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Abstract 

Key Words: Graph Mining, Knowledge Graph, Feature Engineering 

 

Production systems in manufacturing consume and generate data. Representing the relationships 
between subsystems and their associated data is complex, but suitable for Knowledge Graphs (KG), 
which allow us to visualize the relationships between subsystems and store their measurement 
data. In this work, KG act as a feature engineering technique for a clustering task by converting 
KG into Euclidean space with so-called graph embeddings and serving as input to a clustering 
algorithm. The Python library Karate Club proposes 10 different technologies for embedding whole 
graphs, i.e., only one vector is generated for each graph. These were successfully tested on 
benchmark datasets that include social media platforms and chemical or biochemical structures. 
This work presents the potential of graph embeddings for the manufacturing domain for a 
clustering task by modifying and evaluating Karate Club’s techniques for a manufacturing dataset. 
First, an introduction to graph theory is given and the state of the art in whole graph embedding 
techniques is explained. Second, the Bosch production line dataset is examined with an 
Exploratory Data Analysis (EDA), and a graph data model for directed and undirected graphs is 
defined based on the results. Third, a data processing pipeline is developed to generate graph 
embeddings from the raw data. Finally, the graph embeddings are used as input to a clustering 
algorithm, and a quantitative comparison of the performance of the techniques is conducted. 
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1. Introduction 

At the beginning of this thesis, the motivation of the research topic is outlined. Subsequently, the 
research question is formulated and the methodology as well as the structure of the work are 
presented.  

1.1 Motivation 

Industry 4.0 is revolutionizing the manufacturing domain. Especially for the purpose of Industry 
4.0, Artificial Intelligence (AI) powered manufacturing is a necessity. According to a study by 
Google Cloud in 2021, 64% of manufacturers rely on AI to support day-to-day operations, and the 
area where it is currently deployed the most is quality control [1]. The reason for the massive focus 
on AI projects is that manufacturing companies can achieve up to 30% yield improvements and 
15% waste reduction, based on IBM Research [2]. 

Through contextual information, AI applications can deal with ambiguity to enhance predictions 
and support decision-making processes [3]. Knowledge Graphs (KG) capture context and domain 
knowledge and can thus contribute to the explainability and acceptance of AI in the realization of 
flexible manufacturing systems [4]. Graph embeddings, which are vector representations of KG, 
allow KG to be used as inputs for Machine Learning (ML) algorithms and the realization of data 
analysis tasks such as clustering and classification [5]. In this context, the selection of an 
appropriate graph embedding technique is crucial for generating meaningful embeddings for a 
given task.  

1.2 Research Question 

The research question of this work is formulated as: “How effective is the use of graph embeddings 
for performing a clustering task in the manufacturing domain?”. The goal is to understand how 
graph embeddings perform as a feature engineering technique for downstream ML tasks such as 
clustering. It also aims to test how well the graph data format is suited for representing production 
data and whether it has advantages compared to other techniques.  

1.3 Methodology 

Many ML and data science projects are not well structured, and their results are not reproducible. 
Therefore, the Cross-Industry Standard Process for the development of Machine Learning 
applications with Quality assurance (CRISP-ML (Q)) methodology was proposed. This thesis uses 
the CRISP-ML methodology in Figure 1 as a guideline for solving the research question. [6]  

The starting phase “Business and Data Understanding” is about defining business goals and 
translating them into ML objectives, collecting and verifying data quality and finally assessing the 
feasibility of the project. The second phase aims at creating a dataset for the subsequent modeling 
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phase. The modeling phase itself is the ML-specific phase that seeks to specify one or more ML 
models. Afterwards, the ML workflow is integrated into a pipeline to enable repeatable model 
training. In the evaluation step, the performance of the trained model is validated using a test set. 
Based on success criteria of the evaluation step, the decision on deployment is made. The 
deployment phase of a ML model is characterized by its integration into the existing software 
system. After completion of the evaluation step, the ML model is evaluated for the use in the 
production environment. Once the ML model is deployed in the production process, it is important 
to monitor its performance and maintain it. However, the deployment and monitoring & 
maintenance steps are not covered in this work. [6]  

 

 
Figure 1. CRISP-ML(Q) diagram inspired by [6]  

 

1.4 Thesis Outline 

This thesis starts with an introduction to graph theory, providing the mathematical background 
necessary to understand the structure of graph embedding techniques. Chapter 2 analyzes the state 
of the art for whole graph embeddings to transform graph structures into vector space while 
maximally preserving their properties. For this purpose, ten methods for embedding whole graphs 
from the Karate Club library are used. Additionally, the k-means clustering algorithm and 
clustering performance metrics are presented.  

Business & Data 
Understanding

Data 
Preparation
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Evaluation

Deployment
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Chapter 3 provides an Exploratory Data Analysis (EDA) performed on a Bosch production line 
dataset, which forms the use case for evaluating graph embedding techniques. In Chapter 4, the 
experiment was conducted to design a data processing pipeline to generate graph embeddings 
from the raw data. This included preprocessing the data, defining and creating graphs, and 
customizing the implementation of the graph embedding techniques. Finally, the clustering task 
was performed, and in Chapter 5, a quantitative comparison of the performance of the techniques 
was made, and the results were discussed. Finally, a conclusion was drawn and an outlook on 
future tasks is given in Chapter 6. 
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2 State of the Art 

This work is based on a fundamental understanding of graph theory, graph embeddings, and 
unsupervised learning methods. The State of the Art chapter introduces the necessary graph 
embedding techniques investigated in this thesis and provides an overview of suitable comparison 
metrics. It forms the basis for understanding the scientific background for the proposed Experiment 
described in the following chapters. 

2.1 Graph Theory 

This section covers fundamental definitions and properties of graphs, introduces the notion of 
sparse matrices for efficient graph representation, and defines the Laplacian matrix, which plays 
an important role for the graph embedding techniques discussed in this work.  

2.1.1 Graphs 

A graph 𝐺 is defined as an ordered pair 𝐺	 = 	 (𝑉, 𝐸), where 𝑉 is a set of vertices (or nodes) and 
𝐸 ⊆ (𝑉 × 𝑉) be a set of edges (or lines). These represent nodes as entities, and the relationships 
between nodes are expressed by edges. Graphs are usually portrayed by drawing a point for each 
vertex and joining two points by a line when the two vertices form an edge. The node set of the 
graph 𝐺 is denoted as 𝑉(𝐺) and its edge set as 𝐸(𝐺). For clarity, Figure 2 shows a graph 𝐺 with its 
corresponding vertex set 𝑉(𝐺) = {𝑣!, 𝑣", 𝑣#, 𝑣$} and edge set 𝐸(𝐺) = {𝑒!, 𝑒", 𝑒#, 𝑒$, 𝑒%, 𝑒&}. The 
following explanations and definitions assume that the mentioned graphs are non-empty. [7,8] 

 

 
Figure 2. Diagram of graph 𝐺 

 

Directed Graph. When the edges of a graph have an orientation, they are called directed graphs, 
otherwise, they are called undirected graphs. A directed graph (also called digraph) is defined as 
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a pair (𝑉, 𝐸) of vertex and edge sets, where two functions 𝑖𝑛𝑖𝑡: 𝐸 → 𝑉 and 𝑡𝑒𝑟: 𝐸 → 𝑉 assign to 
every edge 𝑒 an initial vertex 𝑖𝑛𝑖𝑡(𝑒) and a terminal vertex 𝑡𝑒𝑟(𝑒). The edge 𝑒 is called directed 
from 𝑖𝑛𝑖𝑡(𝑒) to 𝑡𝑒𝑟(𝑒). According to the above definition a directed graph can have several edges 
between two vertices 𝑣! and 𝑣". These edges are called multiple edges, and if they lead from the 
same node to the other, the edge 𝑒 is called a loop. [7]  

Incident and adjacent. Two vertices connected by an edge are called its ends. An edge 𝑒 is incident 
to its ends, that is, if 𝑣 ∈ 𝑒. If two vertices 𝑣!, 𝑣" of 𝐺 are adjacent (or neighbors), then {𝑣!, 𝑣"} is 
an edge of 𝐺. Two edges can also be adjacent if they have a common end. A graph is called 
complete, if every pair of distinct vertices is connected by a unique edge. An example of a complete 
graph with 𝑛 = 3 vertices is a triangle. [7]  

Graph isomorphism. Two graphs 𝐺! and 𝐺" are declared identical if they can be represented by 
an identical diagram. However, it is possible for two non-identical graphs to have essentially the 
same diagram, except that they have different node and edge labels. Then the two graphs 𝐺! and 
𝐺" are not identical, but isomorphic. A graph 𝐺! = (𝑉!, 𝐸!) is isomorphic to 𝐺" = (𝑉", 𝐸"), also 
denoted as 𝐺! ≃ 𝐺", if there exists a bijective1 function 𝜑: 𝑉! → 𝑉" such that (𝜑(𝑢), 𝜑(𝑣)) ∈ 𝐸" for 
each (𝑢, 𝑣) ∈ 𝐸!, which simply means that the nodes of graph 𝐺! are mapped to nodes of graph 𝐺" 
by a bijective function 𝜑. [7,8]  

Subgraph. 𝐺′ is a subgraph of 𝐺 if 𝑉′ ⊆ 𝑉 and 𝐸' ⊆ 𝐸, denoted as 𝐺′ ⊆ 𝐺. In other words, 𝐺 contains 
𝐺′ (or 𝐺 is a supergraph of 𝐺′).[7] 

Path. A path is a finite or infinite sequence of edges connecting a sequence of distinct vertices. A 
path can be denoted as a graph 𝑃 = (𝑉, 𝐸) of the form 

 

𝑉 = {𝑥(, 𝑥!, … , 𝑥)},														𝐸 = {𝑥(𝑥!, 𝑥!𝑥", … , 𝑥)*!𝑥)} 

 

where the vertices 𝑥( and 𝑥) are connected by the path 𝑃. The parameter 𝑘 describes the number 
of edges of the path, i.e., the length of the path and is denoted by 𝑃). A path is often referred to 
as a natural sequence of its vertices, where 𝑃 = 𝑥(𝑥!…𝑥) is a path between 𝑥( and 𝑥). [7]  

Walk. A walk of length 𝑘 is an alternating sequence 𝑣(𝑣!…𝑣) of vertices and edges in 𝐺 with the 
edges 𝑒+ = {𝑣+ , 𝑣+,!} for all 𝑖 < 𝑘. The difference to a path is that the vertices and edges in a walk 
are not all distinct. However, it can be said that every walk between two vertices contains a path 
between these vertices. [7]  

A random walk is a special case, where all steps 𝑣(𝑣!… are chosen randomly and allow 𝑣+ = 𝑣+,!. 
The probability of a random walk that started in node 𝑖 to be in node 𝑗 after 𝑘 steps can be 
represented by the transition matrix 𝑃+-) . With the assumption that if 𝐺 is a digraph, then 
deg,(𝑣-) > 0 for every vertex 𝑣, the transition matrix 𝑃+- can defined as: [9,10] 

 
1 is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, 
and vice versa [57] 
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𝑃!" ∶=

⎩
⎨

⎧
1

deg	(𝑣𝑗)
1

deg+(𝑣𝑗)

0

     

if	(𝑣𝑖, 𝑣𝑗)	is	an	edge	in	the	graph	𝐺
𝑘

if	(𝑣𝑖, 𝑣𝑗)	is	an	edge	in	the	digraph	𝐺
𝑘

otherwise.

 

 

Connectivity. In an undirected graph 𝐺, two vertices 𝑣! and 𝑣" are called connected if 𝐺 contains 
a path from 𝑣! to 𝑣". In general, the graph 𝐺 is connected if two of its vertices are linked by a path 
in 𝐺. Otherwise, they are called disconnected. A special case is a graph with only one vertex that 
is connected, while an edgeless graph with more than one vertex is disconnected. Directed graphs 
are distinguished between weakly connected, unilaterally connected and strongly connected 
graphs. A directed graph is weakly connected if replacing all its directed edges with undirected 
edges produces a connected graph. The graph is unilaterally connected if it contains a directed 
path from 𝑣! to 𝑣" or a directed path from 𝑣" to 𝑣! for each pair of vertices 𝑣! and 𝑣". Finally, a 
directed graph is defined as strongly connected if it contains a directed path from 𝑣! to 𝑣" and a 
directed path from 𝑣" to 𝑣! for every pair of vertices 𝑣! and 𝑣". The different graph connection 
types are depicted in Figure 3. [7,11] 

 

 
Figure 3. Different types of directed graphs 

 

Bipartite graph. A graph 𝐺 = (𝑈, 𝑉, 𝐸) is called bipartite if its vertices can be divided into two 
disjoint and independent sets 𝑈 and 𝑉, where each edge connects a vertex in 𝑈 to one in 𝑉 (see 
Figure 4). [7,12] 
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Figure 4. Bipartite graph 

 

Degree Matrix. The degree 𝑑8(𝑣) = 𝑑(𝑣) of a vertex 𝑣 is the number |𝐸(𝑣)| of edges on 𝑣, which 
is equal to the number of neighbors of 𝑣. By knowing this, we define the diagonal matrix (𝑑+-)9×9 
with 𝑑++ = 𝑑(𝑣+) and 𝑑+- = 0 otherwise. The definition refers to undirected graphs. However, for 
directed graphs, there is an in-degree and out-degree matrix that count the number of edges at 
vertex 𝑣 that go either in or out (see Figure 5). The figure also shows the degree matrix for the 
case that the graph is treated as undirected. [7,13] 

  

 

Figure 5. Degree matrices for a directed and undirected graph 
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Adjacency Matrix. The adjacency matrix 𝐴 =	 (𝑎+-)9×9 is a square matrix used to describe a graph 
𝐺. The elements in the matrix indicate whether pairs of vertices in the graph are adjacent or not. 
If 𝑣+𝑣- ∈ 𝐸, then 𝑎+- = 1, otherwise 𝑎+- = 0. The adjacency matrix of an undirected graph is 
symmetric. Figure 6 shows a directed graph with its corresponding asymmetric adjacency matrix. 
[7]  

 

 
Figure 6. Directed graph and corresponding adjacency matrix 

 

A graph whose edges are assigned a numerical weight is known as a weighted graph. The number 
assigned to each edge 𝑒 is the weight of 𝑒, denoted by 𝑤(𝑒). The weights are represented by a 
weight matrix 𝑊 =	(𝑤+-)9×9. The weight matrix of an unweighted graph is equal to its adjacency 
matrix. [14]  

By examining the adjacency or weight matrix, we see that that these matrices can be very large 
and contain many values that are equal zero. To save computation time and memory, other data 
structures have been developed that store the same values of these matrices in a different way. 
Therefore, the concept of sparse matrices is explained below. 

2.1.2 Sparse Matrices 

A sparse matrix is a matrix in which most of the elements are equal to zero. A matrix can be called 
sparse if more than 50% of its values are zero. Otherwise, if the number of non-zero entries 
dominates, then these matrices are called dense. Sparse matrices are able to perform faster 
operations and use less memory than dense matrices. These properties are very beneficial when 
working with large datasets in data science. The implementation of the sparse matrices is provided 
by the Python package scipy sparse. [15,16] 
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2.1.2.1 Coordinate Format 

The simplest sparse format is the COOrdinate (COO) format (see Figure 7). It uses three different 
subarrays to store the values and their corresponding positions. The first two arrays contain 
location information about the row and column number of the value to be stored. The third array 
stores the actual value. For some datasets with an increasing number of data points, the COO 
format is a great choice because each data point is stored with three entries, while for instance an 
additional data point in a dense 6 × 6 matrix stores a value with six entries. [16]  

One advantage of this sparse format is that it facilitates fast conversion to and from other sparse 
formats like Compressed Sparse Row (CSR) and Compressed Sparse Column (CSC) which are 
explained below. [15]  

 

 

Figure 7. Conversion of a dense matrix to a sparse matrix in COO format [16] 

  

2.1.2.2 Compressed Sparse Row Format 

The CSR or Yale format represents a matrix similar to the COO format, with three different 
subarrays, that respectively contain the compressed row indices, the column indices, and the non-
zero values. While the COO format represents the row indices, CSR compresses them, hence the 
name. Figure 8 shows how a dense matrix was converted into a sparse matrix in CSR format. The 
algorithm iterates over each row of the dense matrix. Note that the first value of the row pointer 
is always 0, and the last is always the number of non-zero values. The first non-zero value identified 
is 8 at column index 0 which can be checked in the figure’s table. The second non-zero value is 2 
with column index 2. The row pointer can be considered as a numeric counter that adds a +1 for 
each non-zero value detected. Since the value 2 is the second detected non-zero value, the 
corresponding row pointer value is 2. As highlighted in Figure 8, the row pointer value for 5 is 3 
because it is the third non-zero value. The algorithm continues this procedure by inspecting row 
by row. The advantage of the format is that it allows fast row access and matrix multiplication. 
[12,16]  
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Figure 8. Conversion of a dense matrix to a sparse matrix in CSR format [16]  

 

2.1.2.3 Compressed Sparse Column Format 

The algorithm of CSC works similarly to CSR, but instead has column-based pointers and row 
indices (see Figure 9). The algorithm iterates through all columns. As shown in the figure, the 
values 2, 5, 7, which represent the second, third and fourth non-zero values of the matrix, are all 
in one column. As the pointer is updated through all entries in a column after iteration, the column 
pointer for 2, 5, and 7 jumps from 1 to 4 as three non-zero values are added. Note in this example 
that the CSC format is slightly more compact with one less index pointer than CSR. While CSR 
allows fast row access, CSC makes column access very efficient. [16]  

 

 

Figure 9. Conversion of a dense matrix to a sparse matrix in CSC format [16]  
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2.1.3 Laplacian Matrix 

The Laplacian matrix is a matrix representation of a graph, denoted by 𝐿. For an undirected graph 
𝐺 = (𝑉, 𝐸) with 𝑛 vertices, the Laplacian matrix 𝐿9×9 is defined as  

 

𝐿!," ∶= )
𝑑𝑖
−1
0

     
if	𝑣𝑖 = 𝑣𝑗

				if	𝑣𝑖𝑣𝑗 ∈ 𝐸	
			otherwise.

 

 

The equivalent is 𝐿 = 𝐷 − 𝐴, where 𝐷 is the degree matrix and 𝐴 the adjacency matrix of the graph. 
[17]  

For directed graphs we must consider that there are two different degree matrices, which is why 
directed graphs have an out-degree Laplacian 𝐿;<= = 𝐷;<= − 𝐴, and an in-degree Laplacian matrix 
𝐿+9 = 𝐷+9 − 𝐴. Note that the adjacency matrix of a directed graph is not necessarily symmetric, 
which means that the corresponding Laplacian matrix can also be asymmetric. The Laplacian 
matrix is widely used in spectral graph theory. This theory relates the properties of a graph to a 
spectrum that consists of the eigenvalues of matrices associated with the graph, such as its 
Laplacian matrix. [17]  

Normalization. The goal of normalization is to make the diagonal entries of the Laplacian matrix 
all unit. There are two ways to normalize an existing Laplacian matrix.  

The first way generates the symmetrically normalized Laplacian which is defined as 

 

 𝐿>?@ ≔ (𝐷,)!/"𝐿	(𝐷,)!/" = 𝐼 − (𝐷,)!/"𝐴(𝐷,)!/", (2.1) 

 

where 𝐷, is the Moore-Penrose inverse, which is referred to the pseudoinverse of 𝐷. The 
symmetrically normalized Laplacian matrix is symmetric if the adjacency matrix is symmetric. For 
a non-symmetric adjacency matrix of a directed graph, there can be again be two matrices, either 
the Laplacian matrix normalized to the outer degree or the Laplacian matrix normalized to the 
inner degree. [17]  

The second way to normalize the Laplacian matrix is to create left (random walk) and right 
normalized Laplacians. The left (random walk) normalized Laplacian matrix is defined as  

 

 𝐿$% ≔	𝐷&𝐿 = 𝐼 − 𝐷&𝐴, (2.2) 
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where 𝐷, describes again the Moore-Penrose inverse. The right normalized Laplacian is calculated 
in the same way, except that 𝐴𝐷, is used instead of 𝐷,𝐴. When the adjacency matrix is symmetric, 
the left and right normalized Laplacians are generally not symmetric. Figure 10 shows an example 
of a random walk and right normalized Laplacian matrices for undirected graphs. Note that 𝐷,𝐴 
is right stochastic and thus the matrix of a random walk, hence the name. In the example, it can 
be observed that each row of the left normalized Laplacian sums to zero. The right normalized 
Laplacian is used less frequently and sums each column to zero because it is left stochastic. [17]  

 

 
Figure 10. Example of left and right normalized Laplacian matrices [17]  

 

Considering a non-symmetric adjacency matrix of a directed graph, one must choose between in-
degree and out-degree for normalization. Similar to the case of a symmetric adjacency matrix, the 
left out-degree normalized Laplacian relates to the right stochastic 𝐷;<=, 𝐴, while the right in-degree 
normalized Laplacian contains the left stochastic 𝐴𝐷+9, . Figure 11 demonstrates an example of the 
out- and in-degree left normalized Laplacian. [17]  

 

 
Figure 11. Example of left and right normalized Laplacian matrices for directed graphs [17]  

 

2.2 Graph Embeddings 

Graph embeddings serve as a feature engineering technique in ML projects. Prior to applying graph 
embeddings, graphs must be created to provide an efficient data structure to organize data.  

Let 𝐺 = {𝐺!, …𝐺@} be a set of 𝑚 graphs, and each graph 𝐺+ = {𝑉+ , 𝐸+ , 𝑙+}+B!@ , where 𝑉 and 𝐸 are sets 
of vertices and edges and 𝑙+ the class label of 𝐺+. An embedding is intended as a mapping of a 
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whole graph into a low-dimensional space ℝC, 𝑑 ≪ |𝑉|. The embedding vector should preserve the 
graph features to the greatest extent possible. [18]  

According to NVIDIA, NetworkX is the most popular graph framework used by data scientists who 
work extensively in the Python environment [19]. NetworkX is designed for the creation, 
manipulation, and study of the structure, dynamics, and functions of complex networks [20]. This 
library is constantly updated with extension libraries such as Karate Club2. Karate Club is an 
unsupervised ML extension library from NetworkX that consists of state-of-the-art methods for 
unsupervised learning on graph structured data [21].  

The graph embedding techniques used in this work are all implemented in the Karate Club library 
which contains not only whole graph embeddings, but also node embeddings and various other 
methods (see Figure 12). The given whole graph embedding techniques can be divided into three 
main categories, namely: graph textualization, spectral representation, and statistical 
representation.  

The first category deals with the textualization of graphs, where similar to Doc2vec, which 
represents a document as a set of words, a single graph is represented by a set of nodes and rooted 
subgraphs [22]. Graph2Vec is the first whole graph embedding technique from Karate Club. 
Graph2Vec and its extension, graph and line graph to vector (GL2Vec), are examples for the graph 
textualization category. The next category is about spectral representation methods like Spectral 
features (SF), Invariant graph embedding (IGE), and Network Laplacian spectral descriptor 
(NetLSD) which are more effective for the graph comparison of 3D objects [23]. Since 3D objects 
have a precise low-dimensional shape, in this category we consider graphs as geometric objects. 
The last category describes statistical representation methods that generate a graph signature 
vector based on statistical properties, e.g. median, mean, and standard deviation [23]. Examples 
of this representation include Family of graph spectral distances (FGSD), Local degree profile 
(LDP), Feather-Graph, and Geo Scattering. Finally, Wavelet Characteristic is difficult to place into 
one category because it combines the terms of different categories. Wavelet Characteristic uses 
both spectral and statistical representation, since its wavelets are constructed by spectral features 
[24]. 

  

 
2 https://karateclub.readthedocs.io/en/latest/ 
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Figure 12. Categorization of Karate Club's whole graph embedding techniques 

 

2.2.1 Graph2Vec 

Section 2.2.1 is based on the work developed by [22,25]. Graph2Vec is a data driven 
representation learning approach for learning whole graph embeddings of arbitrary sizes. The 
embeddings are learned in an unsupervised manner and can therefore be used for any ML 
downstream task such as graph classification and graph clustering. When using multiple real-world 
datasets from the chemo and bio-informatics domain, Graph2Vec outperforms the state-of-the-art 
graph kernels without losing efficiency. For instance, for malware clustering, the Adjusted Rand 
Index (ARI) (clustering metric) is 56%, outperforming other state of the art kernels.  

2.2.1.1 Notation 

Given a set of graphs {𝐺!, 𝐺", …𝐺9} and an integer 𝜆 indicating the size of the embedding, the 
Graph2Vec algorithm maps the graphs into a set of 𝜆-dimensional graph vectors {𝑓(𝐺!),
𝑓(𝐺"), … 𝑓(𝐺9)} called embeddings of 𝐺+. The notion is that Graph2Vec generates embeddings for 
semantically similar graphs whose values are close to each other. 

Let a graph be represented as 𝐺 = (𝑉, 𝐸, 𝜆), where 𝑉 is a set of nodes and 𝐸 ⊆ (𝑉 × 𝑉) a set of 
edges. Graph2Vec assumes that the Graph 𝐺 is labeled if there exists a function 𝜆:	𝑁 → 	ℒ	 that 
assigns each node 𝑛 ∈ 𝑁 to a unique label from the alphabet ℒ. When 𝐺 is unlabeled, then node 
labeling should be done according to [26] using the node degree. 

The whole-graph embedding technique is inspired by Doc2vec of [27], which is a simple extension 
of Word2Vec that transfers learning from embeddings of words to embeddings of sequences of 
words. Analogous to Doc2Vec, which represents a single document as a set of words, Graph2Vec 
represents a single graph as a set of rooted subgraphs.  
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The algorithm of Graph2Vec starts with a random initialization of the graph embeddings for all 
graphs in the dataset. Afterwards, rooted subgraphs are extracted around each node in each graph, 
iteratively learning the corresponding graph embeddings in multiple epochs. In the following, the 
extraction of rooted subgraphs from a single graph is explained.  

2.2.1.2 Extracting Rooted Subgraphs 

Before graph embeddings learning is executed, a rooted subgraph 𝑠𝑔9
(C) around every node 𝑣 of 𝐺+ 

is extracted. The extraction of these subgraphs follows the Weisfeiler-Lehman (WL) relabeling 
strategy. Let 𝑑 be an integer defining the degree of neighbors to be considered in subgraph 
extraction. The WL algorithm takes the root node 𝑣, the graph 𝐺 from which the subgraph is to be 
extracted, and the degree of neighbors 𝑑 as inputs and returns the intended subgraph 𝑠𝑔9

(C). For 
every node 𝑣, Graph2Vec generates 𝑑 + 1 rooted subgraphs with 𝑣 as the root. The WL relabeling 
procedure is shown in Figure 13 and explained as following: 

 

1. For each node 𝑣 in 𝐺, locate each label of the nodes adjacent to 𝑣 and add them to a set 
of node labels 

2. Arrange the elements in ascending order and merge them into one string. Insert the root 

node label as a prefix into the string 

3. The string is mapped to a new ID using some hash function 

4. Replace the original label of 𝑣 with the new generated ID 
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Figure 13. WL relabeling for graph 𝐺 [25]  

 

To exemplify this, the rooted subgraph of node 𝑣$ is described, for example, as “1-1,3”, where “1” 
is the label of the root and “1,3” describes the labels of the nodes adjacent to 𝑣$. Then the node 
receives the new subgraph ID “7”.  

2.2.1.3 Learning Embeddings with Negative Sampling 

Let {𝐺!, … , 𝐺D} be a set of graphs and {𝑐(𝐺!), … , 𝑐(𝐺D)} their subgraphs, then Graph2Vec learns a 
𝜆-dimensional embedding 𝑓(𝐺+) for 𝐺+, and also a 𝜆-dimensional embedding for each member 
subgraph in 𝑐(𝐺+) = {𝑠𝑔!, … , 𝑠𝑔9}. The model maximizes the log-likelihood specified in Equation 
(2.3). 

 

 n log𝑃E 	p𝑠𝑔-q𝐺+r	
9#(C,!)

-B!

 (2.3)  

 

In (2.3) the number of nodes in 𝐺+ is 𝑛+ and 𝑃E 	(𝑠𝑔-|𝐺+) describes the probability that the 𝑗-th 
subgraph 𝑠𝑔- in 𝑐(𝐺+) occurs in 𝐺+. The probability 𝑃E 	(𝑠𝑔-|𝐺+) is defined in (2.4). 

1

1

2

3

1

G!!

!" !#

!$

!%

5

7

8

9

6
!!

!" !#

!$

!%

1-1,2

1-1,3

2-1,1,3

1-1,1,2,3

3-1,1,2

!!

!" !#

!$

!%

After step 2

After step 4After step 3

1-1,1,2,3  → 5

1-1,2        → 6

2-1,1,3 → 8

1-1,3 → 7

3-1,1,2 → 9



 

 

 27 

 𝑃E 	p𝑠𝑔-q𝐺+r =
exp	(𝑓(𝐺+) ⋅ 𝑓(𝑠𝑔-))

∑ exp	(𝑓(𝐺+) ⋅ 𝑓p𝑠𝑔-r>F∈H;I
 (2.4) 

 

The problem with calculating this probability is that normally the similarity of all other subgraphs 
in 𝑐(𝐺+) must be computed for 1 ≤ 𝑖 ≤ 𝑁, which is very computationally demanding. Therefore, 
the skip-gram model can be trained efficiently with negative sampling [28], where just a couple 
of subgraphs 𝑠𝑔 are chosen at random and stored in a set called 𝑉𝑜𝑐 which denotes the randomly 
chosen vocabulary of subgraphs across all the graphs. After the training converges, the embeddings 
𝑓(𝐺+) and 𝑓p𝐺-r are closer if they have similar rooted subgraphs 𝑐(𝐺+) and 𝑐(𝐺-) and at the same 
time distances them from embeddings which do not have similar subgraphs.  

2.2.1.4 Limitations 

Since Graph2vec is the first published whole graph embedding of the Karate Club library, there 
are two major limitations that push for further research. One of them is very straight-forward, 
Graph2Vec does not consider edge labels. The WL relabeling strategy simply ignores them. The 
second limitation is related to the quantization of subgraphs of a graph 𝐺. When subgraphs are 
quantized by the WL relabeling procedure, node label information and structural information are 
both considered. However, the final subgraph IDs for graph 𝐺 do not always contain sufficient 
structural information to evaluate the structural similarity between 𝐺 and other graphs.  

2.2.2 Graph and Line Graph to Vector (GL2vec) 

Section 2.2.2 is based on the work developed by [25]. GL2Vec was developed as an extension of 
Graph2Vec that improves on the following two limitations: 1) No consideration of edge labels 2) 
Graph2Vec does not always preserve enough structural information to evaluate structural 
similarity. The name reveals that it concatenates the embedding of an original graph with that of 
the corresponding line graph. In terms of classification, GL2Vec achieves a significant improvement 
over Graph2Vec. Before describing GL2Vec in detail, the idea of line graphs will be explained 
below. 

2.2.2.1 Line Graphs 

Let a graph be represented as 𝐺 = (𝑉, 𝐸), then a so-called line graph 𝐿(𝐺) = (𝐿𝑉, 𝐿𝐸) represents 
the adjacencies between the edges of 𝐺. 𝐿(𝐺) is constructed such that each edge in 𝐺 is converted 
to a node in 𝐿(𝐺) (see Figure 14). The vertices of 𝐿(𝐺) are defined as 𝐿𝑉 = {𝑣(𝑒)|𝑒 ∈ 𝐸}. Two 
vertices 𝑣(𝑒+) and 𝑣p𝑒-r in 𝐿(𝐺) are connected by an edge if 𝑒+ and 𝑒- have a common endpoint in 
graph 𝐺. For instance, since edge (𝑣!, 𝑣#) and edge (𝑣!, 𝑣%) have the same endpoint 𝑣! in 𝐺, the 
line graph 𝐿(𝐺) shows an edge between the vertices (𝑣!, 𝑣#) and (𝑣!, 𝑣%). 
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Figure 14. Conversion of graph 𝐺 to line graph 𝐿(𝐺) [25]  

 
As mentioned in Chapter 2.1, the degree of a node 𝑣 is defined as the number of edges incident to 
it. Similarly, the number of edges incident to an edge 𝑒 is declared as the degree of 𝑒, symbolized 
by deg(𝑒). For an edge 𝑒 that has the two endpoints 𝑣J and 𝑣K Equation (2.5) holds. 

 
 deg(𝑒) = deg(𝑣J) + deg(𝑣K) − 2 (2.5) 

 

2.2.2.2 Method 

As mentioned in Chapter 2.2.1 the whole graph embedding technique Graph2Vec does not 
consider edge labels. Another limitation is that not sufficient structural information is preserved 
to evaluate the structural similarity between 𝐺 and other graphs. 

Therefore, GL2Vec utilizes the explained line graphs to overcome the limitations of Graph2Vec. In 
effect, the edges of 𝐺 become nodes of 𝐿(𝐺). The node labels in 𝐿(𝐺) are discarded so that the line 
graph can consider the structural information about 𝐺 independently of the node labels in 𝐺. 
GL2Vec assumes that graphs have node labels, similar to Graph2Vec. However, it can process 
graphs with and without edge labels. If the graphs are accompanied by edge labels, the label of an 
edge 𝑒 in 𝐺 is specified as 𝑣(𝑒) in 𝐿(𝐺). When the graph dataset comes without edge labels, the 
preservation of structural information is not affected by the node labels of 𝐺. But GL2Vec specifies 
the edge label itself, namely, the degree of edges in 𝐺 as node labels in 𝐿(𝐺). 

After reviewing the proposed method GL2Vec, the question arises, what the benefit of using 𝐿(𝐺) 
is if the structural information about 𝐺 can be extracted from 𝐺 directly. In this case, the label of 
a node 𝑣 in 𝐺 can be modified to deg	(𝑣). Although this is a possible approach, the line graph 𝐿(𝐺) 
can describe the structure of 𝐺 more precisely. In fact, there are usually more edges than nodes in 
𝐺, which means that 𝐿(𝐺) can use more values to describe the structure of 𝐺. While 𝐿(𝐺) uses 

G

!!

!" !#

!$

!%
(!%, !!)

L(G)

(!%, !$)
(!$, !#)

(!%, !#)(!%, !")

(!", !#)

(!!, !$)



 

 

 29 

degrees and edges, 𝐺 counts on the degrees of nodes, which allows line graphs to evaluate 
structural similarity at a finer level. 

Line graphs themselves do not consider node labels in 𝐺, therefore GL2Vec appends the embedding 
of 𝐿(𝐺) to that of Graph2Vec, in which node labels in 𝐺 are taken into account. The algorithm of 
GL2Vec works as follows: 

1) Construct line graphs {𝐿(𝐺!), 𝐿(𝐺"), … 𝐿(𝐺9)} from the given set of graphs {𝐺!, 𝐺", …𝐺9}. 

Depending on the availability of edge labels of 𝐺, the nodes of 𝐿(𝐺) are changed: 

a) Edge labels of 𝐺+ are present: each node 𝑣(𝑒) in 𝐿(𝐺+) is assigned the label of edge 𝑒 in 𝐺+ 

b) Edge labels of 𝐺+ are not present: each node 𝑣(𝑒) in 𝐿(𝐺+) is assigned 𝑑𝑒𝑔(𝑒) in 𝐺+ as node 

label 

2) Derive embedding 𝑓(𝐺+) of each 𝐺+ by applying Graph2Vec to {𝐺!, 𝐺", …𝐺9}. 

3) Derive embedding 𝑔(𝐿(𝐺+)) of each 𝐿(𝐺+) by applying Graph2Vec to {𝐿(𝐺!), 𝐿(𝐺"), … 𝐿(𝐺9)}. 

4) Append 𝑓(𝐺+) to 𝑔(𝐿(𝐺+)) and the final embedding of 𝐺+ is made	

2.2.2.3 Limitations 

The problem with GL2Vec is that when processing graphs with a very high number of edges, also 
called dense graphs, the number of vertices increases up to the square of the original graph in its 
line graph. The creation of line graphs may fail due to a lack of computational resources. It is worth 
investigating how GL2Vec can be extended to handle such cases. Another opportunity for further 
research is to find out for what kind of graph datasets GL2Vec works best.  

2.2.3 Family of Graph Spectral Distances (FGSD) 

Section 2.2.3 is based on the work developed by [29]. Researchers were working extensively on 
finding a graph feature representation that demonstrates uniqueness, stability, and sparse 
properties and at the same time is fast to compute. As a result, FGSD and its graph feature 
representation were developed, which exhibit most of the above properties. For the task of graph 
classification or graph clustering, it is interesting to know whether two graphs have identical 
structures. The goal of FGSD is therefore to learn an explicit graph representation that is invariant 
under graph isomorphism, i.e., under permutation of graph node labels, but also valuable for graph 
feature extraction. 

2.2.3.1 Notion 

Given a graph 𝐺, we are interested in learning a graph representation,  ℛ:	𝐺	 → (𝑔!, 𝑔", … , 𝑔E), and 
a feature function ℱ:	ℛ	 → (𝑓!, 𝑓", … , 𝑓C) from ℛ such that the graph features can be used to solve 
a graph classification problem. 
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A multiset basically describes a set in which an element can occur multiple times. The proposed 
method is based on following assumption: an atomic structure of the graph is encoded in the 
multiset of all pairwise node distances. The pairwise distances of the nodes are generated from an 
unknown distribution and then connected to form a graph, preserving the pairwise distances. 
Figure 15 shows the graph generation model based on this assumption.   

 

 
Figure 15. Graph generation model of FGSD [29]  

 

Moreover, the authors show that for a given distance function 𝑆L on a graph, one can explicitly 
recover all intrinsic properties of the graph while also being able to capture local and global 
information about the graph. Therefore, ℛ is defined as the multiset of node pairwise distances 
that are based on a distance function 𝑆L.  

After the discovery of FGSD, researchers have found that harmonic and biharmonic distances on 
graphs are suitable members of this family for graph representation ℛ. In general, it is important 
to note that despite of the fact that FGSD does not use node labeling information, it is powerful 
enough to be competitive on labeled datasets. To solve graph classification problems, we construct 
a feature vector ℱ from this histogram of ℛ and pass it to a classification algorithm.  

2.2.3.2 Method 

Given a weighted, undirected (and connected) graph 𝐺 = (𝑉, 𝐸,𝑊), where 𝑉 is a set of vertices, 
𝐸 ⊆ (𝑉 × 𝑉) is a set of edges, and 𝑊 is the nonnegative weighted adjacency matrix. The Laplacian 
matrix of the graph is defined as 𝐿 = 𝐷 −𝑊, where 𝐷 is the degree matrix. The Laplacian matrix 
is semi-definite, meaning that all its eigenvalues are nonnegative. It allows an eigenvalue 
decomposition of the form 𝐿 = ΦΛΦM, where Λ = 𝑑𝑖𝑎𝑔[𝜆)] is the diagonal matrix formed by the 
eigenvalues, and Φ = [ϕ(, ϕ!, . . . , ϕN*!] is an orthogonal matrix formed by the corresponding 
eigenvectors ϕO’s. For 𝑥, 𝑦 ∈ 𝑉, ϕO(𝑥) and ϕO(𝑦) are used to describe the x- and y-entry value of 
ϕO. Let 𝑓 be a nonnegative function on ℝ, with 𝑓(0) = 0, 𝟏 = [1,… , 1]M be the all-one vector and 

Pairs of graph nodes are 
generated from an 

unknown distribution 

Nodes connect to form a
graph such that the 

pairwise distances are 
preserved
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𝐽 = 	𝟏𝟏M. With the function 𝑓 we can define 𝑓(𝐿) ∶= Φ𝑓(Λ)ΦMand 𝑓(Λ) ∶= 𝑑𝑖𝑎𝑔[𝑓(𝜆))]. Finally, 𝐿, 
is the Moore-Penrose Pseudoinverse of 𝐿.  

Given 𝑥, 𝑦 ∈ 𝑉, we define the 𝑓-spectral distance between 𝑥 and 𝑦 on 𝐺 as follows: 

 

 SL(x, y) = 	n 𝑓(𝜆))p𝜙)(𝑥) − 𝜙)(𝑦)r
"

D*!

)B(

 (2.6) 

 

Let 𝑓(𝜆) = 𝜆P	(𝑝 ≥ 1), then one can show with (2.6) that   

 

 SL(x, y) = (𝐿P)QQ + (𝐿P)?? − 2	(𝐿P)Q? .		 (2.7) 

 

((𝐿,)P)Q? records only p-hop local neighborhood information. Therefore, ((𝐿,)P)Q? = 0, when 
the shortest path from 𝑥 to 𝑦 is larger than 𝑝. Consequently, for an increasing function of 𝑓 (e.g., 
polynomical function with at least 𝑝 ≥ 1), SL captures the local structure information.  

On the other hand, 𝑓 as a decreasing function captures the global information specified in (2.8). 

 

 SL(x, y) = ((L,)P)QQ + ((L,)P)?? − 2	((L,)P)Q? .		 (2.8) 

 
Many known graph distances can be derived from the FGSD sub-family. The harmonic distance for 
𝑓(λ) = 	 !

R
  where λ > 0 is SL(x, y). The polyharmonic distance for 𝑓(λ) = 	 !

R$
  where p ≥ 1 is SL(x, y). 

The biharmonic distance is a special case of this function with p = 2. Finally, the heat diffusion 
distance uses 𝑓(λO) = 	 𝑒*"=R% for SL(x, y).    

2.2.3.3 Computation 

FGSD has a worst-case complexity of 𝒪(𝑁") when an exact calculation of ℛ is conducted. However, 
an approximation can also be performed that yields a complexity of 𝒪(𝑟|𝐸|), where |𝐸| is the 
number of edges and 𝑟 is the number of approximations.  

 

2.2.4 Network Laplacian Spectral Descriptor (NetLSD) 

Section 2.2.4 is based on the work developed by [12]. In graph analytics, it is hard to find a graph 
comparison model that employs an expressive similarity measure and at the same time is 
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computationally efficient. From an ideal point of view, graph comparison should be invariant to 
the order of nodes and the sizes of the compared graphs, adapt to the scale of the graph patterns 
and be scalable. Until the publication of NetLSD, these properties have not been addressed 
together, instead graph comparison was performed with graph kernels like in 2.2.1 or 2.2.2 and 
statistical representation-based methods (see 2.2.3), which are inefficient for large graph 
collections. Therefore, researchers proposed NetLSD, which is a permutation- and size-invariant, 
scale-adaptive, and efficiently computable graph representation for the comparison of large 
graphs. It extracts a dense signature that adopts the formal properties of the Laplacian spectrum, 
in particular the heat or wave kernel. The authors state that NetLSD “hears the shape of a graph”. 

2.2.4.1 Problem Statement 

Given an undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices, and 𝐸 ⊆ (𝑉 × 𝑉) the set of 
edges. It is assumed that the graph is unweighted, although NetLSD can also apply the weighted 
case. A representation is a function σ:	𝒢 → 	ℝℕ from any graph 𝐺 in a set of graphs 𝒢 to an indefinite 
dimensional real vector, where element 𝑗 of the representation is denoted as σT(𝐺). A 
representation-based distance is a function 𝑑U:	ℝℕ × ℝℕ →	ℝ(, on the representation of two graphs 
𝐺!, 𝐺" ∈ 	𝒢 that returns a positive real number. The goal is to develop a time constant based 
distance between an arbitrary pair of graphs 𝐺!, 𝐺".  

2.2.4.2 Expressive Graph Comparison 

To offer permutation-invariant, scale-adaptive, and size-invariant graph comparison, expressive 
distances are required. Permutation invariance means that if two graphs are isomorphic, the 
distance between their representations is zero.  

The distance 𝑑U on the representation 𝜎 is permutation-invariant if: 

 

∀𝐺!, 𝐺"		𝐺! ≃ 𝐺" 	⇒ 𝑑Up𝜎(𝐺!), 𝜎(𝐺")r = 0 

 

Scale-adaptivity implies that a representation describes local and global graph features. It is 
defined as a property of a representation 𝜎 having minimum one local feature (which is derived 
only from information encoded in subgraphs 𝜉(𝐺)), and minimum one global feature (which is 
derived by more than the information encoded in any 𝜉(𝐺)). A representation is scale adaptive if 
it accounts for both local features 𝜎+ and global features 𝜎-: 

 

• Local Feature: ∀𝐺	∃	𝑓(⋅):	𝜎+ = 𝑓(𝜉(𝐺)) 

• Global Feature: ∀𝐺	∄	𝑓(⋅):	𝜎- = 𝑓p𝜉(𝐺)r 
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Size-invariance is the ability to identify that two graphs reflect the same phenomena at different 
sizes. For instance, two criminal circles with similar structure but different sizes should have a 
distance close to zero. This property requires that the two graphs originate from the sampling of 
the same domain ℳ. A size-invariant distance 𝑑U on the representation 𝜎 meets this condition:  

 

 ∀ℳ:	𝐺!, 𝐺" sampled from ℳ ⇒ 𝑑Up𝜎(𝐺!), 𝜎(𝐺")r = 0 

 

2.2.4.3 Network Laplacian Spectral Descriptor  

In general, it is difficult to find a representation that satisfies the above requirements, so NetLSD 
proposes to transfer the problem to the spectral domain. To do so, two applications from the classic 
physics were used. In the first method, the nodes of the graph are heated, and the heat diffusion 
is observed over time. In the second method, a system of masses corresponds to the nodes of the 
graph and springs correspond to its edges, where the propagation of mechanical waves is detected. 
Our representation uses a trace signature that embodies such a heat diffusion or wave propagation 
process over time. The comparison between two graphs is made using the 𝐿" distance between 
trace signatures recorded on selected time scales.  

Given the adjacency matrix 𝐴 of a graph 𝐺, the normalized Laplacian matrix is defined as ℒ = 𝐼 −
𝐷*!/"𝐴𝐷*!/", where 𝐷 is the diagonal matrix. The set of eigenvalues of ℒ is called the spectrum of 
a graph. The spectrum of the normalized Laplacian is bounded between 0 ≤ 𝜆+ ≤ 2. Instead of 
using the Laplacian spectrum directly, NetLSD considers a heat diffusion process on the graph to 
obtain an expressive representation similar to random walk models.  

The closed-form solution of the heat equation provides the heat at each vertex at time 𝑡 and is 
given by the heat kernel matrix in (2.9). 

 

 𝐻= = 𝑒*=ℒ =	n𝑒*=R& ⋅ 𝜙-𝜙-M
9

-B!

 (2.9) 

 

(𝐻=)+- is the amount of heat transferred from vertex 𝑣+ to vertex 𝑣- at time 𝑡. Since the heat kernel 
matrix contains nodes, it is not suitable for graph comparison. Therefore, the heat trace at time 𝑡  

 

 ℎ= = 𝑡𝑟(𝐻=) = 	n𝑒*=R&
-

 (2.10) 
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is a better representation. Finally, the representation of NetLSD consists of a collection of heat 
traces at different time scales ℎ(𝐺) = {ℎ=}=W(. From a physical point of view, the heat kernel can 
be considered as a family of low-pass filters, and therefore the heat trace signature contains low-
frequency information at each scale. 

Alternatively, a solution of the wave equation describes a wave propagation in a medium, and a 
solution is given by the wave kernel in (2.11). 

 

 𝑊= = 𝑒*+=ℒ =	n𝑒*+=R& ⋅ 𝜙-𝜙-M
9

-B!

 (2.11) 

 

Using (2.11) we can calculate the corresponding wave trace signature with 𝑡 ∈ [0, 2𝜋) as follows: 

 

 𝑤= = 𝑡𝑟(𝑊=) = 	n𝑒*+=R&
-

 (2.12) 

 

Finally, the proposed framework of NetLSD outperforms FGSD on a variety of graph collections on 
community detection and graph classification. Furthermore, the complexity of NetLSD is more 
efficient than FGSD with 𝒪(𝑘𝑚 + 𝑘"𝑛), where 𝑘 represent the eigenvalues of the normalized 
Laplacian, 𝑚 the number of edges, and 𝑛 the number of nodes.  

2.2.5 Spectral Features (SF) 

Section 2.2.5 is based on the work developed by [30]. In graph mining, many approaches from 
different areas of ML are used to classify graphs. Most of these approaches (e.g., kernel models, 
sequential models, etc.) are based on complex mathematical methods and require high 
computational power. However, SF is a simple and fast algorithm that relies on the spectral 
decompensation of the graph’s Laplacian matrix to perform graph classification.  

Given an undirected and unweighted graph 𝐺 = (𝑉, 𝐸) and its corresponding boolean adjacency 
matrix 𝐴 ∈ {0,1}|H|×|H|. It is assumed that 𝐺 is connected, if not, the largest connected component 
of 𝐺 is extracted. Let 𝐷 be the node degree matrix, then the normalized Laplacian matrix can be 
calculated with (2.13). 

 

 ℒ = 𝐼 − 𝐷*
!
"	𝐴𝐷*

!
" (2.13) 
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For the graph embedding 𝑋, the 𝑘 smallest positive eigenvalues of ℒ are used in ascending order: 

 

 𝑋 = (𝜎!, … , 𝜎)) 

 

When the graph has less than 𝑘 nodes, the remaining nodes are filled with zeros to obtain a vector 
of the corresponding dimension: 𝑋 =	 (𝜎!, … , 𝜎|H|*!, 0, … , 0). The embedding 𝑋 is defined as 
spectral features. A major advantage of the spectrum representation is that it is independent of the 
labeling of the nodes. Then, the 𝑘 lowest eigenvalues are used as input to a classifier, and the 
predicted class �̂� is the output of the SF model (see Figure 16).  

The eigenvalues of the normalized Laplacian matrix ℒ have a bounded spectrum 0 ≤ 𝜆+ ≤ 2. This 
is a beneficial property for the classifier since no extensive rescaling or preprocessing needs to be 
done. It can be observed that 𝑋 does not include 𝜎(. The reason for this is that the eigenvalue 0 
provides information about the number of connected components in the graph, but in this 
representation only the largest connected components are considered. Note also that other values 
indicate the presence of certain structures in the graph, e.g., the eigenvalue 2 implies a bipartite 
structure. 

 

 
Figure 16. Schematic illustration of the SF model.	ℒ denotes the normalized Laplacian and �̂� the 
predicted class. [30]  

 

There are some physical interpretations for the eigenvalues of the Laplacian. For example, in [31]  
it is described that the eigenvalues correspond to the frequencies associated with a Fourier 
decomposition of any signal on the vertices of the graph. Since only the smallest eigenvalues are 
chosen as input to the classifier, the shear of the Fourier decomposition acts as a low-pass filter on 
the signal. Metaphorically speaking, the characterization of the graph by the smallest eigenvalues 
of ℒ can be compared to the characterization of a melody by its lowest fundamental frequencies.  
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Other graph embedding techniques such as 2.2.4 and 2.2.6 propose methods for combining 
spectral decomposition and graph isomorphism, but this is not addressed in SF. Instead, SF 
proposes a simple and fast algorithm to obtain an initial reference score for a dataset.  

 

2.2.6 Invariant Graph Embedding (IGE) 

Section 2.2.6 is based on the work developed by [32]. In graph learning, researchers seek graph 
representations that are able to distinguish between different graphs while maintaining low 
computational complexity. When the graph representation is permutation-invariant, it should be 
both invariant to node permutation and able to distinguish two non-isomorphic graphs. However, 
IGE suggests a graph representation that relies on spectral graph theory and is still invariant for a 
large family of graphs. As the name implies, the graph embedding is invariant, but two graphs that 
are not identical can produce an identical embedding ℱYZ[(𝐺). 

2.2.6.1 Notation 

Given an undirected graph without self-loops 𝐺 = (𝑉, 𝐸), where 𝑉 is a set of nodes and 𝐸 ⊆ (𝑉 × 𝑉) 
is a set of edges. The number of nodes is equal to the size of the graph and is denoted by 𝑛 = |𝑉|. 
It has a boolean adjacency matrix 𝐴 ∈ {0,1}|H|×|H| if there are no edge weights. In the presence of 
edge weights, 𝐴+- is the weight between the nodes 𝑖 and 𝑗. Let 𝐷 be the diagonal matrix of the 
node degrees, then the Laplacian matrix is defined as 𝐿 = 𝐷 − 𝐴. The transition matrix for the 
random walk on graph 𝐺 is defined as 𝑃 = 𝐷*!𝐴.  

Recall that a graph embedding is a function ℱ mapping graphs to vectors in ℝC, where 𝑑 is the 
dimension of the embedding. Given two isomorphic graphs 𝐺 and 𝐻, a graph embedding is 
invariant if ℱ(𝐺) = 	ℱ(𝐻). 

A graph embedding can be easily created by embeddings of nodes, but a way must be found to 
deal with varying graph sizes. If the embedding of nodes ℰ is equivariant3, applying any symmetric 
function to it can produce an invariant graph embedding ℱ.  

The IGE consists of three separate embeddings, which are explained in more detail below: 

2.2.6.2 Invariant Graph Embedding from Eigenvalues 

It is assumed that the graph 𝐺 is connected and its Laplacian has positive semi-definite eigenvalues 
𝜆! = 0 < 𝜆" ≤ 𝜆# ≤ ⋯ ≤ 𝜆9. For a fixed parameter 𝑘! and for the case that 𝑛 ≥ 𝑘! + 1 holds, the 
embedding is defined as ℱ!(𝐺) = (𝜆", … , 𝜆)',!), but if 𝑛 ≤ 𝑘!, then ℱ!(𝐺) = (0,… , 0, 𝜆", … , 𝜆9), 
completing this vector up to size 𝑘!. Since the spectral representation does not depend on the 

 
3 functions whose values are unchanged by a symmetric transformation [58] 
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indexing of the nodes, it is obvious that this embedding is invariant. However, there are still non-
isomorphic graphs that have the same eigenvalues. 

2.2.6.3 Space Embedding 

Recall that 𝑃+-)  is the probability for a random walk started in node 𝑖 to be in node 𝑗 after 𝑘 steps. 
When node features 𝐹 are given, then 𝑃)𝐹 = (𝑥!) , … , 𝑥9)) is the aggregation of the features of its 𝑘-
hop neighbors. Apparently, 𝑃)𝐹 is an equivariant embedding such that for any symmetric function  
𝑓:	ℝ9 → ℝ@, 𝑓(𝑥)(1), … , 𝑥)(𝑛)) is an invariant feature of the graph. If no features 𝐹 are given, we 
use 𝐹 = (𝑑!, … , 𝑑9). For the symmetric function of IGE we define 

 

𝑓(𝑥!, … , 𝑥9) = ℎ𝑖𝑠𝑡(𝑥!, … , 𝑥9; 𝑡), 

 

where ℎ𝑖𝑠𝑡 is the histogram function and 𝑡 is the number of bins of the histogram. To sum up, the 
second embedding ℱ"(𝐺) ∈ ℝ)(=( is obtained by connecting the features defined above with the 
number of bins 𝑡" and apply it to the vector 𝑃)𝐹 for values of 𝑘 ∈ {1,… , 𝑘"} for a fixed parameter 
𝑘". 

2.2.6.4 Invariant Graph Embedding from Commuting 

Recall that the Laplacian matrix 𝐿 allows an eigenvalue decomposition of the form 𝐿 = ΦΛΦM, 
where Λ = 𝑑𝑖𝑎𝑔(𝜆!, … . , 𝜆9) is the diagonal matrix of the eigenvalues of 𝐿, and Φ = (𝜙!, . . . , 𝜙N) is 
the matrix of corresponding eigenvectors, with Φ\Φ = 𝐼	and 𝜙! = 	1/√𝑛. With this information, 
we define a classical spectral embedding for nodes 𝑋	 = 	√Λ,Φ\, where Λ, = 𝑑𝑖𝑎𝑔(0, 1/
𝜆", … . , 1/𝜆9) denotes the pseudo-inverse of Λ. Each column of 𝑥(1), … , 𝑥(𝑛) defines an embedding 
of the nodes in ℝ9.  

To derive the embedding, we give it a random walk interpretation, where a random walk with 
transition rate 𝐴+- from node 𝑖 to 𝑗 is considered. The walker remains at node 𝑖 for an exponential 
time with parameter 𝑑+ and then walks from node 𝑖 to node 𝑗 with probability 𝑃+- =	𝐴+-/𝑑+. The 
sequence of visited nodes, forms a discrete Markov chain with transition matrix 𝑃. Let 𝐻+- be the 
mean hitting time of node 𝑗 from node 𝑖. Then the mean commuting time between node 𝑖 and 𝑗 is 
defined in (2.14). 

 

 𝐶+- = 𝐻+- +𝐻-+ = 𝑛‖𝑥(𝑖) − 𝑥(𝑗)‖" (2.14) 
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Since the geometry of the node embeddings 𝑥(𝑖) is related to the geometry of the graph, the matrix 
of commuting times characterizes the graph. For example, the adjacency matrix can only be 
reconstructed with knowledge of the matrix of commuting times.  

𝐶+- contains all the information about the graph, so it is included in the embedding. However, 
instead of the Euclidean distances ‖𝑥(𝑖) − 𝑥(𝑗)‖", the dot product 𝑥(𝑖)M𝑥(𝑗) is calculated for 1 ≤ 𝑗, 
𝑗 ≤ 𝑛. Then, the matrix is converted into a vector and passed through a histogram. The embedding 
is defined as follows: 

 

 ℱ#(𝐺) = ℎ𝑖𝑠𝑡(p𝑥(𝑖)M𝑥(𝑘)r!]+,)]9; 𝑡#) ∈ ℝ
=) (2.15) 

 

ℱ#(𝐺) is obviously an invariant embedding of the graph but cannot reconstruct the graph.  

 

2.2.6.5 Invariant Graph Embedding  

The final embedding can be constructed by concatenating all three embeddings for fixed 
parameters 𝑘!, 𝑘" and 𝑡", 𝑡#:  ℱYZ[(𝐺) = (ℱ!(𝐺), ℱ"(𝐺), ℱ#(𝐺)). Each of these embeddings is 
invariant, but two different graphs can produce the same embedding ℱYZ[. The search for non-
isomorphic graphs where this embedding is not discriminative is not covered in IGE.  

 

2.2.7 Local Degree Profile (LDP) 

Section 2.2.7 is based on the work developed by [33]. The field of representation learning on 
graphs is becoming larger and recently more algorithms based on graph kernels and graph neural 
networks were developed especially for graph classification. LDP proposes a simple statistical 
graph representation with linear time complexity that outperforms similar state-of-the-art graph 
kernels and graph neural networks for non-attributed graph classification. Although LDP does not 
incorporate attributes, its performance on classifying attributed graphs is slightly weaker but it still 
serves as an effective method for attributed graph classification.  

Given a graph 𝐺 = (𝑉, 𝐸) where 𝑉 is the set of nodes and 𝐸 is a set of edges, let 𝐷𝑁(𝑣) be the 
multiset of the degree of all the neighboring nodes of 𝑣, denoted as 𝐷𝑁(𝑣) = {𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)|(𝑢, 𝑣) ∈
𝐸}. LDP proposes to take five node features, which are 

 

p𝑑𝑒𝑔𝑟𝑒𝑒(𝑣),minp𝐷𝑁(𝑣)r ,maxp𝐷𝑁(𝑣)r,meanp𝐷𝑁(𝑣)r, stdp𝐷𝑁(𝑣)rr. 
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These features capture information about each node and its first neighborhood. Then all node 
features of a graph are mapped into a histogram or an empirical distribution. 

LDP stands out due to its low computational complexity. In feature extraction, the degree of each 
node is counted, and the statistics of the first neighborhood is stored for each node with a time 
complexity of 𝒪(𝐸). Subsequently, the 𝑉 numbers need to be mapped into 𝐵 bins, which takes 
𝒪(𝑉) time, so the overall time complexity of LDP is 𝒪(𝐸).  

The LDP model has similarities with the WL kernel and thus with 2.2.1 and 2.2.2. Both algorithms 
start from local node features and build new features from the previous step through the graph 
structure. However, the LDP model does not include the hashing step of the WL kernel, which 
relabels the nodes and possibly loses information about local similarities, i.e., two nodes with very 
similar neighborhoods could receive completely different labels. 

2.2.8 Geo Scattering 

The field of computer vision is a good example of the advantages of deep neural networks. 
Analogous to the generalization of convolutional networks in geometric deep learning, Geo 
Scattering explores the generalization of scattering transforms from normal signals to graph data. 

2.2.8.1 Wavelets 

Before understanding the concept of geometric scattering, we first have to introduce the notion of 
a wavelet and of wavelet scattering.  

Wavelets are wave-like oscillations that begin and end at zero and have an average value of zero. 
They have limited duration and tend to be irregular and asymmetric. For example, Figure 17 
illustrates Daubechies wavelets. [34]  

 

 

Figure 17. Example of Daubechies wavelets with N = 2, 4, 8 [35]  

 

Many recorded signals from natural processes are characterized by rapid ups and downs. Unlike 
in Fourier analysis, where the basis consists of harmonic sine waves, wavelets are able to display 
piecewise regular signals and images that exhibit transient behavior sparsely. While Fourier 
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analysis consists of breaking up a signal into sine waves with different frequencies, wavelet analysis 
breaks a signal into shifted and scaled versions of the mother wavelet. In general, wavelet analysis 
reveals features of a signal or image that other analysis techniques miss, such as trends, collapse 
points or unsteadiness in higher derivatives. [34]  

2.2.8.2 Wavelet Scattering Transform 

With the knowledge of a wavelet, which can be defined as a function Ψ(𝑡) over time, we have to 
distinguish between the regular Euclidean wavelet scattering and the proposed geometric wavelet 
scattering of [36]. Euclidean wavelet scattering allows the inference of low-variance features from 
time series and image data for use in ML applications. The scattering network utilizes predefined 
wavelet and scaling filters. [37]  

The wavelet scattering transform leads to the extraction of the desired scattering coefficients. The 
transformation process consists of different stages, where the output of one stage becomes the 
input for the next stage. Starting from a feature vector 𝑥 as input, the wavelets Ψ and the scaling 
function 𝜙, Figure 18 demonstrates the operations that are performed in each stage for a feature 
vector. [37]  

 

 
Figure 18. Operations of the wavelet scattering transform inspired by [37]  

 
It should be noted that Euclidean scattering transform is designed for wavelets defined on ℝC. Geo 
Scattering extends the construction to graphs. Hence, graph wavelets are defined as the difference 
of lazy random walks spread over different time scales, where the foundation of these graph 
wavelets lies in the properties of the graph Laplacian. [36]  

 

2.2.8.3 Geometric Scattering 

Sections 2.2.8.3 and 2.2.8.4 are based on the work developed by [36]. The architecture for 
obtaining graph embeddings through geometric scattering is illustrated in Figure 19. 

 

Convolution 
! ⋅ #

Nonlinearity
! ⋅ Ψ!! ⋅ #

Averaging
! ⋅ Ψ!! ⋅ Ψ!" ⋅ #
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Figure 19. Architecture for using Geo Scattering of graph 𝐺 and signal x [36] 

 

Given a weighted graph 𝐺 = (𝑉, 𝐸, 𝐴), where 𝑉 is the set of vertices, 𝐸 ⊆ (𝑉 × 𝑉) the set of edges, 
and 𝐴 the adjacency matrix containing the weights of the edges. Then we define P = 	 !

"
(I + AD*!) 

as the lazy random walk matrix, where the sum of all column entries equals one. The matrix P_ 
determines the probability distribution of a lazy random walk after 𝑡 steps. A random walk is a 
special case of a walk in which the steps 𝑣`* , 𝑣`' , … are chosen randomly and allow 𝑣`# = 𝑣`+,!. The 
corresponding wavelet matrix at the scale 2- is defined in (2.17). 

 

 Ψ- = P"&+' − P"	& = P"	&+' ¨I − P"	&+'© (2.16) 

 

Since Euclidean scattering transform conducts three operations to determine the scattering 
coefficients, the zero, first, and second order scattering moments are defined in the following. For 
this purpose, it is important to know that a moment of a function is a quantitative measure related 
to the shape of the function’s graph. When the function is a probability distribution, then the 
normalized (also standardized) moments are its mean, variance, skew, and kurtosis. The not 
normalized 𝑞=a moments of x returns 

 

 𝑆x(𝑞) =nx(𝑣`)b
9

`B!

				1 ≤ 𝑞 ≤ 𝑄, (2.17) 

 

as zero order scattering moment. Similar to that we can extract invariant coefficients from |Ψ-x| 
by computing its moments 
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 𝑆x(𝑗, 𝑞) =n|Ψ-x(𝑣`)|b
9

`B!

					1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑞 ≤ 𝑄, (2.18) 

 

which are defined as first order geometric moments. These coefficients allow a finer separation of 
the frequency responses of x. More specifically, while 𝑆x(2) mixes all frequencies of x, it can be 
observed that 𝑆x(𝑗, 2) mixes only the frequencies of x that are captured by Ψ-. The first order 
geometric moments can be extended by iterating both the graph wavelet and absolute value 
transforms. These moments are defined as second order geometric moments and can be 
determined with: 

 

 𝑆x(𝑗, 𝑗', 𝑞) =n|Ψ-'|Ψ-x(𝑣`)||b
9

`B!

, 1 ≤ 𝑗 ≤ 𝑗′ ≤ 𝐽, 1 ≤ 𝑞 ≤ 𝑄 (2.19) 

 

The invariant statistics 𝑆x(𝑗, 𝑗', 𝑞) consist of applying the wavelet transform operator Ψ(c) to each 
|Ψ-x| and calculating the summary statistics of the magnitudes of the resulting coefficients. Second 

order moments combine two scales 2- and 2-, within graph 𝐺, creating features that combine 
patterns from smaller sub-graphs within 𝐺 with patterns from larger sub-graphs. For example, 
individuals in friend circles and larger community structures in social network graphs. 

Finally, the collection of zero, first, and second order geometric scattering moments 𝑆x =
{𝑆x(𝑞), 𝑆x(𝑗, 𝑞), 𝑆x(𝑗, 𝑗', 𝑞)} offers an extensive set of invariants of the graph 𝐺.  

2.2.8.4 Conclusion 

Geometric scattering transform is an approach for feature extraction on graphs that generalizes 
the Euclidean scattering transform. It provides a new way of computing graph embeddings because 
it is independent of specific learning tasks and can be used for both supervised and unsupervised 
applications. Although it is not clear whether a scattering model is suitable for graph classification, 
the results of the evaluation with different datasets revealed that this method has potential and 
can serve as universal representation of graphs.  

 

2.2.9 Feather-Graph 

Section 2.2.9 is based on the work developed by [38]. The following approach deals with 
characteristic functions defined on graph vertices to describe the distribution of vertex attributes 
at multiple scales. Feather-Graph is an algorithm to calculate a specific variant of these 
characteristic functions on large, attributed graphs in linear time. The specific variant is called the 
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𝑟-scale random walk weighted characteristic function, which is discussed in more detail in this 
section. We consider a specific case where the probability weights of the characteristic function 
are defined as the transition probabilities of random walks. This method extracts node-level 
features, which are then pooled to create compact descriptors of graphs for graph classification 
tasks. Feather-Graph is robust against data corruption and isomorphic graphs have the same vector 
space representation. The implementation of Feather-Graph has only been tested for graph 
classification with datasets involving social media networks and web pages.  

2.2.9.1 Notion of Characteristic Functions 

Network datasets can contain multiple attributes that affect the characteristics of a node and the 
network, but these neighborhood features are complex to interpret because they can have an 
unlimited range with unknown distributions. To utilize neighborhood information, Feather-Graph 
uses characteristic functions because, regardless of the type of distribution, there is always a unique 
characteristic function that can be combined across multiple nodes and even multiple attributes. 
This allows us to compare different neighborhoods uniformly. 

2.2.9.2 Characteristic Functions on Graphs 

This section addresses the idea of describing the distributions of node features by characteristic 
functions. Feather-Graph proposes the use of 𝑟-scale random walk weighted characteristic 
functions, which are computed below for all nodes in linear time.  

Let 𝐺 = (𝑉, 𝐸) be an attributed and unweighted graph, where the nodes of 𝐺 have the random 
variable 𝑋 also defined as the feature vector x ∈ ℝ|H|, where xd is the feature value for node 𝑣 ∈ 𝑉. 
The objective is to describe the distribution of this feature in the neighborhood of 𝑢 ∈ 𝑉. We can 
define the characteristic function of 𝑋 with the imaginary unit 𝑖 for the source node 𝑢 at the 
evaluation point of the characteristic function 𝜃 ∈ ℝ with 

 

 E	®𝑒+ef|𝐺, 𝑢¯ = n 𝑃(𝑤|𝑢) ⋅ 𝑒+e𝐱-
h∈H

, (2.20) 

 

where the affiliation probability 𝑃(𝑤|𝑢) describes the strength of the relationship between the 
source node 𝑢 and the target node 𝑤. The characteristic function can be divided into the real and 
imaginary part by using Euler’s identity as follows: 

 

 Re	pE	®𝑒+ef|𝐺, 𝑢¯r = n 𝑃(𝑤|𝑢)cos(
h∈H

𝜃xh) (2.21) 
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 Im	pE	®𝑒+ef|𝐺, 𝑢¯r = n 𝑃(𝑤|𝑢)sin(
h∈H

𝜃xh) (2.22) 

 

It can be observed that the real and imaginary units are sums of sine and cosine waves where the 
amplitude is 𝑃(𝑤|𝑢), the evaluation point 𝜃 is equivalent to time and the feature vector xh 
describes the angular frequency.  

After the defining the general characteristic function, we can now specify the affiliation probability 
𝑃(𝑤|𝑢) between the source node 𝑢 and the target node 𝑤. Recall that the sequence of nodes in a 
random walk of 𝐺 is {𝑣- , 𝑣-,!, … , 𝑣-,E}. Let 𝑟 be the scale of the neighborhood of node 𝑢, then every 
node in the neighborhood of 𝑢 can be reached in 𝑟 steps by a random walk from source node 𝑢. 
We can describe the distribution of the features in the neighborhood 𝑢 with 

 

 Re	pE	®𝑒+ef|𝐺, 𝑢, 𝑟¯r = n 𝑃p𝑣-,E = 𝑤q𝑣- = 𝑢rcos(
h∈H

𝜃xh) (2.23) 

 

 Im	pE	®𝑒+ef|𝐺, 𝑢, 𝑟¯r = n 𝑃p𝑣-,E = 𝑤q𝑣- = 𝑢rsin(
h∈H

𝜃xh), (2.24) 

 

where 𝑃p𝑣-,E = 𝑤q𝑣- = 𝑢r is the probability of a random walk starting in source node 𝑢 reaching 
the target node 𝑤 within 𝑟 steps. Let A be the adjacency matrix of 𝐺 and D its corresponding degree 
matrix, then the normalized adjacency matrix can be defined as A² = D*!	A. This normalized 
adjacency matrix can be used with its 𝑟=a power to describe the probability of a source-target node 
pair (𝑢, 𝑤) in a neighborhood with scale 𝑟 as A²<,hE = 𝑃p𝑣-,E = 𝑤q𝑣- = 𝑢r. Integrating A²<,hE  in (2.23) 
and (2.24) results in:  

 

 Re	pE	®𝑒+ef|𝐺, 𝑢, 𝑟¯r = n A²<,hE cos(
h∈H

𝜃xh) (2.25) 

 

 Im	pE	®𝑒+ef|𝐺, 𝑢, 𝑟¯r = n A²<,hE sin(
h∈H

𝜃xh) (2.26) 
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Figure 20 illustrates the 𝑟-scale random walk weighted characteristic function of the 
logarithmically transformed degree as feature vector, for a high and low degree node in the Twitch 
England Network [39]. It can be observed that the real part contains even functions, and the 
imaginary part contains odd functions. The range of the y-scale values is [−1,1] and nodes with 
different structural degree have different functions. 

 
Figure 20. 𝑟-scale random walk weighted characteristic functions for a low and high degree node 

[38] 

 

2.2.10 Wavelet Characteristic 

Section 2.2.10 is based on the work developed by [24]. Wavelet Characteristic is an unsupervised 
whole graph embedding approach that uses spectral graph wavelets to capture topological 
similarities in each k-hop sub-graph between nodes. The extracted similarities are used to learn 
embeddings for the whole graph. Wavelet Characteristic produces identical embeddings for 
isomorphic graphs and is resistant to feature noise. The proposed method outperformed seven of 
the explained graph embedding techniques in 2.2 and was published in 2021 as the most recent. 
The evaluation of the method was performed for graph classification on social media datasets. 
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The procedure for obtaining the embedding consists of two parts: 1) computing the topological 
wavelet similarity and (2) characterizing the distribution of features in subgraphs. In the first part, 
we calculate the topological similarity of nodes based on diffusion wavelets and use them to collect 
the distribution of node features in sub-graphs. After obtaining the characteristic functions of k-
hop sub-graphs, representative sample points were selected to concatenate the results and obtain 
the graph-level embedding.  

2.2.10.1 Topological Wavelet Similarity 

Let 𝐿 be the Laplacian matrix and 𝜆! ≤ 𝜆" ≤ 𝜆D its eigenvalues, then 𝐿 can be decomposed as 𝐿 =
𝑈Λ𝑈M, Λ = 𝑑𝑖𝑎𝑔(𝜆!, … , 𝜆D). The eigenvalues of 𝐿 can be seen as temporary frequencies of a signal 
on the graph 𝐺. To suppress larger eigenvalues and smooth the signal, the filter kernel 𝑔i with its 
variable paramter 𝜏 is used, which is here the heat kernel 𝑔i =	𝑒*Ri	. With the knowledge of the 
heat kernel, we can calculate the spectral wavelet coefficient matrix Ψ with (2.27). 

 

 Ψ = 𝑈	𝑑𝑖𝑎𝑔p𝑔i(𝜆!), … , 𝑔i(𝜆D)r	𝑈M (2.27) 

 

The element Ψ-+ indicates for a given node 𝑣+ how much energy is transported from node 𝑣- to 𝑣+. 
The 𝑖-th column of the matrix describes a distribution of energy from the other nodes to 𝑣+. 
According to [40] the energy wavelet distribution of two nodes represents their topological 
distance.  

Finally, to determine the topological similarity between different nodes, we need to look at the 
minimum difference of pair assignments (MDPA). The MDPA can quickly determine the difference 
between two histograms and can be calculated in linear time under certain conditions. Let 𝑋 and 
𝑌 be two sets of 𝑛 elements, then the MDPA between both sets is defined as ∑ |𝑥+ − 𝑦+|9

+B! . To 
determine the MDPA between Ψ+ and Ψ-, we need to arrange both vectors in ascending order to 
calculate the pairwise distance. We can define the topological wavelet similarity of two nodes 𝑣+ 
and 𝑣- as follows: 

 

 𝑠(𝑣+ , 𝑣-) = 𝑒*jklm(n#,	n&)	 (2.28) 

 

2.2.10.2 Sub-graph Feature Distribution 

Given 𝐴 as attribute matrix and 𝑎µ+ as vector with the features of node 𝑣+. Let 𝐺)(𝑣+) be the feature 
distribution in k-hop sub-graph	𝐺)(𝑣+), then the characteristic function of 𝑎µ+ in 𝐺)(𝑣+) is 
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 𝜙d#
())(𝑡) = 𝔼®𝑒+=Jo# 	q	𝐺)(𝑣+)¯ = n 𝑃(𝑣-|𝑣+)𝑒+=J&

d&	∈	8%(d#)

, (2.29) 

 

where the transition probability 𝑃(𝑣-|𝑣+) is proportional to the similarity between nodes 𝑣- and 𝑣+ 
and the influence of node 𝑣+. To calculate the characteristic function, the normalized topological 
node similarity in (2.30) is used. 

 

 �̃�p𝑣+ , 𝑣-r =
𝑠(𝑣+ , 𝑣-)

∑ 𝑠(𝑣+ , 𝑣E)d/∈8%(d#)
. (2.30) 

 

With 𝑠23𝑣𝑖, 𝑣𝑗4, we can define the characteristic function as follows: 

 

 𝜙d#
())(𝑡) = 	 n �̃�(𝑣+ , 𝑣-)pcosp𝑡𝑎-r + 𝑖 sinp𝑡𝑎-rr

d&	∈	8%

 (2.31) 

 

Since this characteristic function is represented only at the node level, we can aggregate the 
characteristic functions over all nodes and obtain the following: 

 

 𝜙8
())(𝑡) =

1
|𝑉|

n 𝜙d#
())(𝑡)

d#∈8

 (2.32) 

 

Subsequently, we can sample 𝜙8
()) at 𝑑 evenly spaced points 𝑡!, … , 𝑡C and merge them to the k-hop 

embedding:  

 

 𝜒8% = ¹𝑅𝑒 »𝜙8
())(𝑡+)¼ , 𝐼𝑚 »𝜙8

())(𝑡+)¼½
=',…,=0

 (2.33) 

 

By aggregating all k-hop embeddings, we can compute the graph level embedding based on 
topological similarity as formulated in (2.34). 

 



 

 

 48 

 𝜒8 = [𝜒8' , 𝜒8( , … , 𝜒8%123
] (2.34) 

 

However, the final embedding 𝑋 is constructed by concatenating the embeddings with transition 
probability using normalized topological similarity and the embedding with transition probability 
using normalized node influence. The above process can be repeated to obtain the embeddings 
with transition probability using normalized node influence. 

2.3 Clustering 

Clustering is a task of grouping a set of data points based on their similarity such that data points 
of the same group (called a cluster) are more similar to each other than data points from other 
groups (clusters). For the given task, the k-means algorithm was chosen. The k-means algorithm 
belongs to the partitioning category, where the dataset is separated into a specified number of 
clusters based on the similarity or distance among the data samples.  

In the following subchapter, the mentioned algorithm is explained in more detail and performance 
evaluation metrics are presented to compare the results of the graph embedding techniques.  

2.3.1 K-means 

K-means is one of the most frequently used algorithms for unsupervised learning, especially in data 
science and statistics. The algorithm clusters data by separating samples in 𝑛 groups of equal 
variances, minimizing the inertia or within-cluster sum-of-squares in (2.35). The number of 
clusters needs to be specified. The algorithm splits a set of 𝑁 samples 𝑋 into 𝐾 disjoint clusters 𝐶, 
where each cluster is described by the mean 𝜇- of the samples. The means are also called 
“centroids” and they are not in set 𝑋. The problem with inertia is that it is not a normalized metric. 
It is only known that small values are good and zero is optimal, but in very high-dimensional spaces 
the Euclidean distances can become very large, so it is recommended to perform a dimensionality 
reduction algorithm prior to k-means clustering. [41]  

 

 n min
q&	∈	r

9

+B(

¨À𝑥+ − 𝜇-À
"© (2.35) 

 

The algorithm works as follows [42]: 

1. Randomly select 𝑘 samples from the dataset 𝑋 as initial centroids 

2. Assign each data point to the nearest cluster center 

3. Compute new cluster centers as the average of all data points assigned to the cluster 
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4. Go to step 2 unless no improvement 

 

To illustrate the procedure, two iterations of the k-means algorithm are shown in Figure 21 using 
an example. In the example, a set of 15 data points is examined and 𝑘 = 2	clusters are expected to 
be identified. The left plot, two initial centroids were chosen, and each data point was assigned to 
the nearest cluster center. The plot in the middle shows how the centroids were recalculated by 
averaging all data points assigned to each cluster. As the new cluster centers better represent the 
middle of the clusters, the algorithm steps back to step 2 and assigns each data point to the closest 
recalculated centroid, which can be seen in the right plot of Figure 21. [42]  

 

 
Figure 21. Example of clustering procedure with k-means algorithm [42]  

 

To decide whether the k-means algorithm is suitable for a given task, we should take a closer look 
at the following advantages and disadvantages of this technique as pointed out by [42]: 

 

Advantages: 

- Simple and easy implementation 

- Time and space complexity is 𝑂(𝑛) 

- Can scale up to large datasets 

 

Disadvantages: 

- Manually specify number of clusters 𝑘 

- Due to random selection of initial centroids the results can vary 

- Outliers cannot be identified, which can influence the clustering process where for instance 

an outlier can become a cluster itself 

Step 1+2 2nd It - Step 2Step 3+4
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After analyzing the advantages and disadvantages of the k-means algorithm, it can be concluded 
that for the given task, which involves a large dataset, low time and space complexity is very 
important to complete the task in a reasonable time. The manual specification of the number of 
clusters is not a real disadvantage for the task, since the ground-truth data is already available and 
thus the number of clusters 𝑘 is known. The simplicity of the algorithm is another advantage of k-
means, which led to other clustering algorithms being disregarded in this work.  

2.3.2 Performance Evaluation 

To compare the clustering results between the different whole graph embedding techniques in 2.2, 
a performance measure is needed. The following four performance evaluation metrics are 
specifically designed for clustering algorithms. The first two metrics require the knowledge of the 
ground-truth labels, while the other two calculate a performance score based only on the graph 
embedding itself. 

2.3.2.1 Rand Index (RI) 

The RI is a measure of the similarity between two different data clusterings and is often referred 
to as accuracy. The RI does not ensure that a performance value close to 0 can be interpreted as 
random labeling. While the ARI corrects for chance and provides such a baseline. The RI is defined 
in (2.36), where the denominator is a binomial coefficient and 𝐶"9 is the number of unordered 
pairs in a set with 𝑛 elements. [41,43]  

 

 𝑅𝐼 = 	
𝑎 + 𝑏
𝐶"9

 (2.36) 

 

For instance, in a set of 4 elements {𝐴, 𝐵, 𝐶, 𝐷}, there are 6 unordered pairs: 
{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐴, 𝐷}, {𝐵, 𝐶}, {𝐵, 𝐷}, {𝐶, 𝐷}. In this case 𝐶"9 is equal to 6. If 𝐶 describes the ground-
truth class assignment and 𝐾 the clustering, then 𝑎 is defined as the number of pairs of elements 
that are in the same set in 𝐶 as well as in the same set in 𝐾. While 𝑏 describes the number of pairs 
of elements that are in different sets in 𝐶 and in different sets in 𝐾. [41]  

Given a set of 6 elements: {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹}, the ground-truth data contains three clusters, where 
the first two elements correspond each to another cluster: {1, 1, 2, 2, 3, 3}. The clustering forms 
two clusters, the first three objects are in cluster 1 and the last three objects are in cluster 2: 
{1, 1, 1, 2, 2, 2}.  

To calculate the RI, we need a, b, and 𝐶"9. In a set of 6 elements, there are 15 unordered pairs, 
which means 𝐶"9 = 15. For 𝑎 we need to find out how many pairs of elements are grouped together 
by both the ground-truth and the clustering. {𝐴, 𝐵} and {𝐸, 𝐹} are clustered together, so 𝑎 = 2. 𝑏 is 
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the number of pairs of elements that are not clustered together by both datasets: {𝐴, 𝐷}, {𝐴, 𝐸}, 
{𝐴, 𝐹}, {𝐵, 𝐷}, {𝐵, 𝐸}, {𝐵, 𝐹}, {𝐶, 𝐸}, {𝐶, 𝐹}, so 𝑏 = 8. In total, the RI is equal to ",s

!%
= 0.67. 

The RI can also be viewed as binary classification accuracy, where 𝑎 is the number of pairs correctly 
labeled as belonging to the same subset (True Positives), and 𝑏 the number of pairs correctly 
labeled as belonging to different subsets (True Negatives). The problem for clustering with 
multiple clusters is that the True Negatives can achieve a high number when both the predicted 
clusters and the ground truth data assign a pair different labels. In the example above that would 
mean that the pair {𝐴, 𝐸} of 𝑏 only exists because the ground truth assigned them {1, 3} and the 
prediction {1, 2}. For an increasing number of clusters it is fairly easy to achieve a high 𝑏, since the 
probability of assigning the the pair a different label is high. [44]  

To solve the previously outlined problem, the ARI was invented (see (2.37)). The ARI utilizes the 
RI to calculate the similarity between two different clusterings, corrected for chance. When the 
ARI is equal to 1, the two clusterings are completely identical, and a value close to 0 shows a 
random label assignment. While the RI lies only between 0 and 1, the ARI may yield also negative 
values if the index is less than the expected value. [41,44]  

 

 𝐴𝑅𝐼 = 	
𝑅𝐼 − 𝐸[𝑅𝐼]

𝑚𝑎𝑥(𝑅𝐼) − 𝐸[𝑅𝐼]
 (2.37) 

 

2.3.2.2 Mutual Information (MI) 

The MI between two random variables measures the non-linear relations between them. It 
represents the amount of information that can be obtained from one random variable by observing 
another random variable. The concept of mutual information is closely linked to entropy, as MI is 
also known as the reduction of uncertainty of a random variable if another is known. Therefore, a 
high MI value demonstrates a large reduction of uncertainty, while a low value demonstrates a 
small reduction. A MI value close to zero indicates that the two random variables are independent. 
[41,45]  

The MI for two discrete random variables is defined in (2.38), where 𝑃(𝑖) and 𝑃′(𝑗) are the 
probability that an object picked at random from 𝑈 falls into class 𝑈+ and equivalently for an object 
picked from 𝑉 falls into class 𝑉+. The probability 𝑃(𝑖, 𝑗) describes the probability that a randomly 
picked object falls into both classes 𝑈+ and 𝑉+. [41,45]  

 

 𝑀𝐼(𝑈, 𝑉) = 	nn𝑃(𝑖, 𝑗) log Ç
𝑃(𝑖, 𝑗)

𝑃(𝑖)𝑃′(𝑗)
È

|H|

-B!

|t|

+B!

, (2.38) 
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As previously mentioned, the MI is based on entropy. Entropy measures the level of expected 
uncertainty in a random variable. This is the reason why 𝐻(𝑈) describes how much information 
about the random variable 𝑈 can be learned by observing a single sample (see (2.39)). Similarly, 
𝐻(𝑉) shows how much information can be learned from the random variable 𝑉 (see (2.40)). 
[45,46]  

 

 𝐻(𝑈) = 	−n𝑃(𝑖)	log	(𝑃(𝑖))
|t|

+B!

 (2.39) 

 

 𝐻(𝑉) = 	−n𝑃′(𝑗)	log	(𝑃′(𝑗))
|H|

-B!

 (2.40) 

 

Like the RI, the baseline value of MI between two random clusterings tends to be larger when the 
partitions have a larger number of clusters. Therefore, the adjusted mutual information (AMI) can 
be calculated in a similar form as the ARI, analogous to 2.3.2.1 in (2.41). [47]  

 

 𝐴𝑀𝐼 = 	
𝑀𝐼 − 𝐸[𝑀𝐼]

𝑚𝑒𝑎𝑛(𝐻(𝑈), 𝐻(𝑉)) − 𝐸[𝑀𝐼]
 (2.41) 

 

The expected value of the MI can be calculated using the equation in [47]. The AMI corrects the 
agreement between two random variables for chance. The AMI lies between 0 and 1, taking the 
value 1 when two partitions are identical and the value 0 when the MI between two partitions is 
equal to the value expected due to chance only. [41,47]  

2.3.2.3 Silhouette Coefficient (SC) 

When the ground-truth labels are unknown, the evaluation must be performed by the model itself. 
The SC describes such an evaluation that calculates whether points are clustered and separated 
well. The SC is defined in (2.42), where 𝑏 represents the mean distance between a sample and all 
other points in the nearest cluster. While 𝑎 stands for the mean distance between a sample and all 
other points in the same cluster. The score is bounded between -1 for incorrect clustering and +1 
for highly dense clustering. When the clusters are close to each other, the SC is close to zero. The 
score is higher if the clusters are dense and well separated, which is the standard concept of a 
cluster. [41]  
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 𝑠 = 	
𝑏 − 𝑎

max	(𝑎, 𝑏)
, (2.42) 

 

2.3.2.4 Davies Bouldin index 

Similar to the SC, the Davies Bouldin index evaluates the clustering performance by the model 
itself. The Davies Bouldin index is defined as the average similarity measure of each cluster to its 
most similar cluster, where similarity is the ratio of intra-cluster distances to inter-cluster distances. 
Zero is the lowest possible value indicating better partition. Values closer to 0 indicate that the 
clusters are farther apart and less dispersed. The index has no upper bound, so it can reach infinity 
if the intra-cluster distances are very high.  

The index describes the average similarity between each cluster 𝐶+ for 𝑖 = 1,… , 𝑘 and its most 
similar one 𝐶-. The non-negative similarity measure 𝑅+- that is used for the Davies Bouldin index 
is defined in (2.43), where 𝑠+ is the average distance between each point of cluster 𝑖 and the 
centroid of that cluster which is also known as the cluster diameter. 𝑑+- is also the distance between 
cluster centroids 𝑖 and 𝑗. After applying the similarity measure 𝑅+- for every cluster 𝐶+ and taking 
the average, the Davies Bouldin Index is calculated as shown in (2.44). [41] 

 

 𝑅+- =	
𝑠+ + 𝑠-
𝑑+-

, (2.43) 

 

 𝐷𝐵 =	
1
𝑘
nmax

+u-
𝑅+-

)

+B!

	 (2.44) 
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3 Dataset 

This chapter describes the dataset used to evaluate the whole graph embeddings. It starts with an 
overview of the dataset including information about the application domain, the objective, and the 
kind of data that is recorded. Subsequently, an Exploratory Data Analysis (EDA) was conducted 
(see Chapter 3.2) to understand the dataset in-depth, which is one of the most important steps 
before starting a ML project. This chapter corresponds to the first step of the CRISP-ML diagram 
in Figure 1, which deals with Business & Data Understanding. 

3.1 Overview Bosch Dataset 

This section presents an overview of Bosch’s production line dataset by providing basic information 
about the dataset, the application domain, and the objective Bosch intends to achieve by releasing 
this dataset. 

3.1.1 Application Domain 

The dataset used in this scientific work is open-source and is originally derived from Bosch’s 
production line. Bosch is a German company and a leading supplier of technology and services. 
Their mission is to develop products that are “Invented for life”. To ensure their products’ high 
quality and safety standards, they monitor the parts during the manufacturing process. More 
precisely, they record every single step of the assembly line during the manufacturing process of 
every single product. Since the progress of each part through the assembly line is recorded, Bosch 
is in an appropriate position to apply advanced analytics to minimize defective products in 
manufacturing. [48] 

In August 2016, Bosch published a dataset on the online community platform Kaggle and launched 
a competition to predict defective products using thousands of measurements along the assembly 
line [49]. 

3.1.2 Dataset Overview 

For the purpose of using ML models, the dataset is already distributed into a training and test 
dataset. The dataset has a size of 14.3 GB and records the progress of exactly 1,184,687 products 
during the manufacturing process. The learned model will be used to predict whether a product is 
defective or not based on a dataset of 1,183,748 products. The data is categorized into three main 
feature types, namely: categorical, numerical, and date features.  

The names of all features in the dataset follow a certain pattern. Figure 22 shows that each 
numerical feature name contains information about the production line, the station, and the 
corresponding feature number. In comparison to date features the nomenclature is similar except 
for the last value that contains the letter “D” instead of “F”. The “D“ stands for date and represents 
a date value.  
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Each of the 1,184,687 products has its unique product id and its corresponding features. Many 
features contain “NaN” values. When the product passes a station, the feature stores a value 
(numerical, categorical, or date), otherwise the feature displays “NaN”.  

In this work, the goal is to evaluate graph embedding techniques on Bosch’s dataset. For the use 
of ML algorithms, it is not only necessary to understand the meaning of the data points, but it 
should also be possible to develop an expressive KG capable of producing a solid performance for 
the clustering task. Due to a lack of understanding of the categorical features, they are neglected 
in this documentation as well as in the software implementation. 

 
Figure 22. Nomenclature for numerical features 

 
Production lines in this context mean that the input materials undergo a series of manufacturing 
steps, approaching the finished product from step to step. Within each production line, there are 
stations where various operations are executed and values are also measured. After examining the 
dataset, we can draw the conclusion that the production line incorporates 4 lines and 52 stations. 
In Table 1 each line is represented with its corresponding station. It can be observed that the 
production lines are separated from each other. This means that each station can belong to only 
one production line.  

 
Table 1. Assignment of stations to their corresponding line 

 
 

L2_S26_F3040

Line: 2 Station: 26

Feature: 3040

Line Stations

L0 0 - 23

L1 24 - 25

L2 26 - 28 

L3 29 - 51
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3.1.3 Bosch’s Objective 

Bosch's dataset is incredibly large due to the various production lines, product diversity, and the 
number of products. Therefore, it is almost impossible for a company to track internal product 
failures manually. When working manually, it is very time-consuming and costly to ensure good 
product quality. Consequently, Bosch aims to develop a ML algorithm that predicts internal failures 
to improve the company’s product quality at a lower cost. [49]  

This work does not go so far as to make a binary classification of whether the product fails or not. 
In this work products are clustered into different product variants and afterwards compared with 
their ground-truth data. The failure prediction is beyond the scope of this work. It is more 
important to develop a ML model that achieves solid performance by using graph embeddings. 
The reason why performance is so important is that the cost of misclassification to an organization 
can be very high. If a model predicts that a product will have no internal failures in the future, 
then the prediction must be very accurate.  

3.2 Exploratory Data Analysis 

The notion of EDA is based on an important principle. It is necessary to understand what can be 
done with the given data before measuring how well it is done [28]. This principle enables 
scientists and engineers to tackle data science projects more easily and effectively. EDA is designed 
to empower people to make useful discoveries from data, especially in the absence of prior 
assumptions or research. The main goal is to maximize insights into the dataset [50]: 

 

• Reveal underlying structure 

• Detect outliers and anomalies 

• Test underlying assumptions 

• Find suitable models 

 

In this subchapter, the numerical and date features of the Bosch production line are examined in 
more detail. For simplicity, only the training dataset with over 1.1 million rows is considered in 
this chapter. The categorical features have been neglected because of a lack of explainability. The 
implementation of the EDA is inspired by [51].  

The research group for Management of Industrial Production (MiP) of the Institute of Production 
Management, Technology and Machine Tools (PTW) at the Technical University of Darmstadt 
(TUDa) uses a workstation to handle large amounts of data. The workstation’s CPU consists of an 
AMD Ryzen 9 3900X 3.8GHz 12-Core processor with 32GB RAM. The GPU contains two NVIDIA 
Titan RTX 24GB GDDR6. To load the data more efficiently, more than 1.1 million products are 
loaded in chunks. 
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3.2.1 Numerical Features 

The dataset includes 968 numerical features, and the main challenge is to extract meaningful 
information from it. It contains a final column that indicates the result of the product quality check. 
The result is called the “Response“. It holds a binary variable, where 0 means the product passed 
the quality check and 1 means it was rejected. First, it is checked whether the dataset is balanced 
or unbalanced by looking at the “Response” column of the numerical training set. The products 
are assigned to either the “OK” or “NOK” class (see Figure 23). 

 

 

Figure 23. Number of products classified as functioning or failed 

 

It can be noted that the dataset is highly unbalanced because nearly 99.5% of all assembled 
products do not have any internal failures.  

To get a better understanding of the data, it is necessary to determine the number of measurements 
and products passed through each line and each station. The number of product failures and the 
error rate could also be useful resources. Figure 24 shows the number of measurements for each 
production line. 

99.5% 0.5%
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Figure 24. Number of measurements for each production line 

The number of features per production line is summed up and summarized in Figure 24. Analyzing 
the figure makes it clear that L1 conducts the most measurements. As already known from Table 
1, L1 has only stations 24 and 25, so it can be assumed that both stations are very large. These 
stations may also be very demanding as they make more than 500 measurements in total. In 
contrast, L2 behaves completely differently, as it also contains only 3 stations, but performs less 
than 50 measurements, which may mean that these stations are simple in design.  

However, this illustration only provides information about the number of measurements in each 
production line, while Figure 25 shows the absolute number of products passed through each 
station. It is essential to remark that the numerical dataset does not contain information about S42 
and S46, which is the reason why the scale has jumped from S40 to S47. Although L1 runs 
numerous measurements, not many products pass through this line. It can be concluded that L1 
has the highest number of measurements per product. Also, L0 and L3 are the lines with the highest 
number of products passed through.  
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Figure 25. Number of products passed through each station 

 

After analyzing how many products visited each station, it can be taken one step further by 
examining the failed products of this manufacturing process. Figure 26 shows the number of 
product failures for each station. The data in this figure can be compared to Figure 25, which 
shows a very similar trend. The number of products passed through S29 until S37 is significantly 
high compared to the other stations, while the number of defective products for the same stations 
is also very high in comparison. In summary, both figures demonstrate that the larger the number 
of products, the higher the number of product defects. 

 
Figure 26. Number of product failures for each station 
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We cannot declare a station to be defective based only on the absolute number of product failures 
per station. Since each station works with a different number of products, it is important to look 
at the error rate for each station. Figure 27 shows the error rate as a percentage for each station. 
The figure shows that the error rate for all stations is less than 5%, with all stations except S32 
having a similar error rate. Even though S32’s error rate is about eight times higher than the other 
stations, it should be noted that S32 processed just under 30000 products, while S29, for instance, 
processed more than 1 million products. Assume the prediction of internal failures will be made 
with the raw data, then the values of S32 should be used as one of the key features for predicting 
the internal failures of a product.  

 
Figure 27. Error Rate for each station 

 

Another noteworthy aspect is the high number of non-zero measurements along with the 
numerical dataset. Figure 28 shows the percentage of NaN values for each feature. The figure 
reveals that most features contain more than 90% NaN values, this may be an issue when 
performing the classification task. Therefore, within the scope of this work, a clustering analysis 
will be carried out first and classification will be aimed at in further investigations. However, there 
are fewer features of L2 and L3, where the percentage of NaN values is only about 5%.  
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Figure 28. The proportion of NaN values vs. Feature 

 

3.2.2 Date Features 

The date dataset contains 1156 date features, with many missing values. The analysis of this data 
is crucial to understand production time and product complexity, which are useful resources for 
identifying internal failures. Skimming the data, one may notice that the same stations often have 
the same date value. The date feature has similarities to time series data, which is periodic in 
nature. To find a periodic pattern in this data, Figure 29 illustrates the number of all date records 
across the values of the date feature.  

It can be concluded that the date values range from 0 to 1718 with a granularity of 0.01. To 
understand what time span is addressed by the date value range, a so-called autocorrelation 
function can be calculated. The autocorrelation describes the relationship of a time series to its 
previous versions in time. It computes the correlation with a k’th lagged version of itself. In this 
use case, the granularity of 0.01 is chosen for k. Figure 30 shows the autocorrelation with lag (𝑘	 =
	0.01) over the values of the date features [52,53]. 

It can be perceived that the largest peaks, shown in red, are at about 16.75 ticks, which corresponds 
to one week. Within a period, there are seven local maxima at 2.39 each, corresponding to seven 
days per week. Since a week is equivalent to 16.75 ticks, the granularity of 0.01 ticks is equivalent 
to 6 minutes. Thus, the data is recorded at a granularity of 6 minutes. To sum up, the data was 
recorded over a period of 102.6 weeks (1718 ticks), which is the reason for the variability within 
the dataset [52].  
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Figure 29. Number of records for date features over time 

 

 
Figure 30. Sensor Time Autocorrelation 

 
Since the data was recorded during the real manufacturing process, it can be useful to take a closer 
look at the time required for a product. For manufacturing we can assume that the more time a 
product takes, the more complex it is. Therefore, further investigations were made to see whether 
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the time difference has an impact on the subsequent failure of the product. Table 2 shows the time 
difference for different percentiles and product classes. 

 

Table 2. Total time spent on a product for different product classes 

Percentile Class 0 Class 1 

25th 1.71 1.95 

50th 3.69 4.93 

75th 11.8 16.3 

90th 35.1 42.6 

99th 62.9 72.4 

 
The figure reveals that for each percentile, product class 1 has a higher total time value. Thus, the 
more time it takes to manufacture a product, the higher its product complexity and therefore the 
more likely it is to contain internal failures. Figure 31 illustrates the results as a violin diagram 
with a logarithmic y-scale. [51]  
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Figure 31. Violin Plot on total time spent on a product for different product classes 

 

All in all, the following important findings can be drawn from the EDA [51]: 

• Unbalanced dataset with more than 99.5% products that are not defective 

• Significant number of NaN values are present for both numerical and date features 

• Station S32 shows the highest error rate 

• Date feature follows periodic pattern 

• Date values range from 0 to 1718, which corresponds to approximately two years 

• Positive correlation between time difference and error rate 
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4 Experiment 

Based on the information about whole graph embeddings in Chapter 2 and the findings from the 
use case dataset in Chapter 3, this chapter explains the implementation of the experiment for the 
clustering task using whole graph embeddings as input features. This chapter starts with the 
preparation of the dataset and then explains the workflow to conduct the clustering analysis. 
Subsequently, the used graph model is presented, and it is elaborated on how the graph embedding 
techniques are applied to the KG created. Finally, the implementation of the clustering algorithm 
is illustrated in more detail.  

4.1 Preparation 

This section provides an overview of the technical environment used for this experiment. 
Furthermore, the process of the raw data preparation is explained, which demonstrates the second 
step of the CRISP-ML diagram in Figure 1. 

4.1.1 Technical Environment 

The experiment in this chapter is executed by a server of PTW. More precisely, it was the 
workstation of the research group MiP. It is the same workstation that was used for the EDA in 
Chapter 3. 

The remote connection was established via an SSH tunnel in the open-source Visual Studio Code 
Integrated Development Environment (IDE). Visual Studio Code was chosen as IDE because it 
natively supports both IPython Notebooks (.ipynb) and simple Python files (.py). The advantage 
of the mentioned notebooks is that they can contain both code and rich text elements, such as 
figures and equations. It is also much more convenient to have multiple figures on the same page, 
compare them, and move the cells.  

The software implementation of this work is based on three different tasks (see Figure 32). 
Namely, data exploration, data preprocessing, and the implementation of graph embedding 
techniques followed by clustering. The data exploration task is already presented in Chapter 3. 
The data preprocessing task is outlined below. 
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Figure 32. File Structure of the software implementation 

 

4.1.2 Data Preprocessing 

After examining the Bosch dataset, it was determined that there are thousands of different 
products. To simplify the evaluation of graph embedding techniques, we continue to use only the 
numerical dataset. The approach of applying a clustering model to the generated graph 
embeddings requires a number of clusters as input. 

Therefore, a student researcher of the PTW worked to determine the number of unique paths for 
the numerical dataset. The person found out that there are 16,710 unique paths, which is 
equivalent to a production of 16,710 different products. Each product of the same product variant 
was then stored in a unique product path. The data was stored in so-called pickle (.pkl) files. Pickle 
files are used to convert Python object structures into binary files on disk.  

The task was formulated to take a certain number of product variants and use them to create 
graphs for each product inside of these variants. Figure 33 shows the workflow for data 
preprocessing. First, 4 out of 16,710 product variants were chosen that have a small number of 
common features. The selection was based on the number of common features between pairs of 
all four product variants and the number of features per variant. Thus, the most diverse product 
variants were chosen. After determining the relevant products, the second step was to merge the 
numerical data of all these products into one large numerical dataset. 

  

master_thesis
!"" data_exploration
|   !"" exploratory_data_analysis.ipynb
|   #"" plots
!"" data_preprocessing
|   !"" unique_paths_to_final_df.ipynb
|   !"" final_df_to_graph_dict.ipynb
|   #"" pkl_files
|       !"" feature_df.pkl
|       !"" directed_graphs.pkl
|       #"" undirected_graphs.pkl
|       #"" ground_truth_data.pkl
!"" graph_embeddings
|   !"" main.py
|   !"" embedding_original_techniques.py
|   !"" embedding_modified_techniques.py
|   !"" clustering.py
|   !"" bosch_data
|   #"" embedding_techniques
#"" baseline_clustering
    #"" raw_data_clustering.ipynb

https://ellismin.github.io/file-structure-generator/

https://ascii-tree-generator.com/



 

 

 67 

 
Figure 33. Workflow Data Preprocessing 

 

In the numerical dataset, each row holds data for only one product (see Table 3). To decouple the 
data of each product from the others, CSV files were created for each product. The numeric CSV 
files contain information about the measured feature value and the corresponding line, station, 
and feature Id (see Table 4). Each product includes about 150 – 250 feature values, which means 
that each CSV file contains this number of lines. These CSV files are further used to facilitate the 
creation of graphs.  

 

Table 3. Excerpt from numerical training set 

Index Id L0_S0_F0 L0_S0_F2 L0_S0_F4 L0_S0_F6 

0 4 0.03 -0.034 -0.197 -0.179 

1 6 NaN NaN NaN NaN 

2 7 0.088 0.086 0.003 -0.052 

3 9 -0.036 -0.064 0.294 0.33 

4 11 -0.055 -0.086 0.294 0.33 

 

Table 4. Excerpt from the numerical CSV file of product Id 4 

Index lineId stationId featureId featureValue 

0 L0 L0_S0 L0_S0_F0 0.03 

1 L0 L0_S0 L0_S0_F2 -0.034 

2 L0 L0_S0 L0_S0_F4 -0.197 

3 L0 L0_S0 L0_S0_F6 -0.179 

4 L0 L0_S0 L0_S0_F8 0.118 

01
• Selection of 4 product variants with small 

number of common features

02
• Merge products of all 4 variants in one final 

feature dataframe

03
• Convert feature dataset to csv files for each 

product with its corresponding node attribute 
information
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4.2 Workflow 

This subsection explains the next steps of the experiment which corresponds to the modeling step 
of the CRISP-ML diagram in Figure 1. The workflow is shown in the flowchart in Figure 34. The 
result of the data preprocessing was 14,353 CSV files for the feature values. These files were used 
to create a graph for each product, i.e., 14,353 graphs were created. For the graph creation, two 
main approaches were analyzed.  

The first was to create graphs using the No-SQL graph database Neo4j. The platform is very user-
friendly and great for graph visualization. This approach required working with the client-library 
Py2neo. The graph definition was done in Python using the Py2neo library and the connection 
between Python and Neo4j can be established via Bolt or HTTP. Once a graph is created, it can be 
converted into a GraphML (.graphml) file, which can be easily processed using the Python package 
NetworkX. The graph is saved as a NetworkX graph, which is a required input format for graph 
embedding techniques. The problem with Neo4j is that each database can only have one graph. 
Having multiple databases in Neo4j is only possible with an enterprise license, which is not given 
in this scientific work. A possible solution could be to create different subgraphs within one 
database, but the implementation has to be done in Neo4j’s graph query language Cypher. This 
shows that there are many obstacles when working with a graph database, leading to the 
conclusion to follow the second approach and perform the graph definition entirely in NetworkX.     

As already mentioned, the second approach was pursued. When a graph is created, it can be 
specified whether it should be a directed or undirected graph. In this work, the goal is to evaluate 
the graph embedding techniques considering directed and undirected graphs. However, Karate 
Club’s graph embedding techniques are specifically designed for undirected graphs. Although they 
are designed for undirected graphs, Feather-Graph, Wavelet Characteristic, and Geo Scattering 
allow to create attributed graphs, therefore, these libraries are modified by adding node attributes 
and can after the modification be used for the creation of either directed or undirected graphs. 
Since the Laplacian matrix is different for directed and undirected graphs, we need to adjust the 
libraries for NetLSD, FGSD, SF, and IGE in order to create directed graphs. Graph2Vec, GL2Vec, 
and LDP can be applied to both directed and undirected graphs without any adjustment. 

For the generation of graph embeddings, a list of all 14,353 graphs is passed to the graph 
embedding techniques, which outputs an embedding vector for each graph. The size of the 
embedding vector varies depending on the technique, and the default size can also be adjusted for 
some techniques.  

Subsequently, the graph embeddings are used to train a clustering model. The model is initialized 
with four clusters, since only four product variants are considered in this work. The clustering is 
evaluated using four performance evaluation metrics, from which two require ground-truth data. 
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Figure 34. Flowchart of the workflow after data preprocessing 

 

4.3 Graph Model 

This section starts with introducing the KG data model, continues with the directed and undirected 
graph model, and finally explains the implementation of the graph embeddings. 

4.3.1 Data Model 

Graph representation plays a very important role in graph embedding design. If non-expressive 
graphs are designed and graph architectures that are not understandable are used, the cluster 
model will not be very promising and the graph embedding evaluation will not be beneficial. 

For the purpose of this thesis, a KG is utilized to represent all the information about the 
manufactured products. This means that the graph should show the numerical features related to 
each station and line and their corresponding ID. Figure 35 shows the data model for the KG. 

 

 

Figure 35. Data model for the Knowledge Graph [5]  
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The figure displays three different entities: Line, Station, and Feature. The lines are specified by 
the “lineId”, similar to the stations defined by the “stationId”. While features are identified by the 
identifier “featureId”, and the “featureValue” that stores the sensor record. [5]  

The data model also contains two types of relationships, namely: “has_station” and “has_feature”. 
The has_station relationship demonstrates which stations belong to the line. Similarly, the 
has_feature relationship describes in which station the feature was measured. [5]  

4.3.2 Directed Graph Model 

The directed graph model shows an example implementation of the data model. The Python 
package NetworkX was used to implement the data model. The wide range of graph functions of 
NetworkX allows entity properties and relationships to be represented as node attributes and 
edges.  

Figure 36 shows an example of a directed graph model. It can be perceived that edges lead from 
line nodes to station nodes and from station nodes to feature nodes. 

 

 

Figure 36. Example of the directed graph model 

 

4.3.3 Undirected Graph Model 

The undirected graph model depicts the same graph model as 4.3.2, with the exception that each 
edge is undirected. This means that the hierarchy of an edge leading from a line to a station cannot 
be maintained. Similarly, the hierarchy of a station resulting in a feature cannot be preserved. It is 
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also not possible to distinguish at which station the product started and after which station the 
product was completed. In the software implementation, the difference is in the creation of empty 
NetworkX graphs, working with the function networkx.Graph() instead of networkx.Digraph().  

4.3.4 Implementation 

The implementation of the directed and undirected graph models is very similar. Therefore, the 
following implementation is explained for both graph models. 

As illustrated in Algorithm 1, a dictionary of graphs is to be built for each product. First, each 
product is looped, and empty graphs are initialized. Then, the number of nodes needed for each 
graph is calculated by taking the sum of all unique lineIds, stationIds, and featureIds. This number 
of nodes is used to add that number of nodes to a graph. It is important to note that the names of 
the nodes are integers only and count from 0. In line 7 the node attributes are defined using 
information from the CSV files.  

For the declaration of each edge, a function is written to determine the dictionary pairs. The 
has_station function iterates through the line and station dictionaries and checks if the first letters 
of the stationId match the lineId. If a match is found, they are appended as a tuple to the 
has_station dictionary. A similar procedure is performed for the has_feature function, except that 
it checks whether the first letters of the featureId are the same as the stationId. Finally, the function 
transfer_to identifies the sequence of numeric node Ids that a product has passed through, and the 
edge is declared as a weighted edge with the transfer time as the weight. The output of the 
algorithm is the dictionary 𝐺. 

 

ALGORITHM 1: GRAPH CREATION FROM CSV FILES (FNAME) 

 
input:    fname: Path to CSV feature files 
 no_products: Number of manufactured products  

 output:  G: Dictionary of all created graphs 
1 begin 

2  
Initialization: empty lists and dictionaries for nodes, node attributes, edges, and edge 
attributes 

3  for i = 0 to no_products do 
4   create multiple empty graphs G[i] 

5   
compute no_nodes for each graph by taking the sum of the set of lineIds, 
stationIds, and featureIds 

6   add to each graph its corresponding no_nodes  

7   
set node attributes with information about the lineId, stationId, featureId, and 
featureValue 

8   FUNC: has_station that finds to each line its corresponding stations 
9   FUNC: has_feature that finds to each station its corresponding features  
10   add to each graph the edges has_station and has_feature 
11  return G 

Algorithm 1. Graph creation from CSV files 
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To get a better understanding of how the nodes of a single graph look like, Figure 37 shows an 
excerpt of the first 15 nodes with their corresponding node attributes. It can be observed that the 
first nodes of the graph belong to the entity line, the following ones are station nodes and finally 
all feature nodes are listed.  

 

 
Figure 37. Excerpt from the first 15 nodes of product id 4’s graph 

 

4.4 Implementation of Graph Embeddings 

After introducing the whole graph embedding techniques in 2.2, the implementation of those 
techniques for the given task is described in this subchapter. Note that the Karate Club library 
proposes one possible implementation of the techniques in 2.2 which is suited to their benchmark 
datasets and has certain limitations. Based on the use case the techniques need to be modified 
which was conducted with most of the techniques in accordance with our graph model. The Karate 
Club library has the following limitations: 

 

• Graphs are undirected and not multipartite, while the nodes are homogenous, and edges 

are unweighted 

• Nodes are indexed with integers consecutively counting from 0 

• Not all techniques consider node attributes 
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The graph model, defined in 4.3, consists of directed, not multipartite graphs with attributed nodes 
and unweighted edges. The nodes are also indexed with integers counting from 0. The problems 
we are facing because of Karate Club’s limitations were addressed except for the limitation that 
our nodes should be homogenous. Since the nodes represent information about three different 
entities lines, stations, and features, the nodes are inhomogeneous. However, the two main issues 
regarding the graph’s orientation and the node attributes were solved and are explained in the 
following.  

4.4.1 Graph Orientation 

The whole graph embedding techniques SF, FGSD, NetLSD, and IGE require the Laplacian matrix. 
Since we define the graph as directed, the standard built-in library of NetworkX cannot process 
asymmetric matrices as it is the case for undirected graphs. Therefore, we propose to calculate the 
Laplacian matrix as well as the normalized Laplacian matrix by the explained equations in 2.1.3. 
First, we have to distinguish between the four above mentioned techniques. SF, FGSD, and NetLSD 
rely on the normalized Laplacian matrix, while IGE needs only the regular directed Laplacian 
matrix. Surprisingly, the NetworkX library contains a function that calculates the regular Laplacian 
matrix for directed graphs. Accordingly, the function “_get_spectral_features” as well as the 
function “_get_histogram_features” of the class IGE were modified.  

The other techniques depend on the normalized Laplacian matrix, which is for directed graphs 
distributed into out-degree left and in-degree right normalized Laplacian matrices (see Figure 11). 
Since the out-degree left normalized Laplacian matrix is more common and is related to the 
random walk matrix, this matrix is calculated for the mentioned techniques with Algorithm 2. The 
algorithm begins with the initialization of the “nodelist” (list of nodes), and proceeds with the 
calculation of the adjacency matrix in CSC format as explained in 2.1. Subsequently, the outdegree 
diagonal matrix is calculated and used for determining the out-degree left normalized Laplacian 
matrix. 

 

ALGORITHM 2: CALCULATE DIRECTED NORMALIZED LAPLACIAN 
1 begin 
2  nodelist = range(graph.number_of_nodes()) 
3  A = nx.to_scipy_sparse_matrix(graph, nodelist = nodelist, format = “csc”) 
4  n, m = A.shape 
5  diags = A.sum(axis = 1) # axis =1 → outdegree matrix  
6  D = sp.sparse.spdiags(diags.flatten(), [0], m, n, format = “csc”) 
7  I = np.identity(len(graph)) 
8  L# = I − inv(D) ⋅ A  
9  return L# 

Algorithm 2. Calculate directed normalized Laplacian matrix 
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4.4.2 Node Attributes 

The three newer graph embedding techniques GeoScattering (2019), Feather-Graph (2020), and 
Wavelet Characteristic (2021) are able to process a feature vector 𝑋. The Karate Club library 
already designed a feature vector 𝑋 considering the node neighborhood and the clustering 
coefficient. In order to let the graph embedding understand the node attributes of the defined 
graph, we create a node attributes vector in Algorithm 3. The node attributes used for this array 
are extracted from the “featureValues” (feature values) and are thus completely numeric. 
Unfortunately, the given graph embeddings are not able to process node attributes that contain 
strings, which is why the lineIds, stationIds, and featureIds cannot be considered. However, the 
relation between those entities is reflected in the edges. In line 1, the algorithm stores the 
featureValue attribute of each node in an array. Recalling the graph structure, we observe that 
only the last nodes of a graph have a featureValue. Therefore, in line 3 the beginning values that 
normally correspond to lines and stations are filled with zeros.  

 

ALGORITHM 3: CREATE NODE ATTRIBUTE ARRAY 
1 begin 
2    attributes = np.fromiter(nx.get_node_attributes(graph, “featureValue”).values()) 
3    n = graph.number_of_nodes() – len(attributes) 
4    attributes =np.pad(attributes, (n, 0), “constant”, constant_values = 0).reshape(-1,1) 
5    return attributes 

Algorithm 3. Creation of a node attribute array 

 

The remaining three techniques Graph2Vec, GL2Vec, and LDP do neither utilize the Laplacian 
matrix nor are capable of considering node attributes which is why those techniques are not 
modified in this work.  

 

4.5 Clustering Task 

After generating whole graph embeddings, we applied the k-means algorithm presented in Section 
2.3.1 to the database, initializing the number of clusters to 𝑘 = 4. In the preprocessing step from 
4.1.2, we determined the ground-truth data. We used the ground-truth data as a reference for the 
label assignments of the clustering algorithm for the metrics ARI and AMI. The Davies Bouldin 
index and the SC conducted the evaluation by the embedding itself. The function that implements 
the embedding function is illustrated in Algorithm 4. 

 

ALGORITHM 4: EMBEDDING TO CLUSTERING PERFORMANCE (EMBEDDING, GROUND-TRUTH) 

 
input:     embedding: list of graph embeddings for 14,353 graphs 
 ground_truth: ground-truth cluster labels for each product 
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 output:  ari, ami, dbp, and silhouette as clustering performance evaluation metrics 
1 begin 
2  y = Kmeans (n_clusters = 4, random_state = 0).fit(embedding) 
3  ari = adjusted_rand_score(ground_truth, y.labels_)  
4  ami = adjusted_mutual_info_score(ground_truth, y.labels_) 
5  dbp = davies_bouldin_score(embedding, y.labels_) 
6  silhouette = metrics.silhouette_score(embedding, y.labels_, metric = “euclidean”) 
7  return ari, ami, dbp, silhouette 

Algorithm 4. Clustering performance for four different evaluation metrics 
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5 Evaluation and Discussion 

This chapter presents an evaluation of the techniques used and the results of the experiment 
performed in Chapter 4 which corresponds to the evaluation step of the CRISP-ML diagram in 
Figure 1. The results are discussed based on the theoretical background of the graph embedding 
techniques presented in Chapter 2. It starts with a comparison of the techniques using suitable 
comparison metrics. Subsequently, the performance results for both the graph embedding 
techniques and the baseline algorithm that performs the clustering task directly on raw data are 
provided. Finally, the results are discussed and reasons for the performance are stated.  

5.1 Comparison of Graph Embedding Techniques 

After investigating the notion and the mathematical background of Karate Club’s graph embedding 
techniques, we can derive comparison metrics that affect results of the clustering task. Table 5 
illustrates these metrics for all ten graph embedding techniques.  

The experiment in Chapter 4 assumes that the default embedding size of the techniques is the most 
appropriate, as the developers have achieved the best results for these specific values. However, 
there are techniques such as Graph2Vec and GL2Vec that have a parameter called “dimensions” 
where the dimensionality of the embeddings is variable and can also be set to 2D or 3D 
embeddings, but by reducing the size to only a few values, the accuracy of the embeddings suffers, 
resulting in poor performance.  

Another interesting metric is the run time of the experiment for the presented use case in Chapter 
3 in seconds. It can be observed that for many techniques the larger the embedding size, the more 
running time the computer takes to execute the clustering task. The presented run time assumes 
that the graph creation is already precomputed, and only one graph orientation, either directed or 
undirected, is considered.  

As explained in Chapter 2.1.3, the set of eigenvalues of the Laplacian matrix is referred to as the 
spectrum of the Laplacian. NetLSD, SF, and IGE exploit the properties of the spectrum of the 
Laplacian in different ways to obtain whole graph embeddings. The more recent techniques 
GeoScattering, Feather-Graph, and Wavelet Characteristic use the probability matrix for a random 
walk to generate graph embeddings. The only technique that uses both methods is IGE, which 
generates single embedding vectors for each method and then concatenate them.  

The last metric in Table 5 reveals which graph features are responsible for the final embedding, 
which is supposed to represent a whole graph. The graph textualization methods use the WL-
kernel and consider both the node label and structural information based on each node’s 
immediate neighbors. While FGSD reconstructs the given graph 𝐺 based on the pairwise node 
distances, LDP only considers the node degree information and statistics of the first neighborhood. 
Most importantly, again, the newer methods GeoScattering, Feather-Graph, and Wavelet 
Characteristic are able to process any specific vector as feature vector. Therefore, these techniques 
allow the use of attributed graphs, where node attributes are declared as feature vectors. However, 
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the aforementioned techniques can also consider other features related to the structure of the 
graph, such as the logarithmic node degree or the clustering coefficient. The node attributes and 
the logarithmic node degree can also be concatenated to form a feature vector.  

 

Table 5. Comparison of graph embedding techniques by selected metrics 

Technique 
Embedding 

Size 

Run 
Time 
[s] 

Spectrum 
Random 

Walk 
Feature Vector 

Graph2Vec 128 180 No No 
Node label and structural 

information  

GL2Vec 128 240 No No 
Node label and structural 

information 

FGSD 200 480 No No Pairwise node distances 

NetLSD 250 720 Yes No Trace of heat or wave kernel 

SF 128 600 Yes No Spectrum 

IGE 652 800 Yes Yes 
Spectrum, probability and 

commute time for random walk 

LDP 160 360 No No Node degree information 

GeoScattering N/A 120 No Yes 
Free, logarithmic node degree, 

clustering coefficient 

Feather-Graph 500 90 No Yes 
Free, logarithmic node degree, 

clustering coefficient 

Wavelet 
Characteristic 

1000 900 No Yes 
Free, logarithmic node degree, 

clustering coefficient 

 

5.2 Results and Discussion 

Recall that we are addressing the research question how effective the use of graph embeddings for 
a clustering task in the manufacturing domain is. Therefore, we must evaluate the accuracy of all 
ten techniques against a baseline algorithm. In this section, the baseline algorithm is introduced, 
the results are presented and discussed. 

5.2.1 Baseline Algorithm 

In the baseline, the clustering task is performed directly with the raw data without the use of 
graphs. For this purpose, the feature data frame of all 14,353 products was first extracted, 
manipulated, dimensionally reduced, and finally used as input for the clustering algorithm. 
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Manipulating the feature data requires two steps: first, replacing all NaN values with zeros, and 
second, removing the product IDs from the array to prevent misunderstanding of the numerical 
features. This array of more than 300 features per product was tested as input to the k-means 
clustering algorithm, which yielded an ARI of about 8.7%. Finally, after applying the widely used 
tool for dimensionality reduction: Principal Component Analysis (PCA), the algorithm obtained 
the best results with an ARI of about 10.9% for a number of 100 components. 

This work is based on the assumption that the accuracy of the clustering task is significantly higher 
when using graph embeddings than when using only the raw data. 

5.2.2 Results and Discussion 

The results are presented for the performance metrics explained in 2.3.2. Each of these metrics 
captures a different aspect of the task performance. The ARI measures the similarity between 
ground-truth clustering and clustering of k-means and can be also considered as accuracy. Whereas 
the AMI is a measure of entropy that describes the uncertainty of a random variable when another 
variable is known. On the other hand, the SC, which evaluates performance without ground-truth 
data, calculates whether points are clustered and separated well. Finally, the Davies Bouldin index 
is defined as the average similarity measure of each cluster with its most similar cluster, taking 
into account the distances within and between clusters. Since the SC is only defined between -1 
and 1, this metric is more accurate than the Davies Bouldin index according to [54].  

Table 6 shows the clustering results for all ten graph embedding techniques versus the baseline for 
undirected and directed graphs considering four different performance metrics. Each cell contains 
two values, where the result for directed graphs is the value at the top and for undirected graphs 
the value at the bottom. 

 

Table 6. Clustering results for 10 graph embedding techniques vs. baseline for four different 
evaluation metrics 

Technique ARI AMI Silhouette Davies Bouldin 

Graph2Vec 
0.575 

0.576 

0.468 

0.468 

0.622 

0.668 

0.581 

0.517 

GL2Vec 
0.506 

- 

0.393 

- 

0.392 

- 

1.33 

- 

SF 
0.159 

0.576 

0.200 

0.468 

0.221 

1.00 

1.67 

7e-6 

IGE 
0.576 

0.501 

0.468 

0.389 

1.00 

0.684 

1e-11 

0.513 

NetLSD 0.513 0.394 0.742 0.579 
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0.576 0.468 1.00 1e-4 

FGSD 
0.576 

0.576 

0.468 

0.468 

1.00 

1.00 

0.00 

0.00 

LDP 
0.576 

0.576 

0.468 

0.468 

1.00 

1.00 

0.00 

0.00 

GeoScattering 
0.576 

0.576 

0.468 

0.468 

1.00 

1.00 

8e-7 

6e-7 

Feather-Graph 
0.576 

- 

0.468 

- 

1.00 

- 

2e-5 

- 

Wavelet 
Characteristic 

0.576 

0.576 

0.468 

0.468 

1.00 

1.00 

6e-5 

6e-5 

Baseline (Raw Data) 0.109 0.287 0.123 2.45 

 

As Table 6 shows, the performance for the baseline is very poor with lower than 11% for the ARI 
and approximately 29% for the AMI. The three times better result for the AMI can be argued with 
the fact that when the ground-truth clustering is known, the uncertainty of a random variable 
picked from the raw data clustering may be higher than the accuracy for the clustering task 
represented with the ARI. The graph textualization technique Graph2Vec achieves among others 
the highest ARI value of around 57% for directed as well as for undirected graphs. This finding 
can be traced back to the fact that Graph2Vec is also designed for graph clustering and achieved 
according to [22] a performance of 56% for the malware graph clustering task. However, the 
performance for unsupervised clustering is rather poor in comparison, which means that the data 
points of the clusters are rather overlapping and not good separated. There are several possible 
explanations for such a result.  

Since Graph2Vec and GL2Vec initialize graph embeddings randomly and then learn embeddings, 
the initial graph embedding can limit the values that the algorithm can achieve, leading to 
fluctuating performance. Then the WL-kernel relabels the nodes with a hash function, where the 
result may not preserve the structural information about the node very well, which could 
negatively affect the result for unsupervised performance. 

The ARI for SF is about 15% for directed graphs and 57% for undirected graphs. This result helps 
understanding how important the accurate computation of the Laplacian matrix for the SF 
algorithm is, because the graph embedding generated by SF consists of the eigenvalues of the 
normalized Laplacian matrix. The problem here is that for the directed graph model, only the left 
normalized Laplacian matrix of the outer degree was considered, where a small difference to the 
actual normalized Laplacian matrix can have significant effects on the graph embedding.  

However, the performance for directed graphs of IGE is better than for undirected graphs, although 
the normalized Laplacian matrix of undirected graphs is replaced by the out-degree left normalized 
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Laplacian matrix. A possible explanation could be that IGE also uses the random walk matrix, 
which could be more accurate for directed graphs since there are fewer possible paths within a 
graph.  

Similar to SF, for NetLSD we can observe a rather small difference between the performance of 
directed and undirected graphs. We should be aware that for NetLSD, the trace of the heat kernel 
ℎ= = 𝑡𝑟(𝐻=) = 	∑ 𝑒*=R&-  is used to calculate the whole graph embeddings. Since the eigenvalues of 
the normalized Laplacian matrix are used as the exponent of the Euler function, it can be concluded 
that small differences in the Laplacian matrix can lead to larger differences in the embeddings, 
which negatively affects the performance.  

The last five techniques FGSD, LDP, GeoScattering, Feather-Graph, and Wavelet Characteristic 
have approximately the same performance for all four metrics. It seems likely that these results 
arise from the consideration of local node features. FGSD and LDP, for example, do not use the 
Laplacian matrix or the random walk matrix to generate graph embeddings. The embeddings are 
calculated based only on the node distances or node degrees of the local neighborhood of a node 
𝑣+. Hence, it can be hypothesized that for the given dataset, techniques that focus more on node 
degree or node distance have higher performance for a clustering task.  

This result can be verified by taking a closer look at the newer techniques GeoScattering, Feather-
Graph, and Wavelet Characteristic. Since the feature vector for these techniques can be freely 
chosen, we examined four different feature vectors. Table 7 shows the ARI values for directed 
graphs for the following feature vectors: 1) node attribute + logarithmic node degree + clustering 
coefficient 2) node attribute + logarithmic node degree 3) node attribute 4) logarithmic node 
degree. The performance when considering the node attributes alone or in combination with the 
logarithmic node degree or the clustering coefficient is lower than when considering the 
logarithmic node degree itself. It seems likely that the techniques are overwhelmed with node 
attributes and cannot process the feature values in a meaningful way. Therefore, the use of 
attributed graphs with the feature value as an attribute is not helpful. The hypothesis stated after 
discussing the performance of FGSD and LDP can also be applied to these three techniques, since 
the logarithmic node degree provides information about the local neighborhood of a node 𝑣+. 

 

Table 7. Performance for GeoScattering, Feather-Graph and Wavelet Characteristic using 
different feature vectors  

Technique NA-Degree-CC NA-Degree NA Degree 

Geo Scattering 0.576 0.576 0.019 0.576 

Feather-Graph 0.322 0.305 0.153 0.576 

Wavelet Characteristic 0.003 0.003 0.003 0.576 
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5.3 Summary 

We can summarize the findings of the discussion as following: 

 

• 57% ARI performance and 100% for the SC for both directed and undirected graphs are 

achieved only with FGSD, LDP, GeoScattering, Feather-Graph, and Wavelet Characteristic. 

• Major influence on the performance has the consideration of the local neighborhood by 

node distance or node degree. 

• Although 57% is not an excellent score for the application, it clearly outperforms the 

baseline that only achieves around 11% ARI. 

• Considering feature values as node attributes in GeoScattering, Feather-Graph, and 

Wavelet Characteristic is contra-productive and leads to poor performance because the 

algorithm is overloaded. 

• Karate Club’s graph embeddings are customized for specific datasets and need to be 

modified for competitive results in the manufacturing domain. 

• No direct conclusion whether a model with directed graphs or a model with undirected 

graphs is better, since it depends on the embedding technique, in some cases better in 

others worse. 

• Only numerical data has been processed, progress must be made on strings as usual in KG. 

• It was assumed that the clustering task is easier than the classification task since the dataset 

is imbalanced. However, most of Karate Club’s whole graph embeddings are tested only for 

classification, so the next step is classification.  
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6 Conclusion and Outlook 

Finally, this chapter summarizes and discusses the key takeaways of this work. Furthermore, an 
outlook is given on the need for additional research on using graph embeddings for downstream 
ML tasks in the manufacturing domain. 

6.1 Conclusion 

The goal of this work was to understand how effective the use of graph embeddings is for a 
clustering task in the manufacturing domain. Based on the literature review and data exploration 
of the use case, the development and training of the ten graph embedding techniques followed. 
The literature review revealed that the graph embedding techniques were designed and tested by 
Karate Club specifically for benchmark datasets, which include social media platforms and 
chemical or biochemical structures. The techniques assume that the graphs are undirected and 
unattributed, and most of the techniques are tested for a graph classification task. In this work, 
instead of graph classification, we perform graph clustering to test how much information the 
graph embeddings contain and whether they can be used to identify different product variants. 
This would be a “preprocessing” step in a classification pipeline. The fact that the measured 
production data are highly unbalanced and that a significant number of NaN values are included 
in the data are further reasons for performing clustering. Since we know the entities of the 
manufacturing system, namely line, station, and feature, we can conclude that a directed graph 
would better reflect the relationship between these entities than an undirected graph. Therefore, 
the graph model was developed for both directed and undirected graphs.  

Since the task was to test ten graph embedding techniques, we reduced the complexity of the 
problem by creating a smaller dataset using data from only four different product variants. The 
data was preprocessed to prepare it for graph creation. Depending on the specific graph embedding 
technique, different steps were performed prior to graph creation. The graph embedding 
techniques originally proposed by Karate Club were either modified to be able to create directed 
graphs or to take into account node attributes. Subsequently, graph embeddings for each of these 
ten techniques were created for both undirected and directed graphs. After that, the k-means 
clustering algorithm, initialized with a number of 𝑘 = 4 clusters, is used to assign the generated 
graph embeddings to clusters. To evaluate the performance of the clustering, the ground-truth 
data is used as a reference. 

Finally, the performance of the ten techniques was evaluated for undirected and directed graphs 
using a baseline algorithm that directly clusters the raw data. Previously, the ten graph embedding 
techniques were compared using selected metrics to better explain the results later. Four different 
metrics that capture different similarity information of the products were used for the evaluation. 
The results show that an ARI of 57% can be achieved with multiple graph embedding techniques 
for both directed and undirected graphs. Although 57% is not an excellent score for clustering, the 
created graph embedding techniques outperform the baseline, which only achieves around 11% 
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ARI. It was observed that techniques that consider information about the local neighborhood of a 
node, such as node degree or node distance, achieved significantly higher performance scores than 
others. Considering node attributes resulted in poor performance due to algorithm overload. This 
work presented a first approach to extract meaningful features from KG for a clustering task. The 
problem is that Karate Club’s graph embedding techniques are customized to specific datasets and 
need to be redesigned to produce more competitive results for the use in the manufacturing 
domain. In conclusion, the current version of whole graph embedding techniques developed by 
Karate Club can be used for a clustering task on the Bosch production line dataset. However, the 
results are not very promising for use in production, which is why we need to conduct further 
research, as explained in the Outlook. 

6.2 Outlook 

First, the only graph embedding technique tested for a graph clustering task is Graph2Vec. All ten 
techniques were successfully tested for a graph classification task. For this reason, further research 
dealing with Karate Club’s graph embeddings should perform graph classification instead of graph 
clustering.  

The whole graph embedding techniques of Karate Club are designed for processing ordinary graphs 
instead of KG. This is the reason why only numerical data can be processed by the given techniques, 
but KG usually consist of both textual and numerical information, and in this work the textual 
information has not been considered. Therefore, further research on special KG embeddings, such 
as those developed by [55] or [56], should be conducted to process all the information obtained 
from the manufacturing system. 

Ideally, one of the newer and stronger performing algorithms such as GeoScattering, Feather-
Graph, or Wavelet Characteristic should be combined with a KG embedding, where the design of 
this new algorithm should be suited to the given dataset. When the performance of this algorithm 
is very competitive, the model can be deployed to production as shown in the CRISP-ML diagram 
in Figure 1. After deployment, it should be assured that the performance of the system is monitored 
regularly, and the production line is also maintained.
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