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Differential patterns 
of cross‑reactive antibody response 
against SARS‑CoV‑2 spike 
protein detected for chronically 
ill and healthy COVID‑19 naïve 
individuals
Mariliis Jaago1,2,18, Annika Rähni1,2,18, Nadežda Pupina1, Arno Pihlak1, Helle Sadam1,2, 
Jürgen Tuvikene1,2,17, Annela Avarlaid2, Anu Planken3, Margus Planken3, Liina Haring4, 
Eero Vasar5,6, Miljana Baćević7, France Lambert8, Eija Kalso9,10, Pirkko Pussinen11, 
Pentti J. Tienari12, Antti Vaheri13, Dan Lindholm14,15, Tõnis Timmusk1,2, 
Amir M. Ghaemmaghami16 & Kaia Palm1*

Immunity to previously encountered viruses can alter response to unrelated pathogens. We reasoned 
that similar mechanism may also involve SARS‑CoV‑2 and thereby affect the specificity and the quality 
of the immune response against the virus. Here, we employed high‑throughput next generation phage 
display method to explore the link between antibody immune response to previously encountered 
antigens and spike (S) glycoprotein. By profiling the antibody response in COVID‑19 naïve individuals 
with a diverse clinical history (including cardiovascular, neurological, or oncological diseases), we 
identified 15 highly antigenic epitopes on spike protein that showed cross‑reactivity with antigens of 
seasonal, persistent, latent or chronic infections from common human viruses. We observed varying 
degrees of cross‑reactivity of different viral antigens with S in an epitope‑specific manner. The data 
show that pre‑existing SARS‑CoV‑2 S1 and S2 cross‑reactive serum antibody is readily detectable 
in pre‑pandemic cohort. In the severe COVID‑19 cases, we found differential antibody response to 
the 15 defined antigenic and cross‑reactive epitopes on spike. We also noted that despite the high 
mutation rates of Omicron (B.1.1.529) variants of SARS‑CoV‑2, some of the epitopes overlapped 
with the described mutations. Finally, we propose that the resolved epitopes on spike if targeted by 
re‑called antibody response from SARS‑CoV‑2 infections or vaccinations can function in chronically ill 
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COVID‑19 naïve/unvaccinated individuals as immunogenic targets to boost antibodies augmenting the 
chronic conditions. Understanding the relationships between prior antigen exposure at the antibody 
epitope level and the immune response to subsequent infections with viruses from a different strain is 
paramount to guiding strategies to exit the COVID‑19 pandemic.

Abbreviations
ACE2  Angiotensin-converting enzyme 2
ADE  Antibody-dependent enhancement
AUROC  Area under the receiver operating characteristic
BC  Breast cancer
CAD  Coronary artery disease
CMV  Human cytomegalovirus
CoV  Coronavirus
CVD  Cardiovascular disease
Dot-ELISA  Dot enzyme-linked immunosorbent assay
EBV  Epstein-Barr virus
FEP  First episode psychosis
HCoV  Human coronavirus
HLA  Human leukocyte antigen
HSV-1  Herpes simplex virus-1
HT  Hypertension
mAb  Monoclonal antibody
MI  Myocardial infarction
MS  Multiple sclerosis
MVA  Mimotope-variation analysis
ND  Neuropsychiatric disorder
NP  Neuropathic pain
RBD  Receptor binding domain
RU  Relative unit
S  SARS-CoV-2 spike glycoprotein
S1  S1 subunit of S
S2  S2 subunit of S
SZ  Schizophrenia
T2D  Type 2 diabetes

The coronavirus disease 2019 (COVID-19) pandemic has unveiled the pathogenicity of SARS-CoV-2 with surges 
by the currently prevailing SARS-CoV-2 variant B.1.1.529 (described first in 2021)1 designated as Omicron dis-
playing unusually large number of mutations and fast-spreading  sublineages2,3. In general, clinical manifestations 
of SARS-CoV-2 infection range from asymptomatic and relatively milder, flu-like  symptoms4–6 to long-lasting 
complications known as the post-COVID syndrome or long  COVID7,8. This complex clinical picture along with 
confirmative studies that vaccination protects against severe forms of  disease9 points to the immune system as 
a key factor in the control of SARS-CoV-210.

The relative manifestation of symptoms in infected is likely attributable to the partial protection conferred by 
the pre-existing immune memory. The preference of the immune system to recall existing memory cells, rather 
than stimulate a de novo response when encountering a novel but closely related antigen is referred to as immune 
imprinting, historically known as original antigenic  sin11. Overall, immune imprinting would lead to enhanced 
immunity, whereas established pre-immunity may also increase cross-reactive antibody response towards 
epitopes that are shared between the current and the previously encountered  antigen12,13. Studies have observed 
cross-reactivity between endemic common cold human coronaviruses (HCoVs) and SARS-CoV-214–16,whereas 
whether this cross-reactivity17,18 is beneficial or detrimental to COVID-19 disease is not  clear14,19–25. Cross-
reactivity through heterologous immunity may arise through recognition of identical antigenic epitopes shared 
by different pathogens, or through recognition of unrelated epitopes owing to cross-reactivity of individual T 
and B cell  receptors26. Shifts in antibody response to respiratory syncytial virus, cytomegalovirus (CMV) and 
herpes simplex virus-1 (HSV-1) were noted in patients with severe COVID-1927. Cross-protective effects of non-
COVID-19 vaccines against SARS-CoV-2 are currently tested in clinical trials for polio, measles-mumps-rubella, 
influenza, and Bacillus Calmette–Guérin vaccines (rev  in28) with promising pre-publication  findings29. Collec-
tively these data demonstrate that people at the stage of the current pandemic carry heterogeneous, immune-
imprinted repertoires derived from their distinctive histories of infection and vaccination.

Given that the infections with SARS-CoV-2, in particular with its Omicron variants have become so com-
mon, it is likely that these confer boosting to the prior immune repertoire. Reports are emerging on find-
ings of IgG autoantibodies in COVID-19 patients with a significant subset of patients developing new-onset 
 autoantibodies30–33 that could place them at risk for progression to autoimmunity. Studies reporting on myo-
carditis after receiving mRNA vaccines against COVID-1934–38 suggest molecular mimicry between the vaccine 
product and self-antigens as an underlying  mechanism39.

Given that the relationships between prior antigen exposure, through infection or vaccination with SARS-
CoV-2, and the immune responses to subsequent infections with emerging viruses is still incompletely under-
stood, but is of paramount importance to exit the COVID-19 pandemic, we employed an unbiased approach 
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of next generation peptide phage display mimotope variation analysis (MVA)40,41, to delineate cross-reactive 
immunity hallmarks on SARS-CoV-2 S glycoprotein in COVID-19 naïve subjects. Using samples from both 
COVID-19 naïve individuals and patients with a COVID-19 diagnosis, we identified pre-existing antibody 
response to multiple S protein sites by using recombinant S protein subunits of SARS-CoV-2 that was increased 
in patients with severe COVID-19 disease. Among these, three epitopes with cross-reactivity to SARS-CoV-2 
S were features of underlying acute and/or chronic clinical conditions. Thus, highlighting the risk for chronic 
condition exacerbation following SARS-CoV-2 S protein exposure due to infection or vaccination.

Star★methods
Key resources table. 

Reagent or resource Source Identifier

Antibodies

Human IgG reference pool Sigma-Aldrich Cat#i4506

Rabbit anti-human IgG (H&L) (HRP) Abcam Cat#ab6759

Biological samples (serum, plasma)

COVID-19 Tartu University Hospital COVID-19

Coronary artery disease Helsinki University Hospital CVD (CAD)

Myocardial infarction North Estonia Regional Hospital CVD (MI)

T2D and T2D with foot ulcers (DFU) University of Liege T2D

Multiple sclerosis Helsinki University Hospital MS

Breast cancer Helsinki University Hospital BC

First episode psychosis, schizophrenia Psychiatry Clinic of Tartu University 
Hospital, Helsinki University Hospital ND (FEP; SZ)

Healthy donor North Estonia Medical Blood Centre HC

Chemicals, peptides, and recombinant proteins

SARS-CoV-2 spike protein S1 subunit Icosagen Cat#P-305-100

SARS-CoV-2 spike protein S2 subunit Icosagen Cat#P-306-100

Ph.D.™-12 phage display peptide library (modi-
fied from original library) New England Biolabs Cat#E8110S

Critical commercial assays

Catalysed signal amplification (CSA) system II, 
biotin-free, HRP, DAB+ Dako (Agilent) Cat#K1497

Anti-CMV ELISA (IgG) EUROIMMUN Cat# EI 2570-9601 G

Anti-EBV-CA ELISA (IgG) EUROIMMUN Cat# EI 2791-9601 G

Software and algorithms

SPEXS2 algorithm Courtesy of Egon Elbre https:// github. com/ egone lbre/ spexs2

ImageJ v. 1.53a Schneider et al., 2012 https:// imagej. nih. gov/ ij/

RStudio v. 1.3.959 RStudio Team, 2020 https:// www. rstud io. com

R “tidyverse” packages Wickham et al., 2019 https:// doi. org/ 10. 21105/ joss. 01686

R “HPAanalyze” package Tran et al., 2019 https:// doi. org/ 10. 1186/ s12859- 019- 3059-z

R “ggpubr” package Courtesy of Kassambara https:// CRAN.R- proje ct. org/ packa ge= ggpubr

R “ggbeeswarm” package Courtesy of Clarke and Sherrill-Mix https:// CRAN.R- proje ct. org/ packa ge= ggbee 
swarm

MS Office Excel 2016 Microsoft Corporation https:// www. micro soft. com

Adobe Photoshop CS4 version 11.0 Adobe Systems Inc https:// www. adobe. com

Other

Protein G magnetic beads New England Biolabs Cat#S1430S

Immune epitope database Immune Epitope Database https:// www. iedb. org

Human protein atlas v.20.0 Uhlen et al.,  201542 https:// www. prote inatl as. org

UniProtKB human reference proteome 43 https:// www. unipr ot. org/ prote omes/ UP000 
005640; ID: UP000005640

SARS-CoV-2 proteome sequences 44 https:// www. viral zone. expasy. org/ 8996

Experimental model and subject details
Ethics declarations. The study was conducted in accordance with the guiding principles of the Declaration 
of 182 Helsinki and the study participants gave written informed consent before enrolment. The sample data 
on myocardial infarction (MI), breast cancer (BC) and schizophrenia (SZ) samples are described in detail in 
Pupina et al.  202245. The use of multiple sclerosis (MS) and coronary artery disease (CAD) cohort samples was 
approved by the regional ethics committees (Dno 83/13/03/01/201340 and licence no 106/200746, respectively). 
Use of samples from type II diabetes (T2D) patients was approved by the Ethics Committee of University Hos-
pital of Liege (permit no 2018/78). First-episode psychosis (FEP) cohort and samples from COVID-19 patients 

https://github.com/egonelbre/spexs2
https://imagej.nih.gov/ij/
https://www.rstudio.com
https://doi.org/10.21105/joss.01686
https://doi.org/10.1186/s12859-019-3059-z
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=ggbeeswarm
https://CRAN.R-project.org/package=ggbeeswarm
https://www.microsoft.com
https://www.adobe.com
https://www.iedb.org
https://www.proteinatlas.org
https://www.uniprot.org/proteomes/UP000005640
https://www.uniprot.org/proteomes/UP000005640
https://www.viralzone.expasy.org/8996
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were used with the approval of the Ethics Committee of the University of Tartu (licenses no. 362/T-3 and 312T-2, 
respectively) and have previously been studied  in47,48. Healthy blood donor (HC) samples were procured from 
the North Estonia Medical Blood Centre (Tallinn, Estonia) and approved with study licence TAIEK no 1045.

Clinical cohorts. The antibody immune profiles were generated by MVA from SARS-CoV-2 naïve indi-
viduals (n = 538, Table 1), comprising patients with different clinical diagnoses (n = 276) and healthy controls 
(n = 262). COVID-19 naïve blood samples were collected prior to SARS-CoV-2 emergence (between April 2010 
to Dec 2018) and chosen to represent a cross-section of the general uninfected, unexposed, unvaccinated popu-
lation. Cardiovascular disease  (CAD46 and  MI45) and neuropsychiatric disease (FEP and  SZ45,47,48) samples are 
matched with control samples (Table 1) by the design of the original studies. Type II diabetes (T2D), multiple 
sclerosis (MS) and breast cancer (BC) sub-cohort patient samples have been analysed against selected controls 
samples (Table 1). In addition, time-series samples from six patients with COVID-19 diagnoses were analysed 
by MVA, and samples from two of these patients were analysed by dot-ELISA methods (Table S1). These samples 
were initially collected in the hospital emergency room (ER) and consecutive time-series samples were collected 
in the stationary care unit during disease progression or recovery process.

Method details
Mimotope‑variation analysis. For qualitative and quantitative characterisation of humoral immune 
response, we used an in-house developed mimotope-variation analysis (MVA) method as described 
 previously40,41. In brief, modified random 12-mer peptide phage library (Ph.D.-12, New England Biolabs) was 
used. Two µl of serum/plasma samples was precleared to plastic and E. coli/wild type M13 phage particles. After 
preclearing, serum/plasma samples were incubated with 2.5 μl library (~ 5 ×  1011 phage particles) and phage-
immunoglobulin G (IgG) antibody complexes were recovered using protein G-coated magnetic beads (S1430S, 
New England Biolabs). Captured phage DNA was analysed by next generation sequencing (Illumina HiSeq, 
50-bp single end reads) with barcoded primers for sample multiplexing. To evaluate the reproducibility of the 
data, we compared peptide abundance in two replicates using Pearson correlation coefficient, which was 0.985 
(p < 0.0001) (Fig. S1). Obtained sequences were bioinformatically cleaned of sequencing errors and known arte-
facts, yielding peptide profiles for further analysis.

Clustering of immunodominant peptide antigens. Peptides in a sample dataset cleaned of sequenc-
ing errors and known artefacts were normalised to 3 million reads (RPM units). SPEXS2 exhaustive pattern 
search  algorithm41 was used to cluster similar peptides and reveal recognition patters (epitope consensuses) 
that were enriched in studied peptide sets. The identification of core consensus sequences was either performed 
discriminatorily (see below for details), where selected peptide sets were studied for enrichment compared to 
control group, or non-discriminatorily (see below for details), where enrichment was identified compared to a 
random-generated peptide set (hypothesis-free). The decision of whether to compare sample peptides to ran-
dom-generated reference peptide sets or to peptides from matched controls samples was determined by the 
clinical question of the  study40,45,46with parameters chosen to maximise the number of epitope consensuses in 
the output. In brief, for each clinical group, 100,000s of distinct peptide antigens were used as input, from which 

Table 1.  Descriptions of clinical cohorts of COVID-19 naïve individuals.

No Cohort (abbreviation) Study group Group size (n) Gender
Age (mean ± standard 
deviation (SD)), years Origin Case or ctrl Previous studies

Cardiovascular diseases (CVD, with comorbidities including obesity, hypertension, diabetes)

1 CAD No-CAD 32 17M/15 F 60.2 ± 8.3 Finland Ctrl 46

Stable-CAD 32 26M/6F 64.3 ± 8.4 Finland Case 46

Acute coronary syndrome 32 24M/8F 61.3 ± 8.2 Finland Case 46

2 MI HC 61 25M/36F 46.2 ± 15.5 Estonia Ctrl 45

MI 50 29M/13F/10 not available 
(NA) 66.8 ± 12.6 Estonia Case 45

3 T2D and foot ulcer T2D 25 21M/4F 69.0 ± 8.7 Belgium Case None

Autoimmune disease

4 MS MS 20 4M/16F 32.3 ± 7.8 Finland Case 40,45

Cancer

5 BC BC 57 0M/57F 55.7 ± 7.2 Finland Case 45

Neuropsychiatric disorders (ND)

6 FEP HC 30 15M/15F 24.0 ± 6.1 Estonia Ctrl 47,48

FEP 30 16M/14F 25.6 ± 4.9 Estonia Case 40,47,48

7 SZ HC 30 12M/18F 42.1 ± 18.2 Finland Ctrl 45

SZ 30 12M/18F 41.9 ± 18.4 Finland Case 45

Healthy blood donors

8 Donors HC 109 64M/45F 40.6 ± 11.6 Estonia Ctrl 40,45
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1000s of distinct core epitopes were identified with SPEXS2 algorithm. The output of distinct core epitopes 
generated for each of the sub-cohorts (CAD, MI, T2D, BC, FEP, SZ, MS) were combined together and further 
analysis was carried out across the whole study cohort. Altogether a total set of core epitopes (n = 22,949) was 
generated, for the entire cohort including data from samples of different age groups, genders and clinical back-
ground. All the 22,949 consensus epitope sequences were aligned to primary sequence of the SARS-CoV-2 spike 
glycoprotein (S) (UniProtKB code: P0DTC2).

Non‑discriminatory clustering. The generation of distinct consensus epitopes (n = 8088) for CAD cohort 
is described in detail  in46. The generation of distinct consensus epitopes (n = 4019) for MI cohort is  in45.

For analysis of T2D with foot ulcer condition, most abundant and shared peptides from MVA immunoprofiles 
were selected with criteria: peptide must be present in ≥ 10 repeats in one sample; and must be present in ≥ 2 
samples. The resulting peptide set was compared with random-generated peptide set of same length and enriched 
consensuses were identified using SPEXS2 algorithm, using hypergeometric p-value <  10–7 and motif to be pre-
sent in ≥ 4 distinct peptides. As a result, epitopes (n = 1169) with ≥ 4 fixed amino acid positions were identified.

For cancer-related immunoprofiles, patients with surgically removed BC (denoted as BC), top 900 most abun-
dant peptides from each sample were screened separately for epitope consensus identification (≥ 5 fixed amino 
acid positions). These identified from ≥ 2 samples were extracted for further analysis and motifs more detected 
in BC were selected. Additionally, peptides from a large non-unique dataset (shared in ≥ 2 samples) that did not 
contain any consensuses identified by the above-mentioned approach, were examined separately. Peptides pre-
sent in ≥ 4 samples (> 10%) in BC group were extracted and common consensus sequences were identified with 
SPEXS2 tool (with hypergeometric p-value <  10–3, ≥ 5 fixed amino acid positions, epitope consensus to be present 
in ≥ 4 unique peptides). Altogether, distinct consensus epitopes (n = 1,014) were selected for further analysis.

Discriminatory clustering. Within FEP and SZ cohorts, most abundant and shared group-specific peptide 
antigens were extracted for each of the control and case groups, based on criteria: the chosen peptide must be 
present in ≥ 10 repeats in one sample; and must be present in ≥ 10% of the samples within the given group. Core 
consensus epitopes were defined for each group independently with SPEXS2 as motifs that were more enriched 
when compared to at least one of the 3 different reference sets: (1) random-generated reference set of same 
length, where amino acids were scrambled within-peptides; (2) random-generated reference set of same length, 
where amino acids were scrambled within amino acid positions- and across peptides; and (3) the top abundant 
peptide set from the control group. Distinct consensus epitopes identified from SPEXS2 analyses were selected, 
based on criteria: hypergeometric p-value <  10–6 (FEP), <  10–5 (HC of FEP), <  10–8 (SZ), or <  10–6 (HC of SZ); 
consensus epitope present in ≥ 4 distinct peptides; ≥ 4 fixed amino acid positions. Epitope consensuses matching 
these criteria were selected for FEP (n = 228), SZ (n = 1785), HC of FEP (n = 1935), HC of SZ (n = 760).

Within MS group, subgroups with or without initial optic neuritis diagnosis were analysed separately. The 
topmost abundant peptides from both subgroups were extracted with criteria: peptide count ≥ 5 in ≥ 1 sample. 
Using SPEXS2 the peptide sets were compared to top peptide set of age- and sex-matched controls with no MS 
 diagnosis40 using criteria: hypergeometric p-value <  10–7; epitope consensus to be present in ≥ 4 distinct peptides 
and have ≥ 4 fixed amino acid positions. As a result, distinct epitopes (n = 3,500) were identified for MS group.

Epitope prediction of SARS‑CoV‑2 S. The primary sequence of SARS-CoV-2 S (P0DTC2) was obtained 
from www. viral zone. expasy. org/ 8996 (date accessed 25.03.2020). To predict immunogenic regions on S, we 
followed two complimentary alignment approaches. First, primary sequence of SARS-CoV-2 S protein was 
scanned with distinct epitope consensus (n = 22,949) with the criterion of  ≥ 4 exact-matching amino acid posi-
tions. Random reference profile was generated by scanning with shuffled-sequence motifs (≥ 4 exact positions) 
in order to qualitatively assess alignment enrichment on local protein regions. An additional random alignment 
distribution was simulated with 3 independent alignments with scrambled motifs in order to assess statistical 
significance of specific alignment results. Specific alignments with values above 97.5th percentile (two-tailed) 
of simulated distribution were considered statistically significant (*p < 0.025, **p < 0.005, ***p < 0.0005). Two 
regions (amino acid positions 623–633 and 708–713) were excluded based on lower count of unique peptide 
epitopes (< 200) or insufficient specific/random ratio (< 3 positions with ratio ≥ 2) values. Secondly, to identify 
regions with less prevalent yet sufficiently high alignment enrichment results, an additional approach was taken. 
For the epitope consensuses, the number of fixed amino acids for alignments was 4. Therefore, on a protein 
region of 20 amino acids, the probability of exact match with this region was 17/204 = 1.1 ×  10–4. With an input 
of all epitope consensuses (n = 22,949), the number of theoretical exact alignments to any 20-amino acid region 
would be 2.4. Therefore, to identify potential immunogenic regions, the threshold for significance was set to ≥ 3 
of exact-aligned epitope consensuses. Based on this criterion, epitopes S1.4 and S2.1 were included with the 
other described immunogenic regions. The composition of top 10 most abundant peptides representing the 15 
defined S epitopes across the cohort of 538 samples is shown in Table S2.

Alignment profiles on the primary sequence of SARS-CoV-2 S protein were generated using custom Excel 
VBA scripts and MS Office Excel, and visualised using R “tidyverse”  packages49. The data was visualised using 
centred weighted moving averages across 9 amino acid positions. The displayed value (value) was calculated per 
each amino acid position (n), taking into account the raw values (a) of given and four adjacent positions in both 
directions and multiplying those with weights (from 1 to 5):

value =
1 ∗ (an−4 + an+4)+ 2 ∗ (an−3 + an+3)+ 3 ∗ (an−2 + an+2)+ 4 ∗ (an−1 + an+1)+ 5 ∗ an

25

http://www.viralzone.expasy.org/8996
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Sequence alignment. Individual sample peptide alignment. For the analysis of individual peptide align-
ments of samples that were used in dot-ELISA (n = 9), all peptide sequences underlying the 15 MVA-predicted 
epitopes were aligned to SARS-CoV-2 S protein primary sequence, taking into account the different abundance 
values of peptides in individual immunoprofiles. Alignment was performed with ≥ 4 matching amino acid po-
sitions, ratio of specific/random alignment (with shuffled peptide sequences) was calculated for each amino 
acid position on SARS-CoV-2 S protein primary sequence, and data was visualised as heatmaps using centred 
weighted moving averages of ratios across nine amino acid positions.

Human pathogen and human proteome alignment. Reference proteins of common human viruses were 
obtained from UniProtKB with keywords “taxonomy: “Viruses [10239]”” + “host: human” + “reviewed: yes” (date 
accessed: 10.11.2020, altogether 6114 viral proteins). Human reference proteome was obtained from UniProt 
Proteome database (Proteome ID: UP000005640, date accessed: 16.11.2020, altogether 75,069 sequences).

Constructed viral protein and human protein databases were first scanned with 15 SARS-CoV-2 S protein 
epitope representative motifs. Using custom Excel VBA scripts a reference set of viral and human proteins that 
contained at least 1 predicted S protein epitope was generated. 7.5% (458) of human-associated virus proteins and 
6.3% (4,968) of human proteome sequences matched ≥ 1 MVA predicted S protein epitope(s). Next, the primary 
sequences of reference set proteins from Swiss-Prot (excluding TrEMBL) were aligned with MVA captured pep-
tides containing these 15 S epitopes (900 most abundant peptides per each defined epitope across 538 samples) 
by using standalone BLAST + blastp function (v. 2.11.0) with the following criteria: (i) word size: 2, (ii) gap open 
penalty: 9, (iii) gap extend penalty: 1, (iv) substitution matrix: PAM30, (v) threshold: 11, and by disallowing 
composition-based statistics correction. E-value threshold for human virus proteins was set to 200,000, while 
E-value threshold for human proteome alignment was set to 2000. Output was further curated to select for the 
highest scoring target alignments of the 15 epitopes of SARS-CoV-2 S based on E-value (< 0.05, except for human 
coronavirus proteins, where E-value > 0.05 was allowed) and identity (> 48%, i.e. at least 5 matching amino acid 
positions in the 12-mer peptide for viral proteins and > 52%, i.e. at least 5 matching amino acid positions from 
the 12-mer peptide for human proteins) (Tables S3 and S4).

The alignment data were visualised using R statistical programming (v. 4.0.2, https:// www.R- proje ct. org/) and 
RStudio environment (http:// www. rstud io. com/). Violin plots were produced and visualised using R “tidyverse” 
 packages49.

Human Protein Atlas (HPA, v. 20.0, http:// www. prote inatl as. org)42 gene expression data was used to visualise 
the expression of human proteins that aligned with SARS-CoV-2 S protein epitope peptides. “HPAanalyze” R 
 package50 was used to access gene expression data of normal tissue from HPA repository. Expression data deemed 
“Uncertain” by the “Reliability” parameter were excluded and data was visualised with “ggplot2”51.

Modelling immune response patterns in COVID‑19 naïve subjects. IgG-bound peptide abundance 
values of 15 epitopes were calculated for each sample in the COVID-19 naïve cohort (n = 538) and normalised 
per epitope with the 97.5% percentile value (to allow for comparison of epitopes). Subjects with a relatively 
higher response (normalised value > 0.5) to at least two epitopes on S protein (of the 15) were grouped into the 
“high” group, whereas others to the “low” group.

Visualisation of data from published data sets. B cell epitopes for the SARS-CoV-2 S protein for naïve 
individuals were derived from Grifoni et al.  study52, for COVID-19 from several published  studies27,53–57. Amino 
acids of SARS-CoV-2 S protein important for binding of human ACE2 have been reported by different  groups58 
and anti-spike RBD neutralising antibody CR3022 discontinuous epitope were reported by ter  Meulen59 and 
Rogers and  colleagues53. Domains of SARS-CoV-2 S protein were accessed  from54,60. Raw data of  PEPperCHIP® 
SARS-CoV-2 Proteome Microarray is from Schwarz et al.,  202161. Reported epitopes in Immune Epitope Data-
base (IEDB) were accessed on 11.07.2022 with the following criteria: Organism—SARS-CoV2 (ID:2697049); 
Antigen—Spike glycoprotein (PODTC2); B cell Assay—Outcome "Positive" and Neutralization" (Table S5).

Dot‑ELISA (CMV and EBV epitopes). Independent validation experiments for IgG immunoreactivity 
measured by MVA were performed with dot-ELISA experiments. Peptides containing CMV- and EBV-specific 
epitopes previously described  in40 were printed as follows. Recombinant phages displaying in the N-terminus of 
the pIII of M13 peptides of interest, specifically (TLPMDTSPRAHW containing epitope of viral capsid antigen 
(VCA) p18 of Epstein-Barr virus (EBV)) (specific) and TLPMDASPRAHW (control). In addition, peptides con-
taining epitope of glycoprotein B (gB) of human cytomegalovirus (CMV) NETIYNTTLKYGGGGDYKDDD(LY
S(BIOTIN)) were synthesised by Genescript (US). For dot-ELISA, peptides or peptide-displaying phages printed 
onto nitrocellulose filter pads (Amersham Bioscience) as duplicates by  SpotBot® 4 (Arrayit) were exposed to 
human precleared sera/plasma (dilution 1:100 for MS sub-group samples and 1:50 for CAD sub-group samples) 
for 1 h at room temperature and then incubated with rabbit anti-human IgG (HRP) (Abcam, ab6759; dilution 
1:1000) as a secondary antibody. Images were scanned using EttanTM DIGEImager (GE Healthcare Life Sci-
ences). All printed dot intensities were calculated and analysed further as averages of duplicates. With CAD 
samples, n = 28 samples were assayed for seroreactivity to epitope on gB of CMV and n = 54 samples for VCA 
p18 of EBV. Seroreactivity to epitope on gB of CMV was calculated by subtracting the background intensity of 
the dot and displayed in arbitrary units (AU). Seroreactivity to epitope on VCA p18 of EBV was calculated as the 
difference between signals of specific vs control phage (signal difference, in AU) in the MS cohort, whereas in the 
CAD cohort as the ratio between signals of specific vs control displayed epitopes (signal ratio, in AU).

https://www.R-project.org/
http://www.rstudio.com/
http://www.proteinatlas.org
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Dot‑ELISA (spike subunits). Spike protein fragments of S1 subunit (amino acids 14–681, cat no. P-305–
100), S2 subunit (aa 693–1218, cat no. P-306–100) and RBD (aa 319–541, cat no. P-307–100) (Icosagen AS) 
were diluted in 1× PBS (pH 7.4), blotted onto nitrocellulose membranes (50 ng of protein per dot) (Amersham 
Biosciences, cat no. RPN 1520D) and blocked with 5% non-fat dried milk powder (DMP) (Applichem, cat. no. 
A0830) in 1xPBS-0.05%-Tween20 for 1 h at room temperature. For linear epitope analysis, spike protein subu-
nits S1, S2 and RBD were denatured in 4 M Urea (Applichem, cat. no. A8113) for 1 h at room temperature prior 
to blotting. Sera/plasma samples (1:50 dilutions) were pre-treated overnight with 1:2 solution of E. coli phage 
lysate in 2.5% DMP in 1xPBS-0.05%-Tween20 at + 4 °C to reduce non-specific signals. Blocked nitrocellulose 
membranes (5% DMP in 1xPBS-0.05%-Tween20, 1 h at RT) were washed with 1xPBS-0.05%-Tween20 and incu-
bated for 4 h at room temperature with human sera/plasma sample dilutions to form SARS-CoV-2 S protein-
specific immunoglobulin and S subunit complexes. After washes, membranes were incubated with 1:1000 rabbit 
anti-human IgG HRP-conjugated secondary antibody (Abcam, cat no. ab6759) in 2.5% DMP in 1× PBS-0.05%-
Tween20 for 1 h at room temperature. Signal amplification system (Dako, CSA II System kit, cat no. K1497) was 
used for sensitivity enhancement with reagents diluted to either 1:10 for amplification reagents or to 1:100 for 
DAB chromogen in 1× PBS-0.05%-Tween20 buffer. Membranes were digitally scanned and signals quantified 
using ImageJ software (version 1.53a)62. The averages from two technical replicate dots were calculated per each 
experiment (n = 3) and intensity values were represented as proportional to a COVID-19 positive case (P1#1, 
Table S1). Averages ± SEM of three independent experiments are represented on figures.

ELISA. Anti-CMV and anti-EBV serostatus was measured from serum/plasma samples with ISO/IEC-
17025:2017 accredited methods. In brief, serological analyses were performed with anti-CMV IgG ELISA 
method (EUROIMMUN EI 2570-9601 G) and with anti-EBV CA IgG ELISA method (EUROIMMUN EI 2791-
9601 G) according to manufacturer’s specifications. Absorbance was measured at 450  nm with SpectraMax 
Paradigm (Molecular Devices). Altogether serum or plasma samples of 199 subjects from the clinical cohorts of 
healthy donors (n = 83), MS (n = 20), or CAD (n = 96) were analysed for anti-CMV IgG antibodies and 241 sub-
jects from the clinical cohorts of healthy donors (n = 19), MS (n = 20), FEP (n = 60), SZ (n = 46), or CAD (n = 96) 
were analysed for anti-EBV CA IgG antibodies.

Quantification and statistical analysis
Statistical analysis. All statistical analyses (Pearson correlation calculation, Mann–Whitney U test, mul-
tiple linear regression analysis) were done using R statistical programming and RStudio environment (https:// 
www.R- proje ct. org/; URL: http:// www. rstud io. com/). Boxplot graphs were produced and visualised using R 
“tidyverse”  packages49, “ggbeeswarm”, and “ggpubr”63,64. On boxplots, the upper, middle and lower boxplot lines 
represent the 75th, 50th and 25th percentiles, while whiskers represent the largest or smallest value within 1.5 
times interquartile range above the 75th percentile or below the 25th percentile, respectively and outer dots 
indicate outliers. Reported p-values were not adjusted for multiple comparisons, as this study was viewed as a 
hypothesis-free approach with an emphasis on discovering new relationships in a retrospective cohort.

Results
Cross‑reactive immune response to SARS‑CoV‑2 spike protein in COVID‑19 naïve people. We 
used a high throughput random peptide phage display method (MVA)33,34 to investigate potential cross-reactive 
antibody epitopes on SARS-CoV-2 S antigen in a cohort of SARS-CoV-2 unexposed (= COVID-19 naïve, also 
unvaccinated) individuals (n = 538, Table 1). Our discovery cohort of COVID-19 naïve included sera samples 
collected before 2017 from both, healthy individuals (Ctrl) and people diagnosed with various acute illnesses 
and chronic conditions (Case) to reflect the overall diversity of general population (Table 1). The mean age in 
case sub-cohorts of adults varied from 24 to 69 years, and the proportion of men varied between 20 and 84% for 
most sub-cohorts (Table 1).

Using MVA we defined 15 highly antigenic epitopes on the S protein, of which ten were on subunit 1 (S1) and 
five on subunit 2 (S2) (Fig. 1 and Table 2). The majority of these epitopes (epitopes S1.1 to S2.4) were exposed 
on the exterior surface of SARS-CoV-2 S trimer (Fig. S2A). Seven of the 15 identified epitopes were partially 
overlapping with epitopes previously reported for COVID-19 unexposed  individuals52 with an average overlap 
of 60% per epitope (Table 2). Epitopes S2.2 and S2.5 colocalised precisely with antigenic determinants reported 
by others, whereas epitope S1.8 extended to a more C-terminal region (amino acids 570–582) (Table 2). Fur-
thermore, almost half of resolved epitopes (S1.8, S1.9, S1.10, S2.1, S2.2, S2.3, and S2.5) mapped to antigenic 
regions of S against which immune response has been detected in asymptomatic, mild, and severe COVID-19 
cases (Table 2  and27,55–57). In good agreement with published data from SARS-CoV-2 proteome-based peptide 
 arrays61, we found that linear peptides from these studies that contained our resolved epitopes on S protein 
showed differential seroreactivity in naïve, mild and severe COVID-19 samples (Fig. S3).

Epitopes S1.1 to S7 locating to the N-terminal region of S1, encompassed the antigenic sites against which 
antibody response was detected by others in COVID-19  patients27,55–57,61,65 and also its neutralising effects (Table 2 
and Table S5). Interestingly, three epitopes (S1.1 to S1.3) were encompassing the anti-NTD supersite of S with 
neutralisation  activity66–68. Four epitopes (S1.4 to S1.7) were identified in the receptor binding domain (RBD, 
amino acids 319 to 542) of SARS-CoV-2 S protein, spanning amino acid residues (319 to 542) that are involved in 
angiotensin-converting enzyme 2 (ACE2)  binding53, and targeted by neutralising  antibodies69,70 (Fig. 1, Fig. S2B). 
The epitope S1.5 overlapped at the I468 residue with the binding site of highly neutralising antibodies which 
showed good breadth against SARS-CoV-2 variants but not against BA.2.12.1 and BA.4/BA.5 Omicron sub-
lineages with L452  mutations71. Additionally, epitopes S1.1, S1.3-S1.8, S1.10 and S2.2 encompassed antigenic 
regions with SARS-CoV-2 S neutralising activity (Tables 2 and S5) with S1.6 with overlapping in the E484 residue 

https://www.R-project.org/
https://www.R-project.org/
http://www.rstudio.com/
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of the Omicron BA.1 escape mutant (E484A)2. A few of the resolved epitopes (S1.9, S1.10 and S2.5) included 
N-glycosylation sites (72 and Table 2). However, some data demonstrate that glycosylation is not essential for 
serorecognition of linear epitopes in spike upon COVID-19  infection73. Of note, some of the epitopes, includ-
ing with neutralising/protective activity, embedded the common mutations of the emerging Omicron variants 
(Fig. 1, Tables 2 and S5).

Collectively, these data suggest that IgG antibody responses to distinct epitopes of SARS-CoV-2 S protein is 
common across the naïve population and reactivity to the same antigenic regions is detected by serostudies of 
COVID-19 patients (Table 2 and ref in the Table 2).

Epitopes on SARS‑CoV‑2 S protein identified in COVID‑19 naïve sera are linked to heterolo‑
gous pathogens. Next, we wanted to know whether cross-strain or cross-species immunity could be behind 
the observed epitope-specific pre-existing anti-SARS-CoV-2 S immunoreactivity. Sequence alignment analysis 
across human viral antigens resulted in frequent detection of other human coronaviruses (HCoVs, including 
SARS-CoV, OC43 and HKU) (Fig. 2A, Table S3). In addition, significant homology of the resolved S epitopes was 
also observed with common herpes-, papilloma-, and respiratory (including influenza) viral antigens (Table S3). 
For example, antigens of human cytomegalovirus (CMV) and of Epstein-Barr virus (EBV), shared significant 
similarity with peptides containing epitopes S1.8 and S2.2 (Fig. 2A, Table S3) and these epitopes similar to CMV 
and EBV seroprevalence were also associated with age (Fig. S4A). Diagnostic serology measurements confirmed 
CMV and EBV seropositivity in analysed samples (Fig. S5A). However, in samples with CMV and EBV serol-
ogy findings differential epitope-specific anti-S antibody response was evident (Figs. S6, S7), suggesting that 
herpesviral antigens can be direct molecular mimics of S antigenic determinants or indirectly associated with 
the heterologous immunity towards SARS-CoV-2 S. Epitopes S1.10 and S2.5 showed higher antibody responses 
in CMV + samples of both Ctrl and Case groups when compared to CMV-samples (Fig. S6), while seroresponse 

Figure 1.  MVA-defined epitopes on SARS-CoV-2 spike protein. Alignment profiles of the most abundant and 
common immune response features from MVA immunoprofiling data of COVID-19 naïve subjects (n = 538), 
including altogether 22,949 unique epitopes characterising core motif sequences (hypergeometric p-value <  10–3 
for core epitope recognition) on the primary sequence of SARS-CoV-2 S protein (UniProtKB code: P0DTC2). 
The abundance of aligned core epitope sequences (black Specific, primary y-axis) in peaks was significantly 
higher (**p < 0.01, ***p < 0.001) compared to random alignment (light gray random, primary y-axis). Of aligned 
core epitopes, 111 were with exact matches in all amino acid positions (blue specific, secondary y-axis). Regions 
of primary sequence with alignment load of > 2 motifs (the calculated theoretical random) (gray random line, 
secondary y-axis) were considered as potentially immunogenic and included in further analysis. Alignment 
profiles were visualised as centred moving averages across 9 amino acids. 15 epitopes (designated S1.1….10 on 
subunit 1 of S (S1) and S2.1….5 on subunit 2 of S (S2)) from MVA data analysis (predicted) were defined on 
SARS-CoV-2 S protein (x-axis) with representative consensus sequences shown. Common mutations observed 
in emerging SARS-CoV-2 variants were mapped to MVA-identified S epitopes and highlighted with red labels. 
Most common variants with enhanced transmissibility of SARS-CoV-2 variants with L452R, E484K/Q, and 
H655Y  mutations99,109,123 encompass epitopes in S1.5, S1.6, or S1.10 respectively. Primary y-axis—abundance of 
specific- vs random-aligned sequences with ≥ 4 matching positions (includes also exactly-matching sequences). 
Secondary y-axis—abundance of aligned motif sequences with all positions matching. SARS-CoV-2 S protein 
domains are adapted from Wrapp et al.54 with additional information on RBD from Yuan et al.53. SS signal 
peptide 1–12; NTD N-terminal domain (13–303); RBD receptor binding domain (319–542); S1/S2 S1 subunit end 
and S2 start site (683–686); S2’ S2’ protease cleavage site (815–816); FP fusion peptide (816–833); HR1 heptad 
repeat 1 (908–985); CH central helix (986–1035); CD connector domain (1076–1141); HR2 heptad repeat 2 
(1163–1202); TM transmembrane domain (1214–1234).
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to epitopes S1.6, S1.8, S1.9 and S2.1 was significantly higher (S1.8, S1.9, S2.5) or lower (S1.6) in EBV + samples 
of Case group when compared to EBV + Ctrl group (Fig. S7). High sequence similarity was also found between 
epitopes of SARS-CoV-2 S protein and antigens of influenza A H1N1 (FLUA), respiratory syncytial virus type 
B (HRSV-B), rhinoviruses 2/16 (HRV-2/16), adenovirus A type 12 (HAdV-A) and most frequent papillomavi-
ruses (HPV6 and HPV11, Fig. 2A, Table S3). By using dot-ELISA, we independently validated the IgG antibody 
response detected by MVA at a peptide level to common epitopes of CMV glycoprotein B and EBV VCA p18 
 proteins40 (Fig. S5B). Collectively, our data conclude that heterologous immunity between epitopes of various 
common human viruses and SARS-CoV-2 S can be common.

Table 2.  The epitopes identified by MVA on SARS-CoV-2 spike glycoprotein are validated by using external 
data showing partial overlap with antigenic domains reported for COVID-19 naïve and diseased and with 
neutralising epitopes. The following information is given in columns: unique identification (a), amino acid 
position (b), amino acid sequence with glycosylation patterns bolded and underlined (c), representative 
epitope consensus sequence (d), immunogenic regions with amino acid positions on S indicated from other 
informatic and seroreactivity studies and from IEBD data on B cell neutralising antibody response (see 
Table S5) (e), frequent mutations described in new variants of being monitored (VBM) and of concern (VOC) 
of SARS-CoV-2  S122, where the highly mutated Omicron (B.1.1.529) sublineages (designated with “O”) that 
have enhanced transmissibility and mutations that show differential (often escape from) neutralising antibody 
response (marked with “*”) are shown in (f) as A1, A2, A3, A4, A5—Omicron sublineages, BA1, BA2, BA3, 
BA4 and BA4 respectively.2,71,99,109,122–126. N neutralising/protective antibodies shown, **, high IgG titre was 
associated with poor clinical outcome (development of pneumonia, needing care in the intensive unit or 
needing assisted pulmonary ventilation).

Epitope 
identification (a)

Amino acid 
position (b) Sequence (c)

Representative 
epitope (d)

Data on antigenic regions from other studies (e)
S mutants of 
variants of 
SARS-CoV-2 
(f)

Bio-informatic 
predictions in 
COVID-19 naïve

Serostudies

IEBD: B cell neutralising 
antibody response

COVID-19 
naïve

COVID-19 
diseased

S1 subunit

S1.1 26–34 PAYTNSFTR NSF.R P26 P26S124

S1.2 47–58 VLHSTQDL-
FLPF V..S..D…P – Q52R124

S1.3 170–185 YVSQPFLM-
DLEGKQGN L..K.GN 178–185

S1.4 384–390 PTKLNDL PTKL..L 384–390

S1.5 445–471
VGGNYNY-
LYRLFRKSNL-
KPFERDISTE

K….DI.T 469–48352 445–471

G446SO:A1,A32,71

L452MOA271

L452QO:A2 71

L452R O:A4,571

L452R/Q*127

G446SO2

S1.6 481–495 NGVEGFNCYF-
PLQSY N.VE.F 469–48352 481–495

E484K/Q*123,127

E484AO2

F486VO:A571

F490S124

Q493/KO2

S1.7 514–523 SFELLHAPAT S…LH…T 514–523

S1.8 570–582 ADTTDAVRD-
PQTL PQTL 550–57027

553–57055 N**
550–57027

532–58827

560–61627

A570 A570D124

S1.9 599–612 TPGTNTSNQ-
VAVLY GTN.S 592–62052 588–64427

560–61627 –

S1.10 650–660 LIGAEHVNNSY L..A…..SY 652–66152 655–67256 N**
616–67227 H655 H655Y128*O124

N658S O:A571

S2 subunit

S2.1 757–768 GSFCTQLN-
RALT T.LNR 757–76952 766–78527 – N764KO125

S2.2 804–815 QILPDPSKPSKR I.P…KP
810–81657

785–80527

810–83027

809–82655 N**
787–82256

810–81657

785–80527

810–83027

812–86827

–

S2.3 858–869 LTVLPPLLT-
DEM V.P.L…E 867–88052 812–86827 – T859N126

S2.4 937–944 SLSSTASA SL.S…A 915–94652 –

S2.5 1151–1161 ELDKYFKNHTS EL….K…S 1157–116452 1146–116627 1147–115856

1146–116627 1148–1158
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Recent evidence also suggests that the existence of pre-COVID-19 autoimmunity plays a role in disease 
 outcome30,74. Therefore, we focused on the human proteome and identified at least 63 human proteins with highly 
similar antigenic determinants to resolved epitopes of SARS-CoV-2 S (Fig. 2B, Table S4). Furthermore, analysis of 
the Human Protein Atlas expression  data42 revealed that these proteins were differentially expressed with several 
of them displaying central nervous system and immune system specificity (Fig. S8). For example, epitope S1.3 
mapped to kinase D-interacting substrate of 220 kDa (KIDINS220, Fig. 2B, Table S4), which has a crucial role in 
neuronal and cardiovascular  development75. Relatedly, immune responses against epitope S1.3 were stronger in 
COVID-19 naïve men with heart disease (Fig. S4B). Epitope S1.7 showed mimicry to leucine-rich repeat serine/
threonine protein kinase 2 (LRRK2; Fig. 2B, Table S4), which is associated with Parkinson’s and inflammatory 

Figure 2.  15 SARS-CoV-2 S protein epitopes mimic common viral protein antigens and self-proteins 
implicated in normal development and disease. Pathogen proteins and human proteome were accessed from 
UniProtKB and aligned with 13,500 most abundant IgG-bound 12-mer peptides containing one representative 
SARS-CoV-2 S protein epitope (from S1.1 to S2.5) using standalone BLAST with alignment criteria customised 
to short sequences. (A,B) Viral and human proteins mimicked by SARS-CoV-2 S protein epitopes are depicted 
on violin plots and were identified using blastp alignment analysis at E-value ≤ 0.05 (except for visualising SARS-
CoV, SARS-CoV-2, HKU1, and OC43 alignments where E-value was not restricted). Each dot represents the 
relative abundance of IgG response to a peptide in one sample from the cohort of SARS-CoV-2 naïve subjects 
(n = 538). See Tables S3 and S4 for detailed information on pathogen and human protein alignments, full protein 
names and accession codes.
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bowel  diseases76,77. High sequence similarity was found between epitope S2.2 and tropomodulin 1 (TMOD1) 
that is linked to synaptogenesis, chronic pulmonary disease and  cancer78. Interestingly, epitope S2.3 that showed 
differential immunoreactivity in COVID-19 naïve smokers and women with hypertension (Fig. S4C,D) shared 
high sequence similarity with proteins associated with  hypertension79, acute respiratory distress syndrome, 
periodontitis in  smokers80,81, but also with proteins involved in the development of the nervous  system81, and 
psychiatric  disorders82 (Fig. 2B, Table S4). Collectively, our data show that distinct seroresponse to epitopes of 
SARS-CoV-2 S protein in COVID-19 naïve could accommodate cross-reactive targets of B cell response against 
both, viral pathogens and self-proteins.

Epitopes on spike protein identified in COVID‑19 naïve are differentially targeted by antibod‑
ies in COVID‑19 diseased. Next, we randomly picked samples (n = 8) from the COVID-19 naïve cohort 
with differential epitope profiles (Fig. 3A) along with the pooled IgGs of healthy subjects (n = 2700) (Fig. 3B,C, 
Table S1) to test for the presence of anti-S seroreactivity by dot-ELISA. Samples from patients from intensive 
care unit with severe COVID-19 disease (n = 2, COVID-19 +) were included for reference (Fig. 3B,C, Table S1).

The dot-ELISA signals detecting IgG response to recombinant spike subunits in both COVID-19 naïve and 
COVID-19 + samples were at similar value range (Fig. 3B, Fig. S9). Notably, anti-SARS-CoV-2 S protein serore-
activity was detected in all studied COVID-19 naïve samples (n = 9) (Fig. 3B) with more cross-reactivity to S2 
subunit as compared to S1 (S2/S1 signal ratio > 1), although one naïve individual (#1) showed a reversed pattern 
(S2/S1 signal ratio < 1, Fig. 3C).

Next, we analysed samples from patients who had been admitted to the hospital with the COVID-19 diagnosis 
(Table S1). Detailed, epitope-specific analysis of time-series samples from SARS-CoV-2 infected patients (n = 6) 
and matched controls (n = 6) was performed using MVA. While reactivity to epitopes S1.1 and S1.3 increased 
during COVID-19 progression, reactivity to epitopes S1.8, S2.1 and S2.4 remained high across the studied time-
window (Fig. 3D, Table S1). High reactivity to epitopes S1.1, S1.3, S1.4 (located in the RBD) and S1.8 was detected 
in three COVID-19 patients and in some COVID-19 naïve individuals, however the high antibody reactivity to 
S1.4 decreased in time of the COVID-19 patients’ stay in the hospital. Low immune reactivity to S1.10 and S2.5 
was observed in COVID-19 diseased, wherein response to these epitopes in naïve was high (Fig. 3D). Overall, 
we show that epitopes on spike protein identified in COVID-19 naïve are differentially targeted by antibodies 
elicited in COVID-19 patients.

Pathogenic epitopes on the S protein of SARS‑CoV‑2. We investigated whether pre-existing anti-
body response to SARS-CoV-2 S epitopes in COVID-19 naïve people could be landmarks of ill-health. For that, 
COVID-19 naïve cohort was divided into two: a Case group (n = 276) of subjects with diagnosis of different 
acute and chronic conditions (cardiovascular disease (CVD), breast cancer (BC), multiple sclerosis (MS), type 2 
diabetes (T2D), or neuropsychiatric disorders (ND)), and a Control group (n = 262) (Table 1). First, we observed 
that pre-existing high immune response to epitopes of the S protein was significantly prevalent in the Case 
group (χ2 test, ****p < 0.0001) (Fig. 4A and Fig. S10B), whereas the classification into low- or high- seroresponse 
groups was neither associated with age nor gender (χ2 test, ns p > 0.05, Fig. S10A). Correlation analysis showed 
no correlation between age of subjects and abundance of immune response as detected by MVA (Pearson R < 0.3, 
Table S6).

As Case group included a different proportion of “low” and “high” sub-groups compared to Control group 
(Fig. 4A), we developed multivariable logistic regression models by using 80% of the subset as a training data 
set to identify which pre-existing antibody epitopes on S were pathogenic and associated with serious health 
problems. We found that antibody response to epitopes S1.6, S1.8 and S2.1 was effective for identifying Case 
subjects with diagnosis of serious acute and chronic conditions (95% confidence interval (CI) for the area under 
the receiver operating characteristic (AUROC) was 0.697…0.790), sensitivity 71.0%, specificity 68.6% and the 
balanced accuracy 69.8%) (Fig. 4B). Separately, prior high antibody response to S1.6 was more frequent in Con-
trol group, whereas pre-existing response to S1.8 and S2.1 was more prevalent in Case group (Fig. 4C). Cross-
validation of the model against independent testing dataset (20% subset of data) was equally accurate within 
both “low” and “high” groups, with balanced accuracy values of 62% and 65%, respectively (Fig. S10C). Further, 
we observed that pre-existing antibody response to some of these S-specific epitopes was associated with certain 
disease groups. For example, pre-existing response to epitope S1.8 was higher in subjects with hypertension 
(Fig. S4B). Overall, we suggest that prior seroresponse to a combination of three epitopes of S (S1.6, S1.8 and 
S2.1) may be used for predicting the underlying risk of aggravated immunopathology of acute/chronic condition 
due to or associated with exposure to SARS-CoV-2 S antigen.

Discussion
Seroreactive immunodominant epitopes on spike of SARS‑CoV‑2 in COVID‑19 naïve. Here, 
we employed a high-resolution antibody response profiling technology (MVA) on a heterogenous cohort of 
COVID-19 naïve subjects including healthy subjects and people with one or more chronic or acute condition(s). 
Highly varied antibody response to SARS-CoV-2 and its emerging variants, in respect to antibody titres and 
neutralising activity, in the infected, vaccinated or people with hybrid immunity has been reported by several 
 studies83–86. However, few of these studies have characterized the individual differences in the pre-existing anti-
body epitope repertoire. We identified 15 highly immunogenic epitopes characteristic to naïve populations in 
SARS-CoV-2 S protein localising in NTD, RBD, FP, HR1 and HR2 domains with notable heterogeneity among 
individuals (Figs.  1 and 4A). Our 3D analysis showed that majority of these were surface-exposed epitopes 
(Fig. S2) and encompassed antigenic regions determined by other studies underscoring the clinical relevance of 
the resolved 15 epitopes (Table 2). However, a notable difference between our findings and others (see Table 2 
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Figure 3.  Differential antibody response to SARS-CoV-2 spike protein in COVID-19 diseased and naïve 
individuals. (A) Individual MVA immunoprofiles of antibody response to 15 epitopes of SARS-CoV-2 S in 
COVID-19 naïve samples shown as a ratio of specific vs random alignments. Ratios are visualised as centred 
moving averages across 9 amino acids. Y-axis—identifiers of samples, IgG pool refers to human pooled IgG 
sample, numbers 1–8 refer to COVID-19 naïve subjects (same as in B,C), Predicted—MVA-delineated epitopes 
on SARS-CoV-2 S; S1.1 to S1.10—epitopes on subunit 1 of S (dark blue); S2.1 to S2.5—epitopes on subunit 
2 of S (orange colour); total abundance—calculated total abundance of IgG-bound peptides aligned to S per 
individual sample; colour bar (ratio)—ratio of alignment loads of specific vs random (scrambled) IgG-bound 
peptide sets. (B) Seroreactivity of COVID-19 naive (n = 8) and COVID-19 patients (n = 2) to spike protein 
subunits S1 and S2. 50 ng of SARS-CoV-2 S protein recombinant subunits S1 and S2 were immobilised on 
nitrocellulose slides and incubated with human serum/plasma samples to measure immunoreactivity to SARS-
CoV-2 spike protein. Samples (n = 8) of selected subjects from COVID-19 naïve cohort (COVID-19 naïve 
1–8) were used, alongside with the pooled human IgG sample (IgG pool, n = 2700 individual healthy donors, 
Sigma-Aldrich, # I4506). Samples (n = 2) taken at hospital intensive care admittance from patients (P1#1, P2#1) 
diagnosed with COVID-19 were included as positive controls for anti-spike immunoreactivity (COVID-19+, 
1–2). Dots represent dot-ELISA data normalised to the sample from patient 1 (P1#1) (COVID-19+) separately 
for S1 and S2 subunits (100 represents 100%). Bar plot shows the sum of average of dot-ELISA results for S1 and 
S2 from independent experiments (n = 3). Error bars represent summarised SEM from independent S1 and S2 
results. (C) Scatter plot depicts average ratio of SARS-CoV-2 S2 and S1 signals in dot-ELISA experiments (n = 3) 
from (B). Error bars represent SEM. (D) Heatmap shows the abundance of IgG-bound peptides containing 
the 15 epitopes of SARS-CoV-2 S protein in COVID-19 patients and controls. MVA immunoprofiles of serial 
samples from COVID-19 patients (n = 6) at different time points, where #1 is the sample taken at time of 
hospital admittance and “#n” where n designates the number of days from the first sample withdrawal. CTRL 
(n = 6) are age- and gender-matched healthy subjects selected from the cohort of 538 people. Relative abundance 
depicts the abundance of IgG-bound peptides containing the corresponding S epitopes, where values above 2000 
are capped to 2000.
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for references) was that we observed cross-reacting IgG reactivity in COVID-19 naïve individuals to epitopes 
(S1.4, S1.5, S1.6) in RBD that included residues of the binding sites of neutralising antibodies (Table S5). We 
observed that predominant seroreactivity in naïve sera was against antigenic determinants outside the RBD of 
SARS-CoV-2 S (Fig. 1), consistent with the increasing recognition of non-RBD neutralising antibody  response87. 
Several of these epitopes concurred with the dominant linear epitopes that were identified by the study of mRNA 
vaccines as shared by vaccine naïve individuals and COVID-19 infected  subjects88. Further, NTD-targeting anti-
bodies with neutralising activities are of high interest (ref  in67). Our epitope S1.3 locates to the N4 loop of the S 
protein, which is an antigenic site of monoclonal antibodies with potent neutralising activity directed to  NTD66 
thus suggesting that anti-S1.3 antibodies might interfere with anti-NTD supersite neutralising  potential89. Sev-
eral of the resolved epitopes within the S2 subunit overlapped with neutralisation determinants of SARS-CoV-2 
S protein reported by  others21,43,45,52 suggesting that there is quite substantial polyclonal neutralising potency 
towards SARS-CoV-2 in COVID-19 naïve sera. Of note, immunisation with S2 in mice has shown more potent 

Figure 4.  Antibody response to immunodominant epitopes on SARS-CoV-2 spike protein as predictors of ill 
health. (A) Individual immunoprofiles of SARS-CoV-2 S protein epitopes in COVID-19 naïve subjects, grouped 
into Ctrl (n = 262) or Case (with presented chronic diseases) (n = 276). “low” or “high”—subjects with relatively 
lower or higher overall response to S, calculated based on abundance of IgG-bound peptides containing 
the epitopes (S1.1 to S2.5) on SARS-CoV-2 spike protein (see “Methods”). x-axis—individual samples sub-
grouped by Abundance (blue colour bar) where colour intensity shows individual abundance of IgG-bound 
peptides containing epitopes of spike normalised with 97.5th percentile value for visualisation. Age (grey 
colour bar) in Ctrl; y-axis—epitopes on Spike; S1 epitopes on subunit 1 of S; S2 on subunit 2 of S; COVID-19 
naïve Case sub-groups: BC breast cancer (n = 57), MS multiple sclerosis (n = 20), T2D type 2 diabetes (n = 25), 
CVD—cardiovascular disease (n = 114), ND—neuropsychiatric disorders (n = 60). (B) Multivariable logistic 
regression analysis was used to describe the associations of epitope seroresponse predictors with the acute and/
or chronic disease outcomes. Figure shows receiver operating characteristic (ROC) curve of using response to 
epitopes S1.6, S1.8, and S2.1 on training data (80% subset, i.e. 431/538 samples) for classifying Case (n = 276) 
vs Ctrl (n = 262). Area under curve (AUC) = 0.74 with 95% CI = (0.70…0.79). On validation with test set of 
20% (107/538) samples, the select model classified samples into Case vs Ctrl with balanced accuracy of 62.0% 
for “low” group and 65.2% for “high” group (Fig. S10C). (C) Separately, antibody response to epitope S1.6 was 
identified as prevalent among Ctrl group subjects, whereas immune responses to epitopes S1.8 and S2.1 were 
prevalent among Case group in COVID-19 naïve cohort. Mann–Whitney U test, **p < 0.01; ****p < 0.0001. 
Group sizes: Ctrl (n = 262), Case (n = 276); abundance—abundance of IgG-bound peptides containing respective 
epitopes.



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16817  | https://doi.org/10.1038/s41598-022-20849-6

www.nature.com/scientificreports/

neutralising antibody response than booster  vaccines90. Given that recent molecular studies show the abun-
dance of neutralising antibody targets on the SARS-CoV-2 S  protein91, our data on pre-existing immunity high-
lights the need to correlate these findings on polyclonal neutralisation potency and its breadth with histories of 
infections and  vaccinations92–94. Countries are likely to have distinct immune profiles because their histories of 
COVID-19 waves and vaccination rates differ, suggesting that these differences manifest in differential cross-rec-
ognition of SARS CoV-2 infections/vaccines at the level of binding and neutralising antibody-based immunity.

Many of the SARS-CoV-2 Omicron sublineages have evolved that carry distinct spike mutations and represent 
an antigenic shift resulting in escape from antibodies induced by previous infection or  vaccination95. Our data 
show that some of these mutations (specifically, L452Q/R, E484K, F486V, N658S), frequently present in novel 
variants of  concern68,71) are located within epitopes S1.5, S1.6, and S1.10 respectively (Fig. 1 and Tables 2 and 
S5). E484K has been shown to decrease the neutralisation ability of anti-spike antibodies  tenfold96–99, L452Q/R 
and F486V are escape mutations in the RBD of Omicron sublineages from the cross-reactivity of neutralising 
antibodies, and N658S contributes to interference on hACE2  binding71. Cross-reactive antibodies targeting 
the dominant linear epitopes on SARS-CoV-2 S may contribute to neutralisation. Foremost, neutralising anti-
bodies targeting the linear epitope 440–4492, such as REGN-10987 (Imdevimab)100, COV2-2130 (Cilgavimab, 
component of Evusheld)101 and LY-CoV1404  (Bebtelovimab102) were reported to neutralise BA.2 subvariants 
and BA.4/5, with LY-CoV14044 notably demonstrating high potency against all Omicron  subvariants71. On the 
other hand, cross-reactive activity from the binding of antibodies to SARS-CoV-2 could contribute to the control 
of infection by antibody-dependent  mechanisms83 and potentially amplify the damage that the virus causes to 
the body. The related mechanism involves antibody-dependent enhancement (ADE), a phenomenon in which 
non-neutralising/binding or sub-neutralising antibodies promote virus infection (rev  in103). Most recently, early 
evidence of ADE in SARS-CoV-2 has begun  emerging104. All these data further underscore the necessity for 
precise molecular characterisation of the effects of the pre-existing antibody on shaping the immunity to emerg-
ing SARS-CoV-2 infections and vaccines.

Heterologous immunity landscape on SARS‑CoV‑2 S. Most recently, the question of whether 
immune history affects SARS-CoV-2 infection outcome has been replaced by the question to what extent pre-
existing immunity plays a role. Similar to studies on influenza whereby the antibody response to older virus 
strains had profound and negative impacts on subsequent  immunity13 cross-reactive antibody reactivity con-
ferred by prior seasonal coronaviruses has widely been reported (ref  in20,105). Higher titres of IgG against the 
HCoV-OC43 S protein were observed in patients with severe COVID-19106, concluding that such immunologi-
cal imprinting by previous seasonal coronavirus infections negatively impacted on the antibody response against 
SARS-CoV-2  infection107. Similarly, the exposure to the antigenically shifted Omicron primarily leads to a recall 
of existing memory B cells specific for epitopes shared by multiple SARS-CoV-2 variants rather than by priming 
naïve B cells recognising Omicron-specific epitopes showing that previous SARS-CoV-2 infection history can 
imprint a profound negative impact on the subsequent protective  immunity86.

In addition to cross-reactive epitopes with Omicron sublineages and also with endemic coronaviruses evi-
dence of heterologous immunity between SARS-CoV-2 and pathogenic bacteria was  reported108. Our study 
advances the concept showing that the cross-reactivity to epitopes of SARS-CoV-2 S protein with potential func-
tional impacts could stem from the molecular mimicry with antigens of previously encountered other pathogens, 
including herpes-, papilloma-, adeno-, rhino-, influenza and other viruses (Fig. 2A). In good agreement with this, 
CMV seropositivity and age-related reduction in antibody titres against certain CMV antigens associated with the 
severity of SARS-CoV-2  infection109. Conversely, several other studies suggest cross-protection against COVID-
19 incidence and severity from vaccines of  influenza28,110–112 and of other pathogens (polio, HIB, MMR, Varicella, 
PCV13, and HepA–HepB)28,110–113. These mechanisms may include generation of cross-protective antibodies 
through molecular mimicry. Cross-reacting antibodies with SARS-CoV-2 proteins elicited by  poliovirus114 and 
pneumococcal  bacteria115 have been identified, whereas for the mumps virus (via the MMR vaccine), the cross-
reactivity of the vaccine antigen (measles fusion glycoprotein) with RBD of SARS-CoV-2 spike was  suggested113. 
Additionally, monoclonal antibodies against SARS-CoV-2 S RBD have been shown to cross-react with the Ebola 
glycoprotein and HIV-1  gp140116. Our data predict 15 cross-reactive SARS-CoV-2 spike-like epitopes in common 
pathogens (Fig. 2A). Although it is not clear how this pre-existing anti-pathogen humoral immunity impacts 
SARS-CoV-2 infections or vaccine efficacy, Heterologous Vaccine Intervention as a strategy against COVID-19 
is advocated by governmental bodies as advantageous for populations with suboptimal response to vaccination 
(e.g., patients with altered immunocompetence)117. Altogether these findings along with ours illustrate how 
immunological imprinting from prior exposure, i.e., ‘original antigenic sin’, can strongly affect the response to 
novel antigens. Whether the 15 SARS-CoV-2 S epitopes presented here elicit cross-reactive antibody response 
with antigens of pathogens and/or of human origin needs further investigation by functional studies.

Pathogenic epitopes on SARS‑CoV‑2 S. To our knowledge, this is a sole study to fine-map pre-existing 
antibody immunity to epitopes on SARS-CoV-2 S that associate with acute and/or chronic conditions like car-
diovascular, neurological and oncological disease. Vastly different serological signatures to SARS-CoV-2 S that 
we detected in subjects with COVID-19 were also observed in healthy and people with chronic disease diagnosis 
suggesting a model where (recurrent) exposure to SARS-CoV-2 S-specific immune stimuli would progressively 
induce antibodies against certain epitopes landmarking chronic disease. We show the value of three epitopes on 
S as biomarkers to discriminate within COVID-19 naïve subjects between healthy and chronically diseased (with 
95% CI, AUROC 0.69…0.79) (Fig. 4B and Fig. S10C). Ever since the first COVID-19 cases, immune-mediated 
manifestations have been  reported118. A total of 55 long-term effects are associated with COVID-19119. Among 
these are myriad neurologic complications—including confusion, stroke, and neuromuscular disorders—which 
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manifest during acute COVID-19 and related maladies lasting for months, and implicate immune dysfunction, 
including anti-neural autoimmune  dysregulation120. Autoimmunity has become the hallmark of post-COVID 
syndrome and latent autoimmunity correlates with humoral response to SARS-CoV-274. Here, we elaborate this 
aspect of findings further by our data showing that the resolved 15 epitopes on SARS-CoV-2 S protein share 
similarity with many human proteins of immune and nervous system origins (Fig. S8). Specifically, epitope S1.6 
of RBD shares similarity with regions in highly expressed CNS proteins (Fig. 2B). Relatedly, H1N1 infection and 
the Pandemrix vaccine were found to be associated with  narcolepsy121 by stimulating immune response target-
ing many cross-reactive  autoantigens41. This suggests that conservation of antigenic sites across pathogen and 
human proteomes that we observed as epitopes on SARS-CoV-2 S protein in COVID-19 naïve individuals may 
have resulted (at least partially) from limited immune pressure for compatible immune fitness. However, further 
studies on epitopes of SARS-CoV-2 S are warranted, in particular in the settings of emerging strains and growing 
number of vaccines.

Collectively, our study provides evidence on the pre-existing immunity in COVID-19 naïve/unvaccinated 
individuals targeting 15 dominant epitopes on S protein. We show that this cross-reactive antibody response is 
boosted during SARS-CoV-2 infection in epitope-specific manner (Fig. 3D). Our findings are consistent with 
similar reports on pre-existing anti-SARS-CoV-2 S antibody immunity from others on cohorts with different 
genetic and demographic  backgrounds27,55–57,61,86. We also show that pre-existing immunity on SARS-CoV-2 S 
shares epitope mimics associated with ill health. Overall, these data support the role of personal immune his-
tory with functional consequences to the diversity of antibodies elicited due to the phenomenon of heterologous 
immunity, i.e. back-boosting, i.e. immune imprinting, i.e. “original antigenic sin”86,118. The study lends further 
credence to MVA generated immunoprofiles as robust and generalisable.

Study limitations. A weakness of the study is the scarcity of information on the study participants, with 
no available data on the immune history of their infections and vaccinations. Another caveat is the limited 
sample size of COVID-19 infected individuals which we used for validating the pre-existing seroreactivity pat-
terns observed in naïve samples. Further studies will be necessary to determine what roles the resolved epitopes 
play in anti-SARS-CoV-2 immunity. Although the resolved epitopes were located on the exterior surface of the 
spike trimer by and spike-specific seroreactivity in naïve sera was confirmed independently by dot-ELISA using 
globular and denatured S subunits, it needs further analysis of the function of these antigenic sites of whether 
these target neutralising or binding antibodies. Although our data analysis results show differential anti-SARS-
CoV-2 S epitope reactivity in herpesvirus positive/negative individuals, further studies are warranted to prove 
direct cross-reactivity between SARS-CoV-2 S and other pathogens. The unexpected finding of the SARS-CoV-2 
S epitopes to embed potential pathogenic antigenic determinants will require further investigation in the future. 
Deciphering the biological role of the conservation of the heterologous immunity hot-spots on SARS-CoV-2 S 
may contribute to the design of future vaccines.
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