #���� V��%$a`KS�'M��� �J��b�#�$�S�X �%�

(����MHJcY� ��� '!_Ub�#!$%��X
R d%��� ��$�#�'G��e!�

� ���!�%������� ����L7#�$%�%\
(��%�MH

^CX X #%L ���[� #�'
b�#�$�S�X �

I�%L!X �����M��� ���
����� �

"�#����J#�'
(�������X ��� �%�

"�e%�!'�'!�YX
"f#%���%#%� �%�

cY� #��gP!� d�������� �!� bJ�%LM��#��%�T#%_��T���hc���#��QI�!���YX #��!��� c���#�� N)O �?� ��� N �!�%L!� Z[� L7�!��� #�'

c%#��)I�%��X # O ����' ��#�'iE#%$��!� c�#���c��%��$%d!�%LMHC� #aI�M���YX #��!���

]�'!��� _ O b�#�$���X
]��0�[� ����� #��

c���S�X �Yb�#�$!�YX

"�#�����j!b�#�$���X

Fig. 5. The ATaG compilation framework.

optimizations possible in the process to meet the user-specified performance goals (e.g.
energy efficiency). Note that although tasks are assigned fixed locations at the end of
the compilation process, task migration can happen later if the the underlying system
supports it. Even in such situations, a good initial task placement by a compiler using
global knowledge can go a long way in creating efficient systems. In the following sec-
tion, we describe how the components of the compilation framework work to produce
the outputs from the inputs, using the ITaG notation internally.

4 Compilation Framework

ATaG is designed to enable the addition of domain-specific constructs, and customize
the abstractions offered depending on the application requirements. This requires a flex-
ible and extensible approach to the compilation problem. Ideally, the system designer
should be given the ability to add new language constructs by implementing the re-
quired mappings without modifying any of the pre-existing compilation mechanisms.
For instance, creating a new instantiation rule should not require modifications to the
algorithms used to map tasks to nodes using an existing rule.

To address this issue, we first identified the different steps involved in the compi-
lation of ATaG programs by factoring out orthogonal concerns and mechanisms. Next,
considering the decomposition obtained, we designed a modular compilation frame-
work, upon which we based the construction of our ATaG compiler. In this section, we
first illustrate the input and output of our framework (illustrated in Fig. 5), and then
proceed to the description of the different modules implementing the compilation itself.

4.1 Compilation Input and Output

The information provided at the beginning of a compilation effort are:

ATaG declarative specification: consisting of the abstract task graph itself, i.e., the set
of abstract tasks and abstract data items, connected by abstract channels.

ATaG imperative code: namely, the description of the actions taken when each task is
fired, expressed in an imperative language.

DART run-time templates: including both the node-level code later customized by the
compiler, and generic supporting mechanisms, e.g., for routing messages.

Network description: containing information on the target deployment scenario, e.g.,
number, location and attributes of nodes. The attributes may contain information about
the logical region the node is in (e.g., floor number), and the sensors or actuators at-
tached to it. The need for a separate network description is dictated by ATaG’s charac-
teristic of being deployment agnostic. Since ATaG programs do not assume any specific
target deployment, the program can be easily re-deployed if the target changes. More-
over, the network description does not necessarily include information on node connec-
tivity. Depending on the constructs employed in the ATaG program, it may be sufficient
to provide the list of target nodes along with the corresponding attributes exported.

The above input to the compilation framework is used to derive: (i) the files to
be deployed on the real nodes, sorted according to the node identifier, and (ii) cost
estimates to provide feedback to the application developer. Note that the actual nature
of the cost estimates returned can vary depending on the developer needs. The costs
returned may simply represent a measure of the communication overhead involved,
e.g., in terms of messages exchanged per minute on a system-wide scale. Alternatively,
finer-grained information may be computed, such as the expected per-node lifetime.

4.2 Compilation Modules

We encapsulated the compilation stages we identified in separated modules, and de-
fined generic interfaces between them so as to minimize inter-module dependencies.
Our current prototype implementation has 2677 lines of non-commented Java code.
Still referring to Fig. 5, we now describe these different modules, also pointing out the
implementations we have realized so far.

Parser. The parser converts text files containing the declarative part of the program to an
internal representation that is then used by the other modules. This process also involves
a syntax check where errors such as duplicate task/data names and the existence of more
than one producer task for one data item are identified and reported to the programmer.

In our current implementation, the declarative part of the ATaG program is specified
using XML. This will allow an easy integration of tools for the automated generation
of XML specifications from graphical representations. Our parser module is a simple
XML parser that performs the aforementioned checks, assigns unique IDs to tasks and
data items, and populates an internal data structure with the information.

Imperative Code Generator. Based on the parser output, the imperative code generator
creates a set of files containing the basic declaration of the variables associated with
each task and data items. The imperative part of the code provided by the programmer
can then be plugged into these templates.

In our prototype implementation, the imperative part of an ATaG program is ex-
pressed using Java. As such, our current code generator creates Java files with unique
numerical constants for each abstract task and data item corresponding to their id. Then,
it creates a separate class for each abstract task with basic functionality filled in (e.g., a
thread instance with a loop for periodic tasks).

Channel Composer. Looking at the declarative part of the ATaG program returned by
the parser, this module performs the composition of channels to and from each data item
to form edges of the ITaG, as described in Sect. 3.

Depending on the actual channel annotations supported, our prototype implemen-
tation may perform a range of operations, from a simple concatenation to complex
operations that also consider the instantiation rules of the producer/consumer tasks.

ITaG Creator. Based on the network description and the output of the channel transla-
tor, the ITaG creator first computes the number of distinct target regions for each task,
i.e., the set of candidate nodes for hosting a given task. For instance, tasks instantiated
with nodes-per-instance:x as instantiation rule have the entire system as target
region. For tasks assigned by partition-per-instance:x/PLabel, each set
of nodes with the same value for PLabel is a target region. The ITaG creator then in-
stantiates as many copies of the task as the product of the number of target regions and
the number of instances per target region required in the ATaG program. Note that, at
this stage, tasks are instantiated but not yet assigned to nodes. That is done by the task
allocator module, discussed next.

Our implementation of this module performs the above operations using the net-
work description read from a text file containing basic information on the nodes, e.g.,
their identifier, and set of attributes describing their characteristics, such as sensing de-
vices installed.

Task Allocation Module. As such, the allocation module constitutes the core of the
compilation process, since its job is to output a mapping from the set of instanti-
ated tasks to the set of nodes. Note the task instantiation rules can be characterized
as either fixed location (e.g., nodes-per-instance:1) or variable location (e.g.,
nodes-per-instance:3), depending on whether there is a unique way of instan-
tiating the copies of a task given the network description. In this respect, an extremely
large problem space exists depending on the annotations used, metrics to be optimized,
and properties of the network. To perform its job, the allocation module relies on two
further modules—the estimator and the task firing model–described next.

In our implementation, this module performs task allocation in two passes. In the
first pass, it assigns all the tasks with fixed locations. In the second pass, it assigns vari-
able location tasks. For the latter, we currently employ a simple randomized assignment
policy, with each node in the target region having an equal probability of hosting the
instances of the task. However, due to the generality of our framework, more sophis-
ticated mechanisms can be plugged in to achieve performance goals specified by the
application designer. This is among our immediate research goals.

Estimator. Taking as inputs the network description and the task placement returned
by the allocation module, the estimator computes the cost metric returned at the end of
the compilation process. Our framework gives great flexibility in instantiating this mod-
ule, as its interface is designed to be generic w.r.t. the nature of information required.
This allows application developers to explore the trade-off between the quality of the
estimate obtained, and the time required to obtain it. For instance, during the early de-
sign stages it is usually helpful to have a quick estimate of the communication costs, so
that many alternative solutions can be explored. In this case, a simple but fast estima-
tion algorithm can be employed that does not account for message losses. Conversely,
when the application developer is to fine-tune the application, an actual simulation of
the deployed application can be run within the estimator.

In our prototype system, we implemented both ends of the spectrum. Specifically,
we realized a naive estimator returning communication costs as if all the tasks pro-
duced data when fired and the underlying routing mechanisms were able to identify
the optimal message routes. On the other hand, we also implemented a wrapper around
SWANS/Jist [3]: a simulator able to run unmodified Java code on top of a simulated
network. This plug-and-play capability highlights the power of our framework.

Task Firing Model. It would appear that if we know the exact paths taken by the data
items, we can precisely estimate the cost of running a given task allocation. However,
not all instantiated tasks produce data when they fire. For instance, although a Temper-
ature Sampler task may produce a Temperature data item whenever it fires, an Alarm
task may or may not produce an alarm depending on whether or not the temperature of
the region is high enough. The task firing model’s function is to assign probabilities to
the firing of various tasks in the program. Although this module is not mandatory for a
working compiler, various approaches can be used to obtain the needed information -
ranging from the developer providing profiling data obtained from previous runs of the
system, to static code analysis techniques [4, 6].

System Linker. At the end of the whole process, the linker module combines the in-
formation generated by the various paths of the compilation into the actual code to be
deployed on the real nodes. More specifically, it configures the ATaGManager and Dat-
aPool modules in the node-level run-time depending on the task and data items handled
at each node, and merges the imperative code provided by the application developer
with the templates generated by the imperative code generator.

In our implementation, the output of this module is a set of Java packages for each
node. Note that these files are not binaries. They still need to be compiled in the classical
sense, but that can be done by any node-level compiler designed for the target platform.

��� � ��� � � � � � 	 �
 �

�� ��� ��� ��	 �
�� � � � �
 � �

�� ��� ��� ��	 �

� � �
 �
 � � 	 � � � � � � 	 �
 	 � � �
� !�� � � "# $ ��� �
 � � %

� 	 $ &
 %

�� ��� ��� � 	 �
'�� � � � $ � �

� 	 ��& � � � � � � � � 	 �
 	 � � �
� ()� ��� ��� ��	 � ���
 �
 � � %

� 	 $ &�
 %

��� � ��� � � &

��� � � &�� � ���

�� � � � �
 � �

��� � � &�� � ���

& ���* � 	

��� � � &�� � �*�

'�� � � � $ � �

� 	 ��& � � � � � � � � 	 �
 	 � � �
� (+� � � � & ��� �,�
 ���
 �
 � � %

� 	 $ &
 %

� ��� �

� � ��� � � � � ��� � ���
- !�� � � "# $ ��� �
 ��� .

�� ��� �� �*��� � �

/�� � � � � � 0�� � � � 	 � �

&�� �* � 	

��� ���#� � � � � � 	 �
 �
�� � � ���
 � �

� � � �

��� � � & �� ��� � � �

�� "#��� � � &

��� � ��� � � &
�� � � ���
 � �

� � � � � � � �

� 	 � &�� � � � � � � � 	 �
 	 � � �
� (1� � � � � 	 � � ��� 	 � ��� %

� � � � � � &�� � � � 2 %

� 	 � & � � � � � � � � 	 �
 	 � � �
� (+� � � � &�� � 	 � ��� %
� � � � � � &�� � � � 2 %

& ���* � 	� � � �

� � �
 �
 � � 	 � � � � � � 	 �
 	 � � �
� !�� � � "# $ ��� �
 � � %

� 	 $ &
 %

� � �
 �
 � ��	 � � � � � � 	 �
 	 � � �
� !�� ��� "3 $ ��� �
 ��� %

� 	 $ &
 %

� � �
 �
 � � 	 � � � � � � 	 �
 	 � � �
� !�� � � "3 $ ��� �
 ��� %

� 	 $ &
 %

� � � � � � � � ��� � � �
- !�� � � "3 $ ��� �
 � � .

� ����� � � � � ��� � � �
- !�� ��� "# $ ��� �
 � � .

� ��� � � � � � � � � � �
- !�� ��� "� $ ��� �
 ��� .

& ���* � 	 � � � �

Fig. 6. An ATaG program for highway traffic management.

5 Demonstration

4#5�617 8�7 9 :+;=< 6?>�@ A B

4#5�6C7 8�7 9 :

D#E�@ @ A�F 9 E�B

G3F 9 7 E�H

I J�K*L M N

4=O=G*DPD#E=H 9 B E�@ @ A�B

Q J R L QQ J R L Q

I J�K3L M N

S�A�61>�A�B < 9 5�B A
;=<�61>�@ A�B

S�A�61>�A�B < 9 5�B A

Q J R L Q
I J�K*L M N

T N J I U V W X U Y W M N V Z L N R U [
\]^Z U K�X U Y L Z _ Y U `�U N V J Y a

T X U Y M J I�M R [\ b a

T N J I U V W X U Y W M N V Z L N R U [
\]Cc _ K�M I�M Z d `�U N V J�Y a
T X U Y M J I�M R [\ b a

T X L Y Z M Z M J N W X U Y W M N V Z L N R U [
\ e f Q J J�Y a
T L N d I L Z L a

T N J I U V W X U Y W M N V Z L N R U [
\])c g L R h�R Z _ L Z J Y a

T L N d I L Z L a

Fig. 7. An ATaG program for building environment
management.

To demonstrate the effective-
ness of our prototype compiler,
we consider two non-trivial ap-
plications, and report on the
functionality of the code gener-
ated, as well as the performance
of the compilation process.

The first application, il-
lustrated in Fig. 6, describes
a highway traffic management
system. In this case, two differ-

ent sub-goals must be achieved - regulating the speed of vehicles on the highway by
controlling speed limit displays, and controlling the access to the highway by means
of red/green signals on the ramps. The highway is divided into sectors, and sensors
are deployed on the highway lanes and ramps to sense the speed and presence of ve-
hicles, respectively. The sensed data goes through a multi-stage process where it is
first aggregated w.r.t. a single sector to derive an average measure (AvgSpeedCalculator
and AvgQueueLengthCalculator tasks), and then delivered to tasks deciding the actions
taken in adjacent highway sectors (SpeedLimitCalculator and RampSignalCalculator
tasks). Note the latter is expressed using the logical-hops construct relative to the
HighwaySector attribute. Finally, data items describing the actions to perform are
delivered to dedicated tasks instantiated on nodes equipped with the corresponding de-
vice, i.e., speed limit displays for the SpeedLimitDisplayer, and ramp signals for the
RampSignalDisplayer.

The second application, depicted in Fig. 7, targets a building environment man-
agement system. Essentially, the processing is similar to the cluster-based data ag-

gregation of Fig. 2, but now gathering data from two different types of sensors. The
@TemperatureSensor and @HumiditySensor constructs are used to distin-
guish nodes with different types of sensing devices. Additionally, the cluster-head also
outputs data items representing actions to perform on the environment. These items are
input to an additional task that actually operates the heating, ventilation, and air con-
ditioner (HVAC) devices in the building. As for this, the programmer requires the task to
be instantiated on nodes with HVAC devices installed by means of the @hvacActuator
construct.

Code Functionality. We hand-coded the logic for both applications to perform simu-
lation studies on the underlying routing mechanisms [16]. The hand-written code also
allowed us to verify the functionality of our compiler, by comparing the automatically
generated code with the one we used in the aforementioned studies. Indeed, by com-
paring the simulation logs obtained using the SWANS/Jist [3] simulator, we confirmed
that the compiler-generated code is functionally equivalent to the hand-written version.
The specific code samples can be found at [21].

Building Traffic

Abstract Tasks 4 8
nodes-per-instance:x@PLabel 3 4
partition-per-instance:x/PLabel 1 4

Abstract Data Items 3 6

Abstract Channels 6 14
local 3 6
domain 3 4
logical-hops:1(PLabel) 0 4

Fig. 8. Sample applications.

Settings for Performance Studies. We look at
the time and memory taken to compile the above
ATaG programs. Since our task firing model as-
sumes that all tasks produce data when fired, the
specific imperative code of the tasks does not in-
fluence the complexity of compilation. Rather,
the compiler’s performance is mainly dictated by
the declarative part of an ATaG program and the
characteristics of the deployment environment.
More specifically, we recognized the following

factors are pivotal in determining the time/memory taken to compile:

1. the number of abstract tasks, data items, and channels,

2. the nature of instantiation rules and channel interests, and

3. the number of nodes specified in the network description.

The complexity of the compilation task comes from different sources. The effort in
composing channels is dependent on the actual channel annotations used, as well as the
number of channels themselves. The ITaG creation stage becomes more complex as the
complexity of the network grows. Note that this includes the number of logical regions
the network can be divided into, as well as the variation in the attributes of the nodes.
The size of the problem addressed by the task allocation module depends both on the
network size as well as the constraints used in the program. For instance, placing a task
whose instantiation rule is in the form partition-per-instance:x/PLabel
requires more processing than placing a task with nodes-per-instance:1. All
this in turn affects the performance of the system linker as it customizes the run-time on
each node. Figure 8 reports the values of these factors seen in our sample applications.

In our tests, the compilation framework has been instantiated with the prototype im-
plementations we described in Sect. 4 for each module. In particular, we have chosen to
employ the naive estimator and an always-firing task firing model. For each test we per-

 2000

 4000

 6000

 8000

 10000

 12000

 50 100 150 200 250 300

A
vg

 ti
m

e
to

 c
om

pi
le

 (
m

s)

Nodes

Traffic Application
Building Application

(a) Time taken to compile.

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300

M
ax

 m
em

or
y

co
ns

um
pt

io
n

(M
b)

Nodes

Traffic Application
Building Application

(b) Maximum memory consumed dur-
ing compilation.

Fig. 9. Compiler performance.

formed, we repeated the compilation process 500 times to account for fluctuations due
to concurrent processes. The experiments were on a Pentium IV HT 3.2 Ghz running
Gentoo Linux 2.16.15, using the DJProf [7] profiler.

Performance Results. Figure 9 illustrates the performance of our compiler as a func-
tion of the number of target nodes. As expected, the time taken to compile an ATaG
program grows quadratically as the number of nodes increases. This is due to the naive
estimator we used, that computes the all-to-all shortest path with an algorithm whose
time complexity is quadratic w.r.t. the number of vertices. However, fairly large in-
stances can be compiled in reasonable time. For instance, slightly more than ten seconds
are needed to compile the traffic application for a target system with > 250 nodes.

In addition, the memory consumed during the compilation process exhibits a linear
increase with respect to the number of nodes in the deployed system. The source of this
behavior is in the data structures we employed in the ITaG creator and allocation mod-
ules, that allocate a fixed amount of data for each target node. The memory consumed
is always well within the limits of standard desktop PCs (< 100 MB).

In exchange for the above costs in term of memory and time, the framework buys the
developer ease-of-use in implementing the application using ATaG macroprograms. To
reassert this fact, we note that looking at the number of Java classes compiled to deploy
our traffic application on a single node, it turns out only 15 out of a total of 51 classes
are the direct result of the developer’s effort. The others are the implementation of the
DART run-time system. Furthermore, considering the actual number of lines of non-
commented code, only about 12% of the imperative code is hand-written by developers,
whereas the rest is either part of the run-time support, or automatically generated.

6 Discussion

Initial programmming of WSNs was done by the nesC [8] language and the tinyOS op-
erating system [12], and helped a wide research community build and test applications
and system components for networked sensing [9, 13, 14, 23]. Over time, tools such as
SNACK [10] were developed to support the programmers of such systems, and sen-
sor nodes supporting more traditional programming languages such as Java have also
emerged [24]. However, the compilers of all these languages are essentially node-level
compilers, not very different from the common C compiler used on larger machines.

Various macroprogramming approaches have been proposed recently to alleviate
the programming burden for WSN application developers [11, 20]. Since we are not
aware of published work specifically detailing their compilation process, we compare
our work with the issues we expect would be addressed by similar systems for these lan-
guages based on existing literature. Kairos [11] is an imperative, control driven macro-
programming language where the application designer can write a single program in a
Python-like language with additional keywords to express parallelism. A ‘centralized’
program describes the activities at all nodes in the system and is translated into node-
level binaries by a dedicated compiler. Since the program is written in an imperative
form, and whether the action will be performed at a particular node or not is decided by
conditions mentioned in the macroprogram itself, the issues faced by the compiler are
very different from ours. For example, there is no channel composition to be done and
no specific tasks to be allocated.

Regiment [20] is a functional programming language, with support for region-based
functions like filtering, aggregation and function-mapping. The Regiment primitives
operate on a model of the sensor network as a set of continuous data streams. In [19],
the authors introduced the TML intermediate language to represent the actions being
performed at individual nodes. The authors state that Regiment programs can be seen as
data flow graphs, with primitives such as afold combining functions and data on actual
nodes to produce data. Although the functional programming approach of Regiment is
very different from the data-driven approach of ATaG, the above similarity (ATaG tasks
combine data produced at other nodes to produce more data) might lead to some re-use
of our ideas in the compilation of Regiment macroprograms.

EnviroSuite [15] is an object-based programming system that introduces the en-
vironmentally immersive paradigm. Its abstractions revolve directly around elements
of the environment as opposed to sensor network constructs, such as regions, neighbor-
hoods, or sensor groups. Object instances float across the network following (geograph-
ically) the elements they represent. The EnviroSuite Compiler (EIPLC) is essentially a
translator that takes EnviroSuite code as input and outputs desired environmental mon-
itoring applications in nesC, which then can be compiled by a standard nesC compiler
and uploaded to the motes.

This paper does not claim to completely solve the problem of compilation of macro-
programs for WSN applications. Our main focus is to present a clear set of subtasks
involved in the process, and the interrelationships of the modules implementing them.
We believe that this will contribute towards the achievement of two goals. By clearly
identifying the modules, we can help researchers in the community attack the particu-
lar subtasks involved in compilation. Clearly, more efficient techniques are required to

provide the functionalities of the Estimator, Task Firing Model, and the Task Allocation
module. Another issue that remains to be addressed is the possibility of timing conflicts
among the tasks that are instantiated on a node, which is part of our future work. Fur-
ther, by presenting a proof of concept implementation of the compiler, domain experts
can begin to use the ATaG macroprogramming framework and provide us feedback on
the language, the compiler as well as the runtime system. Although our current imple-
mentation runs on a simulator, the nature of the SWANS/Jist system is such that the
same code can be run on actual nodes. We indend to present a demo of our approach on
SunSPOT [24] nodes in the near future.

7 Concluding Remarks

In this paper, we presented a general compilation framework for a data-driven macro-
programming language for sensor networks. We demonstrated the feasibility of our
approach by developing a compiler that can convert macroprograms written in ATaG
into a running sensor system. Our experiments indicate that the time taken to compile
the macroprogram depends closely on the complexity of both the macroprogram and
that of the target sensor system.

Our compilation framework currently assumes a static network structure, which
greatly limits the class of applications that we can address using this approach. Even in
those applications, issues such as faults cannot be addressed by the current approach.
Our immediate future work will involve exploring on-line task migration algorithms
that can continually work for optimizing the task allocation, in addition to efficient
algorithms for ascertaining good initial task placements.

References

1. A. Bakshi, A. Pathak, and V. K. Prasanna. System-level support for macroprogramming of
networked sensing applications. In Int. Conf. on Pervasive Systems and Computing (PSC),
2005.

2. A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner. The abstract task graph: A methodology
for architecture-independent programming of networked sensor systems. In Workshop on
End-to-end Sense-and-respond Systems (EESR), June 2005.

3. R. Barr, Z. J. Haas, and R. van Renesse. Jist: an efficient approach to simulation using virtual
machines. Softw. Pract. Exper., 35(6), 2005.

4. G. Bernat, A. Burns, and A. Wellings. Portable worst-case execution time analysis using java
byte code. In Proc. of the 12

nd Euromicro Conf. on Real-Time Systems, 2000.
5. W. Choi, P. Shah, and S. Das. A framework for energy-saving data gathering using two-

phase clustering in wireless sensor networks. In Proc. of the 1
st Int. Conf. on Mobile and

Ubiquitous Systems: Networking and Services (MOBIQUITOUS), 2004.
6. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and H. Zheng.

Bandera: extracting finite-state models from java source code. In Proc. of the 22
nd Int. Conf.

on Software Engineering (ICSE), 2000.
7. DJProf Java Profiler, www.mcs.vuw.ac.nz/ djp/djprof/.
8. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC language:

A holistic approach to networked embedded systems. In Proceedings of Programming Lan-
guage Design and Implementation (PLDI), 2003.

9. Habitat Monitoring on the Great Duck Island. www.greatisland.net.
10. B. Greenstein, E. Kohler, and D. Estrin. A sensor network application construction kit

(SNACK). In 2nd ACM Conference on Embedded Networked Sensor Systems, 2004.
11. R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sensor networks

using Kairos. In Proc. of the 1
st Int. Conf. on Distributed Computing in Sensor Systems

(DCOSS), June 2005.
12. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture direc-

tions for networked sensors. SIGOPS Oper. Syst. Rev., 34(5):93–104, 2000.
13. B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless networks.

In Proc. ACM/IEEE MobiCom, August 2000.
14. B. Krishnamachari. Networking Wireless Sensors. Cambridge University Press, 2006.
15. L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic. Envirosuite: An environmentally

immersive programming framework for sensor networks. Trans. on Embedded Computing
Sys., 5(3):543–576, 2006.

16. L. Mottola, A. Pathak, A. Bakshi, V. K. Prasanna, and G. Picco. Enabling Scoping in Sen-
sor Network Macroprogramming. Technical report. Submitted for publication. Available at
http://indus.usc.edu/atag, 2006.

17. L. Mottola and G. P. Picco. Logical Neighborhoods: A programming abstraction for wireless
sensor networks. In Proc. of the the 2

nd Int. Conf. on Distributed Computing on Sensor
Systems (DCOSS), 2006.

18. L. Mottola and G. P. Picco. Programming wireless sensor networks with logical neighbor-
hoods. In Proc. of the 1

st Int. Conf. on Integrated Internet Ad hoc and Sensor Networks
(InterSense), 2006.

19. R. Newton, Arvind, and M. Welsh. Building up to macroprogramming: An intermediate
language for sensor networks. In Proc. of the 4

th Int. Conf. on Information Processing in
Sensor Networks (IPSN), 2005.

20. R. Newton and M. Welsh. Region streams: Functional macroprogramming for sensor net-
works. In Proc of the 1

st Int. Workshop on Data Management for Sensor Networks (DMSN),
2004.

21. A. Pathak, L. Mottola, A. Bakshi, V. K. Prasanna, and G. P. Picco. Compiling macropro-
grams using the ATaG compilation framework, http://indus.usc.edu/atag. Technical report,
University of Southern California, 2007.

22. A. Pathak and V. K. Prasanna. Issues in Designing a Compilation Framework for Macro-
programmed Networked Sensor Systems. In Proc. of the the 1

st Int. Conf. on Integrated
Internet Ad hoc and Sensor Networks (InterSense), 2006.

23. M. Rahimi, M. Hansen, W. Kaiser, G. Sukhatme, and D. Estrin. Adaptive sampling for
environmental field estimation using robotic sensors. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), August 2005.

24. SunTM Small Programmable Object Technology (Sun SPOT),
www.sunspotworld.com.

