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ABSTRACT
On the basis of a sample of either independent, identically dis-
tributed or possibly weakly dependent and stationary random vari-
ables from an unknownmodel F with a heavy right-tail function, and
for any small level q, the value-at-risk (VaR) at the level q, i.e. the size
of the loss that occurs with a probability q, is estimated by new semi-
parametric reduced-bias procedures based on the mean-of-order-p
of a set of k quotients of upper order statistics, with p an adequate
real number. After a brief reference to the asymptotic properties
of these new VaR-estimators, we proceed to an overall comparison
of alternative VaR-estimators, for finite samples, through large-scale
Monte-Carlo simulation techniques. Possible algorithms for an adap-
tive VaR-estimation, an application to financial data and concluding
remarks are also provided.
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1. Introduction

The risk of a high loss that occurs rarely is a primordial parameter of extreme events. A pos-
sible and common indicator of such a risk is the value-at-risk (VaR), which can be identi!ed
with the size of the loss that occurs with a small probability, q, 0<q<1. For any unknown
cumulative distribution function (CDF) F underlying the available sample, and denoting by
F←(z) := inf{x : F(x) ≥ z} the generalized inverse function of F, we are thus dealing with
a (very high) quantile,

χ1−q ≡ VaRq := F←(1− q) =: U(1/q), where U(t) = F←(1− 1/t), t ≥ 1, (1)

is the so-called reciprocal right-tail quantile function (RTQF). With n denoting the size of
the available sample, (X1, . . . ,Xn), we often have nq ≤ 1, and this justi!es theoretically
the assumption that q = qn→ 0, as n→∞. We thus want to extrapolate beyond the
sample, being then in the area of statistical extreme value theory (EVT). Since in real appli-
cations in the areas of biostatistics, environment, !nance, insurance and statistical quality
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control, among others, one often encounters heavy right-tails, we shall assume that, for
some ξ > 0, the right-tail function (RTF), F(x) := 1− F(x), satis!es the condition F(x) =
1− F(x) ∼ c x−1/ξ , as x→∞, for some positive constant c, where a(z) ∼ b(z) means
that a(z)/b(z)→ 1, as z→∞. Equivalently, and for someC>0,U(t) ∼ C tξ , as t→∞.
Slightlymore restrictively, we shall here assume to beworking inHall-Welsh class ofmodels
[1]. Such an assumptionmeans that, as t→∞, and with C, ξ > 0, ρ < 0 and β non-zero,

U(t) = Ctξ
(
1 + A(t)/ρ + o

(
tρ
) )
, with A(t) = ξβtρ . (2)

This is a wide class of models, which contains most of the heavy-tailed parents useful in
applications. Note that (2) implies a Paretian-type RTF, being ξ a positive version of the
general EV index (EVI) for maxima, the primary parameter of large extreme events.

1.1. Themain limiting EV distributions formaxima

Given a random sample (X1, . . . ,Xn) from F (Gnedenko [2]), or even more generally a
weakly dependent stationary sample from F (Leadbetter et al. [3]), if there exist attrac-
tion coe"cients (an, bn), an > 0 and bn ∈ R, such that the sequence of linearly normalized
maxima, {(Xn:n − bn)/an}n≥ 1, converges to a non-degenerate random variable (RV), such
an RV is of the type of a general EV RV, with CDF

EVξ (x) =
{
exp(−(1 + ξx)−1/ξ ), 1 + ξx > 0, if ξ *= 0,
exp(− exp(−x)), x ∈ R, if ξ = 0.

(3)

It is then said that F is in the max-domain of attraction of EVξ , and the notation F ∈
DM(EVξ ) is used. If ξ > 0, as happens, among others, for the Student-tν , with ν degrees
of freedom (ξ = 1/ν), quite common in the !eld of !nance, F has an associated heavy
RTF, of a negative polynomial type, i.e. of a Pareto-type. We shall then use the notation
DM(EVξ>0) =: D+

M .

1.2. Classic semi-parametric VaR and EVI–estimators

For these heavy right-tailed or Paretian-type models, and with Q standing for quantile,
the most common semi-parametric VaR-estimator was proposed by Weissman [4]. It is
de!ned as

Q(q)
ξ̂

(k) := Xn−k:n

(
k
nq

)ξ̂

=: Xn−k:n rξ̂n , rn ≡ rn(k; q) = k
nq

, (4)

with Xn−k:n the (k + 1)th upper order statistic (OS), 1 ≤ k < n, being strongly dependent
on ξ̂ , any consistent estimator for ξ . Other semi-parametric procedures for the estimation
of high quantiles can be found in the books by Beirlant et al. [5] and de Haan and Ferreira
[6], among others.

For heavy RTFs, i.e. when we work inD+
M , the most common EVI-estimator, often used

in (4) for a semi-parametric quantile estimation, is the Hill estimator ξ̂ = ξ̂(k) =: H(k)
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[7], given by,

H(k) := 1
k

k∑

i=1
Vik, Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n. (5)

Indeed, inD+
M , the log-excesses Vik, 1 ≤ i ≤ k, in (5), are approximately the k descending

OSs of a sample of size k from an exponential CDF with mean value ξ . And this is one of
the reasons for the average in (5).

The estimators in (4) and in (5) are asymptotic estimators, i.e. they provide useful esti-
mates, respectively of VaRq in (1) and ξ > 0 in (3), only when the sample size n is high
and for an adequate value of k. Indeed, consistency is achieved when we work with an
intermediate sequence of integers,

k = kn→∞, k ∈ [1, n), with k/n→ 0, as n→∞. (6)

The plugging in (4) of the Hill estimator, H(k), leads to the so-calledWeissman-Hill quan-
tile or VaRq-estimator, denoted by Q(q)

H (k). To study the asymptotic behaviour of Q(q)
H (k),

as well as of alternative VaRq-estimators, it is useful to impose a second-order expansion
on the RTF, F = 1− F, or on the RTQF, U, like the one in (2).

Since the Hill estimator is the logarithm of the geometric mean (or mean-of-order-0)
of Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n, Brilhante et al. [8], and almost simultaneously
and independently [9,10], considered as basic statistics the powermean-of-order-p (MOp)
of Uik, 1 ≤ i ≤ k, p ∈ R+

0 . More generally, Gomes and Caeiro [11] and Caeiro et al. [12]
worked with p ∈ R and the class of EVI-estimators,

Hp(k) ≡ MOp(k) :=








1−
(
1
k

k∑

i=1
Up
ik

)−1


/

p, if p < 1/ξ , p *= 0,

1
k

k∑

i=1
lnUik = H(k), if p = 0.

(7)

The restriction p < 1/ξ in (7) ensures the consistency of the MOp EVI-estimators. This
class ofMOp EVI-estimators depends now on this tuning parameter p ∈ R, and was shown
to be highly #exible. If we plug in (4) the MOp EVI-estimator, Hp(k), we get the so-called
MOp quantile or VaRq-estimator, with the obvious notation, Q(q)

Hp
(k), studied for !nite

samples in Gomes et al. [13].

1.3. Bias-corrected EVI/VaR-estimators and a newVaR estimation procedure

The MOp EVI-estimators in (7) can often have a high asymptotic bias, and bias reduction
has recently been a vivid topic of research in the area of statistical EVT. For recent overviews
of this topic, see Beirlant et al. [14] andGomes andGuillou [15].Working just for technical
simplicity in the particular class of Hall-Welsh models in (2), the asymptotic distributional
representation of Hp(k) for p = 0 led Caeiro et al. [16] to directly remove the dominant
component of the bias of the Hill EVI-estimator, given by ξβ(n/k)ρ/(1− ρ)whenever (2)
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holds, considering the corrected-Hill (CH) EVI-estimators,

CH(k) ≡ CH(k; β̂ , ρ̂) := H(k)

(

1− β̂

1− ρ̂

(n
k

)ρ̂
)

. (8)

The EVI-estimators in (8) are minimum-variance reduced-bias (MVRB) provided that we
consider adequate estimators, (β̂ , ρ̂), of the vector of second-order parameters (β , ρ) in
(2), fully described in Gomes and Pestana [17], among others, where a reliable algorithm
has been provided, based on the use of a simple class of ρ-estimators in Fraga Alves et al.
[18], and the associated β-estimators introduced in Gomes and Martins [19]. Gomes and
Pestana [17] have used the EVI-estimators in (8) to build RB-CH VaRq-estimators, which
we denote by Q(q)

CH(k). Since the main topic under consideration in this article is related
to RB VaR-estimation for Paretian-type RTFs, we further mention the articles by Matthys
and Beirlant [20], Matthys et al. [21], Gomes and Figueiredo [22] and Caeiro and Gomes
[23,24], where RB VaR-estimation is discussed.

Gomes et al. [12] have further recently suggested for a positive p the class of EVI-
estimators

CHp(k) ≡ CHp(k; β̂ , ρ̂) ≡ RBMOp(k) := Hp(k)

(

1−
β̂(1− pHp(k))
1− ρ̂ − pHp(k)

(n
k

)ρ̂
)

, (9)

which can be considered as a generalization to a real p of the CH ≡ CH0 class of EVI-
estimators in (8). It is thus sensible to work with the new class of VaRq-estimators,

Q(q)
CHp

(k) := Xn−k:n r
CHp(k;β̂ ,ρ̂)
n

[
Q(q)
CH0

(k) ≡ Q(q)
CH(k)

]
, (10)

with rn ≡ rn(q) and CHp(k; β̂ , ρ̂) respectively given in (4) and (9), being p any adequate
real number.

Further note that, working with values of p such that the asymptotic normality of the
estimators in (7) was known to held at the time, i.e. with 0 ≤ p < 1/(2ξ), Brilhante et al.
[25] proved that there is an optimal value of p, denoted by pM , an explicit function of ξ and
ρ, which maximizes the asymptotic e"ciency of the class of EVI-estimators in (7). And
the same result holds if we more generally consider any real p. The asymptotic behaviour
of H∗(k) := HpM (k), with Hp(k) given in (7), has led Gomes et al. [26] to introduce a par-
tially RB (PRB) class of MOp EVI-estimators based on Hp(k), in (7), with the functional
expression

PRBp(k) ≡ PRBp(k; β̂ , ρ̂) := Hp(k)

(

1−
β̂(1− ϕρ̂)

1− ρ̂ − ϕρ̂

(n
k

)ρ̂
)

,

ϕρ := 1− ρ/2−
√

(1− ρ/2)2 − 1/2. (11)

On the basis of a large-scale simulation study, it was shown in the aforementioned paper
that the PRB EVI-estimators, in (11), are also able to outperform the CH EVI-estimators,
in (8), for a large variety of models. For the study and asymptotic comparison under a
third-order framework of di$erent classes of RB-MOp EVI-estimators, including the ones
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in (9) and (11), see Caeiro et al. [27], where updated references on second-order parame-
ters’ estimation can be found. Despite of only partially RB, and with rn and PRBp(k; β̂ , ρ̂)

respectively given in (4) and (11), we thus think sensible to work not only with the new
class of VaR-estimators in (10), but also with

Q(q)
PRBp(k) := Xn−k:n r

PRBp(k;β̂ ,ρ̂)
n , (12)

already considered in Gomes et al. [28].
Since pM = ϕρ/ξ , with ϕρ given in (11), just as done in Gomes et al. [12] for the EVI-

estimation, and in Gomes et al. [28] for the PRB VaR-estimation, we shall also consider the
EVI-estimators

CH∗(k) ≡ CH∗(k; β̂ , ρ̂) := CHp∗M(k), PRB∗(k) ≡ PRB∗(k; β̂ , ρ̂)

:= PRBp∗M(k), p∗M = ϕρ̂/ξ∗,

ξ∗ =CH
(
k̂0|H

)
, k̂0|H :=min

(
n− 1,

⌊(
(1− ρ̂)2n−2ρ̂/

(
− 2ρ̂β̂2)

)1/(1−2ρ̂)⌋
+ 1

)
,

(13)

with k̂0|H a k-estimate associated with minimum mean square error (MSE), i.e. an esti-
mate of k0|H := argminkMSE(H(k)), as suggested in Hall [29], and where ,x- denotes
the integer part of x. Just as done by Gomes et al. [28], now on the basis of the two adap-
tive EVI-estimators in (13), we further work with the associated VaR-estimators, obviously
denoted by

Q(q)
CH∗(k) := Xn−k:n r

CH∗(k;β̂ ,ρ̂)
n and Q(q)

PRB∗(k) := Xn−k:n r
PRB∗(k;β̂ ,ρ̂)
n . (14)

1.4. Scope of the article

The scope of this article is to overall compare the aforementioned VaRq-estimators, replac-
ing, in (4), Q(q)

ξ̂
(k) by the VaRq-estimators Q(q)

CHp
(k), Q(q)

PRBp(k) and (Q(q)
CH∗(k), Q

(q)
PRB∗(k)),

respectively given in (10), (12) and (14), based on the corresponding EVI-estimators,
respectively given in (9), (11) and (13). Provided that we choose the value of p that provides
the highest asymptotic e"ciency for Hp(k) (see [25]), the new VaR-estimators in (10) have
an asymptotic MSE (AMSE) smaller than the AMSE of Weissman-Hill VaR-estimators for
all k, being also obviously able to overpass the CH≡ CH0 VaRq-estimator in Gomes and
Pestana [17]. Consequently, the new RB-MOp VaR-estimators in (10) are reliable alterna-
tives to the previous VaR-estimators not only around optimal levels but for all k. Anyway,
given the outstanding behaviour of the PRB VaR-estimators, which are not generally RB,
just as shown in Gomes et al. [28], we shall also take into account the PRB-MOp VaR-
estimators in (12). The outline of the paper is the following. In Section 2, after a brief
reference to general !rst and second-order conditions under a heavy-tailed framework, the
asymptotic behaviour of the classes of EVI and VaR-estimators under study is discussed.
Section 3 is devoted to a large-scale Monte-Carlo simulation that enables the derivation of
the !nite-sample distributional properties of the new classes of RB VaR-estimators, com-
pared to the Weissman-Hill, CH and PRB VaR-estimators. Algorithms for an adaptive



1740 M. I. GOMES ET AL.

VaRq-estimation and an application to !nancial data are provided in Section 4. Finally,
in Section 5, a few overall conclusions are drawn.

2. A brief discussion on the asymptotic behaviour of EVI and VaR-estimators

After a brief reference, in Section 2.1, to general !rst and second-order conditions for a
heavy RTF, we deal, in Section 2.2, with known results on the asymptotic behaviour of the
EVI-estimators under consideration. A parallel exposition is performed in Section 2.3 for
the VaR-estimators. For a normal RV, with mean value µ and variance σ 2, the notation
N (µ, σ 2) = µ + σN (0, 1) is used.

2.1. First and second-order conditions for heavy right-tails

In the area of EVT and whenever working with large values, a CDF F is often said to be
heavy-tailed whenever the associated RTF F is a regularly varying function with a nega-
tive index of regular variation equal to−1/ξ , ξ > 0 (Gnedenko [2]), with ξ the EVI, given
in (3). We then use the notation F ∈ R−1/ξ (see, among others, Bingham et al. [30], for
details on regular variation). Equivalently, the RTQF U, de!ned in (1), is of regular vari-
ation with index ξ (de Haan [31]), i.e. U ∈ Rξ , the !rst-order condition under which we
work in this article. Then, lnU(tx)− lnU(t)− ξ ln x→ 0, for all x>0, and as t→∞,
and the second-order parameter ρ (≤ 0)measures the aforementioned rate of convergence
to zero. Such a rate can be measured through a function A such that |A| ∈ Rρ (Geluk and
de Haan [32]). Such a second-order condition has been widely accepted as the appropriate
one to specify the RTF of a Pareto-type distribution in a semi-parametric way, and easily
enables the derivation of the non-degenerate bias of EVI and VaR-estimators, under such a
framework. Further developments of the topic can be found in the books by Beirlant et al.
[5] and de Haan and Ferreira [6], as well as in Fraga Alves et al. [33], among others.

If we assume that ρ < 0, we are then in the class of models in (2), and the slowly varying
function ((·), in F(x) = x−1/ξ ((x), behaves asymptotically as a constant. Note thus that
when we assume (2) we are excludingmodels with ρ = 0.We are also excluding the Pareto
model itself, associated with ρ = −∞, but for such a model no bias-reduction is needed.
Indeed, the Hill is already an RB EVI-estimator for underlying Pareto models.

2.2. The EVI-estimators

Just as proved in Brilhante et al. [8] and Gomes and Caeiro [11], the result obtained in de
Haan and Peng [34] for the Hill EVI-estimator in (5), or equivalently, p = 0 in (7), can be
generalized for any adequate real p, as indicated below. Under the validity of the !rst-order
condition, U ∈ Rξ , and for intermediate k, i.e. whenever (6) holds, Hp(k), given in (7), is
consistent for the estimation of ξ whenever p < 1/ξ . If we further assume the existence of
a function A(·) that measures the rate of convergence in the !rst-order condition,

√
k
(
Hp(k)− ξ

) d= N
(
0,

ξ2(1− pξ)2

1− 2pξ

)
+
√
k A(n/k)(1− pξ)

1− ρ − pξ
(1 + oP(1)), (15)

for p < 1/(2ξ), where the bias can be small, moderate or large, in the sense that it can go
respectively to zero, a constant or in!nity, as n→∞. Straightforwardly from (15), if we
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further assume that
√
kA(n/k)→ λA, !nite,

√
k
(
Hp(k)− ξ

) d−→
n→∞

N
(

λA(1− pξ)

1− ρ − pξ
,

ξ 2(1− pξ)2

1− 2pξ

)
.

Theorem 3.1 in Gomes et al. [12] enables us to state that under the same conditions as
above, and the adequate conditions on the (β , ρ)-estimation,

√
k
(
CHp(k)− ξ

) d−→
n→∞

N
(
0,

ξ 2(1− pξ)2

1− 2pξ

)
,

i.e. CHp(k), in (9) outperforms Hp(k), in (7) for all k. For the EVI-estimators in (11),
Theorem 2 in Gomes et al. [26] enable us to guarantee that

√
k
(
PRBp(k)− ξ

) d−→
n→∞

N
(

λA(pξ − ϕρ)

(1− ρ − pξ)(1− ρ − ϕρ)
,
ξ 2(1− pξ)2

1− 2pξ

)
,

with a null mean value only if pξ = ϕρ , ϕρ given in (11). Further note that if we consider
CH∗(k) or PRB∗(k), in (13), Theorem3.1 inGomes et al. [12] (forCH∗(k)) andProposition
2.1 in Gomes et al. [28] (for PRB∗(k)) enable us to say that

√
k
(
CH∗(k)− ξ

) d−→
n→∞

N
(
0,

ξ 2(1− ϕρ)2

1− 2ϕρ

)
and

√
k
(
PRB∗(k)− ξ

) d−→
n→∞

N
(
0,

ξ 2(1− ϕρ)2

1− 2ϕρ

)
,

with ϕρ given in (11), i.e. both CH∗(k) and PRB∗(k) have the same limiting behaviour.

2.3. The VaR-estimators

For models in (2), and if we further assume that limn→∞
√
kA(n/k) = λA ∈ R, !nite, the

asymptotic behaviour of Q(q)
H (k) is well-known (Weissman [4]). We have

√
k

ln rn

(
Q(q)
H (k)− VaRq

VaRq

)
d−→

n→∞
N
(

λA
1− ρ

, ξ 2
)
,

with rn ≡ rn(k; q) de!ned in (4), A(·) the function in (2), and

q = qn→ 0, with ln
(
n qn

)
= o

(√
k
)

and nqn = o
(√

k
)
. (16)

Under these same conditions, for p = 0 in (9), if (β , ρ) are consistently estimated so that
ρ̂ − ρ = oP(1/ ln n), then [17, Theorem 5.1]

√
k

ln rn

(
Q(q)
CH(k)− VaRq

VaRq

)
d−→

n→∞
N
(
0, ξ 2

)
.
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Again under the same aforementioned conditions, and for any real p < 1/(2ξ) [28,
Theorem 2.1],

√
k

ln rn




Q(q)
PRBp(k)− VaRq

VaRq



 d−→
n→∞

N
(

λA(pξ − ϕρ)

(1− ρ − pξ)(1− ρ − ϕρ)
,
ξ 2(1− pξ)2

1− 2pξ

)
.

We further get
√
k

ln rn

(
Q(q)
PRB∗(k)− VaRq

VaRq

)
d−→

n→∞
N
(
0,

ξ 2(1− ϕρ)2

1− 2ϕρ

)
.

If we consider the classes of VaRq-estimatorsQ(q)
CHp

(k), in (10), and Q(q)
CH∗(k), in (14), trivial

adaptations of the results in Gomes and Figueiredo [22], Gomes and Pestana [17], and
essentially Gomes et al. [28] enable us to state, without the need of a proof, the following
theorem.

Theorem 2.1: InHall-Welsh class of models in (2), for intermediate k, i.e. k-values such that
(6) holds, if

√
k A(n/k)→ λA, !nite, possibly non-null, if we further consistently estimate

the vector of second-order parameters (β , ρ) so that ρ̂ − ρ = oP(1/ ln n) and whenever (16)
holds, we can guarantee that for any real p < 1/(2ξ),

√
k

ln rn




Q(q)
CHp

(k)− VaRq

VaRq



 d−→
n→∞

N
(
0,

ξ 2(1− pξ)2

1− 2pξ

)
, and

√
k

ln rn

(
Q(q)
CH∗(k)− VaRq

VaRq

)
d−→

n→∞
N
(
0,

ξ 2(1− ϕρ)2

1− 2ϕρ

)
,

with VaRq, rn, Q
(q)
CHp

(k), ϕρ and Q(q)
CH∗(k), given in (1), (4), (10), (11) and (14), respectively.

3. Multi-sample Monte-Carlo simulations

For the new classes of VaR-estimators, Q(q)
CHp

(k), in (10), and Q(q)
CH∗(k), in (14), but

including also the classes Q(q)
PRBp(k) and Q(q)

PRB∗(k), respectively given in (12) and (14),
large-scale multi-sample Monte-Carlo simulation experiments of size 5000× 20 have
now been implemented. Following closely the simulation study in Gomes et al. [28],
we have considered sample sizes n = 100(100)500, 1000(1000)5000, and ξ = 0.1, 0.25, 0.5
and 1, from a large variety of heavy tailed models, among which we mention the general-
ized Pareto (GP)models, with CDF, F(x) = GPξ (x) = 1 + ln EVξ (x) = 1− (1 + ξx)−1/ξ ,
x ≥ 0 (ρ = −ξ), and the Burrξ ,ρ model, withCDF, F(x) = 1− (1 + x−ρ/ξ )1/ρ , x ≥ 0, the
two models considered here for illustration.

Themean value (E) and rootMSE (RMSE) of the normalizedVaR-estimators under con-
sideration, as a function of the sample fraction, k/n, with k related to the number of upper
OSs involved in the estimation, 1 ≤ k < n, have been simulated for each of the aforemen-
tioned models and for each value of n. Just as an illustration, we present Figures 1 and 2,
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Figure 1. Mean values (left) and RMSEs (right) of the normalized VaR-estimators under consideration for
an underlyingGP0.1 parent (ρ = −0.1).

Figure 2. Mean values (left) and RMSEs (right) of the normalized VaR-estimators under consideration for
an underlying Burr1,−0.25 parent.

associated with GP0.1 and Burr1,−0.25 parents. In these !gures, we show, for n = 1000,
q = 1/n, and on the basis of the !rst 5000 runs, the simulated patterns of normalized
mean value, ENQ := EQ[·]/VaRq, and RMSENQ := RMSEQ[·]/VaRq, of Q

(q)
ξ̂

(k)/VaRq, based

on Q(q)
ξ̂

(k) in (4), with ξ̂ replaced by both CHp, in (9), for p = p( = (/(16ξ), ( = 1(1)8,
representing only the best value of ( *= 0, associated with minimum RMSE, but includ-
ing also ( = 0, corresponding to CH, in (8). We further replace ξ̂ by PRBp(k), in (9),
for p = p( = (/(16ξ), ( = 1(1)8, the values where optimal behaviour was detected for
PRBp(k) in Gomes et al. [28], again representing only the best (-value.We have also plotted
the PRB∗, CH∗ and H VaR-estimators.
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3.1. Behaviour at simulated optimal levels

TheWeissman-Hill VaR-estimator Q(q)
H (k) ≡ Q(q)

H0
(k) has been computed at the simulated

value of k(q)
0|H0

:= argmink RMSE
(
Q(q)
H0

(k)
)
. Such a value is denoted by Q00. We have also

computed Qp0, generally denoting the VaR-estimators both in (10) and in (12) at optimal
levels, for the aforementioned values of p, and the simulated indicators,

REFFp|0 := RMSE (Q00)/RMSE
(
Qp0

)
,

with REFF standing for relative e"ciency. Similar REFF-indicators have also been com-
puted for the VaR-estimators based on CH=CH0 EVI-estimators, in (8), and for the VaR-
estimators in (14). The higher these indicators are, the better the associatedVaR-estimators
perform, compared to Q00.

As an illustration of the results obtained for the di$erent VaR-estimators under consid-
eration, we !rst present Tables 1–2. In the last row, we provide the RMSE of Q00, denoted
by RMSE00, so that we can easily recover the RMSE of all other estimators. The subsequent
rows provide the REFF-indicators of the VaR-estimators under consideration. The highest
REFF-indicator is underlined and bolded. Information on 95% con!dence intervals (CIs),
computed on the basis of the 20 replicates with 5000 runs each, is also provided in all tables.

Table 1. Simulated REFF-indicators of Q(q)
CH|0, Q

(q)
CH∗|0, Q

(q)
PRB∗|0, Q

(q)
CHp( |0 and Q(q)

PRBp( |0, for p( = (/(16ξ),
( = 2(2)8, and simulated RMSE of Q00, q = 1/n (last row), for GP0.1 parents (ρ = −0.1), together
with 95% CIs.

GP0.1 parent

n 100 200 500 1000 2000 5000

CH 1.442 ± 0.0131 1.220 ± 0.0109 1.117 ± 0.0050 1.079 ± 0.0032 1.059 ± 0.0032 1.038 ± 0.0022
CH∗ 1.594 ± 0.0100 1.553 ± 0.0119 1.570 ± 0.0157 1.813 ± 0.0121 2.680 ± 0.0163 5.819 ± 0.0436
PRB∗ 1.581 ± 0.0107 1.542 ± 0.0108 1.537 ± 0.0150 1.621 ± 0.0105 1.938 ± 0.0121 3.058 ± 0.0240
CH2 1.677 ± 0.0127 2.475 ± 0.0210 2.468 ± 0.0248 1.868 ± 0.0137 1.644 ± 0.0127 1.529 ± 0.0122
CH4 1.606 ± 0.0105 1.570 ± 0.0133 1.662 ± 0.0169 2.158 ± 0.0141 3.745 ± 0.0198 7.695 ± 0.0501
CH6 1.515 ± 0.0113 1.491 ± 0.0105 1.459 ± 0.0147 1.439 ± 0.0091 1.442 ± 0.0100 1.638 ± 0.0139
CH8 1.375 ± 0.0112 1.377 ± 0.0113 1.377 ± 0.0138 1.362 ± 0.0088 1.343 ± 0.0092 1.304 ± 0.0108
PRB2 1.653 ± 0.0114 1.750 ± 0.0150 2.387 ± 0.0251 3.323 ± 0.0243 4.600 ± 0.0266 7.010 ± 0.0468
PRB4 1.593 ± 0.0100 1.556 ± 0.0119 1.577 ± 0.0152 1.751 ± 0.0114 2.251 ± 0.0130 3.751 ± 0.0281
PRB6 1.481 ± 0.0113 1.477 ± 0.0107 1.452 ± 0.0145 1.433 ± 0.0089 1.430 ± 0.0102 1.518 ± 0.0131
PRB8 1.336 ± 0.0111 1.354 ± 0.0113 1.368 ± 0.0137 1.358 ± 0.0088 1.341 ± 0.0090 1.303 ± 0.0108
RMSE00 0.320 ± 0.0024 0.269 ± 0.0023 0.224 ± 0.0020 0.199 ± 0.0013 0.179 ± 0.0010 0.157 ± 0.0008

For an illustration of the bias of the newVaR-estimators at optimal levels, see Tables 3–4.
The simulated mean values at optimal levels of the VaR-estimators under study are there
presented, for the same values of n. Again, 95%CIs are provided, and among the estimators
considered, the one providing the smallest squared bias is underlined and written in bold.

For a better visualization of the tables above, we represent Figures 3–4.

4. Algorithms for an adaptive VaRq-estimation and an application

4.1. Sample path stability algorithms

In this section we introduce algorithms for an adaptive selection of the tuning parameters
k (Algorithm 4.1) and (p, k) (Algorithm 4.2) for a VaR-estimation. The motivation for the
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Table 2. SimulatedREFF-indicators ofQ(q)
CH|0, Q

(q)
CH∗|0, Q

(q)
PRB∗|0, Q

(q)
CHp( |0 andQ

(q)
PRBp( |0, forp( = (/(16ξ),( =

2(2)8, and simulated RMSE of Q00, q = 1/n (last row), for Burr1,−0.25 parents, together with 95% CIs.

n 100 200 500 1000 2000 5000

CH 11.159 ± 0.7776 4.871 ± 0.3331 2.020 ± 0.0712 1.618 ± 0.0254 1.391 ± 0.0254 1.230 ± 0.0108
CH∗ 9.089 ± 1.1817 16.58 ± 1.0118 8.827 ± 0.2865 5.731 ± 0.1417 4.205 ± 0.1016 3.217 ± 0.0530
PRB∗ 18.696 ± 1.1668 11.479 ± 0.6641 8.864 ± 0.2858 8.469 ± 0.2477 9.23 ± 0.1992 11.748 ± 0.1632
CH2 15.918 ± 1.0683 7.575 ± 0.4482 2.985 ± 0.0985 2.087 ± 0.0523 1.672 ± 0.0353 1.410 ± 0.0134
CH4 19.089 ± 1.1817 16.58 ± 1.0118 8.827 ± 0.2865 5.731 ± 0.1417 4.205 ± 0.1016 3.217 ± 0.0530
CH6 18.829 ± 1.1384 11.25 ± 0.7124 8.412 ± 0.2912 11.22 ± 0.3156 16.376 ± 0.3734 16.036 ± 0.2548
CH8 18.408 ± 1.1806 11.52 ± 0.7376 7.260 ± 0.2452 6.155 ± 0.1618 5.716 ± 0.1393 7.225 ± 0.1554
PRB2 19.105 ± 1.2155 12.432 ± 0.7457 10.355 ± 0.3632 11.981 ± 0.3291 14.943 ± 0.3433 12.309 ± 0.1969
PRB4 18.696 ± 1.1668 11.479 ± 0.6641 8.464 ± 0.2858 8.469 ± 0.2477 9.237 ± 0.1992 11.748 ± 0.1632
PRB6 19.035 ± 1.1872 11.235 ± 0.7159 7.262 ± 0.2494 6.311 ± 0.1951 5.876 ± 0.2001 6.406 ± 0.3358
PRB8 19.218 ± 1.1694 11.464 ± 0.7069 7.205 ± 0.2416 5.834 ± 0.1533 4.848 ± 0.1183 4.263 ± 0.0822
RMSE00 13.5412 ± 0.7960 7.430 ± 0.4543 4.257 ± 0.1466 3.242 ± 0.0799 2.491 ± 0.0586 1.890 ± 0.0291

Table 3. Simulated mean values (at optimal levels) of Q(q)
00 , Q

(q)
CH|0, Q

(q)
CH∗|0, Q

(q)
PRB∗|0, Q

(q)
CHp( |0 and Q

(q)
PRBp( |0,

for p( = (/(16ξ), ( = 2(2)8, q = 1/n and GP0.1 underlying parents, together with 95% CIs.

n 100 200 500 1000 2000 5000

H 1.085 ± 0.0030 1.070 ± 0.0041 1.064 ± 0.0036 1.058 ± 0.0035 1.054 ± 0.0033 1.053 ± 0.0030
CH 0.989 ± 0.0060 1.057 ± 0.0053 1.060 ± 0.0038 1.058 ± 0.0028 1.058 ± 0.0030 1.053 ± 0.0029
CH∗ 0.894 ± 0.0047 0.905 ± 0.0031 0.905 ± 0.0012 0.924 ± 0.0007 0.965 ± 0.0004 0.997 ± 0.0002
PRB∗ 0.892 ± 0.0009 0.907 ± 0.0027 0.913 ± 0.0015 0.919 ± 0.0008 0.944 ± 0.0006 0.983 ± 0.0003
CH2 0.897 ± 0.0024 0.937 ± 0.0011 1.007 ± 0.0015 1.000 ± 0.0024 1.001 ± 0.0008 0.995 ± 0.0007
CH4 0.894 ± 0.0033 0.904 ± 0.0035 0.910 ± 0.0012 0.943 ± 0.0004 0.986 ± 0.0003 0.999 ± 0.0001
CH6 0.859 ± 0.0008 0.894 ± 0.0009 0.910 ± 0.0029 0.915 ± 0.0028 0.916 ± 0.0014 0.926 ± 0.0006
CH8 0.818 ± 0.0008 0.857 ± 0.0008 0.893 ± 0.0009 0.911 ± 0.0008 0.922 ± 0.0021 0.927 ± 0.0019
PRB2 0.900 ± 0.0028 0.921 ± 0.0016 0.968 ± 0.0012 0.990 ± 0.0008 0.997 ± 0.0003 0.999 ± 0.0002
PRB4 0.897 ± 0.0048 0.905 ± 0.0024 0.911 ± 0.0012 0.928 ± 0.0009 0.959 ± 0.0006 0.991 ± 0.0003
PRB6 0.849 ± 0.0009 0.889 ± 0.0009 0.913 ± 0.0027 0.917 ± 0.0018 0.919 ± 0.0017 0.923 ± 0.0008
PRB8 0.808 ± 0.0009 0.851 ± 0.0008 0.890 ± 0.0009 0.910 ± 0.0008 0.923 ± 0.0017 0.927 ± 0.0020

Table 4. Simulated mean values (at optimal levels) of Q(q)
00 , Q

(q)
CH|0, Q

(q)
CH∗|0, Q

(q)
PRB∗|0, Q

(q)
CHp( |0 and Q

(q)
PRBp( |0,

for p( = (/(16ξ), ( = 2(2)8, q = 1/n and Burr1,−0.25 underlying parents, together with 95% CIs.

n 100 200 500 1000 2000 5000

H 4.340 ± 0.1588 3.323 ± 0.1815 2.589 ± 0.0828 2.348 ± 0.0653 2.050 ± 0.0500 1.889 ± 0.0354
CH 0.829 ± 0.0149 1.399 ± 0.0127 1.981 ± 0.0463 1.933 ± 0.0358 1.848 ± 0.0319 1.756 ± 0.0219
CH∗ 0.388 ± 0.0189 0.716 ± 0.0042 0.857 ± 0.0149 0.744 ± 0.0215 0.721 ± 0.0230 0.709 ± 0.0193
PRB∗ 0.414 ± 0.0181 0.507 ± 0.0136 0.665 ± 0.0057 0.793 ± 0.0107 0.898 ± 0.0035 0.966 ± 0.0014
CH2 0.703 ± 0.0046 1.097 ± 0.0092 1.675 ± 0.0191 1.732 ± 0.0288 1.709 ± 0.0390 1.657 ± 0.0304
CH4 0.388 ± 0.0189 0.716 ± 0.0042 0.857 ± 0.0149 0.744 ± 0.0215 0.721 ± 0.0230 0.709 ± 0.0193
CH6 0.423 ± 0.0124 0.472 ± 0.0104 0.601 ± 0.0060 0.841 ± 0.0031 0.974 ± 0.0020 0.990 ± 0.0009
CH8 0.449 ± 0.0088 0.516 ± 0.0079 0.557 ± 0.0059 0.599 ± 0.0042 0.683 ± 0.0046 0.857 ± 0.0052
PRB2 0.443 ± 0.0179 0.591 ± 0.0112 0.786 ± 0.0075 0.904 ± 0.0044 0.968 ± 0.0022 0.985 ± 0.0024
PRB4 0.414 ± 0.0181 0.507 ± 0.0136 0.665 ± 0.0057 0.793 ± 0.0107 0.898 ± 0.0035 0.966 ± 0.0014
PRB6 0.451 ± 0.0102 0.486 ± 0.0090 0.562 ± 0.0067 0.633 ± 0.0123 0.727 ± 0.0181 0.851 ± 0.0210
PRB8 0.445 ± 0.0120 0.506 ± 0.0104 0.559 ± 0.0073 0.587 ± 0.0040 0.626 ± 0.0047 0.697 ± 0.0078

algorithms comes from the higher stability on k of the estimates of several RB andPRBEVI-
estimators (see [26,35,36]). Let (x1, . . . , xn) be an observed sample, and let S(k) ≡ S(p)(k)
be a consistent estimator of any parameter of extreme events, where p is a tuning parameter,
and k is another tuning parameter related to the threshold. Some estimators are only valid
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Figure 3. Normalizedmean values (left) and REFF-indicators (right) of the VaRq-estimators under study,
at optimal levels, for q = 1/n and GP0.1 parents.

Figure 4. Normalizedmean values (left) and REFF-indicators (right) of the VaRq-estimators under study,
at optimal levels, for q = 1/n and BURR1,−0.25 parents.

if we use the sub-sample containing all positive values. In the following, n denotes either
the size of the sample or, if necessary, the size of the sub-sample of positive values. The
heuristic algorithms are the following:

Algorithm 4.1 (Heuristic choice of k):

(1) Compute S(k) for k = 1, 2 . . . , n− 1.
(2) Next, obtain j, the minimum non-negative integer value, such that the rounded

values of S(k) to j decimal places are distinct. De!ne a(S)
k (j) = round(S(k), j), k =

1, 2, . . . , n− 1, the rounded values of S(k) to j decimal places.
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(3) Consider the di$erent sets of k-values associated with equal consecutive values of
a(S)
k (j), obtained in Step (2). Set k(S)

min and k(S)
max the minimum and maximum val-

ues, respectively, of the set with the largest range. The largest run size is denoted by
lS := k(S)

max − k(S)
min.

(4) Consider next all estimates, S(k), k(S)
min ≤ k ≤ k(S)

max, now with d = 1 extra decimal
place, i.e. compute a(S)

k (j + 1). Obtain the mode of a(S)
k (j + 1) and denote by KS the

set of associated k-values.
(5) Let nS denote the number of elements ofKS. Take k∗ as the ,(nS + 1)/2-th ascending

order statistic, i.e. the sample median of KS. The adaptive estimate is the value S∗ =
S(k∗).

Let us now assume that S(k) ≡ S(p)(k) also depends on the tuning parameter
0 ≤ p < 1/ξ .

Algorithm 4.2 (Heuristic choice of k and p):

(1) Compute ξ∗ given in (13) and consider p( = (/(16ξ∗), ( = 0(1)15.
(2) For each ( = 0(1)15, apply Steps (1) up to (3) from Algorithm 4.1 and obtain the

associated largest run size, l(()S , ( = 0(1)15.
(3) Choose p0 := argmax((l(()S )/(16ξ∗).
(4) Apply Steps (4) and (5) from Algorithm 4.1 with S(k) ≡ S(p0)(k), k = 1, . . . , n− 1.

Remark 4.1: The previous algorithms are valid for S(k), either an EVI or a VaR semi-
parametric estimator. For the VaR estimation, preliminary simulation studies suggested
that the algorithms have better estimation performance if S(k) is the logarithm of the VaR
estimator.

4.2. A small-scaleMonte Carlo simulation study

To study the sensitivity of the algorithms in Section 4.1, a small-scale simulation proce-
dure, with 5000 samples of size n = 1000, has been implemented. We have considered the
models used in the simulation study in Section 3. For eachmodel, we have applied the algo-
rithms to the logarithm of the VaR-estimators (see Remark 4.1) based upon theWeissman
estimator in (4) and the EVI-estimators H, CH, CHp, PRBp and (PRB∗, CH∗), respectively
given in (5), (8), (9), (11) and (13), and we have considered q = 0.001. For the Q(q)

ξ̂
(k) esti-

mators with ξ̂ replaced by both CHp or PRBp, in (10) and (12) respectively, the choice of p
was done accordingly with Algorithm 4.2. All results here presented are related to the nor-
malized estimates ln(Q(q)

ξ̂
(k))− ln(VaRq), which should be close to 0. In Figure 5, we show

box-and-whiskers plots of the simulated adaptive estimates of the normalized ln-VaR. The
small square, usually inside the box, represents the corresponding simulated mean value.
As expected, andmainly due to the asymptotic behaviour of the estimators, theWeissman-
Hill VaR-estimator has usually a strong positive bias. The results clearly demonstrate the
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Figure 5. Box-and-whiskers plot of the normalized adaptive VaR0.001 estimates obtained through the
use of the Algorithms, for the EV0.1 (top-left), the GP0.1 (top-right), the Student-t4 (bottom-left) and the
Burr1,−0.25 (bottom-right) models.

improved performance of the new VaR-estimators, when compared to the Weissman-Hill
and even to the Weissman-CH estimators. The best performance is often achieved by the
new VaR-estimator Q(q)

CHp
(k) in (10).

Table 5 presents the simulated RMSE of the adaptive normalized logarithm of the VaR-
estimators under consideration in this work. For each model here considered, the smallest
RMSE is written in bold. Among the considered estimators, Q(q)

CHp
(k) is the one providing,

for all considered models, the smallest RMSE.

Table 5. Simulated RMSE of adaptive estimates obtained through Algorithms 4.1 and 4.2 for the
different normalized VaR estimators under study.

H CH PRB∗ CH∗ PRBp0 CHp0

EV0.1 0.7516 0.3967 0.1346 0.3075 0.1854 0.1142
GP0.1 0.9169 0.5736 0.2894 0.4369 0.4191 0.1832
Student t4 0.6709 0.1516 0.1202 0.1287 0.1237 0.1202
Burr1,−0.25 4.2695 1.6269 0.7053 1.2468 0.9543 0.5629
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4.3. An application to !nancial data: the BOVESPA stock index

We shall now apply the VaR-estimators under analysis to the daily BOVESPA Brazilian
Stock Exchange Index (IBOVESPA). The data was collected from January 2, 2004 through
June, 23, 2016, from www.ipeadata.gov.br, with a size n = 3082.

We have performed Engle’s ARCH test for the presence of ARCH e$ects in the log-
returns’ series (see [37,38]), and theARCH/GARCHmodelwas not rejected. The estimated
GARCH(1,1) model was,

yt = σtεt ,

σ 2
t = 0.0622088 + 0.910216σ 2

t−1 + 0.0695197y2t−1,

where yt are the negative log-returns, εt the white noise disturbance, and σ 2
t the variance

forecast. We have considered the standardized log-returns, y∗t = yt/σt . There was next
no signi!cant evidence in support of GARCH e$ects for the standardized return series
(p−value > 25%). A stationary setup for the standardized log-returns has been assumed,
and an analysis of those standardized log-returns, y∗, has been performed. Working with
n0 = 1490 positive values of the negative log-returns of the IBOVESPA data set, the asso-
ciated second-order estimates are ρ̂ = −0.723 and β̂ = 1.027. In Figure 6 we present the
sample path of the estimates, as a function of k, provided by the log VaR0.001 estimators
under consideration.

Figure 6. Logarithm of the VaR0.001-estimates, for IBOVESPA data.

As expected, the Weissman-Hill VaR estimator exhibits a strong positive bias. The
remaining VaR estimators exhibit more stable sample paths as functions of k, due to their
smaller bias. In Table 6, the adaptive estimates of ln-VaR0.001 provided by the algorithms
in Section 4.1 are presented, together with the chosen values of p0, whenever applicable,
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Table 6. Adaptive estimates of the logarithm of the VaR0.001 with the related
parameters p and k for the different estimators here considered.

H CH PRB∗ CH∗ PRBp0 CHp0

nT 86 231 573 252 480 261
p0 – – – – 0.555 1.387
k∗ 124 482 610 430 930 502
ln(V̂aR0.001) 1.707 1.789 1.695 1.714 1.932 1.680

and the threshold k∗. Notice that, due to the existence of a small stability region for small
k, Algorithm 4.1 provided an adaptive Weissman-Hill VaR estimate very close to the esti-
mates provided by most of the remaining VaR estimators. Also, the existence of a second
large stability region of the estimates provided byWeissman-PRBp0 leads to what we think
to be an over-estimation of the VaR0.001. Although the algorithm does not work well with
the PRBp estimator when applied to the data set under study, it works quite well for all other
estimators, in particular, for the CHp estimator. Therefore, for a best choice of the estimate,
we must look to the estimates provided by competitor estimators, based on a similar and
large k∗, and discard the unlikely ones, in this case the PRBp0 and PRB∗. The consideration
of other case-studies and simulated samples, out of the scope of this article, would possibly
help to clarify the problem, and to lead us to the suggestion of an adaptive choice based on
the minimization of estimated RMSE rather than sample-path stability.

5. Overall remarks

• It has been clear for a long time that Weissman-Hill VaR-estimators lead to a high over-
estimation of VaR. The MVRB CH VaR-estimators are in most cases a nice alternative,
more regarding RMSE rather than bias, but the use of the extra tuning parameter p ∈ R
and the CHp ≡ MOp methodology can provide amuchmore adequate VaR-estimation.
But we cannot forget the PRB VaR-estimation, which despite of not generally RB, can
work even better than the CHp VaR-estimation.

• The obtained results lead us to strongly advise the use of the quantile estimators QCHp
and QPRBp for an adequate choice of p, provided by Algorithm 4.2 in Section 4.1, a
reliable heuristic procedure related to sample path stability.

• For small values of |ρ| the use of QCHp , with an adequate value of p, always enables
a reduction in RMSE regarding the Weissman-Hill estimator and even the CH VaRq-
estimator. Moreover, the bias is also reduced comparatively with the bias of the
Weissman-Hill VaR-estimator with the obtention of estimates closer to the target value
VaRq.

• The patterns of the estimators’ sample paths are always of the same type, in the sense
that for all k the VaRq-estimators, Q(q)

CHp
and Q(q)

PRBpdecrease as p increases.
• The simulation results obtained for a reasonable large class of heavy-tailed models, and

partially presented in Section 3, enable us to advance that the high stability of sam-
ple paths achieved with the RB-MOp EVI-estimates for large values of p, out of the
scope of asymptotic normality (see [8]), is no longer achieved for these RB-MOp VaR-
estimates. Anyway, the proposed estimators perform better than the classical one, i.e.
the one where the H EVI-estimator is used, as well as the one where the RB-CH EVI-
estimator is considered as the basis of the VaRq-estimation. Moreover, for most of the
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simulated models the RB-MOp EVI-estimators exhibit a much more stable mean value
pattern, as a function of k, the number of upper OSs used, and a smaller RMSE (higher
REFF, comparatively with the CH VaR-estimation).
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