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Abstract – The geographic distribution of Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidea), the causative
agent of food/water-borne sparganosis, is restricted to Europe, where infected canids, felids, mustelids, suids, and
reptiles have been documented from Poland, Ukraine, Belarus, Russia, Serbia, Estonia, Latvia, and Finland. The main
objective of the current study was to map the molecular divergence of S. erinaceieuropaei from Finland using the
complete sequences of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1 mtDNA). Seven cox1 haplotypes
were determined in 15 tapeworms from Eurasian lynx (Lynx lynx) from three localities in southern Finland. In addition,
the first inter-population study of S. erinaceieuropaei based on currently obtained data on cox1 from Finland and
previously published data from Finland, Latvia, Ukraine, and Poland, was performed. The haplotype network showed
a star-like pattern without specific subdivision of lineages according to the locality. Samples from Finland, Latvia, and
Poland shared several haplotypes and formed the common Baltic lineage. The haplotype of S. erinaceieuropaei from
Ukraine was unique and placed on a separate mutational pathway, suggesting a different lineage of the parasite.

Key words: Food/water-borne zoonosis, Sparganosis in Finland, cox1 haplotypes, Molecular genotyping, Genetic
lineages.

Résumé – Interrelations génétiques de Spirometra erinaceieuropaei (Cestoda, Diphyllobothriidea), l’agent cau-
sal de la sparganose en Europe. La distribution géographique de Spirometra erinaceieuropaei (Cestoda :
Diphyllobothriidea), l’agent causal de la sparganose d’origine alimentaire/hydrique, est limitée à l’Europe, où des
canidés, félidés, mustélidés, suidés et reptiles infectés ont été documentés en Pologne, Ukraine, Biélorussie, Russie,
Serbie, Estonie, Lettonie et Finlande. L’objectif principal de la présente étude était de cartographier la divergence
moléculaire de S. erinaceieuropaei de Finlande à l’aide des séquences complètes du gène mitochondrial de la sous-
unité 1 de la cytochrome c oxydase (ADNmt cox1). Sept haplotypes cox1 ont été déterminés chez quinze cestodes
du Lynx d’Eurasie (Lynx lynx) de trois localités du sud de la Finlande. En outre, la première étude inter-
populationnelle de S. erinaceieuropaei basée sur les données actuellement obtenues sur cox1 de Finlande et sur des
données précédemment publiées de Finlande, Lettonie, Ukraine et Pologne, a été réalisée. Le réseau d’haplotypes a
montré un motif en étoile sans subdivision spécifique des lignées selon la localité. Des échantillons de Finlande,
Lettonie et Pologne partagent plusieurs haplotypes et forment la lignée commune de la Baltique. L’haplotype de
S. erinaceieuropaei d’Ukraine est unique et placé sur une voie de mutation distincte suggérant une lignée différente
du parasite.

Introduction

Sparganosis is a food- and water-borne parasitic zoonosis
caused by tapeworm larvae of the genus Spirometra Faust,
Campbell & Kellogg, 1929 (Cestoda: Diphyllobothriidea).
The first larval stage (procercoid) of these tapeworms develops

in the first intermediate hosts, copepods (Cyclops sp.). The
second intermediate or paratenic hosts are many wild and
domesticated vertebrates, including amphibians, reptiles, birds,
and mammals, in which plerocercoids (spargana) develop
mainly in subcutaneous tissues, but also in musculature and
internal organs [14]. The definitive hosts are wild and domesti-
cated carnivores. Humans become infected either by drink-
ing water containing infected copepods or by consuming*Corresponding author: hromadova@saske.sk
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plerocercoids in raw or inadequately cooked meat of the second
intermediate or paratenic host [9, 14].

Taxonomy of the genus Spirometra has always been com-
plicated due to high intraspecific variability, uniformity of most
diphyllobothriid taxa, and lack of reliable species-specific mor-
phological markers [14]. A recent phylogenetic analysis of
members of the genus Spirometra based on the sequences of
the mitochondrial cytochrome c oxidase subunit 1 gene (cox1
mtDNA) revealed the presence of six molecularly well-defined
and geographically distinct lineages (lin.) corresponding to sep-
arate species, namely Spirometra erinaceieuropaei (Rudolphi
1819) (European lin.), Spirometra decipiens (Diesing, 1850)
complex 1 (American lin. 1), Spirometra decipiens complex
2 (American lin. 2), Spirometra folium (Diesing, 1850) (African
lin.), Spirometra mansoni (Cobbold, 1883) (Eurasian, Oceanic,
and African lin.), and Spirometra sp. 1 (Asian lin. 2) [14].

The type species S. erinaceieuropaei (syn. Spirometra
erinacei) was described more than 200 years ago on the basis
of plerocercoids found in the European hedgehog (Erinaceus
europaeus) at an unknown locality (probably Brandenburg or
former Prussia) in Europe [19]. The geographic distribution
of this species was long considered cosmopolitan, because it
was misidentified with the widespread but genetically distinct
S. mansoni, which occurs in East and Southeast Asia, namely
China, Thailand, Vietnam, Laos, Myanmar, India, Indonesia,
Japan, and also Australia [14]. Even though a recent compre-
hensive phylogenetic study revealed that Asian and Australian
Spirometra specimens are related to S. mansoni, its occurrence
was surprisingly confirmed by molecular methods from edible
frogs (Pelophylax esculentus) in Romania (south-eastern
Europe). On the other hand, S. erinaceieuropaei was found to
be restricted exclusively to north-eastern Europe [14].

In the past two decades, the occurrence of S. erinaceieu-
ropaei in wild carnivores, mustelids, wild boars, and snakes
has been reported in several northern and eastern European
countries, mainly in the vicinity of the Białowie_za National
Park in eastern Poland [4–9, 14] and in western Belarus
[22, 24, 25], but also in Serbia [17], Estonia [10], Latvia [1],
Ukraine, and Finland [11, 14, 15]. The genetic structure of
S. erinaceieuropaei based on the mitochondrial cox1 gene is
so far available only for the populations from Poland and Latvia
[1, 7] and only single sequences were published for tapeworms
from Finland and Ukraine [14, 15].

The main objective of the current study was to evaluate, for
the first time, genetic interrelationships among different
European populations of S. erinaceieuropaei using complete
cox1 sequences. Since only three specimens from Finland have
been sequenced so far, additional isolates from European lynx
(Lynx lynx) from three localities in Finland were used to obtain
a broader dataset on S. erinaceieuropaei from this northernmost
locality of its occurrence.

Materials and methods

Fifteen immature and adult tapeworms were isolated from
three Eurasian lynx from southern Finland in 2008 and 2010.
A single tapeworm was obtained from a lynx that was legally
hunted near Metsäkylä village in Hamina municipality, another

specimen originated from a dead lynx found in Savonlinna
municipality, and 13 tapeworms were isolated from a lynx near
Kallasti farm in Ylämaa municipality, which was euthanized
due to severe injury. Material was provided by the Natural
Resources Institute and the Finnish Food Safety Authority
EVIRA with special permissions of hunting rules and regula-
tions, following ethics guidelines. Tapeworms were washed
in saline solution and preserved in 70% ethanol for further
analysis.

All specimens were initially identified as diphyllobothriid
tapeworms (genera Dibothriocephalus and/or Spirometra)
based on their external morphological characteristics. Taxo-
nomic identification of diphyllobothriids is quite complicated
due to the numerous unstable and overlapping morphological
characters of each taxon, making the definition of species
boundaries difficult or even impossible [14]. Moreover,
tapeworms recovered from post mortem hosts were either
immature or even fragmented and decomposed, making correct
identification impossible [13, 21]. Therefore, accurate taxo-
nomic determination must rely on species-specific molecular
markers.

Genomic DNA was isolated from 20 mg of tissue of the
distal part of tapeworm using a QIAamp� DNA Kit (QIAGEN,
Hilden, Germany), according to the manufacturer’s instructions,
diluted in deionized water and stored at�20 �C. Details of PCR
amplification, sequencing, sequence assembly and sequence
analyses were published previously [1]. The anterior part of
each tapeworm was stained and mounted on microscopic slides
as morphological voucher and was deposited in the Helmintho-
logical Collection of the Institute of Parasitology, Biology Cen-
tre of the Czech Academy of Sciences, České Budějovice,
Czech Republic (IPCAS No. C-101).

The initial molecular genotyping was based on the partial
sequences (640 bp) of the large subunit of the ribosomal
RNA gene (lsrDNA). The aim was to distinguish between
the genera Spirometra and Dibothriocephalus, which could
infect Eurasian lynx in Finland. PCR amplification of the
lsrDNA was performed using the forward primer LSU-5 (50–
TAGGTCGACCCGCTGAAYTTAAGCA–30) and the reverse
primer 1500R (50–GCTATCCTGAGGGAAACTTCG–30) [18].
The 50-end of the lsrDNA was sequenced from both direc-
tions using the LSU-5 primer and two internal primers,
300F (50–CAAGTACCGTGAGGGAAAGTTG–30) and
400R (50–GCAGCTTGACTACACCCG–30) [18]. Fourteen
of the fifteen tapeworms had identical lsrDNA sequence
structure, and the lsrDNA of one specimen from Kallasti
differed by one mutation (99.8% pairwise sequence iden-
tity). The sequences were deposited in the GenBank, EMBL
and DDBJ databases under accession numbers MW365689–
MW365702. They showed 99.8–100% similarity/identity
with the lsrDNA of S. erinaceieuropaei from Eurasian lynx
(MT313931) and grey wolf (MT321262) from Latvia [1].

To confirm these results, all tapeworms were also analysed
using complete mitochondrial cox1, which has been showed to
be the most reliable identification tool for diphyllobothriids
[14]. PCR amplification and sequencing were performed
using the primers Diphyllo-Cox1-F (50–TAGACTAAGTG-
TTTTCAAAACACTA–30) and Diphyllo-Cox1-R (50–ATAG-
CATGATGCAAAAGG–30) [27]. Two internal primers,
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DCox1-R2 (50–AAACACCGGCTCACGTAAAG–30) and
Cox1-R3 (50–CGCAAATGCCGAATAAAGAG–30) [7] were
used to sequence the complete cox1 from both directions.
The sequences were deposited in the GenBank, EMBL and
DDBJ databases under accession numbers MW357422,
MW357425–MW357433, MW357435–MW357437, and
MW357539–MW357540.

The newly obtained data from 15 S. erinaceieuropaei from
Finland were used in the study of genetic interrelationships
among populations together with the previously published data,
namely: (i) 50 cox1 haplotypes (Ha1–Ha50; MK523394–
MK523443 and MT131826–MT131829) detected in 319
individuals from canids, mustelids, and reptiles from different
localities in north-eastern Poland [7, 14]; (ii) 12 cox1 haplo-
types (CO1-Ha1-Ha12/LV; MT941768–MT941770 and
MT951146–MT951155) detected in three individuals from
Eurasian lynx and nine specimens of grey wolf (Canis lupus)
from Latvia [1]; (iii) one haplotype (MT131830) detected in
a single tapeworm from grey wolf from Chernobyl in Ukraine
[14]; and (iv) one haplotype (MT131825) of single tapeworm
from Eurasian lynx from Kallasti in Finland [14] (Fig. 1, blue
points). Genetic variability among populations from four Euro-
pean countries was visualised by a haplotype network using
PopArt [16] with the TCS 1.21 algorithm [2].

Results

Analysis of the complete cox1 sequences (1566 bp) of 15 S.
erinaceieuropaei specimens from Finland revealed a high
degree of sequence similarity (99.6–99.9%) within the popula-
tion. Seven cox1 haplotypes CO1–Ha1–Ha7/FI were
determined; haplotypes CO1–Ha2/FI and CO1–Ha4/FI were
each detected in a single tapeworm, while haplotypes CO1–
Ha5–7/FI were each shared by two individuals. Three
tapeworms possessed CO1–Ha3/FI and four individuals were
characterised by CO1–Ha1/FI.

The haplotype network based on the complete cox1
sequences showed a star-like pattern and provided pilot infor-
mation on the interrelationships of S. erinaceieuropaei from
north-eastern Europe (Fig. 2A). The entire dataset contained
70 variable characters, 33 of which were parsimony informa-
tive. No specific subdivision of lineages depending on locality
was detected. Several haplotypes, including the central
haplotype, were shared by S. erinaceieuropaei from Finland,
Latvia and Poland, countries of the Baltic region. The tape-
worms from Finland and Latvia shared one haplotype, while
specimens from Finland and Poland shared two haplotypes
(Fig. 2A). This suggests that S. erinaceieuropaei from Finland,
Latvia and Poland form a common group referred to as
“the Baltic lineage”. In contrast, the single haplotype of
S. erinaceieuropaei from Ukraine was on a separate mutational
pathway displayed by six substitutions (Fig. 2A), indicating a
genetic distance between the tapeworms from Ukraine and
the Baltic lineage. Datasets from Finland and Latvia were anal-
ysed separately in an individual haplotype network, confirming
an overlapping genetic structure of S. erinaceieuropaei from
these two countries (Fig. 2B).

Discussion

The current study provided pilot data on the genetic interre-
lationships of European populations of S. erinaceieuropaei and
opened several perspectives for future studies. One of the
challenges is to determine the geographic boundaries of the
Baltic lineage. In addition to Finland, Latvia, and Poland, tape-
worms morphologically identified as S. cf. erinaceieuropaei
were also detected in a stray cat from Estonia [10] and in
several mammals in south-western Belarus [23, 24, 25, 26]
(Fig. 1, green points). Moreover, the white spot on the map
of the north-eastern distribution of S. erinaceieuropaei is
Lithuania (Fig. 1, LT), the only Baltic country for which no
data on this tapeworm are available. Screening and molecular
genotyping of S. erinaceieuropaei from the above mentioned
countries would provide a more complex picture of its geo-
graphic distribution in north-eastern Europe and better specifi-
cation of the Baltic lineage.

Haplotype diversity detected in the current work decreased
from the southern geographical regions towards the northern
ones. The highest number of haplotypes (50) was reported from
Poland [7], followed by 12 haplotypes in Latvia [1] and seven
in Finland (current work). However, these data are based on a
rather unequal number of analysed samples (319/Poland;
13/Latvia; 15/Finland) and require further studies supplemented
with more material.

The specific cox1 haplotype of a tapeworm from Ukraine
provided the preliminary evidence for a different genetic struc-
ture of S. erinaceieuropaei from Eastern Europe. Since the data
are based on only one specimen, no decisive conclusions can be
drawn about genetic interrelationships between the tapeworms
from Ukraine and the Baltic region. It is obvious that molecular
analysis based on a broader set of samples is necessary to

Figure 1. Scheme of the distribution of Spirometra erinaceieu-
ropaei (S. e.) from Finland (FI), Poland (PL), Latvia (LV), and
Ukraine (UA) analysed molecularly in the current work (blue points)
and its findings from neighbouring Estonia (EE), Belarus (BY), and
Ukraine (UA) based on its morphology (green points). The map was
obtained from https://d-maps.com.
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determine the diversity of Spirometra from different Eastern
European countries. In particular, S. cf. erinaceieuropaei was
morphologically confirmed in wildlife in the northern part of
Ukraine [11], in the Białowie_za Forest and Biarezinski
Biosphere Reserve in Belarus [23, 24, 25, 26] (Fig. 1, green
points), and in several localities in Russia (e.g. Tver, Moscow
region and Astrakhan Reserve) [3, 12].

The numerous findings of S. erinaceieuropaei in wildlife
from different European regions acquired after the year 2000
have demonstrated the importance of ongoing screening of the
causative agents of sparganosis for a better understanding of
their current distribution in Europe. Reliable molecular markers
must be applied to determine whether south-eastern Europe is a
region with exclusive presence of S. mansoni, or a place with
sympatric occurrence of S. mansoni and S. erinaceieuropaei.
Their overlapping distribution cannot be ruled out since the latter
species has been confirmed morphologically in wild boars in
Serbia [17, 20] and in forest cats from the Odesa region of
south-eastern Ukraine [11]. It is now evident that a multidisci-
plinary approach using morphological, biological and molecular
methods needs to be applied for accurate determination of
spatial distribution of S. erinaceieuropaei and S. mansoni in
Europe and an assessment of the interrelationships among their
populations.
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