
Image Representations in Deep Neural
Networks and their Applications to Neural

Data Modelling

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Ivan Ustyuzhaninov

aus Jekaterinburg, Russland

Tübingen

2022

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eber-
hard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 01.12.2022

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter: Prof. Dr. Matthias Bethge

2. Berichterstatterin: Jun.-Prof. Dr. Anna Levina

Ich erkläre, dass ich die zur Promotion eingerichte Arbeit mit dem Titel “Image rep-
resentations in deep neural networks and their applications to neural data modelling”
selbständig verfasst, nur die angegebenen Quellen und Hilfsmittel benutzt und wörtlich
oder inhaltlich übernommene Stellen als solche gekennzeichnet habe. Ich versichere an
Eides statt, dass diese Angaben wahr sind und dass ich nichts verschwiegen habe. Mir
ist bekannt, dass die falsche Abgabe einer Versicherung an Eides statt mit Freiheitsstrafe
bis zu drei Jahren oder mit Geldstrafe bestraft wird.

Tübingen, den _________________________ _________________________

Datum/Date Unterschrift/Signature

Contents

Acknowledgements 6

Abstract 8

Zusammenfassung 9

1 Introduction 11
1.1 Why study image representations in deep neural networks? 11
1.2 List of publications . 12

1.2.1 Publications constituting a part of this thesis 12
1.2.2 Other publications . 13

2 Background 15
2.1 Neural networks . 15
2.2 Texture modelling . 16
2.3 Object-centric representations . 17
2.4 Bayesian deep learning . 18
2.5 Predictive models of primary visual cortex 19

3 What does it take to generate natural textures? 22
3.1 Motivation . 22
3.2 Results . 23
3.3 Discussion . 24

4 Towards causal generative scene models via competition of experts 25
4.1 Motivation . 25
4.2 Results . 26
4.3 Discussion . 27

5 Compositional uncertainty in deep Gaussian processes 28
5.1 Motivation . 28
5.2 Results . 29
5.3 Discussion . 30

6 Rotation-invariant clustering of neuronal responses in primary visual cortex 31
6.1 Motivation . 31
6.2 Results . 32
6.3 Discussion . 33

7 Digital twin reveals combinatorial code of non-linear computations in mouse

4

primary visual cortex 34
7.1 Motivation . 34
7.2 Results . 35
7.3 Discussion . 36

8 Discussion 37
8.1 What have we learnt about DNN representations? 37
8.2 Digital twins . 38
8.3 Conclusion . 39

References 40

Appendix 45

5

Acknowledgements

During my time as graduate student I have been fortunate to be surrounded by won-
derful people who not only offered scientific discussions, guidance and help but also
made this time memorable. I cannot mention everyone on this page for which I want to
apologise in advance — I am very thankful to everyone I met.

I had a pleasure of working with multiple supervisors whom I would like to mention first.
I learnt very much from Prof. Dr. Matthias Bethge, Dr. Wieland Brendel and Prof. Dr.
Alexander Ecker who were always happy to offer me scientific (and not only scientific)
advice and created a great working environment for me and other fellow students. I
would like to thank Prof. Dr. Fabian Sinz and Dr. Caterina De Bacco for serving on
my thesis advisory board, accommodating meetings sometimes on a short notice and
providing valuable feedback on my work.

I would like to thank all members of the Bethge Lab for all the scientific discussions we
had over the years and the memorable moments outside the work. Santiago Cadena,
Max Burg and David Klindt became my good friends, I am especially grateful to them.

I had a chance of collaborating with researchers from different institutions who were very
generous to let me join their work on a number of exciting projects and learn a lot of new
things. I would like to mention Dr. Neill Campbell, Dr. Carl Henrik Ek, Dr. Markus
Kaiser, Dr. Erik Bodin, Jiakun Fu, Zhiwei Ding, and Dr. Andreas Tolias. Thank you very
much!

A collaboration with Dr. Ieva Kazlauskaitė was especially important for me. This col-
laboration led to the scientific results I am most proud of, and moreover it evolved into
a good friendship. I have had difficult moments during these years and Ieva’s support
was invaluable in these moments. I am sure that without it I would not be writing this
thesis now.

Finally, I would like to express my gratitude to my parents Elena and Alexei for always
being with me.

6

Abstract

Over the last decade, deep neural networks (DNNs) have become a standard tool in com-
puter vision, allowing us to tackle a variety of problems from classifying objects in natural
images to generating new images to predicting brain activity. Such a wide applicability
of DNNs is something that these models have in common with the human vision, and
exploring some of these similarities is the goal of this thesis.

DNNs much like human vision are hierarchical models that process an input scene with a
series of sequential computations. It has been shown that typically only a few final com-
putations in this hierarchy are problem-specific, while the rest of them are quite general
and applicable to a number of problems. The results of intermediate computations in the
DNN are often referred to as image representations and their generality is another sim-
ilarity to human vision which also has general visual areas (e.g. primary visual cortex)
projecting further to the specialised ones solving specific visual tasks.

We focus on studying DNN image representations with the goal of understanding what
makes them so useful for a variety of visual problems. To do so, we discuss DNNs solving
a number of specific computer vision problems and analyse similarities and differences of
their image representations. Moreover, we discuss how to build DNNs providing image
representations with specific properties which enables us to build a “digital twin” of the
mouse primary visual system to be used as a tool for studying the computations in the
brain.

Taking these results together, we concluded that in general we are still lacking a good
understanding of DNN representations. Despite the progress on some specific problems,
it still remains largely an open question how the image information is organised in these
representations and how to use it for solving arbitrary visual problems. However, we
also argue that thinking of DNNs as “digital twins” might be a promising framework
for addressing these issues in the future DNN research as they allow us to study image
representations by means of computational experiments rather than rely on a priori ideas
of how these representations are structured which has proven to be quite challenging.

8

Zusammenfassung

In den letzten zehn Jahren haben sich tiefe neuronale Netze (Deep Neural Networks,
DNNs) zu einem Standardwerkzeug in der Computer Vision entwickelt, mit dem wir
eine Vielzahl von Problemen lösen können, von der Klassifizierung von Objekten in
natürlichen Bildern über die Erzeugung neuer Bilder bis hin zur Vorhersage von Gehir-
naktivitäten. Eine solch breite Anwendbarkeit von DNNs ist etwas, das diese Modelle
mit dem menschlichen Sehen gemeinsam haben, und die Erforschung einiger dieser
Ähnlichkeiten ist das Ziel dieser Arbeit.

DNNs sind, ähnlich wie das menschliche Sehen, hierarchische Modelle, die eine Ein-
gangsszene mit einer Reihe von aufeinander folgenden Berechnungen verarbeiten. Es
hat sich gezeigt, dass typischerweise nur die letzten paar Berechnungen in dieser Hier-
archie problemspezifisch sind, während der Rest der Berechnungshierarchie allgemein
ist und auf eine Reihe von Problemen anwendbar. Die Ergebnisse der Zwischenberech-
nungen im DNN werden oft als Bildrepräsentationen bezeichnet, und ihre Allgemeinheit
ist eine weitere Ähnlichkeit mit dem menschlichen Sehen, bei dem ebenfalls allgemeine
visuelle Areale (z. B. der primäre visuelle Rinde) vorhanden sind, die weiter zu den
spezialisierten Arealen projizieren, die spezifische visuelle Probleme lösen.

Wir konzentrieren uns auf die Untersuchung von DNN-Bildrepräsentationen mit dem
Ziel zu verstehen, was sie so nützlich für eine Vielzahl von visuellen Problemen macht.
Zu diesem Zweck erörtern wir die Bildrepräsentationen in DNNs, die eine Reihe spezifis-
cher Probleme in der Computer Vision lösen, und analysieren ihre Gemeinsamkeiten und
Unterschiede. Außerdem erörtern wir, wie DNNs mit Bildrepräsentationen mit spezifis-
chen Eigenschaften gebaut werden können, die es uns ermöglichen, einen “Digital Twin”
des primären visuellen Systems der Maus zu bauen und als Werkzeug zur Untersuchung
der Berechnungen im Gehirn zu verwenden.

Wir kommen zu dem Schluss, dass es uns im Allgemeinen noch an einem guten Verständ-
nis der DNN-Bildrepräsentationen mangelt. Trotz der Fortschritte bei einigen spezifis-
chen Problemen bleibt die Frage, wie die Bildinformationen in diesen Repräsentationen
organisiert sind und wie man sie zur Lösung verschiedener visueller Probleme nutzen
kann, weitgehend offen. Wir argumentieren jedoch, dass die Betrachtung von DNNs als
“Digital Twin” ein Framework sein könnte, um diese Fragen in der zukünftigen DNN-
Forschung anzugehen. “Digital Twin” erlauben es uns, Bildrepräsentationen mit Hilfe
von Computerexperimenten zu untersuchen, anstatt uns auf eine vorherige Vorstellung
davon zu verlassen, wie diese Repräsentationen strukturiert sind, was sich als ziemlich
schwierig erwiesen hat.

9

1. Introduction

1.1 Why study image representations in deep neural networks?

We as humans greatly rely on vision to perceive the world around us. For example, look-
ing at a photograph of a group of people in front of a beautiful castle, we can easily locate
faces of each individual person (and maybe recognise them), infer a three-dimensional
model of the castle and imagine how it would look from a different angle, maybe tell
the species of the trees in the background based on the shapes on their leaves, etc. It is
remarkable that such a rich visual perception ultimately arises from merely a 2D projec-
tion of the scene in front of us onto the retina. The visual system implements a series of
computations which transform the light intensities of this 2D projection gauged by the
retina into a conscious perception.

Since human vision is a computation, it is perhaps unsurprising that in the early days of
computer vision, the aim was to build a model mimicking these computations in the hu-
man visual system. However, it quickly became clear that such a goal was too ambitious,
and the field moved away from trying to model the brain to developing sophisticated,
but largely not brain inspired, models for individual tasks (e.g. segmentation, 3D re-
construction, etc.). Moving forward, the last decade has witnessed another change of
prevailing models in computer vision marked by a new wave of interest in connections
between the human and machine vision with deep neural networks (DNNs) becoming
ubiquitous and enabling remarkable progress on a variety of problems. While this con-
nection between machine and human vision is still rather high level and DNNs are only
vaguely inspired by the human visual system, the two have an important commonality:
the universality of intermediate image representations, which is our main topic of interest
in this thesis.

What we mean by the image representations being universal is that the they are infor-
mative for a variety of visual tasks. For example, the main visual pathway starts at the
retina, goes through the thalamus (LGN) and the primary visual cortex (V1) before reach-
ing more specialised higher visual areas (HVAs). Therefore, the representations of the
input scene computed in the retina, LGN and V1 must be applicable for a variety of tasks
that the visual system is solving. Deep neural networks have a similar property: repre-
sentations in a network trained for one task can often be useful for a different task. Such
an approach of reusing a network across different tasks is often referred to as transfer
learning which has become widely used in recent years.

Unfortunately though, DNNs are similar to the visual system not only in their ability
to tackle a variety of complex vision problems but also in difficulty of interpreting their
computations. DNNs can approximate any reasonably regular function (which is why
they are so useful), however, given a specific DNN it is hard to infer the properties of the
function it approximates and why this particular function is the one solving the problem

11

at hand. Therefore studying DNNs themselves, the properties of the functions they im-
plement and hence of the corresponding image representations is an important research
direction, which could allow us not only to better understand and design DNN models,
but also to infer computational principles of visual perception in general.

The main focus is studying the DNN image representations for various visual tasks, we
aim at identifying common patterns in these representations as well as relating them
to human vision. The main body of this thesis is organised into two parts. In the first
part (Chapters 3–5), we concentrate on studying three specific aspects of image repre-
sentations in DNNs: local or texture representations, object representations, as well as
a theoretical description of a space of representations consistent with a given function
implemented by the network. In the second part (Chapters 6 and 7), we use the DNN
representations as a tool for studying the mouse visual system, specifically the functional
diversity of neurons in the primary visual cortex.

1.2 List of publications

1.2.1 Publications constituting a part of this thesis

• Ivan Ustyuzhaninov*, Wieland Brendel*, Leon Gatys and Matthias Bethge (2017).
What does it take to generate natural textures? In International Conference on Learning
Representations (ICLR).

Contributions I.U., W.B. and M.B. developed the project idea and the theoretical
framework with the input from L.G. I.U. conducted numerical experiments and
analysed their results with the help from W.B. W.B. wrote the paper draft which
was discussed and edited by all authors.

• Julius von Kügelgen*, Ivan Ustyuzhaninov*, Peter Gehler, Matthias Bethge and
Bernhard Schölkopf (2020). Towards causal generative scene models via compe-
tition of experts. In ICLR Workshop “Causal Learning for Decision Making”.

Contributions P.G., M.B. and B.S. proposed the project idea which was further
developed by all authors. I.U. and J.K. developed the software implementation of
the proposed method. J.K. developed the theoretical framework with the help from
I.U. I.U. conducted numerical experiments, the results of which were analysed by
I.U. and J.K. I.U. and J.K. jointly wrote the paper draft which was discussed and
edited by all authors.

• Ivan Ustyuzhaninov*, Ieva Kazlauskaitė*, Markus Kaiser, Erik Bodin, Neill Camp-
bell and Carl Henrik Ek (2020). Compositional uncertainty in deep Gaussian pro-
cesses. In Conference on Uncertainty in Artificial Intelligence (UAI), pages 480–489.
PMLR.

Contributions I.U., I.K., N.C. and C.H.E developed the project idea with the in-
put from M.K. and E.B. I.U. and I.K. derived the theoretical results with the help
from all other authors. I.U. and I.K. conducted the numerical experiments. I.U. and
I.K. wrote the paper draft which was discussed and edited by all authors.

• Ivan Ustyuzhaninov, Santiago A. Cadena, Emmanouil Froudarakis, Paul G. Fahey,
Edgar Y. Walker, Erick Cobos, Jacob Reimer, Fabian H. Sinz, Andreas S. Tolias,
Matthias Bethge and Alexander S. Ecker (2020). Rotation-invariant clustering of
neuronal responses in primary visual cortex. In International Conference on Learning
Representations (ICLR).

12

Contributions I.U. and A.S.E. developed the project idea with the input from
F.H.S, A.S.T and M.B. I.U. developed the theoretical framework with the help from
A.S.T. E.F., P.G.F, E.Y.W, E.C., J.R. conducted the animal experiments, collected and
processed the raw data. I.U. conducted the numerical experiments with the help
from S.A.C. I.U. wrote the paper draft which was discussed and edited by all au-
thors.

• Ivan Ustyuzhaninov, Max F. Burg, Santiago A. Cadena, Jiakun Fu, Taliah Muham-
mad, Kayla Ponder, Emmanouil Froudarakis, Zhiwei Ding, Matthias Bethge, An-
dreas S. Tolias and Alexander S. Ecker (2022). Digital twin reveals combinatorial
code of non-linear computations in the mouse primary visual cortex. In Submission.

Contributions I.U. and A.S.E. developed the project idea with the input from
M.F.B, S.A.C, A.S.T and M.B. J.F., T.M., K.P., E.F. conducted the animal experiments,
collected and processed the raw data. I.U. conducted the numerical experiments
with the help from M.F.B, S.A.C. and Z.D. I.U. wrote the paper draft which was
discussed and edited by all authors.

1.2.2 Other publications

• Ivan Ustyuzhaninov*, Ieva Kazlauskaitė*, Carl Henrik Ek and Neill Campbell (2020).
Monotonic Gaussian process flows. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS), pages 3057–3067. PMLR.

Contributions All authors developed the project idea. I.U. and I.K. derived the
theoretical results with the help from all other authors. I.U. and I.K. conducted the
numerical experiments. I.U. and I.K. wrote the paper draft which was discussed
and edited by all authors.

• Ivan Ustyuzhaninov*, Ieva Kazlauskaitė*, Carl Henrik Ek and Neill Campbell (2018).
Sequence alignment with Dirichlet process mixtures. In NeurIPS Workshop “All of
Bayesian Nonparametrics”.

Contributions All authors developed the project idea. I.U. and I.K. derived the
theoretical results with the help from all other authors. I.U. and I.K. conducted the
numerical experiments. I.U. and I.K. wrote the paper draft which was discussed
and edited by all authors.

• Ivan Ustyuzhaninov, Claudio Michaelis, Wieland Brendel and Matthias Bethge (2018).
One-shot texture segmentation. arXiv preprint arXiv:1807.02654.

Contributions I.U., W.B. and M.B. developed the project idea. I.U. conducted the
numerical experiments. and W.B. I.U. and C.M. wrote the paper draft which was
discussed and edited by all authors.

• Claudio Michaelis, Ivan Ustyuzhaninov, Matthias Bethge and Alexander S Ecker
(2018). One-shot instance segmentation. arXiv preprint arXiv:1811.11507.

Contributions C.M., M.B. and A.S.T. developed the project idea. C.M. conducted
the numerical experiments with the input from I.U. C.M. wrote the paper draft with
the input from I.U. which was discussed and edited by all authors.

• Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov and Matthias
Bethge (2019). Accurate, reliable and fast robustness evaluation. In Advances in Neu-
ral Information Processing Systems (NeurIPS), volume 32.

13

Contributions W.B. and M.B. developed the project idea with the input from all
other authors. W.B., J.R. and M.K. conducted the numerical experiments. W.B.
wrote the paper draft was discussed and edited by all authors.

14

2. Background

In this chapter we briefly summarise the background knowledge necessary for under-
standing the main results discussed in subsequent chapters.

2.1 Neural networks

Deep neural networks (DNNs) DNNs are parametric machine learning models con-
sisting of multiple computational units with each unit containing a linear transformation
followed by a nonlinearity (Goodfellow et al., 2016). Typically, the nonlinearities are
pointwise and have a simple functional form, e.g. sigmoid or ReLU (Glorot et al., 2011).
That makes computations in a DNN locally simple (linear + simple nonlinearity), but on
the other hand, taken together all computational units in a DNN can approximate any
sufficiently regular function (Cybenko, 1989; Hornik, 1991).

The most common type of DNNs are feedforward networks, in which the computation
units are applied sequentially. The simplest form of such a network can be written as a
composition

f(x) = (fL ◦ . . . ◦ f1)(x), where f ℓ(x) = σ(W ℓx+ bℓ). (2.1)

Computational units f ℓ are called layers of the network with the matrix W ℓ being the
weights of the layer ℓ, the vector bℓ being the biases of the layer ℓ, and σ being a point-
wise nonlinear function. There are various other DNNs architectures (i.e. the ways to ar-
range computational units), however, we only use feedforward networks for the projects
discussed in the next chapters.

The weights and biases (as well as other trainable parameters depending on the archi-
tecture) are trained by minimising the loss function which can typically be written as a
sum over the training setD consisting of training examples x and corresponding training
signals y (e.g. category of an object in the image):

{W ℓ}Lℓ=1, {bℓ}Lℓ=1 = argmin
{W ℓ}, {bℓ}

∑

(x,y)∈D

l(x, y). (2.2)

The loss function l corresponds to a specific task (e.g. cross-entropy for classification, or
L2 error for regression). It can also be a function of x only in case of unsupervised or
self-supervised learning. Optimisation problem (2.2) is typically solved using iterative
first-order methods (e.g. Bottou, 2010; Kingma and Ba, 2014) which take advantage of
backpropagation, an efficient algorithm for computing gradients of the loss functions
with respect to the DNN parameters (Rumelhart et al., 1986).

15

Convolutional neural networks (CNNs) CNNs are a subclass of DNNs in which lin-
ear transformations defined by matrices W ℓ are discrete convolutions (Fukushima and
Miyake, 1982; LeCun et al., 2015). The input x to the network can be of any dimensional-
ity, however, CNNs are widely used for processing images (i.e. two dimensional inputs).
This is because convolutions correspond to applying the same local feature extractor to
every spatial location in the image, thus encoding an inductive bias that statistics of an
input image are independent of the spatial location, which is a reasonable assumption
for natural images (Field, 1987). Moreover, using the same computation for every spatial
location corresponds to using fewer trainable parameters (so called “weight sharing”)
facilitating the training process.

2.2 Texture modelling

Figure 2.1: Example of texture generation.
Given a reference texture (first column), the
goal is to generate new images containing
same texture (second to fourth columns).
The figure is adopted from Ustyuzhaninov*
et al. (2017).

Textures are spatially stationary images
which can be thought of as repeated pat-
terns of some base structures that are
sometimes referred to as “textons” (Julesz,
1981). Such images are inherently local,
in the sense that knowing only a small
piece of an image (a “texton”) is sufficient
for generating an image of an arbitrary
size. In other words, there is no global
structure (such as an arrangement of dif-
ferent objects in a photograph, for exam-
ple) in texture images, making them con-
venient stimuli for studying visual pro-
cessing of local features both in the brain
and in DNNs. The goal of texture mod-
elling is as follows: given a reference tex-
ture image, generate new images which
are different on the pixel level from the ref-
erence one but visually can be described
as depicting the same texture (i.e. images
with the “textons” of the reference image
in different spatial arrangements; Fig. 2.1).

Non-parametric modelling One approach to texture modelling aims at directly work-
ing with the pixel level “textons” of a reference image by rearranging them to create new
images (e.g. Efros and Leung, 1999). Typically these methods are initialised with a piece
of a reference or generated texture (of a size comparable to that of a “texton”) and they se-
quentially extend the boundary of the generated image by resampling new pixel values
from the reference texture. The main conceptual disadvantage of such methods is that
they operate directly on the pixel level and thus do not extract any information about the
underlying texture. For example, a human observer would probably describe the texture
in the last row of Fig. 2.1 as a “brick wall” summarising the nature of the underlying “tex-
tons” and their spatial arrangement, however, non-parametric methods do not typically
provide any analogue of such a description.

Parametric modelling The underlying idea of another common approach to texture
modelling is more similar to human perception than non-parametric modelling. Given

16

a reference texture, a parametric method would first create a compact description of this
texture (conceptually corresponding to a “brick wall” human description) and then gen-
erate new textures by searching for images with similar descriptions. These compact tex-
ture representations are obtained using various statistical measurements of the reference
texture and they are often referred to as summary statistics.

Reference
texture

Image
representations

Summary
statistics

Steerable pyramid Pre-trained CNN

Julesz (1962)

Histograms
of pixel values

Raw pixels

P.
an

d
S.

(2
00

0)

Variance,
skewness,

correlations,
etc.

Gatys et al.

(2015)

Mean feature maps,
Gram matrices

Figure 2.2: An overview of common parametric tex-
ture models. These methods compute compact tex-
ture representations by applying summary statistics
in the image representation space. The illustration of
steerable filters is adopted from Portilla and Simon-
celli (2000).

These summary statistics could
be computed on a pixel level (e.g.
N-th order statistics of pixel val-
ues in Julesz (1962)), or using
image representations of a refer-
ence texture obtained by process-
ing it with a certain filter bank.
The choice of a filter bank and
the corresponding image repre-
sentations determine the kind
of statistical measurements used
(Fig. 2.2). For example, Heeger
and Bergen (1995) use Laplacian
and Steerable pyramids as fil-
ter banks supplemented by his-
tograms of resulting representa-
tions as summary statistics. Por-
tilla and Simoncelli (2000) also
use Steerable pyramids and a
number of different summary
statistics such as marginal vari-
ance, skewness, or correlations
between the components of a rep-
resentation vector. Gatys et al.
(2015) use a filter bank of a pre-

trained CNN followed by computing mean feature maps and the Gram matrices between
the feature maps of the resulting CNN representations.

2.3 Object-centric representations

Generative models of natural images Textures are quite simple images and while the
modelling methods based on extracting summary statistics work well for texture gen-
eration, they are insufficient for arbitrary natural images. This is because these methods
exploit spatial uniformity of texture images which is in general lacking in natural images.
It is very hard to find any consistent structure or symmetry in natural images based on
which an explicit parametric model can be built, therefore modern state-of-the-art mod-
els of natural images are based on end-to-end trained DNNs which implicitly capture
the statistical dependencies between the pixels of natural images. Specifically, the two
particularly influential CNN based models that emerged in recent years are variational
auto-encoders (VAEs; Kingma and Welling, 2013) and generative adversarial networks
(GANs; Goodfellow et al., 2014). These models (and their numerous extensions) capture
all properties (textures, objects, arrangement of objects, etc.) of images in the training set
and they are capable of generating new visually similar images.

17

Figure 2.3: Example of an object-centric
model. The model processes input images
(top row) in seven sequential steps (S1-S7),
at each step computing a segmentation mask
for one of the objects as well as its texture
(colour in this case). The figure is adopted
from Burgess et al. (2019)

Object-centric models While the implic-
itness of VAEs and GANs is a powerful
tool for dealing with such complex objects
as arbitrary natural images, it comes with
a few notable problems. One of them is
that these models offer little flexibility in
terms of extracting and manipulating spe-
cific aspects of the image, and it is par-
ticularly challenging when it comes to ex-
tracting representations of individual ob-
jects. However, object perception is cen-
tral to human vision, often humans would
describe an image in terms of constituent
objects, so object representations in mod-
els of natural images are crucial for a num-
ber of practical applications and theoret-
ical studies of vision in humans and ma-
chines.

Multiple recent studies (e.g. Burgess et al.,
2019; Engelcke et al., 2019; Greff et al.,
2019) addressed this issue by focusing
specifically on representations of individ-
ual objects in CNNs. Such object-centric
models typically process an input image
in a sequence of steps such that at every
step the model extracts information about
one of the objects (Fig. 2.3). They explicitly separate the compositional structure of the
scene (e.g. the number of different objects, which ones are in foreground/background,
etc.) from the object appearances typically defined by a texture, thus providing explicit
object (i.e. global) representations.

2.4 Bayesian deep learning

DNNs fitted to a specific dataset by solving (2.2) provide one possible solution (out of
potentially many) of a problem at hand. While this is not an issue in most cases when
using a DNN for a specific task, it poses a problem for studying the variety of DNN rep-
resentations suitable for solving a given problem which will be of interest for us as part
of a discussion on DNN representations. In general, probabilistic inference, in particular
Bayesian inference, is well-suited for addressing such questions as it allows us to capture
the variability or multiple possible values of some quantity (e.g. DNN representations
in intermediate layers) by computing an entire distribution of these values rather than a
single point estimate (Bishop, 2006).

Deep Gaussian processes There is a substantial amount of research available on ap-
plying Bayesian inference to DNNs resulting in what is called Bayesian neural networks
(BNNs; MacKay, 1995) which in principle allow us to compute a distribution of the net-
work weights and hence a distribution of representations solving a given problem. How-
ever, the main issue with BNNs (as with most other Bayesian models) is that inference
in such models is computationally very challenging, so various approximate inference

18

methods are used. These methods require us to make a decision on the trade-off between
the computational efficiency and similarity of the approximate solution (i.e. approxi-
mate posterior distribution) to the true one. Approximate Bayesian inference methods
for an arbitrary BNN typically have this trade-off greatly skewed towards one of the ex-
tremes, therefore we will be focusing on a multi-layer hierarchical model for which there
are inference methods with a more balanced efficiency-similarity trade-off, namely deep
Gaussian processes (DGPs; Damianou and Lawrence, 2013). DGPs share many of the
underlying principles with BNNs making it a convenient model choice for studying the
distributions of representations in intermediate layers.

DGPs are compositions of the form (2.1) where each layer f ℓ is a Gaussian process (GP;
Williams and Rasmussen, 2006). GPs, by definition, have jointly Gaussian outputs:

f ℓ(x1, . . . ,xN) ∼ N (µ(x1, . . . ,xN),Σ(x1, . . . ,xN)) (2.3)

for some mean and covariance functions µ and Σ. In a general DNN or BNN, the out-
puts corresponding to different inputs x1, . . . ,xN are dependent in some complex way
implicitly defined by their weights. In a GP, however, such a dependence is Gaussian
by definition enabling analytic Bayesian inference. Compositions of GPs (i.e. DGPs) no
longer have this jointly Gaussian property, but they still retain some structure of GPs en-
abling us to use efficient and reasonably precise approximate inference methods, one of
which is variational inference.

Variational inference The goal of Bayesian inference is to compute a posterior distri-
bution p(θ |y) of some parameter of interest θ (e.g. weights in a DNN) given the data y.
To do so, we apply the Bayes’ theorem to the prior distribution p(θ) and the likelihood
p(y | θ):

p(θ |y) = p(y | θ) p(θ)
p(y)

. (2.4)

However, computing (2.4) exactly is computationally intractable for most models of in-
terest, including DGPs.

The main problem in (2.4) is typically the intractable denominator p(y), and variational
inference offers a method for computing an approximate posterior distribution q(θ) with-
out the need of computing p(y). One way to find such an approximation is to maximise
the following lower bound with respect to q(θ) (Bishop, 2006):

p(y) ≥ Eq [log p(y | θ)]− KL [q(θ) || p(θ)] . (2.5)

A family of approximate distributions q(θ) should be chosen to balance the tractability of
(2.5) (that is why we are using VI in the first place) and the quality of approximation of
the true posterior p(θ |y). A commonly used approach of stochastic variational inference
(SVI; Hoffman et al., 2013) approximates the first term in (2.5) by sampling, thus extend-
ing the space of distributions for which the lower bound can be efficiently computed.

2.5 Predictive models of primary visual cortex

Neurons in the visual system can be thought of as computational machines implementing
certain functions f(x) of the input image x, and on the high level the goal of computa-
tional neuroscience is to understand what these functions f(x) are. The activities of a
neuron (i.e. the values of f on a finite set of different inputs x) can be measured exper-
imentally resulting in a dataset of brain recordings. Our goal is to use this dataset to

19

construct a model approximating the brain responses and by examining the model gain
insights into the actual functions implemented by the neurons.

Figure 2.4: An architecture of a single neural
predictive model consisting of a linear filter,
pointwise non-linearity and a Poisson noise
model (LNP model). The figure is adopted
from Pillow et al. (2005).

Single-neuron models A traditional ap-
proach for constructing predictive neural
models is to build a separate model for
each individual neuron. Such models typ-
ically include a linear filter followed by a
pointwise non-linearity and a noise model
reflecting the type of noise in the recorded
data (often Poisson noise model is best
suited for the spike counts data; Fig. 2.4).

Studying these models with various non-
linearities led to the discovery of many in-
teresting aspects of computations in the
primary visual cortex (e.g. Adelson and
Bergen, 1985; Blakemore and Tobin, 1972;
DeAngelis et al., 1994; Hubel and Wiesel,
1959; Morrone et al., 1982). However, in general the range of computations which could
be discovered with such single-neuron models is quite limited. One reason for that is
that more complex models are necessary for studying the aspects of neural computa-
tions which cannot be described by a single non-linearity on top of a linear feature space,
however, fitting such more complex models requires larger amounts of data which are
challenging to collect. Another reason has to do with the fact that neurons in the primary
visual cortex do not operate in isolation from each other but rather they receive informa-
tion from the same brain areas (retina and LGN), they are interconnected and some of the
computations implemented by the brain rely on these inter-neuron dependencies which
are not captured by single-neuron models. These issues have recently been addressed
with DNN based models.

Figure 2.5: An architecture of a DNN based neural
predictive model. The DNN feature maps provide a
common image representation space for all neurons,
on top of which the activity of each neuron is pre-
dicted by a linear readout followed by a pointwise
non-linearity similar to the LNP model. The figure is
adopted from Cadena et al. (2019).

DNN based models The main
idea behind current state-of-the-
art models is to use a DNN
(typically CNN when working
with images) as a feature extrac-
tor providing image representa-
tions shared across all neurons
followed by neuron specific lin-
ear computations applied to this
shared representation (e.g. An-
tolík et al., 2016; Cadena et al.,
2019). This architecture allows us
to simultaneously use the record-
ings of all neurons for fitting
the model thereby increasing the
amount of available training data
in comparison to single-neuron models. That makes it feasible to use a non-linear CNN
feature extractor with many trainable parameters capable of modelling complex neural
computations. What is more, fitting all neurons simultaneously allows us to capture the
dependencies between these neurons.

20

Both the CNN representations and the neuron specific linear computations can be de-
signed to account for specific biological properties of V1 neurons, such as localised re-
ceptive fields (Klindt et al., 2017) or orientation selectivity (Ecker et al., 2019), encoding
useful inductive biases into the model and thus improving the accuracy of predicting
neural responses.

Figure 2.6: An illustration of MEI optimisa-
tion. The XY plane corresponds to the di-
mensions (pixel values) of the input image,
the Z axis shows the predicted activity of the
neuron. The goal is to find an input image
maximising this predicted activity. The fig-
ure is adopted from Walker et al. (2019).

Most exciting images (MEIs) We want
to use neural predictive models as a
proxy for understanding brain computa-
tions and one of the main tools for that
is visualisation of computations imple-
mented by the model. In case of an LNP-
like model, we can use the learnt linear fil-
ters as such a visualisation, however, for
DNN models there is no such straight-
forward visualisation available. A com-
mon approach allowing us to visualise the
computations in a DNN is called most ex-
citing images (MEIs), the idea of which
is to find an input image that maximises
the predicted activity of a given neuron
(Fig. 2.6). The MEIs have been shown to
faithfully represent neural computations
in the sense that images maximising the
model predicted activities also strongly
drive the corresponding neurons in the
in vivo experiment (Bashivan et al., 2019;

Walker et al., 2019).

21

3. What does it take to generate nat-
ural textures?

This chapter is based on the following publication:

• Ivan Ustyuzhaninov*, Wieland Brendel*, Leon Gatys and Matthias Bethge (2017).
What does it take to generate natural textures? In International Conference on Learning
Representations (ICLR).

3.1 Motivation

A CNN based parametric texture model of Gatys et al. (2015) was a major milestone in
texture modelling enabling generation of high quality natural textures which are often
perceptually indistinguishable from the original photographic texture image. In particu-
lar, this model typically generates natural textures of superior quality in comparison to
another widely used model of Portilla and Simoncelli (2000) which had been considered
state-of-the-art parametric model before the appearance of Gatys et al. (2015). What is in-
teresting is that despite the differences in perceptual quality of generated textures, these
two models are conceptually quite similar: they both describe a reference texture image
by computing a summary statistic on top of some feature representations of this image.

Gatys et al. (2015) use a VGG-19 CNN (Simonyan and Zisserman, 2015) pre-trained on
ImageNet dataset (Russakovsky et al., 2015) to perform object classification as a feature
extractor and Gram matrices of feature maps in intermediate layers as summary statistics.
Portilla and Simoncelli (2000) develop a linear hierarchical feature extractor based on an
overcomplete complex wavelet transform which they refer to as a “steerable pyramid”
supplemented by the set of summary statistics adapted to the properties of the wavelet
transform.

Therefore, it appears that it is the pre-trained CNN that provides feature representa-
tions well-suited for modelling and generating higher quality textures in comparison to a
model based on a “steerable pyramid”. Our goal in this project is to study why that is the
case and what aspects of the CNN are necessary for computing useful representations for
texture modelling. Specifically, we are interested in the following questions:

• Does the CNN need to be pre-trained on natural images for generation of high qual-
ity natural textures? If that is the case, what kind of pre-training should it be (e.g.
should it necessarily be based on a complex visual task such as object classifica-
tion)?

• What is the role of the depth of the network? The VGG-19 network is quite deep
consisting of 19 layers; is such a depth necessary for a good texture model? If

22

so, is it because the network becomes more nonlinear with depth (since there is a
nonlinearity after each layer), or alternatively, could it be that it is not nonlinearity
but rather large effective receptive field sizes in the higher layers that are important?

• What is the role of the number of feature maps in each layer (i.e. the width of the
network)? Feature maps in a particular layer can be thought of as a decomposi-
tion of an input image in some basis, which becomes more complete as the number
of feature maps increases potentially providing more detailed descriptions of the
reference texture. However, the summary statistics applied to the feature repre-
sentations complicate the analysis of the effect of the basis dimensionality on the
generated textures suggesting an empirical study of this question.

3.2 Results

A single layer model with random filters generates high quality textures This is an in-
teresting result showing that a single layer random filters model provides a strong base-
line while being a much simpler feature extractor than a deep CNN such as VGG-19.
Moreover, we studied single-layer models with various kinds of filters obtained by un-
supervised pre-training (PCA, Fourier basis, etc.) on patches of natural images, and such
models often generate perceptually inferior textures to the random filters model. How-
ever, despite a random single layer model being a strong baseline, it does not completely
match the quality of textures generated using the model of Gatys et al. (2015), meaning
that a single layer model is lacking some essential components of a deep CNN which we
investigate next.

Representations of different scales improve quality of generated textures We found
that including convolutional filters of different sizes in a single layer model improves the
quality of generated textures making them perceptually very similar to those generated
using a VGG-19 model. Convolutional filters of different sizes in a single layer model
replicate the effect of different effective receptive field sizes in intermediate layers of a
deep CNN, thus suggesting that least one aspect in which the depth of a CNN model
plays a role in texture generation is the computation of multi-scale representations.

Non-linearity is essential for texture generation We found that the quality of textures
generated using a single layer model without a pointwise non-linearity after the convo-
lutions (i.e. using a linear model) was substantially inferior to those generated with a
non-linearity. The exact type of non-linearity does not seem to play a big role (models
with both ReLU and sigmoid generated textures of similar quality) but its presence is
necessary. However, since only a single non-linearity seems to be sufficient for generat-
ing high quality textures, highly nonlinear computations in deep CNNs do not appear to
be essential for a good texture model.

Increasing the number of feature maps improves texture quality We considered sin-
gle layer models with various types of filters (random or unsupervised pre-training) and
studied how changing the number of feature maps affected the quality of generated tex-
tures. For all these models we found that increasing the number of feature maps allowed
us to increase the quality of generated textures. Since increasing the number of feature
maps also increases the number of parameters that need to be matched when generat-
ing a new texture, one concern for models with a large number of feature maps could
be that all generated textures might be slightly modified copies of the reference texture.

23

However, we found it is not the case and textures generated with different random initial
conditions are clearly different on the pixel level from the reference one.

3.3 Discussion

This study shows that DNN representations necessary for modelling natural textures are
quite simple in the sense that they can be computed only with a single convolutional
layer with random filters. Interestingly, Gatys et al. (2015) claimed the opposite, i.e. that
CNN with random filters do not generate high quality natural textures. That is likely
to be a consequence of texture generation using deep CNNs corresponding to a hard
optimisation problem, which is illustrated by the fact that for some reference textures a
texture generated with a single layer model was a better solution of this problem than
the one generated using a deep CNN model (i.e. by actually solving it). This example
highlights the difficulty of studying DNNs: they are complex models with many moving
parts and making claims about their properties requires extensive experiments.

After publishing this work, there appeared a number of studies on DNNs with random
weights (e.g. Giryes et al., 2016; He et al., 2016) highlighting various similarities in be-
haviour of such models to the trained ones. Perhaps, the most influential of such studies
was the one of Ulyanov et al. (2018) who showed that a CNN with random weights can
be used as a natural images prior achieving excellent results on a variety of computer
vision problems. At a higher level, wide applicability of DNNs with random weights
points to a wider problem of the interplay between the DNNs form (architecture) and
function, and despite significant progress in recent years this connection is still not fully
understood. Developing methods for studying this connection in DNNs might help with
understanding a similar problem of relations between anatomy, morphology and func-
tions of neurons in the brain.

24

4. Towards causal generative scene mod-
els via competition of experts

This chapter is based on the following publication:

• Julius von Kügelgen*, Ivan Ustyuzhaninov*, Peter Gehler, Matthias Bethge and
Bernhard Schölkopf (2020). Towards causal generative scene models via compe-
tition of experts. In ICLR Workshop “Causal Learning for Decision Making”.

4.1 Motivation

We have seen in Chapter 3 that DNNs capable of generating high-quality natural tex-
tures can be quite simple which is, however, not the case when it comes to modelling
natural images in general. For example, deep networks with complex architectures have
been state-of-the-art models1 for ImageNet (Russakovsky et al., 2015) classification for
the last decade despite various attempts at achieving comparable performance with sim-
pler shallower networks. Similarly, current state-of-the-art generative models of natural
images (e.g. Child, 2021; Karras et al., 2021) are also based on complex deep architec-
tures. While such models can compute image representations suitable for generating
high-quality photorealistic images, as it is often the case with DNNs, they are hard to
interpret and therefore provide limited control over the specific details of the generated
image. The main objective of this project is to develop a DNN based generative model
that overcomes this limitation, specifically in terms of control over the placement and
appearance of individual objects in the image.

The interest for object representations and control over individual objects in generated
images is driven by the importance of object perception for humans. Clearly, when de-
scribing a natural image such as a photograph, a person would pay a lot of attention to
the objects in the photograph. For example, such a description is likely to provide in-
formation as to how many different objects there are, what is their spatial arrangement
(foreground/background, occlusions), how these objects look like, etc. Developing gen-
erative models with components capable of replicating some aspects of human object
perception has lately been an active research topic in generative modelling.

There is a number of neural models aiming at building explicit object-centric represen-
tations. Burgess et al. (2019) proposed a model performing unsupervised decomposition
of multi-object scenes into the constituent objects. The model operates sequentially and
keeps track of already decomposed objects so that out of remaining objects, the most
foreground object is always processed at the current step. The architecture of this model
includes an attention network which provides a segmentation mask for the foreground

1https://paperswithcode.com/sota/image-classification-on-imagenet

25

https://paperswithcode.com/sota/image-classification-on-imagenet

object and a VAE reconstructing the object in the segmentation mask. Another model is
the one of Greff et al. (2019) which represents an image as a spatial mixture model and
decomposes it into the individual objects by performing amortised variational inference.
Its extension of Engelcke et al. (2019) enables generation of new images similar to the
training data in addition to decomposition into individual objects.

The main shortcoming of these models is that they cannot be used to generate new im-
ages with arbitrary arrangements of objects extracted from a reference image, or in other
words recombine the decomposed objects into new scenes. In this project we tackle this
issue and aim to develop a model capable of:

• decomposing natural images into objects without any supervision;

• computing representations of individual objects allowing us to manipulate these
objects independently from each other;

• generating new scenes with arbitrary numbers and compositions of extracted ob-
jects.

4.2 Results

Learning by competition of experts Similarly to Burgess et al. (2019), we designed a
model sequentially decomposing images into the objects. The main novelty of this model
is that for every object category it employs a separate (rather than a single network for all
object categories) attention network computing segmentation masks and a VAE captur-
ing the appearance and the shape of the object. We call such an attention-VAE module an
expert. During training at each step in the decomposition process all experts reconstruct
the object currently in the foreground, but only the parameters of the expert offering
the best reconstruction get updated. In other words, experts compete with each other
to provide the best reconstruction which makes them specialise on objects of particu-
lar categories (the best expert gets reinforced to provide even better reconstructions of a
particular object category), which is an idea we adopted from causal inference literature
(Parascandolo et al., 2018).

The model decomposes scenes and generalises to novel scenes We found that our
model can decompose multi-object scenes into individual objects, including the scenes
with partially occluded objects. Moreover, a trained model generalises to scenes with
different numbers of objects. For example, we performed an experiment in which every
image in the training dataset included exactly three different objects, but after training
the model was able to decompose images with arbitrary numbers (including none) of
objects of each category.

Specialising experts provide explicit object representations The expert VAEs capture
both the appearances and the shapes of objects of the corresponding category, as well
as allow sampling new instances of these objects. Therefore our architecture extracts
information about every object category in the training dataset and encapsulates it into
expert modules which can be used independently from each other in downstream tasks
(e.g. provide priors over the extracted objects or generate object samples to be included
in a different scene).

The model enables controlled generation of new scenes We can use the specialising
experts to create new scenes with arbitrary numbers of objects in arbitrary depth order.

26

Specifically, the scenes can be generated sequentially layer by layer, such that at every
step we draw a sample from an expert corresponding to an object we want to place at the
current depth position and put it on top of all objects generated at previous steps.

4.3 Discussion

We proposed a neural architecture capable of computing explicit object representations
by using competing expert modules specialising on distinct object categories. However,
in practise the training of such a model proved to be challenging, in particular, the com-
petition learning dynamics is prone to suboptimal local minima corresponding to some
experts specialising on multiple objects while others not doing anything at all. Another
shortcoming of the model is the necessity of choosing in advance the number of experts
(i.e. an upper bound on the number of object categories) and the number of steps in the
sequential decomposition process (i.e. an upper bound on the total number of objects
in the image), both of which significantly influence the computational complexity. Due
to these challenges we restricted our experiments to relatively simple synthetic scenes,
and the way such a model can be modified to reliably work with more complex images
(potentially natural images) remains an open question.

More generally, it seems that the main difficulty of object-centric representations is the
inherent discreteness of individual objects. There is a substantial body of work on con-
venient disentangled representations of continuous factors of variation such as colour or
location (e.g. Burgess et al., 2018; Locatello et al., 2019), but extending such representa-
tion to include a discrete component encoding the identity of the objects in the scene has
proven to be challenging. We approached this issue from a different perspective of not
using a joint representation space for all objects but rather a separate expert module for
each object, which by construction solves the discreteness problem but introduces new
challenges of learning by competition.

In this project we were dealing with static images, however, human perception also relies
on various other cues such as relative motion of different objects, for example. Taking
advantage of these cues in more complex datasets could help address some of the chal-
lenges of object-centric representations. A number of recent studies (e.g. Tangemann
et al., 2021; Xu et al., 2019) started exploring these ideas with promising results, however,
the datasets they use are still significantly simpler than arbitrary natural scenes.

Overall, there are currently no models capable of computing object-centric representa-
tions of arbitrary natural scenes that could allow us to close a significant gap between
machine and human visual perception of discrete objects, but it is an active research area
with many interesting approaches so it is likely there will be significant advances in the
near future.

27

5. Compositional uncertainty in deep
Gaussian processes

This chapter is based on the following publication:

• Ivan Ustyuzhaninov*, Ieva Kazlauskaitė*, Markus Kaiser, Erik Bodin, Neill Camp-
bell and Carl Henrik Ek (2020). Compositional uncertainty in deep Gaussian pro-
cesses. In Conference on Uncertainty in Artificial Intelligence (UAI), pages 480–489.
PMLR.

5.1 Motivation

In the previous chapters we discussed DNN architectures along with the correspond-
ing image representations for texture synthesis and object-centric generative modelling.
However, the specific image representations that we have studied might not be the only
ones that the DNN could employ for the corresponding tasks, or in other words, the DNN
architectures we used might potentially provide other solutions for the same problems.
It turns out to be a general phenomenon for multi-layered models, and in this project
we discuss it from a more theoretical viewpoint. Specifically, we aim at developing tools
for quantifying the range of representations in the intermediate layers consistent with a
given input-output function of a deep architecture.

Consider, for example, a very simple two-layer network with one-dimensional inputs
and outputs of each layer. Clearly, there are multiple ways for such a network to im-
plement a given function (e.g. the first layer implements an identity function, while the
second layer implements the target function; or vice versa) leading to different outputs
of the first layer (i.e. the network computes different representations in intermediate
layers). The same principle applies to complex DNNs generating images or performing
other tasks. Nevertheless, typically only one possible realisation of such DNNs is studied
rather than a full range of intermediate representations consistent with the task solved by
the DNN. We aim to address this issue by quantifying the range of such representations
by means of probabilistic analysis.

Bayesian inference offers a convenient framework for studying the diversity of DNN rep-
resentations. It requires us to place a prior distribution on the weights of the network,
which is updated when the network is fitted to the data to obtain the posterior distri-
bution. This distribution captures the range of network weighs (and therefore the range
of the corresponding representations) that are consistent with the prior distribution and
the observed data. Such a setting is different from a typical scenario in which the DNN
optimisation algorithm (e.g. SGD) provides only a single solution (i.e. a point estimate
of network weights) rather than an entire distribution of possible solutions.

28

However despite its theoretical appeal, Bayesian inference for DNNs is in general com-
putationally intractable due to the extremely high number of weights in such networks.
To circumvent this problem to some extent, we focus in this project on a more tractable
hierarchical model, namely on deep Gaussian processes (DGPs). DGPs are compositions
of multiple layers where each layer is a Gaussian processes (GPs), so their architecture is
very similar to that of DNNs and therefore most of the results we obtain in this project
could be transferred to DNNs.

Despite Bayesian inference in DGPs being more computationally tractable than in DNNs,
the computation of exact posterior distribution is still extremely challenging, and there-
fore various approximation methods are used. A common approach employed by most
DGP inference methods in the literature is to approximate the true posterior distribution
with a simpler one which admits efficient inference algorithms. While there is a num-
ber of such approximate Bayesian inference methods available for DGPs (e.g. Bui et al.,
2016; Dai et al., 2015; Damianou and Lawrence, 2013), they all fall short of providing a
posterior distribution capturing the diversity of intermediate input representations.

Building on the work by Salimbeni and Deisenroth (2017), we aim to:

• Understand why the posterior distribution obtained using common DGP approxi-
mate inference methods typically concentrates on a single solution rather than cap-
tures different intermediate representations consistent with the overall function im-
plemented by the model;

• Propose an approximate Bayesian inference method solving the above problem.

5.2 Results

Dependencies between the layers are crucial A common approach in the literature is
to use DGP approximate posterior distributions which are factorised over the layers (i.e.
different layers are marginally independent in the approximate posterior). We showed
with an analytical argument and with numerical experiments that such an approximation
leads to the posterior distribution being concentrated on a single solution rather than
capturing the diversity the possible solutions. This fact is easy to see by revisiting an
example of a two-layer network from the previous section: if the composition consisting
of the two layers is set to implement a given function, the choice of the first layer must
completely determine the function implemented by the second layer thus illustrating the
dependence between the layers.

Approximate posterior distribution captures the range of intermediate representations
We designed two approximate Bayesian inference methods for DGPs that account for the
dependencies between the layers. The first one is based on approximating the posterior
with a multivariate Gaussian with an inter-layer correlation structure defined by a tri-
diagonal precision matrix (i.e. each layer conditionally depends only on neighbouring
layers). That provided a trade-off between the computational tractability in terms of a
closed-form optimisation objective and explicit inclusion of dependencies between the
DGP layers.

The second method uses an approximate posterior distribution parametrised by a fac-
torised Gaussian over the outputs of hidden layers on a small subset on input values
which are treated as hyper-parameters. The idea of this approach is to model the distri-
bution over the input-output pairs of each layer such that the output of a previous layer is

29

the input to the next one. This connection between inputs and outputs of layers induces
an approximate posterior distribution with dependencies across the layers despite the
underlying parametrisation being factorised. In comparison to the Gaussian posterior
across the layers mentioned above, this approach allows us to capture more variance in
intermediate layers and hence more diversity of intermediate representations. However,
the disadvantage in this case is that the optimisation objective is no longer closed-form
but requires estimating certain expectations by sampling.

Models accounting for the diversity of intermediate representations achieve higher
marginal likelihoods Different Bayesian models can be compared by evaluating their
marginal likelihoods on the same dataset (Bishop, 2006). We evaluated DGP models cor-
responding to the inference method of Salimbeni and Deisenroth (2017) and the two in-
ference methods proposed above, and found that accounting for the diversity of interme-
diate representations allows us to achieve higher marginal likelihood values. This result
provides a quantitative evidence that multi-layer models capturing the diversity of inter-
mediate representation provide a better explanation of the data than those collapsing to
a single possible solution.

5.3 Discussion

We used Bayesian inference to quantify the diversity of intermediate representations
computed by a multi-layer model which arises from multiple possible solutions explain-
ing the data. This is a relatively uncommon viewpoint on Bayesian deep learning which
often focuses on uncertainty of predictions rather than on intermediate representations,
however, it seems that this problem starts getting more attention in the literature. For
example, concurrently with our work Ober and Aitchison (2021) developed similar ideas
and applied them to both DGPs and DNNs also showing that approximate posteriors
capturing the diversity of intermediate representations achieve higher likelihoods. In the
next chapter we will discuss how such methods could be relevant for a specific DNN
application.

Overall, we showed that Bayesian framework allows us to quantify the diversity of in-
termediate representations in multi-layer models as well as found the main requirement
that the corresponding approximate posterior has to satisfy: it must include dependen-
cies between the layers. However, our experiments were limited to relatively simple
synthetic datasets and scaling them to real-world data seem to be highly non-trivial.

One problem is the computational complexity as including inter-layer dependencies in
the approximate posterior means fewer computations available in closed form but rather
requiring computationally expensive numerical approximations. Another one is that we
used Gaussian approximate posterior distributions which have many advantages from a
computational viewpoint, but sufficiently capturing the complexity of the true posterior
in real-world problems would likely require more complex approximate posteriors as
well. For example, approximate posteriors based on implicit distributions (Titsias and
Ruiz, 2019) could offer an interesting direction for future research.

30

6. Rotation-invariant clustering of neu-
ronal responses in primary visual
cortex

This chapter is based on the following publication:

• Ivan Ustyuzhaninov, Santiago A. Cadena, Emmanouil Froudarakis, Paul G. Fahey,
Edgar Y. Walker, Erick Cobos, Jacob Reimer, Fabian H. Sinz, Andreas S. Tolias,
Matthias Bethge and Alexander S. Ecker (2020). Rotation-invariant clustering of
neuronal responses in primary visual cortex. In International Conference on Learning
Representations (ICLR).

6.1 Motivation

In this project we focus on using DNN representations to understand computations in the
primary visual cortex (V1) of the mouse brain. This brain area contains around 500 thou-
sand neurons (Herculano-Houzel et al., 2013) each of which implements its own compu-
tation (also called “function”). We are interested in analysing these computations on the
population level, i.e. studying the common patterns of functions, how different neurons
relate to each other, etc. However, the diversity of neural functions arising from such a
large number of neurons makes answering these questions highly challenging. We tackle
this problem by developing a method for computing the functional similarities between
the neurons which would allow us to reduce the data complexity from 500 thousand in-
dividual neurons to a few dozen groups of functionally similar neurons facilitating the
population level analysis.

This idea of using functional similarities between the neurons is motivated by the concept
of functional cell types, a relatively small number (typically a few dozen) of different
computations such that every neuron can be described by one of them. It has been shown
that mouse retina can indeed be described in terms of functional cell types (Baden et al.,
2016); whether that is the case as well for the primary visual cortex is currently unknown.
Baden et al. (2016) simultaneously recorded responses of a large population of retinal
ganglion cells to the same stimulus and clustered these recorded responses. While for
the retina it was sufficient to use a few relatively simple synthetic stimuli, the relevant
stimuli for studying the V1 are natural images and the number of stimuli presented in the
experiment must be quite large (at least a few thousand) to reasonably sample the huge
space of possible natural images. That leads to very high-dimensional response vectors
making it intractable to work directly with raw responses prompting the use of predictive
models offering low-dimensional representations of neural functions, in particular DNN
based models.

31

DNN models applied to neural recordings have been recently extensively studied in the
literature and shown to achieve state-of-the-art predictive performance. Such models are
typically fitted using a large-scale dataset of neural responses to natural images, they con-
tain a CNN core shared across all neurons in the dataset and a separate linear readout for
every neuron (Antolík et al., 2016). The model architecture can additionally encode prior
knowledge about the V1 neurons to facilitate the training. For example, readouts can be
factorised into spatial masks and feature weights vectors with the spatial masks account-
ing for neurons having different locations of their receptive fields (Klindt et al., 2017).
Another example is the inclusion of differently rotated copies of each convolutional fil-
ter in the CNN core resulting in a so-called rotation-equivariant core which explicitly
encodes an assumption that each neuron has its own preferred orientation (Ecker et al.,
2019).

We use feature weights vectors in the factorised readout of the rotation-equivariant model
of Ecker et al. (2019) as low-dimensional functional representations of every neuron. Us-
ing the distance between these vectors as a measure of functional similarity allows us to
compute groups of functionally similar neurons. However, we want to assign the neu-
rons differing only in receptive field locations or preferred orientations to the same group
as these two properties are inherently specific to individual neurons and are generally ir-
relevant for population level analysis. By construction the readout feature vectors do
not contain information about the receptive field locations, but it is not the case for the
preferred orientations. Thereby in this project our goals are to:

• Propose a method for removing information about preferred orientation of neurons
from their readout feature vectors resulting in so-called aligned feature vectors;

• Group neurons based on similarities of their aligned feature vectors and assess the
functional similarities of neurons assigned to the same group.

6.2 Results

Aligning readout feature vectors by cycling shifts removes orientation information
The rotation-equivariant CNN core implies that two neurons which implement the iden-
tical computations with different preferred orientations should have identical readout
feature vectors up to cycling shifts of their subcomponents. Using this property we pro-
posed an algorithm which aligns readout feature vectors by cyclically shifting them thus
reducing the feature vectors of neurons differing only in preferred orientations to the
same vector. To enable gradient-based optimisation of such an alignment we developed a
continuous approximation of cycling shifts. We validated the proposed alignment meth-
ods using numerical experiments with various kinds of synthetic data.

Clustering the aligned readout vectors reveals groups of functionally similar neurons
We clustered the aligned readout feature vectors obtained from the DNN model fitted to
a dataset containing more than 6 thousand mouse V1 neurons. These clusters contained
functionally similar neurons which we verified by observing (1) that maximally activat-
ing images (MEIs) of neurons within the cluster were visually similar but differed across
the clusters; (2) the confusion matrix showing responses of every neuron to an MEI of ev-
ery other neuron exhibited a block-diagonal structure corresponding to the obtained clus-
ters; (3) the 2D t-SNE embedding of the aligned readout feature vectors revealed multiple
areas of higher density which generally coincided with the obtained clusters. Moreover,
while the MEIs of neurons in the same cluster were visually similar, they clearly showed

32

variability in spatial locations and orientations thus suggesting that such a clustering is
invariant to these two properties.

6.3 Discussion

We proposed a method for computing low-dimensional representations of neural func-
tions which are independent of receptive fields spatial locations and preferred orienta-
tions. Clustering such representations we obtained groups of functionally similar neu-
rons which can be thought of as hypotheses of potential cell types that could be studied
in future work. We further address this question in the next chapter.

One problem with this approach was the fact that estimating the right number of clusters
when clustering the readout feature weights was challenging. We found that the DNN
representations were redundant in the sense that the same neural function could be en-
coded in multiple different ways such that different (i.e. not related by a cycling shift)
readout vectors correspond to the same neural function. Because of that, the standard
methods of choosing the number of clusters (e.g. evaluating test log-likelihood for differ-
ent numbers of clusters) overestimated it resulting in too granular clustering, requiring
us to manually merge some clusters as a post-processing step. This is a closely related
problem to the one discussed in Chapter 5, and developing methods for obtaining a pos-
terior distribution over the readout feature vectors rather than a point estimate could
potentially allow us to identify the range of feature vectors corresponding to the same
function and therefore avoid a manual post-processing step.

In this work we first fitted a DNN to the neural data, and afterwards we aligned and
clustered the readout vectors in this DNN. A potential extension could focus on com-
bining these two steps into a single end-to-end trainable model which learns functional
representations and assigns neurons to clusters at the same time. For example, using a
mixture of Poisson distributions as the noise model might enable such end-to-end learn-
ing. Another potential direction for future work is studying the possibility of further
factorisation of the readouts in which the feature vectors are decomposed into the orien-
tation independent component describing the predictive DNN features for a given neu-
rons and an explicit preferred orientation of the neuron. Such a factorisation would allow
us to avoid aligning the feature vectors thus saving computation and not introducing ap-
proximations related to continuous cycling shifts.

33

7. Digital twin reveals combinatorial
code of non-linear computations in
mouse primary visual cortex

This chapter is based on the following publication:

• Ivan Ustyuzhaninov, Max F. Burg, Santiago A. Cadena, Jiakun Fu, Taliah Muham-
mad, Kayla Ponder, Emmanouil Froudarakis, Zhiwei Ding, Matthias Bethge, An-
dreas S. Tolias and Alexander S. Ecker (2022). Digital twin reveals combinatorial
code of non-linear computations in the mouse primary visual cortex. In Submission.

7.1 Motivation

In Chapter 6 we developed a method for computing functional representations of neu-
rons in the mouse primary visual cortex (V1) which capture all aspects of neural functions
apart from receptive field locations and preferred orientations. In this project we apply
this method to a large scale neural dataset to gain insight into the biological aspects of
functional organisation of the mouse V1.

The first question we aim to tackle concerns the existence of discrete functional cell types.
We have seen in Chapter 6 that clustering the DNN neural functional representations re-
vealed groups of similar neurons which could be potential cell types. On the other hand,
the existence of clusters of functionally similar neurons does not contradict the hypothe-
sis of a continuum of neural functions as we would still expect the clustering to produce
the groups of functionally similar neurons since by construction the neighbouring neu-
rons in the representation space are functionally similar. In this project our goal is to
examine these two possibilities in more detail.

Another question we are interested in deals with describing the groups of functionally
similar neurons. Regardless of whether they are discrete cell types or not, these groups
provide an overview of computations in the mouse V1 and we would like to study their
biological implications. However, the DNN functional representations are abstract and it
is not clear what mechanisms differentiate the clusters. We plan to tackle this question by
using the fact that the DNN model that we fitted to obtain the neural functional represen-
tations can be thought of as a “digital twin” of the V1 in the sense that it predicts neural
responses for arbitrary input stimuli. Such a model allows us to replicate classical in vivo
electrophysiological experiments (e.g. Adelson and Bergen, 1985; Blakemore and Tobin,
1972; DeAngelis et al., 1994; Hubel and Wiesel, 1959; Morrone et al., 1982) in silico using
virtually unlimited number of input stimuli. The results of these experiments would al-
low us to describe the groups of similar neurons in terms of computational mechanisms

34

(e.g. surround suppression, phase invariance, etc.) established in the literature.

These in silico experiments are interesting not only as a tool for describing the functional
clusters. In the literature such experiments are typically discussed independently of each
other since in the in vivo setting the experimental time and therefore the amount of stimuli
is limited making it infeasible to conduct multiple experiments during the same record-
ing session. In the in silico setting, however, we are not limited by the number of stimuli
and can conduct multiple experiments on the same population of neurons. That enables
us to study the dependencies between different computational mechanisms described by
these experiments which is an interesting question in itself and also provides additional
insight into the computations in the mouse V1.

7.2 Results

Mouse V1 is described by a non-uniform continuum of functions We analysed the
functional low-dimensional representations of more than 13 thousand V1 neurons recorded
in 7 different mice. The 2D t-SNE embeddings of these representations revealed that the
mouse primary visual cortex appears to be organised as a non-uniform continuum of
functions with around 30 modes (high density areas) corresponding to common compu-
tations; these modes generally correspond to the clusters we discussed in Chapter 6. By
extending the MEIs to represent the computations of the entire clusters rather than in-
dividual neurons, we found that neighbouring clusters in the functional representation
space have similar MEIs suggesting a continuous structure of functions in that space.

In silico experiments visualise cluster computations We computed the MEIs, the opti-
mal Gabors and the optimal differences of Gaussians (DoG) stimuli for every neuron and
cluster, and used these stimuli to conduct in silico experiments. These experiments were
designed to probe the orientation tuning, phase invariance, surround suppression and
cross-orientation inhibition of individual neurons as well as entire clusters. Based on the
tuning strengths with respect to these experiments, we were able to differentiate most of
the clusters thus the in silico experiments provided a compact and interpretable way to
describe the functional clusters.

Non-linear computations are independent of each other Further analysis of the re-
sults of in silico experiments revealed that phase invariance, surround suppression and
cross-orientation inhibitions appear to be expressed independently of each other. Specif-
ically, we found that tuning strengths of different clusters were uncorrelated with respect
to these non-linear properties. Moreover, considering each cluster as either strongly or
weakly tuned with respect to these non-linear properties, we found clusters with every
possible combination of low/high tuning of these three properties; this might be a con-
sequence of statistical independence of these non-linear computations. This result sheds
light on the structure of computations in the mouse V1 suggesting that it might employ
combinatorial code in the space of independent non-linearities as a means for informa-
tion processing.

In silico tuning curves are reasonable approximations of in vivo ones Our analysis is
based on the in silico experiments, therefore, it is crucial to make sure that they offer a
faithful representation of the computations in V1. In particular, there might be an issue
arising from different kinds of stimuli used for training the model and for the in silico

35

experiments since we train the model using natural images, however, we use Gabors,
DoGs or MEIs for in silico experiments.

To compare the in vivo and in silico tuning curves we recorded two scans covering the
same neurons in a mouse not used for the main analysis. In one scan we recorded neural
responses to natural images and in the other one we recorded neural responses to Gabor
stimuli used for the surround-suppression in silico experiment. Such a setting allowed us
to use the first scan to fit the DNN model, use the fitted model to compute the in silico
tuning curves and directly compare them to the in vivo tuning curves recorded in the
second scan. We found that the correlation between in silico and in vivo tuning curves was
very similar to the DNN performance on predicting neural responses to natural images
(i.e. the task it was trained on) thus suggesting that the predictive performance of the
DNN model does not deteriorate when it is used to predict neural responses to in silico
stimuli.

7.3 Discussion

This project is an example of using a DNN model to gain insight into the organisation
of the brain. We addressed biological questions of functional organisation of a mouse
primary visual cortex by studying its “digital twin” provided by the DNN model. This
is a relatively new approach but it clearly has a potential for becoming one of the main
instruments in the computational neuroscience toolbox.

We found that the mouse primary visual cortex is functionally organised as a non-uniform
continuum which is consistent with other studies into the functional organisation of a
mouse neocortex (Gouwens et al., 2020; Scala et al., 2021) but qualitatively different from
the retinal ganglion cells being organised into discrete cell types (Baden et al., 2016). That
raises an interesting question for future research regarding the functional organisation of
the neural pathway from retina to V1 (especially LGN) aimed at understanding how the
discrete retinal cell types get transformed into the continuum of V1 functions and what
might be the biological reasons for that.

Another future research direction could be based on the connectomics data (e.g. Bae et al.,
2021) which could allow us to study the patterns of connectivity between the V1 func-
tional clusters as well as their projections to higher visual areas (HVAs). That might
reveal if neurons within the same V1 functional cluster project to the same HVA and in
general shed light on the functional organisation of HVAs which is currently unknown.
Considering the discrete cell types in the retina and non-uniform continuum in V1, we
might speculate that HVA functions could be even more continuous than in V1, provid-
ing a hypothesis to investigate in future research.

Future research of functional clusters connectivity to HVAs might also provide an in-
sight into the mechanisms behind the combinatorial code of non-linear computations
that we found using the in silico experiments. Our result suggesting the existence of such
a combinatorial code in V1 is one of the few currently available results regarding the V1
computations on the population level, however, its implications are still unclear. One hy-
pothesis might be that this combinatorial code spans a basis of non-linear computations
corresponding to different functions in the downstream processing leading to specialisa-
tions of the HVAs.

36

8. Discussion

Throughout this thesis we discussed various properties and applications of image repre-
sentations in DNNs. In this chapter we bring these discussions together and summarise
the main points we learnt.

8.1 What have we learnt about DNN representations?

We have discussed a few quite different problems ranging from generating textures to
predicting brain responses, and DNNs (especially CNNs) were the main tool we used to
tackle them. On the one hand, it is quite remarkable that such conceptually simple archi-
tectures (albeit requiring a lot of computational power) produce image representations
applicable to a variety of visual tasks and thereby operate in ways resembling the biolog-
ical vision. On the other hand, these representations in some sense move the problem we
aim to solve from the pixel space to abstract representation spaces but conceptually we
are still confronted with the same issues as we would be in the pixel space.

Consider, for example, the texture generation project in Chapter 3 in which the key idea
is to use summary statistics on top of the DNN representations. Here, using the DNN
representation space is not absolutely necessary as it is also possible to use the sum-
mary statistics in the pixel space. The generated textures would be of inferior quality in
that case but it would work in principle. We relied on the background knowledge that
textures are stationary and invariant under certain transformations to remove the unnec-
essary information from the DNN representations by means of summary statistics rather
than directly infer the relevant texture information from these representations. The cru-
cial point is that our a priori understanding of the structure of texture images does not
have anything to do with the DNNs.

In contrast, the next project of building object-centric representations (Chapter 4) proved
to be much more challenging than texture generation for that very reason that we do not
have an analogue of summary statistics for the objects. In particular, we do not have a
good quantitative description of an object in a natural image, which we could apply to
DNN representations. While we know that DNN representations contain information
about objects (e.g. because they perform very well on object detection and classification),
we do have good tools for neither removing the irrelevant parts of the image representa-
tions by relying on background knowledge about the objects nor for inferring the relevant
information for object modelling by identifying what makes object an object directly from
the DNN representations.

Another example of using the background knowledge in the DNN representations is
the project in Chapter 6. We factorised the linear readouts to account for the spatially
localised receptive fields of the V1 neurons and applied the readouts in the DNN rep-

37

resentation space. But again, in principle we could use the same approach even in the
pixel space. Summarising these arguments, we can argue that currently we use DNN
representations as a leverage to gain better results from exploiting the problem structure
that we know in advance, rather than inferring the problem structure from them.

What is more, even if we had tools for inferring the relevant problem structure from the
DNN representations (e.g. parts of representations corresponding to individual objects
in the image), there is a more conceptual problem that we discussed in Chapter 5. The
results of that project show that DNN representations are not unique, so the same object
in the natural image might be represented in multiple different ways and working with
such representations could be quite challenging. There might be a way to constrain the
DNNs to have mostly unique representations (e.g. by strong regularisation) but it is quite
likely that such constraints would have a negative impact on the model performance, and
in general it seems that a capacity for over-representation is something that contributes
to the remarkable performance of DNNs on a variety of tasks.

Our goal was understanding the image representations in DNNs, and summarising the
above, we must admit that we are still quite far from understating DNNs sufficiently well
despite the advances on solving specific visual tasks. On a positive note, currently there
is a lot of interest in DNN interpretability and studying intermediate representations, so
it is reasonable to expect advancements in this area in the coming years.

8.2 Digital twins

In Chapter 7 we used a DNN model of the mouse primary visual cortex as a “digital
twin” of this brain area. Such an approach is a shift in perspective in comparison to other
projects in this thesis in the sense that we did not attempt to understand what computa-
tions are encoded in DNN representations but rather treated the model as a “black box”
only studying its outputs and not its internal structure. This is particularly well suited
to computational neuroscience because it provides a large toolkit of experimental meth-
ods that could be applied to the “digital twin” virtually without any limitations on the
number of experiments that could be conducted.

The “digital twin” approach could be applicable to a much wider range of problems than
studying the brain, potentially allowing us if not solve but at least circumvent some of
the issues discussed in the previous section. For example, revisiting an idea of the project
in Chapter 4, we can consider how a “digital twin” might help us manipulate individual
objects in the images:

• Having a generative model of natural images (e.g. a VAE) we can experimentally
estimate changes of image representations corresponding to transformations of in-
terest in the input images (e.g. changes in the number or locations of objects);

• This could be done by performing in silico experiments (similarly to those in Chap-
ter 7) with the stimuli being sequences of natural images that differ from each other
according to the relevant transformations (e.g. one of the objects changes its posi-
tion across the sequences while other objects are stationary; or the number of objects
changes across the sequence);

• After estimating how the image representations change, we can proceed similarly
to texture generation in Chapter 3: apply the estimated changes to the representa-
tion of the reference image and solve the inverse problem of searching for the new
input image corresponding to the modified representations.

38

This example is of course only a general outline of how digital twins might be used
beyond the application in Chapter 7 rather than a detailed action plan, but hopefully
it illustrates our argument that “digital twin” methodology might be a promising way
for tackling visual problems with DNNs.

8.3 Conclusion

Modern computational vision models become increasingly similar to biological vision,
both in terms of what they can achieve but also in terms of challenges of working with
such models. Perhaps we can argue that we are close to the point when we will be talking
about vision research in general without division into artificial and biological vision as
the problems and methods of these two subdomains complement each other as we have
seen throughout this thesis.

We studied DNN representations in different contexts but nevertheless only scratched
the surface of the interplay of machine and biological vision. We found common patterns
and challenges, but unfortunately have not developed universal recipes for how to build
a model computing useful representations for a given problem. I hope (at least in part)
it is because it is a genuinely difficult problem and future research will bring new ideas
and solutions of the problems we have not managed to fully solve.

39

Bibliography

Edward H. Adelson and James R. Bergen (1985). Spatiotemporal energy models for the
perception of motion. J. Opt. Soc. Am. A, 2(2):284–299.

Ján Antolík, Sonja B Hofer, James A Bednar and Thomas D Mrsic-Flogel (2016). Model
constrained by visual hierarchy improves prediction of neural responses to natural
scenes. PLoS computational biology, 12(6):e1004927.

Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias Bethge and
Thomas Euler (2016). The functional diversity of retinal ganglion cells in the mouse.
Nature, 529(7586):345–350.

J Alexander Bae, Mahaly Baptiste, Agnes L Bodor, Derrick Brittain, JoAnn Buchanan,
Daniel J Bumbarger, Manuel A Castro, Brendan Celii, Erick Cobos, Forrest Collman
et al. (2021). Functional connectomics spanning multiple areas of mouse visual cortex.
bioRxiv.

Pouya Bashivan, Kohitij Kar and James J DiCarlo (2019). Neural population control via
deep image synthesis. Science, 364(6439).

Christopher M Bishop (2006). Pattern Recognition and Machine Learning. Springer.

Colin Blakemore and Elisabeth A Tobin (1972). Lateral inhibition between orientation
detectors in the cat’s visual cortex. Experimental brain research, 15(4):439–440.

Léon Bottou (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer.

Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov and Matthias
Bethge (2019). Accurate, reliable and fast robustness evaluation. In Advances in Neural
Information Processing Systems (NeurIPS), volume 32.

Thang Bui, Daniel Hernández-Lobato, Jose Hernandez-Lobato, Yingzhen Li and Richard
Turner (2016). Deep gaussian processes for regression using approximate expectation
propagation. In International conference on machine learning, pages 1472–1481. PMLR.

Christopher Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick and Alexander Lerchner (2019). Monet: Unsupervised scene decomposition
and representation. arXiv preprint arXiv:1901.11390.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume
Desjardins and Alexander Lerchner (2018). Understanding disentangling in β-vae.
arXiv preprint arXiv:1804.03599.

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias,
Matthias Bethge and Alexander S Ecker (2019). Deep convolutional models improve

40

predictions of macaque v1 responses to natural images. PLoS computational biology,
15(4):e1006897.

Rewon Child (2021). Very deep VAEs generalize autoregressive models and can outper-
form them on images. In International Conference on Learning Representations.

George Cybenko (1989). Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems, 2(4):303–314.

Zhenwen Dai, Andreas Damianou, Javier González and Neil Lawrence (2015). Varia-
tional auto-encoded deep gaussian processes. arXiv preprint arXiv:1511.06455.

Andreas Damianou and Neil D Lawrence (2013). Deep gaussian processes. In Artificial
intelligence and statistics, pages 207–215. PMLR.

Gregory C DeAngelis, Ralph D Freeman and Izumi Ohzawa (1994). Length and width
tuning of neurons in the cat’s primary visual cortex. Journal of neurophysiology,
71(1):347–374.

Alexander S. Ecker, Fabian H. Sinz, Emmanouil Froudarakis, Paul G. Fahey, Santiago A.
Cadena, Edgar Y. Walker, Erick Cobos, Jacob Reimer, Andreas S. Tolias and Matthias
Bethge (2019). A rotation-equivariant convolutional neural network model of primary
visual cortex. In International Conference on Learning Representations (ICLR).

Alexei Efros and Thomas Leung (1999). Texture synthesis by non-parametric sampling.
In Proceedings of the seventh IEEE international conference on computer vision, volume 2,
pages 1033–1038. IEEE.

Martin Engelcke, Adam Kosiorek, Oiwi Parker Jones and Ingmar Posner (2019). Gene-
sis: Generative scene inference and sampling with object-centric latent representations.
arXiv preprint arXiv:1907.13052.

David Field (1987). Relations between the statistics of natural images and the response
properties of cortical cells. Journal of the Optical Society of America A, 4(12):2379–2394.

Kunihiko Fukushima and Sei Miyake (1982). Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition. In Competition and coop-
eration in neural nets, pages 267–285. Springer.

Leon Gatys, Alexander Ecker and Matthias Bethge (2015). Texture synthesis using convo-
lutional neural networks. Advances in neural information processing systems, 28:262–270.

Raja Giryes, Guillermo Sapiro and Alex M Bronstein (2016). Deep neural networks with
random gaussian weights: A universal classification strategy? IEEE Transactions on
Signal Processing, 64(13):3444–3457.

Xavier Glorot, Antoine Bordes and Yoshua Bengio (2011). Deep sparse rectifier neural
networks. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pages 315–323. JMLR Workshop and Conference Proceedings.

Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016). Deep learning. MIT Press.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville and Yoshua Bengio (2014). Generative adversarial nets. Ad-
vances in neural information processing systems, 27.

Nathan W Gouwens, Staci A Sorensen, Fahimeh Baftizadeh, Agata Budzillo, Brian R
Lee, Tim Jarsky, Lauren Alfiler, Katherine Baker, Eliza Barkan, Kyla Berry et al. (2020).

41

Integrated morphoelectric and transcriptomic classification of cortical gabaergic cells.
Cell, 183(4):935–953.

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher
Burgess, Daniel Zoran, Loic Matthey, Matthew Botvinick and Alexander Lerchner
(2019). Multi-object representation learning with iterative variational inference. In
International Conference on Machine Learning, pages 2424–2433. PMLR.

Kun He, Yan Wang and John Hopcroft (2016). A powerful generative model using ran-
dom weights for the deep image representation. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 29.

David Heeger and James Bergen (1995). Pyramid-based texture analysis/synthesis. In
Proceedings of the 22nd annual conference on Computer graphics and interactive techniques,
pages 229–238.

Suzana Herculano-Houzel, Charles R Watson and George Paxinos (2013). Distribution of
neurons in functional areas of the mouse cerebral cortex reveals quantitatively different
cortical zones. Frontiers in Neuroanatomy, 7:35.

Matthew D Hoffman, David M Blei, Chong Wang and John Paisley (2013). Stochastic
variational inference. Journal of Machine Learning Research, 14(5).

Kurt Hornik (1991). Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257.

David H Hubel and Torsten N Wiesel (1959). Receptive fields of single neurones in the
cat’s striate cortex. The Journal of Physiology, 148(3):574–591.

Bela Julesz (1962). Visual pattern discrimination. IRE transactions on Information Theory,
8(2):84–92.

Bela Julesz (1981). Textons, the elements of texture perception, and their interactions.
Nature, 290(5802):91–97.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen
and Timo Aila (2021). Alias-free generative adversarial networks. In Advances in Neural
Information Processing Systems.

Diederik Kingma and Jimmy Ba (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Diederik Kingma and Max Welling (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

David A Klindt, Alexander S Ecker, Thomas Euler and Matthias Bethge (2017). Neural
system identification for large populations separating what and where. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, pages 3509–
3519.

Yann LeCun, Yoshua Bengio and Geoffrey Hinton (2015). Deep learning. Nature,
521(7553):436–444.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bern-
hard Schölkopf and Olivier Bachem (2019). Challenging common assumptions in the
unsupervised learning of disentangled representations. In International Conference on
Machine Learning, pages 4114–4124. PMLR.

42

David JC MacKay (1995). Bayesian neural networks and density networks. Nuclear In-
struments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 354(1):73–80.

Claudio Michaelis, Ivan Ustyuzhaninov, Matthias Bethge and Alexander S Ecker (2018).
One-shot instance segmentation. arXiv preprint arXiv:1811.11507.

M Concetta Morrone, DC Burr and Lamberto Maffei (1982). Functional implications of
cross-orientation inhibition of cortical visual cells. i. neurophysiological evidence. Pro-
ceedings of the Royal Society of London. Series B. Biological Sciences, 216(1204):335–354.

Sebastian W Ober and Laurence Aitchison (2021). Global inducing point variational pos-
teriors for Bayesian neural networks and deep Gaussian processes. In Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 8248–8259. PMLR.

Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla and Bernhard Schölkopf
(2018). Learning independent causal mechanisms. In International Conference on Ma-
chine Learning, pages 4036–4044. PMLR.

Jonathan W Pillow, Liam Paninski, Valerie J Uzzell, Eero P Simoncelli and EJ Chichilnisky
(2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic
spiking model. Journal of Neuroscience, 25(47):11003–11013.

Javier Portilla and Eero Simoncelli (2000). A parametric texture model based on joint
statistics of complex wavelet coefficients. International journal of computer vision,
40(1):49–70.

David Rumelhart, Geoffrey Hinton and Ronald Williams (1986). Learning representa-
tions by back-propagating errors. Nature, 323(6088):533–536.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein et al. (2015). Ima-
genet large scale visual recognition challenge. International Journal of Computer Vision,
115(3):211–252.

Hugh Salimbeni and Marc Deisenroth (2017). Doubly stochastic variational inference
for deep gaussian processes. In Advances in Neural Information Processing Systems, vol-
ume 30.

Federico Scala, Dmitry Kobak, Matteo Bernabucci, Yves Bernaerts, Cathryn René Cad-
well, Jesus Ramon Castro, Leonard Hartmanis, Xiaolong Jiang, Sophie Laturnus, Ela-
nine Miranda et al. (2021). Phenotypic variation of transcriptomic cell types in mouse
motor cortex. Nature, 598(7879):144–150.

Karen Simonyan and Andrew Zisserman (2015). Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning Representations
(ICLR).

Matthias Tangemann, Steffen Schneider, Julius Kügelgen, von, Francesco Locatello, Peter
Gehler, Thomas Brox, Matthias Kümmerer, Matthias Bethge and Bernhard Schölkopf
(2021). Unsupervised object learning via common fate. arXiv preprint arXiv:2110.06562.

Michalis K Titsias and Francisco Ruiz (2019). Unbiased implicit variational inference. In
The 22nd International Conference on Artificial Intelligence and Statistics, pages 167–176.
PMLR.

43

Dmitry Ulyanov, Andrea Vedaldi and Victor Lempitsky (2018). Deep image prior. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9446–
9454.

Ivan Ustyuzhaninov*, Wieland Brendel*, Leon Gatys and Matthias Bethge (2017). What
does it take to generate natural textures? In International Conference on Learning Repre-
sentations (ICLR).

Ivan Ustyuzhaninov, Max F. Burg, Santiago A. Cadena, Jiakun Fu, Taliah Muhammad,
Kayla Ponder, Emmanouil Froudarakis, Zhiwei Ding, Matthias Bethge, Andreas S. To-
lias and Alexander S. Ecker (2022). Digital twin reveals combinatorial code of non-
linear computations in the mouse primary visual cortex. In Submission.

Ivan Ustyuzhaninov, Santiago A. Cadena, Emmanouil Froudarakis, Paul G. Fahey,
Edgar Y. Walker, Erick Cobos, Jacob Reimer, Fabian H. Sinz, Andreas S. Tolias, Matthias
Bethge and Alexander S. Ecker (2020). Rotation-invariant clustering of neuronal re-
sponses in primary visual cortex. In International Conference on Learning Representations
(ICLR).

Ivan Ustyuzhaninov*, Ieva Kazlauskaitė*, Carl Henrik Ek and Neill Campbell (2018). Se-
quence alignment with Dirichlet process mixtures. In NeurIPS Workshop “All of Bayesian
Nonparametrics”.

Ivan Ustyuzhaninov*, Ieva Kazlauskaitė*, Carl Henrik Ek and Neill Campbell (2020).
Monotonic Gaussian process flows. In International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 3057–3067. PMLR.

Ivan Ustyuzhaninov*, Ieva Kazlauskaitė*, Markus Kaiser, Erik Bodin, Neill Campbell
and Carl Henrik Ek (2020). Compositional uncertainty in deep Gaussian processes. In
Conference on Uncertainty in Artificial Intelligence (UAI), pages 480–489. PMLR.

Ivan Ustyuzhaninov, Claudio Michaelis, Wieland Brendel and Matthias Bethge (2018).
One-shot texture segmentation. arXiv preprint arXiv:1807.02654.

Julius von Kügelgen*, Ivan Ustyuzhaninov*, Peter Gehler, Matthias Bethge and Bernhard
Schölkopf (2020). Towards causal generative scene models via competition of experts.
In ICLR Workshop “Causal Learning for Decision Making”.

Edgar Y Walker, Fabian H Sinz, Erick Cobos, Taliah Muhammad, Emmanouil
Froudarakis, Paul G Fahey, Alexander S Ecker, Jacob Reimer, Xaq Pitkow and An-
dreas S Tolias (2019). Inception loops discover what excites neurons most using deep
predictive models. Nature neuroscience, 22(12):2060–2065.

Christopher Williams and Carl Edward Rasmussen (2006). Gaussian processes for machine
learning. MIT press.

Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William T Freeman, Joshua B Tenen-
baum and Jiajun Wu (2019). Unsupervised discovery of parts, structure, and dynamics.
arXiv preprint arXiv:1903.05136.

44

Appendix

This chapter contains the publications discussed in Chapters 3–7.

45

Published as a conference paper at ICLR 2017

WHAT DOES IT TAKE TO GENERATE NATURAL
TEXTURES?

Ivan Ustyuzhaninov*,1,2,3, Wieland Brendel*,1,2, Leon Gatys1,2,3, Matthias Bethge1,2,3,4

*contributed equally
1Centre for Integrative Neuroscience, University of Tübingen, Germany
2Bernstein Center for Computational Neuroscience, Tübingen, Germany
3Graduate School of Neural Information Processing, University of Tübingen, Germany
4Max Planck Institute for Biological Cybernetics, Tübingen, Germany

first.last@bethgelab.org

ABSTRACT

Natural image generation is currently one of the most actively explored fields in
Deep Learning. Many approaches, e.g. for state-of-the-art artistic style transfer
or natural texture synthesis, rely on the statistics of hierarchical representations in
supervisedly trained deep neural networks. It is, however, unclear what aspects of
this feature representation are crucial for natural image generation: is it the depth,
the pooling or the training of the features on natural images? We here address this
question for the task of natural texture synthesis and show that none of the above
aspects are indispensable. Instead, we demonstrate that natural textures of high
perceptual quality can be generated from networks with only a single layer, no
pooling and random filters.

1 INTRODUCTION

During the last two years several different approaches towards natural image generation have been
suggested, among them generative adversarial networks (Goodfellow et al., 2014; Chen et al., 2016),
probabilistic generative models like the conditional PixelCNN (van den Oord et al., 2016b;a) or
maximum entropy models that rely on the representations of deep neural networks (e.g. Gatys et al.,
2015b; Johnson et al., 2016; Ulyanov et al., 2016). The latter approach has been particularly ground-
breaking for artistic style transfer and natural texture generation (e.g. Gatys et al., 2015a;b) and has
the potential to uncover the regularities that supervisedly trained deep neural networks infer from
natural images.

For the sake of clarity and concreteness, this paper will focus on natural texture synthesis. Parametric
texture models aim to uniquely describe each texture by a set of statistical measurements that are
taken over the spatial extent of the image. Each image with the same spatial summary statistics
should be perceived as the same texture. Consequently, synthesizing a texture corresponds to finding
a new image that reproduces the summary statistics inferred from the reference texture. Starting
from Nth-order joint histograms of the pixels by Julesz (1962), many different statistical measures
have been proposed (see e.g. Heeger & Bergen, 1995; Portilla & Simoncelli, 2000). The quality of
the synthesized textures is usually determined by human inspection; the synthesis is successful if a
human observer cannot tell the reference texture from the synthesized ones.

The current state of the art in parametric texture modeling (Gatys et al., 2015a) employs the hier-
archical image representation in a deep 19-layer convolutional network (Simonyan & Zisserman
(2014); in the following referred to as VGG network) that was trained on object recognition in natural
images(Russakovsky et al. (2015)). In this model textures are described by the raw correlations
between feature activations in response to the texture image from a collection of network layers (see
section 5 for details). Since its initial reception several papers explored which additional elements or
constraints can further increase the perceptual quality of the generated textures (Berger & Memisevic,
2016; Liu et al., 2016; Aittala et al., 2016). In this work we go the opposite way and ask which
elements of the original texture synthesis algorithm (Gatys et al., 2015a) are absolutely indispensable.

1

Published as a conference paper at ICLR 2017

In particular two aspects have been deemed critical for natural texture synthesis: the hierarchical
multi-layer representation of the textures, and the supervised training of the feature spaces. Here we
show that neither aspect is imperative for texture modeling and that in fact a single convolutional
layer with random features can synthesize textures that often rival the perceptual quality of Gatys et al.
(2015a). This is in contrast to earlier reports (Gatys et al., 2015a) that suggested that networks with
random weights fail to generate perceptually interesting images. We suggest that this discrepancy
originates from a more elaborate tuning of the optimization procedure (see section 4).

Our main contributions are:

• We present a strong minimal baseline for parametric texture synthesis that solely relies on a
single-layer network and random, data-independent filters.

• We show that textures synthesized from the baseline are of high quality and often rival
state-of-the-art approaches, suggesting that the depth and the pre-training of multi-layer
image representations are not as indispensable for natural image generation as has previously
been thought.

• We test and compare a wide range of single-layer architectures with different filter-sizes and
different types of filters (random, hand-crafted and unsupervisedly learnt filters) against the
state-of-the-art texture model by Gatys et al. (2015a).

• We utilize a quantitative texture quality measure based on the synthesis loss in the VGG-
based model (Gatys et al., 2015a) to replace the common-place evaluation of texture models
through qualitative human inspection.

• We discuss a formal generalization of maximum entropy models to account for the natural
variability of textures with limited spatial extent.

2 CONVOLUTIONAL NEURAL NETWORK

If not mentioned otherwise, all our models employ single-layer CNNs with standard rectified linear
units (ReLUs) and convolutions with stride one, no bias and padding (f − 1)/2 where f is the
filter-size. This choice ensures that the spatial dimension of the output feature maps is the same as the
input. All networks except the last one employ filters of size 11× 11× 3 (filter width × filter height
× no. of input channels), but the number of feature maps as well as the selection of the filters differ:

• Fourier-363: Each color channel (R, G, B) is filtered separately by each element Bi ∈
R11×11 of the 2D Fourier basis (11×11 = 121 feature maps/channel), yielding 3·121 = 363
feature maps in total. More concretely, each filter can be described as the tensor product
Bi ⊗ ek where the elements of the unit-norm ek ∈ R3 are all zero except one.

• Fourier-3267: All color channels (R, G, B) are filtered simultaneously by each element
Bi of the 2D Fourier basis but with different weighting terms wR, wG, wB ∈ [1, 0,−1],
yielding 3 · 3 · 3 · 121 = 3267 feature maps in total. More concretely, each filter can be
described by the tensor product Bi ⊗ [wR, wG, wB].

• Kmeans-363: We randomly sample and whiten 1e7 patches of size 11 × 11 from the
Imagenet dataset (Russakovsky et al., 2015), partition the patches into 363 clusters using
k-means (Rubinstein et al., 2009), and use the cluster means as convolutional filters.

• Kmeans-3267: Same as Kmeans-363 but with 3267 clusters.
• Kmeans-NonWhite-363/3267: Same as Kmeans-363/3267 but without whitening of the

patches.
• Kmeans-Sample-363/3267: Same as Kmeans-363/3267, but patches are only sampled

from the target texture.
• PCA-363: We randomly sample 1e7 patches of size 11 × 11 from the Imagenet dataset

(Russakovsky et al., 2015), vectorize each patch, perform PCA and use the set of principal
axes as convolutional filters.

• Random-363: Filters are drawn from a uniform distribution according to (Glorot & Bengio,
2010), 363 feature maps in total.

• Random-3267: Same as Random-363 but with 3267 feature maps.

2

Published as a conference paper at ICLR 2017

Original
Fourier-363,

11x11
K-means-363,

11x11
K-samples-363,

11x11
K-NW-363,

11x11
Random-363,

11x11
PCA-363,
11x11

Gatys et al.
Fourier-3267,

11x11
K-means-3267,

11x11
K-samples-3267,

11x11
K-NW-3267,

11x11
Random-3267,

11x11
Random

multi-scale

Figure 1: Influence of the feature maps on texture synthesis performance. (Top) Samples synthesized
from several single-layer models with 363 feature maps (see sec. 2) for three different textures
(rows). Reference textures are shown in the first column. (Bottom) Samples synthesized from
several single-layer models with 3267 feature maps (see sec. 2) for three different textures (rows).
Additionally, the first column shows samples from the VGG model (Gatys et al., 2015a), and the last
column from the multi-scale model (with 1024 feature maps).

• Random-Multiscale Eight different filter sizes f×f×3 with f = 3, 5, 7, 11, 15, 23, 37, 55
and 128 feature maps each (1024 feature maps in total). Filters are drawn from a uniform
distribution according to (Glorot & Bengio, 2010).

The networks were implemented in Lasagne (Dieleman et al., 2015; Theano Development Team,
2016). We remove the DC component of the inputs by subtracting the mean intensity in each color
channel (estimated over the Imagenet dataset (Russakovsky et al., 2015)).

3 TEXTURE MODEL

The texture model closely follows (Gatys et al., 2015a). In essence, to characterise a given vectorised
texture x ∈ RM , we first pass x through the convolutional layer and compute the output activations.
The output can be understood as a non-linear filter bank, and thus its activations form a set of filtered
images (so-called feature maps). For N distinct feature maps, the rectified output activations can be

3

Published as a conference paper at ICLR 2017

Multi-scale 3x3 7x7 11x11 23x23 37x37 55x55
Multi-scale
(linear)

Figure 2: Influence of the scale and the non-linearity on texture synthesis performance. (1st column)
Samples from the random multi-scale model for comparison (same as in Fig. 1). (2nd - 7th colum)
Samples from the random single-scale model with different spatial filter sizes. (Last column) Samples
from the random multi-scale model without ReLU nonlinearity.

described by a matrix F ∈ RN×M . To capture the stationary structure of the textures, we compute
the covariances (or, more precisely, the Gramian matrix) G ∈ RN×N between the feature activations
F by averaging the outer product of the point-wise feature vectors,

Gij =
1

M

M∑

m=1

FimFjm. (1)

We will denote G(x) as the Gram matrix of the feature activations for the input x. To determine the
relative distance between two textures x and y we compute the euclidean distance of the normalized
Gram matrices,

d(x,y) =
1√∑

m,n
Gmn(x)2

√∑
m,n

Gmn(y)2

N∑

i,j=1

(Gij(x)−Gij(y))
2
. (2)

To compare with the distance in the raw pixel values, we compute

dp(x,y) =
1√∑

m
x2
m

√∑
m

y2m

N∑

i=1

(xi − yi)
2
. (3)

4 TEXTURE SYNTHESIS

To generate a new texture we start from a uniform noise image (in the range [0, 1]) and iteratively
optimize it to match the Gram matrix of the reference texture. More precisely, let G(x) be the Gram
matrix of the reference texture. The goal is to find a synthesised image x̃ such that the squared
distance between G(x) and the Gram matrix G(x̃) of the synthesized image is minimized, i.e.

x̃ = argmin
y∈RM

E(y), (4)

E(y) =
1

∑N
i,j=1 Gij(x)2

N∑

i,j=1

(
Gij(x)−Gij(y)

)2

. (5)

The gradient ∂E(y)/∂y of the reconstruction error with respect to the image can readily be computed
using standard backpropagation, which we then use in conjunction with the L-BFGS-B algorithm
(Jones et al., 2001–) to solve (4). We leave all parameters of the optimization algorithm at their
default value except for the maximum number of iterations (2000), and add a box constraints with
range [0, 1]. In addition, we scale the loss and the gradients by a factor of 107 in order to avoid early
stopping of the optimization algorithm.

4

Published as a conference paper at ICLR 2017

Original Sample 1 Sample 2 Sample 3

Figure 3: Each row shows the reference texture (left, gray background) and three samples that were
synthesized from different (random) initial images using our multi-scale model. Most importantly,
the multi-scale model generates samples that are perceptually different. All three textures are taken
from Portilla & Simoncelli (2000).

5 TEXTURE EVALUATION

Evaluating the quality of the synthesized textures is traditionally performed by human inspection.
Optimal texture synthesis should generate samples that humans perceive as being the same texture as
the reference. The high quality of the synthesized textures by (Gatys et al., 2015a) suggests that the
summary statistics from multiple layers of VGG can approximate the perceptual metric of humans.
Even though the VGG texture representation is not perfect, this allows us to utilize these statistics as
a more objective quantification of texture quality.

For all details of the VGG-based texture model see (Gatys et al., 2015a). Here we use the standard
19-layer VGG network (Simonyan & Zisserman, 2014) with pretrained weights and average- instead
of max-pooling1. We compute a Gram matrix on the output of each convolutional layer that follows a
pooling layer. Let Gℓ(.) be the Gram matrix on the activations of the ℓ-th layer and

Eℓ(y) =
1

∑N
i,j=1 G

ℓ
ij(x)

2

N∑

i,j=1

(
Gℓ

ij(x)−Gℓ
ij(y)

)2

. (6)

the corresponding relative reconstruction cost. The total reconstruction cost is then defined as the
average distance between the reference Gram matrices and the synthesized ones, i.e.

E(y) =
1

5

5∑

ℓ=1

Eℓ(y). (7)

This cost is reported on top of each synthesised texture in Figures 4. To visually evaluate samples
from our single- and multi-scale model against the VGG-based model (Gatys et al., 2015a), we
additionally synthesize textures from VGG by minimizing (7) using L-BFGS-B as in section 4.

6 RESULTS

In Fig. 1 we show textures synthesised from two random single- and multi-scale models, as well
as eight other non-random single-layer models for three different source images (top left). For

1https://github.com/Lasagne/Recipes/blob/master/modelzoo/vgg19.py as accessed on 12.05.2016.

5

Published as a conference paper at ICLR 2017

comparison, we also plot samples generated from the VGG model by Gatys et al. (Gatys et al.,
2015a) (bottom left). There are roughly two groups of models: those with a small number of feature
maps (363, top row), and those with a large number of feature maps (3267, bottom row). Only
the multi-scale model employs 1024 feature maps. Within each group, we can differentiate models
for which the filters are unsupervisedly trained on natural images (e.g. sparse coding filters from
k-means), principally devised filter banks (e.g. 2D Fourier basis) and completely random filters
(see sec. 2 for all details). All single-layer networks, except for multi-scale, feature 11× 11 filters.
Remarkably, despite the small spatial size of the filters, all models capture much of the small- and
mid-scale structure of the textures, in particular if the number of feature maps is large. Notably, the
scale of these structures extends far beyond the receptive fields of the single units (see e.g. the pebble
texture). We further observe that a larger number of feature maps generally increases the perceptual
quality of the generated textures. Surprisingly, however, completely random filters perform on par
or better then filters that have been trained on the statistics of natural images. This is particularly
true for the multi-scale model that clearly outperforms the single-scale models on all textures. The
captured structures in the multi-scale model are generally much larger and often reach the full size of
the texture (see e.g. the wall).

While the above results show that for natural texture synthesis one neither needs a hierarchical deep
network architecture with spatial pooling nor filters that are adapted to the statistics of natural images,
we now focus on the aspects that are crucial for high quality texture synthesis. First, we evaluate
whether the success of the random multi-scale network arises from the combination of filters on
multiple scales or whether it is simply the increased size of its largest receptive fields (55× 55 vs.
11× 11) that leads to the improvement compared to the single-scale model. Thus, to investigate the
influence of the spatial extend of the filters and the importance of combining multiple filter sizes
in one model, we generate textures from multiple single-scale models, where each model has the
same number of random filters as the multi-scale model (1024) but only uses filters from a single
scale of the multi-scale model (Fig. 2). We find that while 3× 3 filters mainly capture the marginal
distribution of the color channels, larger filters like 11 × 11 model small- to mid-scale structures
(like small stones) but miss more long-range structures (larger stones are not well separated). Very
large filters like 55× 55, on the other hand, are capable of modeling long-range structures but then
miss much of the small- to midscale statistics (like the texture of the stone). Therefore we conclude
that the combination of different scales in the multi-scale network is important for good texture
synthesis since it allows to simultaneously model small-, mid- and long-range correlations of the
textures. Finally we note that a further indispensable component for good texture models are the
non-linearities: textures synthesised the multi-scale model without ReLU (Fig. 2, right column) are
unable to capture the statistical dependencies of the texture.

The perceptual quality of the textures generated from models with only a single layer and random
filters is quite remarkable and surpasses parametric methods like Portilla & Simoncelli (2000) that
have been state-of-the-art two years ago (before the use of DNNs). The multi-scale model often rivals
the current state of the art (Gatys et al., 2015a) as we show in Fig. 4 where we compare samples
synthesized from 20 different textures for the random single- and multi-scale model, as well as VGG.
The multi-scale model generates very competitive samples in particular for textures with extremely
regular structures across the whole image (e.g. for the brick wall, the grids or the scales). In part,
this effect can be attributed to the more robust optimization of the single-layer model that is less
prone to local minima then the optimization in deeper models. This can be seen by initializing the
VGG-based synthesis with textures from the single-layer model, which consistently yields superior
synthesis results (see Appendix A, Fig. 5). In addition, for a few textures such as the grid structures,
the VGG-based loss is paradoxically lower for samples from the multi-scale model then for the
VGG-based model (which directly optimized the VGG-based loss). This suggests that the naive
synthesis performed here favors images that are perceptually similar to the reference texture and
thus looses variability (see sec. 7 for further discussion). Nonetheless, samples from the single-layer
model still exhibit large perceptual differences, see Fig. 3. The VGG-based loss (7) appears to
generally be an acceptable approximation of the perceptual differences between the reference and the
synthesized texture. Only for a few textures, especially those with very regular men-made structures
(e.g. the wall or the grids), the VGG-based loss fails to capture the perceptual advantage of the
multi-scale synthesis.

6

Published as a conference paper at ICLR 2017

Original single-scale
0.195 · 10−3

multi-scale
0.094 · 10−3

Gatys et al. [1]
0.128 · 10−3

0.194 · 10−3 0.157 · 10−3 0.089 · 10−3

0.283 · 10−3 0.212 · 10−3 0.187 · 10−3

0.089 · 10−3 0.077 · 10−3 0.022 · 10−3

0.386 · 10−3 0.379 · 10−3 0.596 · 10−3

0.085 · 10−3 0.071 · 10−3 0.068 · 10−3

2.669 · 10−3 0.589 · 10−3 1.261 · 10−3

0.337 · 10−3 0.190 · 10−3 1.310 · 10−3

0.076 · 10−3 0.033 · 10−3 0.058 · 10−3

1.102 · 10−3 0.866 · 10−3 0.672 · 10−3

Original single-scale
0.123 · 10−3

multi-scale
0.183 · 10−3

Gatys et al. [1]
0.054 · 10−3

0.434 · 10−3 0.222 · 10−3 0.939 · 10−3

2.520 · 10−3 3.414 · 10−3 12.926 · 10−3

0.684 · 10−3 0.134 · 10−3 0.121 · 10−3

0.109 · 10−3 0.041 · 10−3 0.040 · 10−3

0.762 · 10−3 0.305 · 10−3 0.039 · 10−3

5.827 · 10−3 0.135 · 10−3 0.174 · 10−3

0.218 · 10−3 0.127 · 10−3 0.054 · 10−3

1.444 · 10−3 0.302 · 10−3 0.372 · 10−3

0.118 · 10−3 0.056 · 10−3 0.136 · 10−3

Figure 4: Each row shows the reference texture (left, gray background) and three samples that were
synthesized from different (random) initial images using three different models: single-layer network
with 1024 feature maps and random 11x11 filters; multi-scale single layer network with filters of
sizes f × f , where f = {3, 5, 7, 11, 15, 23, 37, 55} and 128 feature maps correspond to filters of each
size; and the VGG-based model (Gatys et al., 2015a). Numbers above figures show the values of the
normalized VGG-loss (7) for corresponding textures.

7

Published as a conference paper at ICLR 2017

7 DISCUSSION

We proposed a generative model of natural textures based on a single-layer convolutional neural
network with completely random filters and showed that the model is able to qualitatively capture
the perceptual differences between natural textures. Samples from the model often rival the current
state-of-the-art (Gatys et al., 2015a) (Fig. 4, third vs fourth row), even though the latter relies on a
high-performance deep neural network with features that are tuned to the statistics of natural images.
Seen more broadly, this finding suggests that natural image generation does not necessarily depend on
deep hierarchical representations or on the training of the feature maps. Instead, for texture synthesis,
both aspects rather seem to serve as fine-tuning of the image representation.

One concern about the proposed single-layer multi-scale model is its computational inefficiency since
it involves convolutions with spatially large filters (up to 55× 55). A more efficient way to achieve
receptive fields of similar size would be to use a hierarchical multi-layer net. We conducted extensive
experiments with various hierarchical architectures and while the synthesis is indeed significantly
faster, the quality of the synthesized textures does not improve compared to a single-layer model.
Thus for a minimal model of natural textures, deep hierarchical representations are not necessary but
they can improve the efficiency of the texture synthesis.

Our results clearly demonstrate that Gram matrices computed from the feature maps of convolutional
neural networks generically lead to useful summary statistics for texture synthesis. The Gram matrix
on the feature maps transforms the representations from the convolutional neural network into a
stationary feature space that captures the pairwise correlations between different features. If the
number of feature maps is large, then the local structures in the image are well preserved in the
projected space and the overlaps of the convolutional filtering add additional constraints. At the
same time, averaging out the spatial dimensions yields sufficient flexibility to generate entirely new
textures that differ from the reference on a patch by patch level, but still share much of the small- and
long-range statistics.

The success of shallow convolutional networks with random filters in reproducing the structure
of the reference texture is remarkable and indicates that they can be useful for parametric texture
synthesis. Besides reproducing the stationary correlation structure of the reference image ("perceptual
similarity") another desideratum of a texture synthesis is to exhibit a large variety between different
samples generated from the same given image ("variability"). Hence, synthesis algorithms need to
balance perceptual similarity and variability. This balance is determined by a complex interplay
between the choice of summary statistics and the optimization algorithm used. For example the
stopping criterion of the optimization algorithm can be adjusted to trade perceptual similarity for
larger variability.

Finding the right balance between perceptual similarity and variability is challenging because we
are currently lacking robust measures of these quantities. In this work we introduced VGG-loss
as a measure of perceptual similarity, and, even though, it works much better than other common
measures such as Structural Similarity Index (SSIM, Wang et al., 2004, see Appendix A, Figure 6)
or Euclidean distance in the pixel space (not shown), it is still not perfect (Figure 4). Measuring
variability is probably even more difficult: in principle it requires measuring the entropy of generated
samples, which is intractable in a high-dimensional space. A different approach could be based
on a psychophysical assessment of generated samples. For example, we could use an inpainting
task (illustrated in Appendix A, Figure 7) to make human observers decide between actual texture
patches and inpaited ones. Performance close to a chance-level would indicate that the texture model
produces variable enough samples to capture the diversity of actual patches. The further exploration
of variability measures lies, however, beyond the scope of this work.

In this paper we focused on maximizing perceptual similarity only, and it is worth pointing out that
additional efforts will be necessary to find an optimal trade-off between perceptual similarity and
variability. For the synthesis of textures from the random models considered here, the trade-off
leans more towards perceptual similarity in comparison to Gatys et al. (2015a)(due to the simpler
optimization) which also explains the superior performance on some samples. In fact, we found some
anecdotal evidence (not shown) in deeper multi-layer random CNNs where the reference texture was
exactly reconstructed during the synthesis. From a theoretical point of view this is likely a finite
size effect which does not necessarily constitute a failure of the chosen summary statistics: for finite
size images it is well possible that only the reference image can exactly reproduce all the summary

8

Published as a conference paper at ICLR 2017

statistics. Therefore, in practice, the Gram matrices are not treated as hard constraints but as soft
constraints only. More generally, we do not expect a perceptual distance metric to assign exactly
zero to a random pair of patches from the same texture. Instead, we expect it to assign small values
for pairs from the same texture, and large values for patches from different textures. Therefore, the
selection of constraints is not sufficient to characterize a texture synthesis model but only determines
the exact minima of the objective function (which are sought for by the synthesis). If we additionally
consider images with small but non-zero distance to the reference statistics, then the set of equivalent
textures increases substantially, and the precise composition of this set becomes critically dependent
on the perceptual distance metric.

Mathematically, parametric texture synthesis models are described as ergodic random fields that have
maximum entropy subject to certain constraints Zhu et al. (1997); Bruna & Mallat (2013); Zhu et al.
(2000) (MaxEnt framework). Practical texture synthesis algorithms, however, always deal with finite
size images. As discussed above, two finite-size patches from the same ergodic random field will
almost never feature the exact same summary statistics. This additional uncertainty in estimating the
constraints on finite length processes is not thoroughly accounted for by the MaxEnt framework (see
discussion on its “ad hockeries” by Jaynes (Jaynes (1982))). Thus, a critical difference of practical
implementations of texture synthesis algorithms from the conceptual MaxEnt texture modeling
framework is that they genuinely allow a small mismatch in the constraints. Accordingly, specifying
the summary statistics is not sufficient but a comprehensive definition of a texture synthesis model
should specify:

1. A metric d(x,y) that determines the distance between any two arbitrary textures x,y.

2. A bipartition Px of the image space that determines which images are considered percep-
tually equivalent to a reference texture x. A simple example for such a partition is the
ǫ-environment Uǫ(y) := {y : d(y,x) < ǫ} and its complement.

This definition is relevant for both under- as well as over-constrained models, but its importance
becomes particularly obvious for the latter. According to the Minimax entropy principle for texture
modeling suggested by Zhu et al Zhu et al. (1997), as many constraints as possible should be used to
reduce the (Kullback-Leibler) divergence between the true texture model and its estimate. However,
for finite spatial size, the synthetic samples become exactly equivalent to the reference texture (up to
shifts) in the limit of sufficiently many independent constraints. In contrast, if we explicitly allow
for a small mismatch between the summary statistics of the reference image and the synthesized
textures, then the set of possible textures does not constitute a low-dimensional manifold but rather
a small volume within the pixel space. Alternatively, instead of introducing an ǫ-environment it is
also possible to extent the MaxEnt framework to allow for variability in the summary statistics (Joan
Bruna, personal communication). It will be interesting to compare in the future to what extent the
difference between the two approaches can lead to differences in the perceptual appearance of the
textures.

Taken together we have shown that simple single-layer CNNs with random filters can serve as the
basis for excellent texture synthesis models that outperform previous hand-crafted synthesis models
and sometimes even rivals the current state-of-the-art. This finding repeals previous observations that
suggested a critical role for the multi-layer representations in trained deep networks for natural texture
generation. On the other hand, it is not enough to just use sufficiently many constraints as one would
predict from the MaxEnt framework. Instead, for the design of good texture synthesis algorithms it
will be crucial to find distance measures for which the ǫ-environment around the reference texture
leads to perceptually satisfying results. In this way, building better texture synthesis models is
inherently related to better quantitative models of human perception.

REFERENCES

M. Aittala, T. Aila, and J. Lehtinen. Reflectance modeling by neural texture synthesis. ACM
Transactions on Graphics, 35, 2016.

G. Berger and R. Memisevic. Incorporating long-range consistency in cnn-based texture generation.
Jun 2016.

9

Published as a conference paper at ICLR 2017

Joan Bruna and Stéphane Mallat. Audio texture synthesis with scattering moments. CoRR,
abs/1311.0407, 2013. URL http://dblp.uni-trier.de/db/journals/corr/
corr1311.html#BrunaM13.

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. InfoGAN: Interpretable
Representation Learning by Information Maximizing Generative Adversarial Nets. ArXiv e-prints,
June 2016.

Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae Sønderby, Daniel Nouri,
Daniel Maturana, Martin Thoma, and other contributors. Lasagne: First release., August 2015.
URL http://dx.doi.org/10.5281/zenodo.27878.

L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis using convolutional neural networks.
In Advances in Neural Information Processing Systems 28, May 2015a. URL http://arxiv.
org/abs/1505.07376.

L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of artistic style. Aug 2015b. URL
http://arxiv.org/abs/1508.06576.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS’10)., 2010.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative Adversarial Networks. ArXiv e-prints, June 2014.

David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthesis. In Proceedings of the
22Nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pp.
229–238, New York, NY, USA, 1995. ACM. ISBN 0-89791-701-4. doi: 10.1145/218380.218446.
URL http://doi.acm.org/10.1145/218380.218446.

E.T. Jaynes. On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70(9):939–952,
Sept. 1982. ISSN 0018-9219.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European Conference on Computer Vision, 2016.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python,
2001–. URL http://www.scipy.org/. [Online; accessed 2016-05-12].

B. Julesz. Visual pattern discrimination. IRE Transactions on Information Theory, 8(2):84–92,
February 1962. ISSN 0096-1000. doi: 10.1109/TIT.1962.1057698.

G. Liu, Y. Gousseau, and G. Xia. Texture synthesis through convolutional neural networks and
spectrum constraints. May 2016.

Javier Portilla and Eero P. Simoncelli. A parametric texture model based on joint statistics of complex
wavelet coefficients. Int. J. Comput. Vision, 40(1):49–70, October 2000. ISSN 0920-5691. doi:
10.1023/A:1026553619983. URL http://dx.doi.org/10.1023/A:1026553619983.

Ron Rubinstein, Michael Zibulevsky, and Michael Elad. Efficient implementation of the k-svd
algorithm using batch orthogonal matching pursuit, 2009.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

Theano Development Team. Theano: A Python framework for fast computation of mathematical
expressions. arXiv e-prints, abs/1605.02688, May 2016. URL http://arxiv.org/abs/
1605.02688.

10

Published as a conference paper at ICLR 2017

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky. Texture Networks: Feed-
forward Synthesis of Textures and Stylized Images. arXiv:1603.03417 [cs], March 2016. URL
http://arxiv.org/abs/1603.03417. arXiv: 1603.03417.

A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel Recurrent Neural Networks. ArXiv
e-prints, January 2016a.

A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K. Kavukcuoglu.
Conditional Image Generation with PixelCNN Decoders. ArXiv e-prints, June 2016b.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Song Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy principle and its application
to texture modeling. Neural Computation, 9(8):1627–1660, 1997.

Song Chun Zhu, Xiuwen Liu, and Ying Nian Wu. Exploring texture ensembles by efficient markov
chain monte carlo-toward a ’trichromacy’ theory of texture. IEEE Trans. Pattern Anal. Mach. Intell.,
22(6):554–569, 2000. doi: 10.1109/34.862195. URL http://dx.doi.org/10.1109/34.
862195.

11

Published as a conference paper at ICLR 2017

A APPENDIX

Original VGG, 0.022 · 10−3 Multi-scale, 0.077 · 10−3 Multi + VGG, 0.003 · 10−3

Original VGG, 0.068 · 10−3 Multi-scale, 0.071 · 10−3 Multi + VGG, 0.002 · 10−3

Original VGG, 12.924 · 10−3 Multi-scale, 3.413 · 10−3 Multi + VGG, 0.017 · 10−3

Original VGG, 0.136 · 10−3 Multi-scale, 0.056 · 10−3 Multi + VGG, 0.011 · 10−3

Figure 5: Initializing VGG-synthesis with a sample from the random multi-scale model. The first
column shows the original textures, the second and third columns show samples from the standard
VGG-based synthesis (random initialization) (Gatys et al., 2015a) and the random multi-scale model.
The last column shows samples from the VGG-based model, which was initialized with samples from
the random multi-scale model (from column 3). On top of all samples we report the corresponding
values of the VGG-loss (7). Empirically, the VGG loss is up to two orders of magnitude lower in the
last column relative to the standard VGG synthesis.

12

Published as a conference paper at ICLR 2017

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

SSIM loss

0.75 0.8 0.85 0.9 0.95 1.0

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Gatys et al.

-3 -2 -1 0 1

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Random-1024, 11x11

-3 -2 -1 0 1

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Random multi-scale

-3 -2 -1 0 1

Figure 6: Similarity measures between textures computed using the structural similarity index on
the pixels (SSIM, left column) and normalized euclidean distances in the feature spaces of VGG
(second column) and two shallow texture models (third and fourth column). Ten random patches
were extracted from each of ten different textures (examples of patches are shown in top row). The
matrix element (i, j) of each similarity matrix corresponds to the median distance between patches
from textures i and j. The values for all but the SSIM matrix are shown on a log-scale.

VGG

400 x 400
(first row — regular samples,

second row — from the estimate)

10% initial condition Regular sample 256 x 256 crop 15% initial condition Regular sample 256 x 256 crop 20% initial condition Regular sample 256 x 256 crop

Original 10% initial condition Estimate sample 256 x 256 crop 15% initial condition Estimate sample 256 x 256 crop 20% initial condition Estimate sample 256 x 256 crop

Multi-scale

400 x 400
(first row — regular samples,

second row — from the estimate)

10% initial condition Regular sample 256 x 256 crop 15% initial condition Regular sample 256 x 256 crop 20% initial condition Regular sample 256 x 256 crop

Original 10% initial condition Estimate sample 256 x 256 crop 15% initial condition Estimate sample 256 x 256 crop 20% initial condition Estimate sample 256 x 256 crop

Figure 7: Examples of inpainted textures for the VGG model (Gatys et al., 2015a, , two top rows) and
random multi-scale model (two bottom rows). Textures were inpainted starting from three different
initial conditions (10 %, 15 %, 20 % corresponding to the width of the frame used for initialization),
and for each initial condition the texture was inpainted either by matching the Gram matrix of the
patch used for initializing the frame (regular sample) or by matching the Gram matrix estimated over
many (500) randomly extracted patches from the texture (estimate sample).

13

Presented at the ICLR 2020 workshop “Causal learning for decision making”

TOWARDS CAUSAL GENERATIVE SCENE MODELS
VIA COMPETITION OF EXPERTS

Julius von Kügelgen∗†1,2, Ivan Ustyuzhaninov∗†3,
Peter Gehler‡4, Matthias Bethge‡3,4, Bernhard Schölkopf‡1,4
1Max Planck Institute for Intelligent Systems Tübingen, Germany
2Department of Engineering, University of Cambridge, United Kingdom
3University of Tübingen, Germany
4Amazon Tübingen, Germany
{jvk,bs}@tuebingen.mpg.de,
{ivan.ustyuzhaninov,matthias.bethge}@bethgelab.org,
pgehler@amazon.com

ABSTRACT

Learning how to model complex scenes in a modular way with recombinable
components is a pre-requisite for higher-order reasoning and acting in the physical
world. However, current generative models lack the ability to capture the inherently
compositional and layered nature of visual scenes. While recent work has made
progress towards unsupervised learning of object-based scene representations, most
models still maintain a global representation space (i.e., objects are not explicitly
separated), and cannot generate scenes with novel object arrangement and depth
ordering. Here, we present an alternative approach which uses an inductive bias
encouraging modularity by training an ensemble of generative models (experts).
During training, experts compete for explaining parts of a scene, and thus specialise
on different object classes, with objects being identified as parts that re-occur
across multiple scenes. Our model allows for controllable sampling of individual
objects and recombination of experts in physically plausible ways. In contrast to
other methods, depth layering and occlusion are handled correctly, moving this
approach closer to a causal generative scene model. Experiments on simple toy data
qualitatively demonstrate the conceptual advantages of the proposed approach.

1 INTRODUCTION

Proposed in the early days of computer vision Grenander (1976); Horn (1977), analysis-by-synthesis
is an approach to the problem of visual scene understanding. The idea is conceptually elegant and
appealing: build a system that is able to synthesize complex scenes (e.g., by rendering), and then
understand analysis (inference) as the inverse of this process that decomposes new scenes into their
constituent components. The main challenges in this approach are the need for generative models of
objects (and their composition into scenes) and the need to perform tractable inference given new
inputs, including the task to decompose scenes into objects in the first place. In this work, we aim to
learn such as system in an unsupervised way from observations of scenes alone.

While models such as VAEs (Kingma & Welling, 2014; Rezende et al., 2014) and GANs (Goodfellow
et al., 2014) constitute significant progress in generative modelling, these models still lack the ability
to capture the compositional nature of reality: they typically generate entire images or scenes at
once, i.e., with a single pass through a large feedforward network. While this approach works well
for objects such as centred faces—and progress has been impressive on those tasks Karras et al.
(2019a;b)—generating natural scenes containing several objects in non-trivial constellations gets
increasingly difficult within this framework due to the combinatorial number of compositions that
need to be represented and reasoned about (Bau et al., 2019).
∗Equal contribution
†Work done during an internship at Amazon Research Tübingen
‡Joint senior author

1

ar
X

iv
:2

00
4.

12
90

6v
1

 [
st

at
.M

L
]

 2
7

A
pr

 2
02

0

Presented at the ICLR 2020 workshop “Causal learning for decision making”

A

B

C

Figure 1: Our ECON model learns to decompose
training scenes (A) into layers of inpainted objects.
Representing object classes separately allows con-
trollable sampling of individual objects (B: sam-
ples from different experts) which can be recom-
bined in novel ways (C: compositions sampled by
layering the experts in B in the same order as seen
during training (top), or choosing three (middle) or
four (bottom) objects at random).

Image formation entangles different components
in highly non-linear ways, such as occlusion.
Due to the difficulty of choosing the correct
model and the complexity of inference, the task
to generate complex scenes containing composi-
tions of objects still lacks success stories. More
training data certainly helps, and progress on
generating visually impressive scenes has been
substantial Radford et al. (2015), but we hy-
pothesize that a satisfactory and robust solution
that is not optimized to a relatively well con-
strained IID (independent and identically dis-
tributed) data scenario will require that our mod-
els correctly incorporate the (causal) generative
nature of natural scenes.

Here, we take some first small steps towards
addressing the aforementioned limitations by
proposing ECON, a more physically-plausible
generative scene model with explicitly compo-
sitional structure. Our approach is based on two
main ideas. The first is to consider scenes as lay-
ered compositions of (partially) depth-ordered
objects. The second is to represent object classes
separately using an ensemble of generative mod-
els, or experts.

Our generative scene model consists of a sequen-
tial process which places independent objects in
the scene, operating from the back to the front,
so that objects occurring closer to the viewer can
occlude those further away. During inference,
this process is reversed: at each step, experts compete for explaining part of the remaining scene,
and only the winning expert is further trained on the explained part (Parascandolo et al., 2018). This
competition ideally drives each expert to specialise on representing and generating instances from
one, or a few related, object classes or concepts, and the notion of “objects” should automatically
emerge as contiguous regions that appear in a stable way across a range of training images. By
decomposing scenes in the reverse order of generation, occluded objects can be inpainted within the
already explained regions so that experts can learn to generate full, unoccluded objects which can be
recombined in novel ways.

Learning a modular scene representation via object-specific experts has several benefits. First, each
expert only needs to solve the simpler subtask of representing and generating instances from a single
object class—something which current generative models have been shown to be capable of—while
the composition process is treated separately. Secondly, expert models are useful in their own right as
they can be dropped or added, reused and repurposed for other tasks on an individual level.

We highlight the following contributions.

• We summarise a physically-plausible model of scene generation in §2 and use it to categorise
and contrast related scene models and their shortcomings in §3.

• In §4, we present ECON, a compositional scene model, which, for a single expert, can be
seen as extension of MONET (Burgess et al., 2019) into a proper generative model (§5.1).

• We introduce modular object representations through separate generators and propose a
competition mechanism and objective to drive experts to specialise in §5.2.

• In experiments on synthetic data in §6 we show qualitatively that ECON is able to decompose
simple scenes into objects, represent these separately, and recombine them in a layer-wise
fashion into novel, coherent scenes with arbitrary numbers and depth-orderings of objects.

• We critically discuss our assumptions and propose extensions for future work in §7.

2

Presented at the ICLR 2020 workshop “Causal learning for decision making”

(a) layer-wise composition

kt zt

mtxt

x

T

(b) graphical model view

Figure 2: Assumed data generating process (dead-leaves model). Independent objects xt with shapes
mt (drawn from class kt with properties zt) are placed on the canvas sequentially (reflecting depth
ordering) and appear in the final composition x as dependent, partially occluded regions rt.

2 THE LAYER-BASED MODEL OF VISUAL SCENES

To reflect the fact that 2D images are the result of projections of richer 3D scenes, we assume that
data are generated from the well-known dead leaves model,1 i.e., in a layer-wise fashion, see Figure
2a for an illustration. Starting with an empty canvas x = 0, an image x ∈ [0, 1]D×3 is sequentially
generated in T steps. At each step we sample an object from one of K different classes and place it
on the canvas as follows,

for t = 1, ..., T :

kt ∼ p(kt), object class
zt ∼ p(zt), object properties
mt ∼ p(mt | zt, kt), shape
xt ∼ p(xt | zt, kt), appearance
x←mt � xt + (1−mt)� x, place on canvas

where kt ∈ {1, ...,K} represents the object class drawn at step t; zt ∈ RL is an abstract representation
of the object’s properties; mt ∈ {0, 1}D is a binary image determining shape; xt ∈ [0, 1]D×3 is
a full (unmasked) image containing the object; and � denotes element-wise multiplication. The
corresponding graphical model is shown in Figure 2b.2

This sequential generation process captures the loss of depth information when projecting from 3D to
2D and is a natural way of handling occlusion phenomena. Consequently, sampling from this model
is straightforward. We therefore consider it a more truthful approach to modelling visual scenes than,
e.g., spatial mixture models, in line with Le Roux et al. (2011).

On the other hand, inferring the objects composing a given image x is challenging. We will
distinguish between shapes and regions in the following sense. The unoccluded object shapes mt,
top row in Figure 2a, remain hidden and only appear in x via their corresponding, partially occluded
segmentation regions rt ∈ {0, 1}D, see the final composition in the bottom row of Figure 2a for an
illustration. In particular, a region rt is always subset of the corresponding shape pixels mt.

In addition to the separate treatment of shapes mt and regions rt, we also introduce a scope variable
st to help write the above model in a convenient form. Following Burgess et al. (2019), st ∈ {0, 1}D
is defined recursively as

sT := 1, st := st+1 � (1−mt+1) ∀t < T. (1)

The scope st at time t contains those parts of the image, which have been completely generated after
t steps and will not be occluded in the subsequent T − t steps.

With st, the regions rt can be compactly defined as

rt = r(mt, . . . ,mT) := st �mt, t = 1, . . . , T. (2)
1the name derives from the analogy of leaves falling onto a canvas, covering whatever is beneath them,
2W.l.o.g., we assume that the background corresponds to m1 � x1 with m1 = 1, see Figure 2a.

3

Presented at the ICLR 2020 workshop “Causal learning for decision making”

Using these, we can express the final composition as

x =
T∑

t=1

rt � xt. (3)

While (3) may look like a normal spatial mixture model, it is worth noting the following important
point: even though the shapes mt are drawn independently, the resulting segmentation regions rt
become (temporally) dependent due to the layer-wise generation process, i.e., the visible part of
object t depends on all objects subsequently placed on the canvas. This seems very intuitive and is
evident from the fact that the RHS of (2) is a function of mt:T .

3 RELATED WORK

Clustering & spatial mixture models One line of work (Greff et al., 2016; 2017; Van Steenkiste
et al., 2018) approaches the perceptual grouping task of decomposing scenes into components
by viewing separate regions rt as clusters. A scene x is modelled with a spatial mixture model,
parametrised by deep neural networks, in which learning is performed with a procedure akin to
expectation maximisation (EM; Dempster et al., 1977). The recent IODINE model of Greff et al. (2019)
instead uses a refinement network (Marino et al., 2018) to perform iterative amortised variational
inference over independent scene components which are separately decoded and then combined via
a softmax to form the scene. While IODINE is able to decompose a given scene, it cannot generate
coherent samples of new scenes because dependencies between regions rt due to layering are not
explicitly captured in its generative model.

This shortcoming of IODINE has also been pointed out by Engelcke et al. (2019) and addressed in
their GENESIS model, which explicitly models dependencies between regions via an autoregressive
prior over r1:T . While this does enable sampling of coherent scenes which look similar to training
data, GENESIS still assumes an additive, rather than layered, model of scene composition. As a
consequence, the resulting entangled component samples contain holes and partially occluded objects
and cannot be easily layered and recombined as shown in Figure 1 (e.g., to generate samples with
exactly two circles and one triangle).

Sequential models Our work is closely related to sequential or recurrent approaches to image
decomposition and generation (Mnih et al., 2014; Gregor et al., 2015; Eslami et al., 2016; Kosiorek
et al., 2018; Yuan et al., 2019). In particular, we build on the recent MONET model for scene
decomposition of Burgess et al. (2019). MONET combines a recurrent attention network with a VAE
which encodes and reconstructs the input within the selected attention regions rt while unconstrained
to inpaint occluded parts outside rt.

We extend this approach in two main directions. Firstly, we turn MONET into a proper generative
model3 which respects the layer-wise generation of scenes described in §2. Secondly, we explicitly
model the discrete variable k (object class) with an ensemble of class-specific VAEs (the experts)—as
opposed to within a single large encoder-decoder architecture as in IODINE, GENESIS or MONET.
Such specialisation allows to control object constellations in new, but scene-consistent ways.

Competition of experts To achieve specialisation on different object classes in our model, we
build on ideas from previous work using competitive training of experts (Jacobs & Jordan, 1991).
More recently, these ideas have been successfully applied to tasks such as lifelong learning (Aljundi
et al., 2017), learning independent causal mechanisms (Parascandolo et al., 2018), training mixtures
of generative models (Locatello et al., 2018), as well as to dynamical systems via sparsely-interacting
recurrent independent mechanisms (Goyal et al., 2019).

Probabilistic RBM models The work of Le Roux et al. (2011) and Heess (2012) introduced
probabilistic scene models that also reason about occlusion. Le Roux et al. (2011) combine restricted
Boltzmann machines (RBMs) to generate masks and shape separately for every object in the scenes
into a masked RBM (M-RBM) model. Two variants are explored: one that respects a depth ordering
and object occlusions, derived from similar arguments as we have put forward in the introduction;

3in its original form, it is a conditional model which does not admit a canonical way of sampling new scenes

4

Presented at the ICLR 2020 workshop “Causal learning for decision making”

Table 1: Comparison with related unsupervised scene decomposition and generation models.

MONET IODINE GENESIS M-RBM ECON

decompose scenes into objects and reconstruct 3 3 3 3 3

generate coherent scenes like training data 7 7 3 3 3

controllably recombine objects in novel ways 7 7 7 3 3

efficient (amortised) inference 3 3 3 7 3

and a second model which uses a softmax combination akin to the spatial mixture models used in
IODINE and GENESIS, although the authors argue it makes little sense from a modelling perspective.
Inference is implemented as blocked Gibbs sampling with contrastive divergence as a learning
objective. Inference over depth ordering is done exhaustively, that is, considering every permutation—
as opposed to greedily using competition as in this work. Shortcomings of the model are mainly
the limited expressiveness of RBMs (complexity and extent), as well as the cost of inference. Our
work can be understood as an extension of the M-RBM formulation using VAEs in combination with
attention, or segmentation, models.

Vision as inverse graphics & probabilistic programs Another way to programmatically intro-
duce information about scene composition is through analysis-by-synthesis, see Bever & Poeppel
(2010) for an overview. In this approach, the synthesis (i.e., generative) model is fully specified,
e.g., through a graphics renderer, and inference becomes the inverse task, which poses a challenging
optimisation problem. Probabilistic programming is often advocated as a means to automatically
compile this inference task; for instance, PICTURE has been proposed by Kulkarni et al. (2015),
and combinations with deep learning have been explored by Wu et al. (2017). This approach is
sometimes also understood as an instance of Approximate Bayesian Computation (ABC; Dempster
et al., 1977) or likelihood-free inference. While conceptually appealing, these methods require a
detailed specification of the scene generation process—something that we aim to learn in an unsuper-
vised way. Furthermore, gains achieved by a more accurate scene generation process are generally
paid for by complicated inference, and most methods thus rely on variations of MCMC sampling
schemes (Jampani et al., 2015; Wu et al., 2017).

Supervised approaches There is a body of work on augmenting generative models with ground-
truth segmentation and other supervisory information. Turkoglu et al. (2019) proposed a layer
based model to add objects onto a background, Ashual & Wolf (2019) proposed a scene-generation
method allowing for fine grained user control, Karras et al. (2019a;b) have achieved impressive image
generation results by exclusively training on a single class of objects. The key difference of these
approaches to our work is that we exclusively focus on unsupervised approaches.

4 ENSEMBLE OF COMPETING OBJECT NETS (ECON)

We now introduce ECON (for Ensemble of Competing Object Networks), a causal generative scene
model which explicitly captures the compositional nature of visual scenes. On a high level, the
proposed architecture is an ensemble of generative models, or experts, designed after the layer-based
scene model described in §2. During training, experts compete to sequentially explain a given
scene via attention over image regions, thereby specialising on different object classes. We perform
variational inference (Jordan et al., 1999), amortised within the popular VAE framework (Kingma &
Welling, 2014; Rezende et al., 2014), and use competition to greedily maximise a lower bound to the
conditional likelihood w.r.t. object identity.

4.1 GENERATIVE MODEL

We adopt the generative model p described in §2, parametrise it by θ, and assume that it factorises
over the graphical model in Figure 2b (i.e., assuming that objects at different time steps are drawn
independently of each other). We model p(kt) with a categorical distribution,4 and place a unit-

4though we will generally condition on kt, see §5 for details,

5

Presented at the ICLR 2020 workshop “Causal learning for decision making”

𝒙

𝒎!
(#)

𝒙!
(𝑲)

𝒎# !
(#)

𝑝#(𝒙,𝒎!
(#)|𝒛)𝑞#(𝒛|𝒙,𝒎!

(#)) ~	𝒛𝒙

𝒎!
(#)

𝒙!
(&)

𝒎# !
(#)

𝑝#(𝒙,𝒎!
(#)|𝒛)𝑞#(𝒛|𝒙,𝒎!

(#)) ~	𝒛𝒙	

𝒓!
(𝟏)

𝒙!
(()

𝒎!
(()

𝑝)! (𝒙! , 𝒎!|𝒛)𝑞*!(𝒛|𝒙,𝒓!
(()) ~	𝒛“attention”

𝑞+! (𝒓!|𝒙, 𝒔!)

𝒌 = 𝟏,… ,𝑲

Figure 3: ECON architecture: ensemble of K competing experts. Each expert consists of (i) an
attention network which selects image regions rt; (ii) an encoder which maps the image within the
attended region to a latent code z; and (iii) a decoder which reconstructs both an object xt and its
unoccluded shape mt. A competition mechanism determines the winning expert at each step.

variance isotropic Gaussian prior over zt,

p(zt) = p(z) = N (0, I) t = 1, . . . , T.

Next, we parametrise p(mt |k, z) and p(xt |k, z) using K decoders f1, . . . , fK : RL → [0, 1]D×3×
[0, 1]D with respective parameters θ1, . . . , θK .5 These compute object means and mask probabilities(
µθk(z), m̃θk(z)

)
= fk(z; θk) which determine pixel-wise distributions over mt and xt via

pθ(mt | z, k) = Bernoulli (m̃θk(z)) , (4)

pθ(xt | z, k) = N
(
xt | µθk(z), σ2

xI
)
, (5)

where t = 1, . . . , T and σ2
x is a constant variance.

We note at this point that, while other handlings of the discrete variable k are possible, we deliberately
opt for K separate decoders: (i) as an inductive bias encouraging modularity; and (ii) to be able to
controllably sample individual objects and recombine them in novel ways.

Finally, we need to specify a distribution over x. Due to its layer-wise generation, this is tricky and
most easily done in terms of the visible regions rt. From (3), (5), and linearity of Gaussians it follows
that, pixel-wise,

pθ(x | r1:T , z1:T , k1:T) = N
(
x
∣∣∣

T∑

t=1

rt � µθkt (zt), σ
2
xI
)
. (6)

Similarly, one can show from (1), (2), and (4) that rt depends on r(t+1):T only via st, and that

pθ(rt | st, z, k) = Bernoulli (st � m̃θk(z)) , (7)

for t = 1, . . . , T ; see Appendix A for detailed derivations.

The class-conditional joint distribution then factorises as,

pθ(x, r1:T , z1:T |k1:T) = pθ(x | r1:T , z1:T , k1:T)
T∏

t=1

pθ(rt | st, zt, kt)p(zt). (8)

Conditioning on k1:T is motivated by our inference procedure, see §5. Moreover, we express p in
terms of the segmentation regions rt as only these are visible in the final composition which makes
is easier to specify a distribution over x. Note, however, that while we will perform inference over
regions r1:T , we will learn to generate full shapes m1:T which are consistent with the inferred r1:T
when composed layer-wise as captured in (7), thus respecting the physical data-generating process.

5K is a hyperparameter (K– 1 object classes and background) which has to be chosen domain dependently.

6

Presented at the ICLR 2020 workshop “Causal learning for decision making”

4.2 APPROXIMATE POSTERIOR

Since exact inference is intractable in our model, we approximate the posterior over z1:T and r1:T
with the following variational distribution q parametrised by φ and ψ,

qφ,ψ(r1:T , z1:T | x, k1:T) =
T∏

t=1

qψ(rt | x, st, kt)qφ(zt | x, rt, kt).

As for the generative distribution, we model dependence on kt using K modules with separate
parameters {φ1, ψ1}, ..., {φK , ψK}. These inference modules consist of two parts.

Attention nets a1, ..., aK : [0, 1]D×3 × [0, 1]D → [0, 1]D compute region probabilities r̃ψk(x, s) =
ak(x, s;ψk) and amortise inference over regions rt via

qψ(rt | x, st, kt) = Bernoulli (r̃ψk(x, st)) ∀t. (9)

Encoders g1, ..., gK : [0, 1]D×3 × [0, 1]D → RL×2 compute means and log-variances(
µφk(x, rt), log σ

2
φk
(x, rt)

)
= gk(x, rt;φk) which parametrise distributions over zt via

qφ(zt | x, rt, k) = N
(
zt | µφk(x, rt), σ2

φk
(x, rt)I

)
∀t.

We refer to the collection of fk(· ; θk), ak(· ;ψk), and gk(· ;φk) for a given k as an expert as it
implements all computations (generation and inference) for a specific object class—see Figure 3 for
an illustration.

5 INFERENCE

Due to the assumed sequential generative process, the natural order of inference is the reverse
(t = T, . . . , 1), i.e., foreground objects should be explained first and the background last. This is also
captured by the dependence of rt on r(t+1):T via the scope st in qψ .

Such entanglement of scene components across composition steps makes inference over the entire
scene intractable. We therefore choose the following greedy approach. At each inference step
t = T, . . . , 1, we consider explanations from all possible object-classes (kt = 1, . . . ,K)—as
provided by our ensemble of experts via attending, encoding and reconstructing different parts of the
current scene—and then choose the best fitting one. This offers an intuitive foreground to background
decomposition of an image as foreground objects should be easier to reconstruct.

Concretely, we first lower bound the marginal likelihood conditioned on k1:T , pθ(x | k1:T), and
then use a competition mechanism between experts to determine the best k. We now describe this
inference procedure in more detail.

5.1 OBJECTIVE: CLASS-CONDITIONAL ELBO

First, we lower bound the class-conditional model evidence pθ(x | k1:T) using the approximate
posterior q as follows (see Appendix A for a detailed derivation):

log pθ(x | k1:T) ≥ L(θ, ψ, φ | k1:T) := −
T∑

t=1

Eqψ(st | x,k(t+1):T) (Lx,t + Lz,t + Lr,t) ,

Lx,t := Eqψ(rt|x,st,kt)qφ(zt | x,rt,kt)
[

rt
2σ2

x

�
(
x− µθkt (zt)

)2
]

Lz,t := Eqψ(rt|x,st,kt)DKL

(
qφ(zt|x, rt, kt)

∥∥∥ p(z)
)

Lr,t := Eqψ(rt|x,st,kt)qφ(zt|x,rt,kt)
[
log

qψ(rt|x, st, kt)
pθ(rt|st, zt, kt)

]

Next, we use the reparametrization trick of Kingma & Welling (2014) to replace expectations w.r.t.
qφ(zt | x, rt, kt) by a Monte Carlo estimate using a single sample drawn as:

z̃t = µφkt (x, rt) + σφkt (x, rt)� ε, ε ∼ N (0, I).

7

Presented at the ICLR 2020 workshop “Causal learning for decision making”

Finally, we approximate expectations w.r.t. qψ(rt | x, st, kt) in Lx,t and Lz,t using the Bernoulli
means r̃ψkt (x, st). We opt for directly using a continuous approximation and against sampling
discrete r’s (e.g., using continuous relaxations to the Bernoulli distribution (Maddison et al., 2017;
Jang et al., 2017)) as our generative model does not require the ability to directly sample regions.
(Instead, we sample z’s and decode them into unoccluded shapes which can be combined layer-wise
to form scenes.)

With these approximations, we obtain the estimates

L̂x,t :=
r̃ψkt (x, st)

2σ2
x

�
(
x− µθkt (z̃t)

)2
, (10)

L̂z,t := DKL

(
qφ
(
zt | x, r̃ψkt (x, st), kt

) ∥∥∥ p(z)
)
, (11)

L̂r,t := DKL

(
qψ(rt | x, st, kt)

∥∥∥ pθ(rt | st, z̃t, kt)
)
, (12)

which we combine to form the learning objective

L̂(θ, ψ, φ | k1:T) = −
T∑

t=1

(
L̂x,t + βL̂z,t + γL̂r,t

)
, (13)

where β, γ are hyperparameters. Note that for β, γ > 1, (13) still approximates a valid lower bound.

Generative model extension of MONET as a special case For K = 1 (i.e., ignoring different
object classes kt for the moment), our derived objective (13) is similar to that used by Burgess et al.
(2019). However, we note the following crucial difference in (12): in our model, reconstructed
attention regions m̃θk(z) are multiplied by st in the pθ term of the KL, see (7). This implies that the
generated shapes mt are constrained to match the attention region rt only within the current scope
st, so that—unlike in MONET—the decoder is not penalised for generating entire unoccluded object
shapes, allowing inpainting also on the level of masks. With just a single expert, our model can thus
be understood as a generative model extension of MONET.

5.2 COMPETITION MECHANISM

For K > 1, i.e., when explicitly modelling object classes with separate experts, the objective (13)
cannot be optimised directly because it is conditioned on the object identities k1:T . To address this
issue, we use the following competition mechanism between experts.

At each inference step t = T, . . . , 1, we apply all experts (kt = 1, . . . ,K) to the current input (x, st)
and declare that expert the winner which yields the best competition objective (see below).6 We then
use the winning expert k̂t to reconstruct the selected scene component using

xt = µθk̂t

(
z̃t(k̂t)

)
,

where z̃t(k̂t) is encoded from the region r̃ψk̂t
attended by the winning expert k̂t. We then compute

the contribution to (13) from step t assuming fixed k̂t, and use it to update the winning expert with a
gradient step. Finally, we update the scope using the winning expert,

st−1 = st �
(
1− r̃ψk̂t

(x, st)
)
, (14)

to allow for inpainting within the explained region in the following inference (decomposition) steps.7

This competition process can be seen as a greedy approximation to maximising (13) w.r.t. k1:T . While
considering all possible object combinations would require O(KT) steps, our competition procedure
is linear in the number of object classes and runs in O(K · T) steps. By choosing an expert at each
step t = T, . . . , 1, we approximate the expectation w.r.t. qψ(st | x, k(t+1):T)—which entangles the
different composition steps and makes inference intractable—using sT = 1 and the updates in (14).

6Applying all K experts can be easily parallelised.
7To ensure that the entire scene is explained in T steps, we use the final scope s1 as attention region for all

experts in the last inference step (t = 1), as also done in GENESIS and MONET.

8

Presented at the ICLR 2020 workshop “Causal learning for decision making”

Competition objective While model parameters are updated using the learning objective (13)
derived from the ELBO, the choice of competition objective is ours. Since we use competition to
drive specialisation of experts on different object classes and to greedily infer kt, (i.e., the identity
of the current foreground object), the competition objective should reflect such differences between
object classes. Object classes can differ in many ways (shape, color, size, etc) and to different extents,
so the choice of competition objective is data-dependent and may be informed by prior knowledge.

For instance, in the setting depicted in Figure 1 where both color and shape are class-specific, we
found that using a combination of L̂x,t and L̂rt worked well. However, on the same data with
randomised color (as used in the experiments in §6) it did not: due to the greedy optimisation
procedure, the expert which is initially best at reconstructing a particular color continues to win the
competition for explaining regions of that color and thus receives gradient updates to reinforce this
specialisation; such undesired specialisation corresponds to a local minimum in the optimisation
landscape and can be very hard for the model to escape.

We thus found that relying solely on L̂r,t as the competition objective (i.e., the reconstruction of the
attention region) helps to direct specialisation towards objects categories. In this case, experts are
chosen based on how well they can model shape, and only those experts which can easily reconstruct
(the shape of) a selected region within the current scope will do well at any given step, meaning that
the selected region corresponds to a foreground object.

Moreover, we found that using a stochastic, rather than deterministic form of competition, (i.e.,
experts win the competition with the probabilities proportional to their competition objectives at
a given step) helped specialisation. In particular, such approach helps prevent the collapse of the
experts in the initial stages of training.

Formally, the probability of expert k winning the competition is

P (k̂t = k) ∝ exp
{
−
(
λL̂x,t(k) + L̂r,t(k)

)}
,

with L̂x,t(k) and L̂r,t(k) being the terms in (13) at step t for an expert k. The hyper-parameter λ
controls the relative influence of the appearance and shape reconstruction objectives to make the
data-dependent assumptions about the competition mechanism as discussed above.

6 EXPERIMENTAL RESULTS

To explore ECON’s ability to decompose and generate new scenes, we conduct experiments on
synthetic data consisting of colored 2D objects or sprites (triangles, squares and circles) in different
occlusion arrangements. We refer to Appendix C for a detailed account of the used data set, model
architecture, choice of hyperparameters, and experimental setting. Further experiments can be found
in Appendix B.

ECON decomposes scenes and inpaints occluded objects Fig. 4 shows an example of how ECON
decomposes a scene with four objects. At each inference step, the winning expert segments a region
(second col.) within the unexplained part of the image (first col.), and reconstructs the selected object
within the attended region (fourth col.). A distinctive feature of our model is that, despite occlusion,
the full shape (rightmost col.) of every object is imputed (e.g., at step t′ = 4). This ability to infer
complete shapes is a consequence of the assumed layer-wise generative model which manifests itself
in our objective via the unconstrained shape reconstruction term (12).

ECON generalizes to novel scenes Fig. 4 also illustrates that that the model is capable of decom-
posing scenes containing multiple objects of the same category, as well as multiple objects of the
same color in separate steps. It does so for a scene with four objects, despite being trained on scenes
containing only three objects, one from each class.

Single expert as generative extension of MONET We also investigate training a single expert
which we claim to be akin to a generative extension of MONET. When trained on the data from Fig. 1
with ground truth masks provided, the expert learns to inpaint occluded shapes and objects as can be
seen from the samples in Fig. 5. However, all object classes are represented in a shared latent space
so that different classes cannot be sampled controllably.

9

Presented at the ICLR 2020 workshop “Causal learning for decision making”

input
 image

 (x)

reconstructed
 image

 (x)

t'=
1

remaining
 scope

 (st)

attention
 region

 (rt)

imputed
 component

 (xt)

masked
 component

 (rt xt)

imputed
 shape
 (mt)

t'=
2

t'=
3

t'=
4

t'=
5

Figure 4: By explaining away a scene from front to back, ECON can impute occluded components
xt (third column) and—crucially for layered generation and recombination—their shapes mt (fifth
column) within the already explained regions st (first column). Each inference step (t′ = T + 1− t)
shows only the winning expert’s output.

Figure 5: Random samples from a single expert (akin to a generative extension of MONET) trained
on the data from Fig. 1 with ground-truth masks provided. The model learns to separately generate
unoccluded objects and background, but lacks control over which object class is sampled.

Figure 6: Samples from individual experts trained on toy data with random colors (shown in top panel).
Experts (corresponding to rows in the bottom panel) specialise on triangles, circles, background, and
squares, respectively, but such specialisation based-purely on shape is significantly harder when color
is lost as a powerful cue. This is reflected, e.g., in the imperfect separation between squares and
circles, cf. Fig. 1.

10

Presented at the ICLR 2020 workshop “Causal learning for decision making”

Figure 7: Illustration of layer-wise sampling from ECON after training on our toy data with random
colors. Starting with a background sample, subsequent rows correspond to sampling additional
objects by randomly choosing one of the specialised object experts.

Multiple experts specialise on different object classes Fig. 1B shows samples from each of the
four experts trained on a dataset with uniquely colored objects (Fig. 1A). The samples from each
expert contain either the same object in different spatial positions or differently coloured background,
indicating that the experts specialised on the different object classes composing these scenes.

Fig. 6 shows the same plot for a model trained on scenes consisting of randomly colored objects. This
setting is considerably more challenging because experts have to specialise purely based on shape
while also representing color variations. Yet, experts specialise on different object classes: samples in
Fig. 6 are either randomly colored background or objects from mostly one class with different colours
and spatial positions, indicating that the ECON is capable of representing the scenes as compositions
of distinct objects in an unsupervised way.

Controlled and layered generation of new scenes The specialisation of experts allows us to
controllably generate new scenes with specific properties. To do so, we follow the sequential
generation procedure described in §2 by sampling from one of the experts at each time step. The
number of generation steps T , as well as the choices of experts k1:T allow to control the total number
and categories of objects in the generated scene.

Fig. 1C shows samples generated using the experts in Fig. 1B. In Fig. 7 we show another example
where more and more randomly colored objects are sequentially added. Even though the generated
scenes are quite simple, we believe this result is important as the ability to generate scenes in a
controlled way is a distinctive feature of our model, which current generative scene models lack.

7 DISCUSSION

Model assumptions While ECON aims at modelling scene composition in a faithful way, we
make a number of assumptions for the sake of tractable inference, which need to be revisited when
moving to more general environments. We assume a known (maximum) number of object classes
K which may be restrictive for realistic settings, and choosing K too small may force each expert
to represent multiple object classes. Other assumptions are that the pixel values are modelled as
normally distributed, even though they are discrete in the range {0, . . . , 255}, and that pixels are
conditionally independent given shapes and objects.

Shared vs. object-specific representations Recent work on unsupervised representation learning
(Bengio et al., 2013) has largely focused on disentangling factors of variation within a single shared
representation space, e.g., by training a large encoder-decoder architecture with different forms of
regularization (Higgins et al.; Kim & Mnih, 2018; Chen et al., 2018; Locatello et al., 2019). This is
motivated by the observation that certain (continuous) attributes such as position, size, orientation or
color are general concepts which transcend object-class boundaries. However, the range of values

11

Presented at the ICLR 2020 workshop “Causal learning for decision making”

of these attributes, as well as other (discrete) properties such as shape, can strongly depend on
object class. In this work, we investigate the other extreme of this spectrum by learning entirely
object-specific representations. Exploring the more plausible middle ground combining both shared
and object-specific representations is an attractive direction for further research.

Extensions and future work The goal of decomposing visual scenes into their constituents in
an unsupervised manner from images alone will likely remain a long standing goal of visual rep-
resentation learning. We have presented a model that recombines earlier ideas on layered scene
compositions, with more recent models of larger representational power, and unsupervised attention
models. The focus of this work is to establish physically plausible compositional models for an easy
class of images and to propose a model that naturally captures object-specific specialization.

With ECON and other models as starting point, a number of extensions are possible. One direction
of future work deals with incorporating additional information about scenes. Here, we consider
static, semantically-free images. Optical flow and depth information can be cues to an attention
process, facilitating segmentation and specialization. First results in the direction of video data have
been shown by Xu et al. (2019). Natural images typically carry semantic meaning and objects are
not ordered in arbitrary configurations. Capturing dependencies between objects (e.g., using an
auto-regressive prior over depth ordering as in GENESIS), albeit challenging, could help disambiguate
between scene components. Another direction of future work is to relax the unsupervised assumption,
e.g., by exploring a semi-supervised approach, which might help improve stability.

On the modelling side, extensions to recurrent architectures and iterative refinement as in IODINE
appear promising. Our model entirely separates experts from each other but, depending on object
similarity, one can also include shared representations which will help transfer already learned
knowledge to new experts in a continual learning scenario.

8 CONCLUSION

While the scenes studied here and in the recent works of Burgess et al. (2019); Greff et al. (2019);
Engelcke et al. (2019) are still in stark contrast to the impressive results that holistic generative models
are able to achieve, we believe it is the right time to revisit the unsupervised scene composition
problem. Our goal is to build re-combineable systems, where different components can be used for
new scene inference tasks. In the spirit of the analysis-by-synthesis approach, this requires the ability
to re-create physically plausible visual scenes. Disentangling the scene formation process from the
objects is one crucial component thereof, and the vast number of object types will require the ability
of unsupervised learning from visual input alone.

ACKNOWLEDGEMENTS

The authors would like to thank Alex Smola, Anirudh Goyal, Muhammad Waleed Gondal, Chris
Russel, Adrian Weller, Neil Lawrence, and the Empirical Inference “deep learning & causality” team
at the MPI for Intelligent Systems for helpful discussions and feedback.

M.B. and B.S. acknowledge support from the German Science Foundation (DFG) through the
CRC 1233 “Robust Vision” project number 276693517, the German Federal Ministry of Education
and Research (BMBF) through the Tbingen AI Center (FKZ: 01IS18039A), and the DFG Cluster
of Excellence “Machine Learning New Perspectives for Science” EXC 2064/1, project number
390727645.

12

Presented at the ICLR 2020 workshop “Causal learning for decision making”

REFERENCES

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with
a network of experts. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3366–3375, 2017.

Oron Ashual and Lior Wolf. Specifying object attributes and relations in interactive scene generation.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 4561–4569, 2019.

David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei Zhou, and Antonio
Torralba. Seeing what a gan cannot generate. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 4502–4511, 2019.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Thomas G. Bever and David Poeppel. Analysis by synthesis: A (re-)emerging program of research
for language and vision. Biolinguistics, 4(2):174–200, 2010.

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,
and Alexander Lerchner. Monet: Unsupervised scene decomposition and representation. arXiv
preprint arXiv:1901.11390, 2019.

Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentan-
glement in variational autoencoders. In Advances in Neural Information Processing Systems, pp.
2610–2620, 2018.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Gener-
ative scene inference and sampling with object-centric latent representations. arXiv preprint
arXiv:1907.13052, 2019.

SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E Hinton,
et al. Attend, infer, repeat: Fast scene understanding with generative models. In Advances in
Neural Information Processing Systems, pp. 3225–3233, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Schölkopf. Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893, 2019.

Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hao, Harri Valpola, and Jürgen Schmidhuber.
Tagger: Deep unsupervised perceptual grouping. In Advances in Neural Information Processing
Systems, pp. 4484–4492, 2016.

Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization. In
Advances in Neural Information Processing Systems, pp. 6691–6701, 2017.

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. In International Conference on Machine Learning, pp.
2424–2433, 2019.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. Draw: A recurrent
neural network for image generation. In International Conference on Machine Learning, pp.
1462–1471, 2015.

Ulf Grenander. Pattern synthesis – lectures in pattern theory. 1976.

13

Presented at the ICLR 2020 workshop “Causal learning for decision making”

Nicolas Manfred Otto Heess. Learning generative models of mid-level structure in natural images.
PhD thesis, 2012.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework.

Berthold K. P. Horn. Understanding image intensities. Artifical Intelligence, 8:201–231, 1977.

Robert A Jacobs and Michael I Jordan. A competitive modular connectionist architecture. In
Advances in neural information processing systems, pp. 767–773, 1991.

Varun Jampani, Sebastian Nowozin, Matthew Loper, and Peter V. Gehler. The informed sampler: A
discriminative approach to bayesian inference in generative computer vision models. Computer
Vision and Image Understanding, 136:32 – 44, 2015. ISSN 1077-3142.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumbel-softmax. In
International Conference on Learning Representations (ICLR 2017). OpenReview. net, 2017.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 37(2):183–233, 1999.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4401–4410, 2019a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. arXiv preprint arXiv:1912.04958, 2019b.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. arXiv preprint arXiv:1802.05983,
2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequential attend, infer, repeat:
Generative modelling of moving objects. In Advances in Neural Information Processing Systems,
pp. 8606–8616, 2018.

T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, and V. Mansinghka. Picture: A probabilistic programming
language for scene perception. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4390–4399, June 2015. doi: 10.1109/CVPR.2015.7299068.

Nicolas Le Roux, Nicolas Heess, Jamie Shotton, and John Winn. Learning a generative model of
images by factoring appearance and shape. Neural Computation, 23(3):593–650, 2011.

Francesco Locatello, Damien Vincent, Ilya Tolstikhin, Gunnar Rätsch, Sylvain Gelly, and Bernhard
Schölkopf. Competitive training of mixtures of independent deep generative models. arXiv preprint
arXiv:1804.11130, 2018.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised learning of dis-
entangled representations. In International Conference on Machine Learning, pp. 4114–4124,
2019.

C Maddison, A Mnih, and Y Teh. The concrete distribution: A continuous relaxation of discrete
random variables. International Conference on Learning Representations, 2017.

Joe Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference. In International
Conference on Machine Learning, pp. 3403–3412, 2018.

14

Presented at the ICLR 2020 workshop “Causal learning for decision making”

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In
Advances in neural information processing systems, pp. 2204–2212, 2014.

Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla, and Bernhard Schölkopf. Learning
independent causal mechanisms. In International Conference on Machine Learning, pp. 4036–
4044, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. 2019.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International Conference on Machine
Learning, pp. 1278–1286, 2014.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp.
234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4.

Mehmet Ozgur Turkoglu, William Thong, Luuk Spreeuwers, and Berkay Kicanaoglu. A layer-based
sequential framework for scene generation with gans. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 8901–8908, 2019.

Sjoerd Van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational neural
expectation maximization: Unsupervised discovery of objects and their interactions. arXiv preprint
arXiv:1802.10353, 2018.

Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-rendering. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 699–707, 2017.

Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William T Freeman, Joshua B Tenenbaum,
and Jiajun Wu. Unsupervised discovery of parts, structure, and dynamics. arXiv preprint
arXiv:1903.05136, 2019.

Jinyang Yuan, Bin Li, and Xiangyang Xue. Generative modeling of infinite occluded objects
for compositional scene representation. In International Conference on Machine Learning, pp.
7222–7231, 2019.

15

Presented at the ICLR 2020 workshop “Causal learning for decision making”

A DERIVATIONS

A.1 DERIVATION OF ELBO

We now provide a detailed derivation of the evidence lower bound (ELBO) used in the main paper.
For ease of notation we use vector notation and omit explicitly summing over pixel- and latent
dimensions (as done in the implementation).

We start by writing pθ(x|k1:T) as an expectation w.r.t. q using importance sampling as follows:

pθ(x|k1:T) = Epθ(r1:T ,z1:T |k1:T)
[
pθ(x|r1:T , z1:T , k1:T)

]

= Eqφ,ψ(r1:T ,z1:T |x,k1:T)

[
pθ(x, r1:T , z1:T |k1:T)
qφ,ψ(r1:T , z1:T |x, k1:T)

]
.

Applying the concave function log(·) and using Jensen’s inequality we obtain

log pθ(x|k1:T) ≥ Eqφ,ψ(r1:T ,z1:T |x,k1:T)

[
log

pθ(x, r1:T , z1:T |k1:T)
qφ,ψ(r1:T , z1:T |x, k1:T)

]
. (A.1)

Using the chain rule of probability and properties of log(·), we can rearrange the integrand on the
RHS of (A.1) as

log pθ(x|r1:T , z1:T , k1:T)− log
qψ(r1:T |x, k1:T)
pθ(r1:T |z1:T , k1:T)

− log
qφ(z1:T |x, r1:T , k1:T)

pθ(z1:T |k1:T)
. (A.2)

We will consider the three terms in (A.2) separately and define their expectations w.r.t. the approximate
posterior as

Lx(θ, ψ, φ|k1:T) := Eqφ,ψ(r1:T ,z1:T |x,k1:T)

[
log pθ(x|r1:T , z1:T , k1:T)

]
,

Lr(θ, ψ, φ|k1:T) := Eqφ,ψ(r1:T ,z1:T |x,k1:T)

[
− log

qψ(r1:T |x, k1:T)
pθ(r1:T |z1:T , k1:T)

]
,

Lz(θ, ψ, φ|k1:T) := Eqφ,ψ(r1:T ,z1:T |x,k1:T)

[
− log

qφ(z1:T |x, r1:T , k1:T)
pθ(z1:T |k1:T)

]
.

Next, we use our modelling assumptions stated in the paper to simplify these terms, starting with Lz.

Using the assumed factorisation of the approximate posterior, in particular qψ(rt|x, r(t+1):T , kt) =
qψ(rt|x, st, kt), as well as the fact that pθ(zt|kt) = p(z), splitting the expectation into two parts, and
using linearity of the expectation operator, we find that Lz can be written as follows:

Lz(ψ, φ|k1:T) = Eqψ(r1:T |x,k1:T)

[
Eqφ(z1:T |x,r1:T ,k1:T)

[
−

T∑

t=1

log
qφ(zt|x, rt, kt)

p(z)

]]

= −
T∑

t=1

Eqψ(rt:T |x,kt:T)

[
Eqφ(zt|x,rt,kt)

[
log

qφ(zt|x, rt, kt)
p(z)

]]

= −
T∑

t=1

Eqψ(st|x,k(t+1):T)Eqψ(rt|x,st,kt)

[
DKL

(
qφ(zt|x, rt, kt)

∥∥∥ p(z)
)]
.

Next, we consider Lr. Using a similar argument as for Lz, we find that

Lr(θ, ψ, φ|k1:T) = Eqψ(r1:T |x,k1:T)

[
Eqφ(z1:T |x,r1:T ,k1:T)

[
−

T∑

t=1

log
qψ(rt|x, st, kt)
pθ(rt|st, zt, kt)

]]

= −
T∑

t=1

Eqψ(st|x,k(t+1):T)Eqψ(rt|x,st,kt)

[
Eqφ(zt|x,rt,kt)

[
log

qψ(rt|x, st, kt)
pθ(rt|st, zt, kt)

]]
.

16

Presented at the ICLR 2020 workshop “Causal learning for decision making”

Finally, we consider Lx. Substituting the Gaussian likelihood for pθ(x|r1:T , z1:T , k1:T), ignoring
constants which do not depend on any learnable parameters, and using the fact that rt is binary and∑T
t=1 rt = 1, we obtain

Lx(θ, ψ, φ|k1:T) = Eqψ(r1:T |x,k1:T)

[
Eqφ(z1:T |x,r1:T ,k1:T)

[
− 1

2σ2
x

∥∥∥x−
T∑

t=1

rt � µθkt (zt)
∥∥∥
2
]]

= − 1

2σ2
x

Eqψ(r1:T |x,k1:T)

[
Eqφ(z1:T |x,r1:T ,k1:T)

[T∑

t=1

rt �
∥∥x− µθkt (zt)

∥∥2
]]

= −
T∑

t=1

1

2σ2
x

Eqψ(st|x,k(t+1):T)Eqψ(rt|x,st,kt)

[
rt � Eqφ(zt|x,rt,kt)

[∥∥x− µθkt (zt)
∥∥2
]]
,

where ‖ · ‖2 denotes the pixel-wise L2-norm between two RGB vectors. (Recall that Lx, Lr, and Lz

are defined as quantities in RD, RD, and RL, respectively, and that summation over these dimensions
yields the desired scalar objective.)

We observe that Lx, Lr, and Lz can all be written as sums over the T composition steps.

We thus define:

Lx,t(θ, ψ, φ|kt) :=
1

2σ2
x

Eqψ(rt|x,st,kt)

[
rt � Eqφ(zt|x,rt,kt)

[∥∥x− µθkt (zt)
∥∥2
]]
,

Lr,t(θ, ψ, φ|kt) := Eqψ(rt|x,st,kt)

[
Eqφ(zt|x,rt,kt)

[
log

qψ(rt|x, st, kt)
pθ(rt|st, zt, kt)

]]
,

Lz,t(ψ, φ|kt) := Eqψ(rt|x,st,kt)

[
DKL

(
qφ(zt|x, rt, kt)

∥∥∥ p(z)
)]
,

Lt(θ, ψ, φ|kt) := −Eqψ(st|x,k(t+1):T)

(
Lx,t(θ, ψ, φ|kt) + Lz,t(ψ, φ|kt) + Lr,t(θ, ψ, φ|kt)

)

Finally, it then follows that

L(θ, ψ, φ|k1:T) :=
T∑

t=1

Lt(θ, ψ, φ|kt) ≤ log pθ(x|k1:T)

A.2 DERIVATION OF GENERATIVE REGION DISTRIBUTION

We now derive the distribution in (7). We will use the fact that rt = mt � st, and thatst can be
written as st = 1−∑T

t′=t+1 r
′
t, as well as the conditional independencies implied by our model, see

Figure 2b. Considering the pixel-wise distribution and marginalising over mt, we obtain:

pθ
(
rt = 1|kt, zt, r(t+1):T

)
=

1∑

mt=0

pθ
(
rt = 1|mt, kt, zt, r(t+1):T

)
pθ
(
mt|kt, zt, r(t+1):T

)

=
1∑

mt=0

pθ (rt = 1|mt, st) pθ (mt|kt, zt)

= 0 + pθ (rt = 1|mt = 1, st) pθ (mt = 1|kt, zt)
= st � m̃θkt

(zt).

Since rt is binary, this fully determines its distribution.

17

Presented at the ICLR 2020 workshop “Causal learning for decision making”

B ADDITIONAL EXPERIMENTAL RESULTS

Figure 8 shows four additional examples of ECON decomposing scenes consisting of multiple
randomly coloured shapes. The model was trained on the data from Fig. 6, but is able to decompose
scenes with five objects (a), multiple occluding objects from the same class (b, c), and objects of
similar color to the background (d). Moreover, (b) suggests that additional timesteps (t′ = 6) are
simply ignored if they are not needed.

input
 image

 (x)

reconstructed
 image

 (x)

t'=
1

remaining
 scope

 (st)

attention
 region

 (rt)

imputed
 component

 (xt)

masked
 component

 (rt xt)

imputed
 shape
 (mt)

t'=
2

t'=
3

t'=
4

t'=
5

t'=
6

(a)

input
 image

 (x)

reconstructed
 image

 (x)

t'=
1

remaining
 scope

 (st)

attention
 region

 (rt)

imputed
 component

 (xt)

masked
 component

 (rt xt)

imputed
 shape
 (mt)

t'=
2

t'=
3

t'=
4

t'=
5

t'=
6

(b)

input
 image

 (x)

reconstructed
 image

 (x)

t'=
1

remaining
 scope

 (st)

attention
 region

 (rt)

imputed
 component

 (xt)

masked
 component

 (rt xt)

imputed
 shape
 (mt)

t'=
2

t'=
3

t'=
4

t'=
5

(c)

input
 image

 (x)

reconstructed
 image

 (x)

t'=
1

remaining
 scope

 (st)

attention
 region

 (rt)

imputed
 component

 (xt)

masked
 component

 (rt xt)

imputed
 shape
 (mt)

t'=
2

t'=
3

t'=
4

t'=
5

(d)

Figure 8: Additional decomposition plots for o.o.d. data. The model was trained with four experts on
scenes containing three objcets (one triangle, square, and circle each) arranged in random order.

18

Presented at the ICLR 2020 workshop “Causal learning for decision making”

C EXPERIMENTAL DETAILS

C.1 DATASETS

Synthetic dataset: uniquely colored objects The dataset consists of images of circles, squares and
triangles on a randomly and uniformly colored background, such that there is a unique correspondence
between object color and class identites (red circles, green squares, blue triangles). The background
color is randomly chosen to be an RGB value with each channel being a random integer between
0 and 127, while the RGB values of the object colors are (255,0,0), (0,255,0), (0,0,255) for circles,
squares and triangles respectively. The spatial positions of the objects are randomly chosen such that
each of the objects entirely fits into an image without crossing the image boundary.

The models shown in Fig. 1 and 5 have been trained on a version of such dataset containing images
with exactly three objects per image (one of each class) in random depth orders (Fig. 1, top row). The
training and validation splits include 50 000 and 100 such images respectively.

Synthetic dataset: randomly colored objects This dataset is the same as the one described above
with the difference that the objects (circles, squares and triangles) are randomly colored with the
corresponding RGB values being random integers between 128 and 255.

The models shown in Fig. 4, 6 and 8 have been trained on a version of such dataset containing images
with exactly three objects per image (one of each class) in random depth orders (Fig. 6, top row). The
training and validation splits include 50000 and 100 such images respectively.

C.2 ARCHITECTURE DETAILS

Each expert in our model consists of attention network computing the segmentation regions as a
function of the input image and the scope at a given time step, and a VAE reconstructing the image
appearance within the segmentation region and inpainting the unoccluded shape of object. Below we
describe the details of architectures we used for each of the expert networks.

C.2.1 EXPERT VAES

Encoder The VAE encoder consists of multiple blocks, each of which is composed of 3 × 3
convolutional layer, ReLU non-linearity, and 2 × 2 max pooling. The output of the final block is
flattened and transformed into a latent space vector by means of two fully connected layers. The
output of the first fully-connected layer has 4 times the number of latent dimensions activations,
which are passed through the ReLU activation, and finally linearly mapped to the latent vector by a
second fully-connected layer.

Decoder Following Burgess et al. (2019), we use spatial a broadcast decoder. First, the latent
vector is repeated on a spatial grid of the size of an input image, resulting in a 3D tensor with spatial
dimensions being that of an input, and as many feature maps as there are dimensions in the latent
space. Second, we concatenate the two coordinate grids (for x− and y−coordinates) to this tensor.
Next, this tensor is processed by a decoding network consisting of as many blocks as the encoder,
with each block including a 3× 3 convolutional layer and ReLU non-linearity. Finally, we apply a
1× 1 convolutional layer with sigmoid activation to the output of the decoding network resulting in
an output of 4 channel (RGB + shape reconstruction).

C.2.2 ATTENTION NETWORK

We use the same attention network architecture as in Burgess et al. (2019) and the implementation
provided by Engelcke et al. (2019). It consists of U-Net (Ronneberger et al., 2015) with 4 down and
up blocks consisting of a 3 × 3 convolutional layer, instance normalisation, ReLU activation and
down- or up-sampling by a factor of two. The numbers of channels of the block outputs in the down
part (the up part is symmetric) of the network are: 4 - 32 - 64 - 64 - 64.

19

Presented at the ICLR 2020 workshop “Causal learning for decision making”

C.3 TRAINING DETAILS

We implemented the model in PyTorch (Paszke et al., 2019). We use the batch size of 32, Adam
optimiser (Kingma & Ba, 2014), and initial learning rate of 5 · 10−4. We compute the validation
loss every 100 iterations, and if the validation loss doesn’t improve for 5 consecutive evaluations, we
decrease the learning rate by a factor of

√
10. We stop the training after 5 learning rate decrease step.

C.4 CROSS-VALIDATION

Synthetic dataset: uniquely colored objects The results in Fig. 1 were obtained by cross-
validating 512 randomly sampled architectures with the following ranges of parameters:

Parameter Range
Latent dimension 2 to 3
Number of layers in encoder and decoder 2 to 4
Number of features per layer in encoder and decoder 4 to 32
β (KL term weight in (12)) 0.5 to 2
γ (shape reconstruction weight in (12)) 0.1 to 10
Number of experts 4 (three objects + background)
Number of time steps 4 (three objects + background)

The best performing model in terms of the validation loss (which is shown in Fig. 1) has the latent
dimension of 2, 4 layers in encoder and decoder, 32 features per layer, β = 9.54 and γ = 0.52.

The results in Fig. 5 were obtained using the same model as above but with one expert.

Synthetic dataset: randomly colored objects The results in Figs. 4, 6, and 7 were obtained by
cross-validating 512 randomly sampled architectures with the following ranges of parameters:

Parameter Range
Latent dimension 4 to 5
Number of layers in encoder and decoder 3 to 4
Number of features per layer in encoder and decoder 16 to 32
β (KL term weight in (12)) 1
γ (shape reconstruction weight in (12)) 0.5 to 5
Number of experts 4 (three objects + background)
Number of time steps 4 (three objects + background)

The best performing model in terms of the validation loss (which is shown in Fig. 1) has the latent
dimension of 5, 3 layers in encoder and decoder, 32 features per layer, β = 1 and γ = 3.26.

20

Compositional uncertainty in deep Gaussian processes

Ivan Ustyuzhaninov*
University of Tübingen

Ieva Kazlauskaite*
University of Bath,

Electronic Arts

Markus Kaiser
Siemens AG,
TU Munich

Erik Bodin
University of Bristol

Neill D. F. Campbell
University of Bath,

Royal Society

Carl Henrik Ek
University of Bristol

Abstract

Gaussian processes (GPs) are nonparametric
priors over functions. Fitting a GP implies
computing a posterior distribution of functions
consistent with the observed data. Similarly,
deep Gaussian processes (DGPs) should allow
us to compute a posterior distribution of com-
positions of multiple functions giving rise to
the observations. However, exact Bayesian in-
ference is intractable for DGPs, motivating the
use of various approximations. We show that
the application of simplifying mean-field as-
sumptions across the hierarchy leads to the lay-
ers of a DGP collapsing to near-deterministic
transformations. We argue that such an in-
ference scheme is suboptimal, not taking ad-
vantage of the potential of the model to dis-
cover the compositional structure in the data.
To address this issue, we examine alternative
variational inference schemes allowing for de-
pendencies across different layers and discuss
their advantages and limitations.

1 INTRODUCTION

Hierarchical learning studies functions represented as
compositions of other functions, f = fL ◦ . . . ◦ f1.
Such models provide a natural way to model data gen-
erated by a hierarchical process, as each f` represents a
certain part of the hierarchy, and the prior assumptions
on {f`}L`=1 reflect the corresponding prior assumptions
about the data generating process. DGPs (Damianou
and Lawrence, 2013), which are compositions of GPs,
allow us to impose explicit prior assumptions on {f`}
by choosing the corresponding kernels. Since different

*, Equal contributions

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

compositions can fit the data equally well (see an illus-
tration in Fig. 1), DGPs are inherently unidentifiable, and
this lack of identifiability should be captured by an ade-
quate Bayesian posterior, allowing us to quantify uncer-
tainties pertaining to each f`. We refer to this uncertainty
as compositional uncertainty. This uncertainty can be
thought of as the epistemic uncertainty (Gal, 2016) de-
scribing how the layers of the hierarchy jointly compose
the observed data.

While the DGP posterior captures compositional un-
certainty, exact Bayesian inference in DGPs is in-
tractable (Damianou and Lawrence, 2013). In this work
we show that the typically used approximate inference
schemes (e.g. Salimbeni and Deisenroth, 2017) impose
strong simplifying assumptions, making intermediate
DGP layers collapse to deterministic transformations.1

This corresponds to representing a DGP as a single-layer
GP with a transformed kernel (Dunlop et al., 2018), sim-
ilar to GPs with kernels parametrised by a deterministic
function (e.g. a neural network). Such behaviour might
not be a problem in practice if the goal is to design a
model that only provides a high marginal likelihood of
the data, however, it does not make full use of the ca-
pacity of DGP as it fails to describe the uncertainty that
stems from the potential decomposition in the hierarchy.
Distributions over compositions, and the resulting com-
positional uncertainty, are important for applications, e.g.
for temporal alignment of time series data (Kaiser et al.,
2018; Kazlauskaite et al., 2019), in reinforcement learn-
ing (Jin et al., 2017) as well as for building more inter-
pretable models where each layer in the hierarchy ex-
presses a meaningful functional prior (Sun et al., 2019).

We address the issue of collapsing compositional uncer-
tainty by proposing variational distributions and corre-

1In cases where the data has high observational noise, the
noise is explained by introducing an uncertainty in one or mul-
tiple layers of the composition. We focus on the case where
the data is noiseless, thus the uncertainty in each of the layers
arises only due to the ambiguity in the compositional structure.

0 2 4 6

−2

0

2

4
Inputs

0 2 4 6

Rotation 1

0 2 4 6

Translation 1

0 2 4 6

Rotation 2

0 2 4 6

Translation 2

Figure 1: Compositional model (toy example): the transformation of the solid rectangle onto the dashed one is de-
composed as T2 ◦ R2 ◦ T1 ◦ R1 where Ri and Ti are rotations and translations. Different sampled realisations of
these transformations are overlaid, showing the compositional uncertainty. Approximating Ri and Ti as independent
transformations does not allow us to capture such uncertainty, collapsing to a single realisation of the composition.

sponding inference methods that explicitly model the de-
pendencies between the layers, resulting in variational
posteriors that capture compositional uncertainty. We
highlight the limitations of existing approaches and lay
the ground for future work in uncertainty quantification
in DGPs. Our main contributions are:

• We demonstrate that variational distributions over the
inducing points that are factorised across layers lead
to a collapse of compositional uncertainty,

• We provide an intuitive as well as a quantitative ar-
gument for this behaviour by drawing a link be-
tween the work on mean-field variational inference
for DGPs and the models of regression with noisy
inputs (Girard et al., 2003);

• We propose modifications to the factorised varia-
tional distribution that incorporate the dependencies
between the inducing points in different layers, and
discuss the corresponding inference procedures,

• We use the proposed variational inference ap-
proaches to further illustrate how the correlations
across the layers are necessary in order to argue about
compositional uncertainty.

The remainder of the paper is structured as follows. We
first provide a background to DGPs with an emphasis on
approximate inference and discuss the method of (Sal-
imbeni and Deisenroth, 2017) in detail, using it as the
starting point for our argument on the collapse of com-
positional uncertainty, presented in Sec. 3. In Sec. 4 we
propose variational distributions that aims to address the
shortcomings of the layer-wise factorisation. In Sec. 5
we illustrate the behaviour of the proposed methods and
discuss potential areas of applications.

2 BACKGROUND: MODELS OF DGPs

Previous work The hierarchical GP construction was
originally motivated from the perspective of latent vari-
able models (Lawrence, 2004) and was designed with
a specific application in mind. In the early work on
DGPs, Lawrence and Moore (2007) proposed a model

that captured the hierarchical structure in the human
skeleton, that allowed to produce interpretable genera-
tive models of human motion. However, most of the
later work shifted the emphasis from uncovering specific
interpretable hierarchical structures to employing a hi-
erarchical construction to design models that are more
flexible than a standard GP (in particular, by weakening
the assumptions about a joint Gaussian structure in the
observations). For example, Lázaro-Gredilla (2012) pro-
posed a hierarchical (two-layer) GP model to allow for
non-stationary observations. Damianou and Lawrence
(2013) drew further parallels between DGPs and deep
belief networks, and proposed a DGP construction be-
yond two layers for both supervised and unsupervised
settings. Concurrently, the MAP estimation used in the
early works (Lawrence and Moore, 2007) was replaced
with variational inference schemes, initially proposed for
the latent variable model (Titsias and Lawrence, 2010)
and later adapted for the hierarchical DGP setting (Dami-
anou and Lawrence, 2013).

However, the variational inference approach of Dami-
anou and Lawrence (2013) was shown to be prohibitive
for large data sets, motivating further research on in-
ference schemes that scale to large data sets (Hensman
et al., 2013; Hensman and Lawrence, 2014; Dai et al.,
2016; Bui et al., 2016; Gal and Ghahramani, 2016; Hens-
man et al., 2017; Salimbeni and Deisenroth, 2017; Rud-
ner and Sejdinovic, 2017; Cutajar, 2019). A different
line of thought emerges from the work on inference us-
ing stochastic gradient Hamiltonian Monte Carlo (Havasi
et al., 2018). The authors recognise the issue of com-
positional uncertainty, highlighting the fact that most of
the existing (variational) approaches to inference are lim-
ited to estimating single modes of the posterior distri-
butions in each layer of the hierarchy. As inference us-
ing MC is typically very costly, the authors note that it
is beneficial to decouple the model in terms of the in-
ducing points for the mean and the variance, which re-
sults in a highly non-convex optimization problem that
requires careful parameterisation to improve the stabil-
ity of convergence. Various issues with numerical stabil-

ity, poor convergence and underestimation of uncertainty
have also been reported in the context of variational
approximations (Hensman and Lawrence, 2014; Kaiser
et al., 2018). Duvenaud et al. (2014) show a pathological
behaviour of the concentration of density along a single
dimension as the number of layers increases, and pro-
pose including direct links between the inputs and each
individual layer.

Doubly stochastic variational inference (DSVI) Our
work builds on the variational approximation scheme in-
troduced by Salimbeni and Deisenroth (2017), thus here
we provide a short recap of the main ideas from this work
and introduce the notation that is used throughout the
rest of this paper. Given a dataset2 D = {(xj , yj)}Jj=1,
with xj , yj ∈ R, we model yj = (fL ◦ . . . ◦ f1)(xj),
where f` ∼ GP(µ`(·), k`(·, ·)). We denote the inputs
as x = (x1, . . . , xJ) ∈ RJ , and the evaluations of the
intermediate layers at the entire vector of inputs x as
f` ∼ (f` ◦ . . . ◦ f1)(x) for ` = 2, . . . , L. The DGP
joint distribution is

p(y, fL, . . . , f1 | x) = p(y | fL)

L∏

`=1

p(f` | f`−1), (1)

where p(f` | f`−1) ∼ GP(µj(f`−1), kj(f`−1, f`−1)) is a
GP prior for the `-th layer, and we define f0 = x. In-
tegrating {f`} from (1) to obtain a marginal likelihood
is intractable, since that requires integrating a product of
Gaussian factors, each of which contains f` inside a non-
linear kernel.

To overcome this limitation, variational inference is used
to estimate the lower bound on (1). To this end, each
DGP layer ` is augmented with M inducing locations
z`−1 ∈ RM and inducing points u` ∈ RM , resulting in
the following augmented joint distribution:

p(y,{f`}, {u`} | x, {z`}) = p(y | fL)×

×
L∏

`=1

p(f` | f`−1,u`, z`−1)p(u` | z`−1),
(2)

where p(f` | f`−1,u`, z`−1) ∼ N (µ`,Σ`) is a GP poste-
rior at inputs f`−1 given values of u` at z`−1. The spe-
cific form of µ` and Σ` is as follows (note a slight abuse
of notation: µ`(·) is a mean function, while µ` is a pos-
terior mean):

µ` = µ`(f`−1) + α`(f`−1)T (u` − µ`(z`−1)),

Σ` = k`(f`−1, f`−1)− α`(f`−1)T k`(z`−1, z`−1)α`(f`−1),

where

α`(f`−1) = k`(z`−1, z`−1)−1k`(z`−1, f`−1). (3)
2Throughout the paper we consider one-dimensional data

but the general considerations also apply in many dimensions.

−1 0

f1

0

f2

0 1

−1
0

1y
Input

x ∈ [−1, 1]N

f1(x) = −x

f1(x) = x

f2(x) = −x

f2(x) = x

f3(x) = x

f3(x) = −x

Figure 2: A toy example illustrating three layer compo-
sitions where each layer is either f`(x) = x or f`(x) =
−x. Multiple compositions map x to y, this uncertainty
is illustrated by showing the range of different values of
f1 = f1(x) and f2 = f2(f1). If a variational distribu-
tion over {f`} is factorised, the posterior compositions
collapse to a single realisation.

Introducing a factorised variational distribution over the
inducing points

q({u`}) = q(u1) . . . q(uL), q(u`) ∼ N (m`,S`) (4)

the likelihood lower bound is as follows:

L(y) ≥ Eq(fL)[log p(y | fL)]−

−
L∑

`=1

KL[q(u`) || p(u` | z`−1)].
(5)

A key insight of Salimbeni and Deisenroth (2017) is that
the expectation in (5) can be efficiently estimated by a
Monte-Carlo estimator. This is possible by marginalising
the inducing points {u`} from the variational posterior,
obtaining

q(fL, . . . , f1) =

L∏

`=1

∫
p(f` | u`)q(u`) du`

= q(fL | fL−1) . . . q(f1 | x),

(6)

with q(f` | f`−1) ∼ N (µ̃`, Σ̃`), where

µ̃` = µ`(f`−1) + α`(f`−1)T (m` − µ`(z`−1)), (7)

Σ̃` = k`(f`−1, f`−1) (8)

− α`(f`−1)T (k`(z`−1, z`−1)− S`)α`(f`−1).

The bound in (5) can be estimated by sequentially sam-
pling from q(f` | f`−1) using (7) and (8). The time com-
plexity of this step is linear in the number of data points,
since each marginal [f`]j can be drawn independently
(we only need marginals of the final layer fL in (5)).

3 MEAN-FIELD DGPs

In this section we argue that factorised variational distri-
butions of inducing points, e.g. (4), imply that the layers
in a DGP collapse to deterministic transformations.

3.1 INTUITION

If a DGP fL◦. . .◦f1 maps fixed inputs x to fixed outputs
y, the functions {f`} must be dependent, because every
realisation of this composition must map the same x to
the same y. This is illustrated in Fig. 2, which shows a
composition of three layers, each of which could either
be f`(x) = x or f`(x) = −x. Depending on the choices
of f1 and f2, the input is mapped by f2 ◦ f1 to one of the
two realisations of f2 (as shown by the colour code in the
corresponding panel), and f3 must be chosen in such a
way that f2 is mapped to y. Therefore, in this example,
f3 depends on the choice of f1 and f2. However, if {f`}
were independent, then the only way to ensure that every
realisation of the composition fits the data would be for
each layer to implement a deterministic transformation
(i.e. either f`(x) = x or f`(x) = −x such that there are
zero or two instances of f`(x) = −x). Another illustra-
tion of this idea is provided in Fig. 1, in which movement
of a square is represented as a composition of correlated
rotations and translations, allowing us to see a variety of
possible movements. However, a model with indepen-
dent transformations would converge to a single possible
sequence of rotations and translations.

The same intuition holds for general DGPs. Analogously
to choosing either x or −x in Fig. 2, inducing locations
z` and points u` define the transformation implemented
by the corresponding layer through the predictive poste-
rior p(f` | f`−1,u`, z`−1). Following a similar argument,
the DGP layers collapse to deterministic transformations
to ensure good data fits unless they are dependent to al-
low multiple different compositions to fit the data.

3.2 QUANTITATIVE ARGUMENT

Assume that the DGP layers {f`} are independent. Then
the distribution of the outputs of layer ` − 1 can be
thought of as uncertain inputs3 to the layer `. Similarly
to DGPs, the inference in such models is complicated by
the need to propagate a distribution through a non-linear
mapping. Such models have been studied in the context
of GP regression (Girard et al., 2003; Mchutchon and
Rasmussen, 2011; Bijl, 2018) and have also been dis-
cussed in relation to DGPs (Damianou, 2015), though
not in the context of compositional uncertainty.

Assuming, for simplicity, that our dataset consists of a
single point, i.e. D = {(x, y)}, we can write f` = (f` ◦
. . . ◦ f1)(x) = f`(f`−1) = f`(f̄`−1 + ε`−1), with f̄`−1 as
the mean4 of f`−1 and ε`−1 as an appropriate zero-mean

3Regression models that include input uncertainty can gen-
erally be formulated as: y = f(x + εx), where y are observa-
tions, x are noise-free inputs and εx is zero-mean noise.

4We use bold notation for f̄`−1, even though it refers to a

noise (not necessarily Gaussian, since marginals of DGP
layers are not Gaussian in general (Damianou, 2015)),
the variance of which we denote as σ2

noise := Var [ε`−1].
We want to show that the variance of f` increases with in-
creasing variance of ε`−1, which would imply that unless
the layers collapse, i.e. ε`−1 = 0, there is finite variance
in the final layer fL. That constitutes a poor fit to obser-
vations that contain low observational noise (noiseless in
the limit), forcing the layers to collapse to deterministic
transformations.

High observational noise might lead to the layers not col-
lapsing despite being independent. However, such un-
certainty is the observational noise spread across the lay-
ers, rather than compositional uncertainty due to multi-
ple compositions explaining the data. To make our argu-
ments clearer, we assume noiseless observations.

Linear approximation We can approximate f` as

f` = f`(f`−1) ≈ f`(f̄`−1) + ε`−1 f
′
`(f̄`−1), (9)

where f`(f̄`−1) ∼ p(f` | f̄`−1,u`, z`−1) = N (µ̄`, σ̄
2
`),

with µ̄` and σ̄2
` given in (7) and (8). Note that both µ̄`

and σ̄2
` are functions of f̄`−1, which we omit to not clutter

the notation; the derivatives below are taken w.r.t. f̄`−1.

The evaluation of a GP and its derivative are jointly dis-
tributed as follows (Rasmussen and Williams, 2005):
[
f`(f̄`−1)
f ′`(f̄`−1)

]
∼ N

([
µ̄`
µ̄′`

]
,

[
σ2
` (σ2

`)
′

(σ2
`)
′ (σ2

`)
′′

])
. (10)

Similarly to Mchutchon and Rasmussen (2011), we com-
pute a linear transformation of (10) and obtain that

E [f` | ε`−1] = µ̄` + ε`−1µ̄
′
`,

Var [f` | ε`−1] = σ2
` − 2ε`−1(σ2

`)
′ + ε2`−1(σ2

`)
′′.

Using the law of total variance we have

Var [f`] = E [Var [f`|ε`−1]] + Var [E [f`|ε`−1]] ,

where

E [Var [f`|ε`−1]] = σ2
` + σ2

noise (σ2
`)
′′,

Var [E [f`|ε`−1]] = Var [µ̄` + ε`−1 µ̄
′
`] = σ2

noise · (µ̄′`)
2
.

Combining these results together we obtain

Var [f`] = σ2
`+σ2

noise

[
(µ̄′`)

2
+ (σ2

`)
′′
]
+O(ε2`−1). (11)

The only term in (11) that can be negative is (σ2
`)
′′, po-

tentially making the variance of the GP output at a noisy
input smaller that the variance at a fixed input (i.e. σ2

`).

scalar, to distinguish it from the notation we use for functions.

f̄`−1 − 3γ f̄`−1 f̄`−1 + 3γ

−1

−0.5

0

0.5

1

M = 2

f̄`−1 − 3γ f̄`−1 f̄`−1 + 3γ

−0.2

0

0.2

M = 5

f̄`−1 − 3γ f̄`−1 f̄`−1 + 3γ

−2 · 10−3

0

2 · 10−3

M = 10

2 9 16 23 30

−10−1

−10−3

−10−5

M

Min. value of (σ2
`)
′′

Predicitve variance σ2
` Second derivative (σ2

`)
′′ Inducing point

A B

Figure 3: A: Predictive posterior variance σ2
` and its second derivative (σ2

`)
′′ of `-th layer in a 3γ`-neighbourhood

∆` of the noiseless input f̄`−1 for different numbers of inducing points. B: Minimum value of (σ2
`)
′′ as a function of

number of inducing points M .

Counterexample Such an example can indeed be con-
structed. Girard et al. (2003) study GPs with uncertain
inputs and compute an exact expression for Var [f`] as a
function of σ2

noise assuming ε`−1 is Gaussian. Assuming
there is a single inducing point u` = 0, the derivative of
Var [f`] is negative at 0 provided that f̄`−1 is sufficiently
far away from u` (in comparison to the length scale; see
the derivation in the Supplement). This means that the
input noise might reduce the output variance. However,
such an example relies on the inputs to the `-th layer,
f̄`−1, appearing in the regions of the input space that are
poorly covered by the inducing points. Consequently,
this scenario only occurs if the inducing points are placed
in a way that leads to a poor fit of the observed data.

Inducing points limit The counterexample above re-
lies on a degenerate setting in which the inducing points
are far from the observations. Here we consider a lim-
iting case that corresponds to a more realistic situation
of sufficiently many inducing points near f` (the limit
of arbitrary many inducing points is a conceptually de-
sirable setting, complicated by the computational con-
straints). Specifically, in each layer we assume M lin-
early spaced inducing points z` = {z1`−1, . . . , zM`−1} in
∆` := [f̄`−1 − 3γ`, f̄`−1 + 3γ`], where γ` is the kernel
length scale in layer `. This assumption means that the
input to each layer is contained in an interval ∆` covered
by the inducing points.

The behaviour of (11) under such an assumption is il-
lustrated in Fig. 3. The minimum value of (σ2

`)
′′ ap-

proaches zero as M increases; this suggests that the in-
put noise leads to increased predictive posterior variance
apart from degenerate cases of inducing points not cover-
ing the input region corresponding to the observed inputs
x, and the predictive mean derivative (µ̄′`)

2 being suffi-
ciently small (i.e. the function implemented by the `-th
layer being close to a constant one).

To summarise, we argue that under the assumption of

f` = (f` ◦ . . . ◦ f1)(x) being contained in an interval
covered by the inducing locations z` for the next layer,
the variance in f` leads to increased variance in f`+1, and
hence in fL. Therefore, for fL to fit a noiseless observa-
tion y, the variance in intermediate layers has to be re-
duced, implying that the layers collapse to deterministic
transformations.

4 BEYOND FACTORISED
VARIATIONAL DISTRIBUTIONS

To further investigate the effect of the factorisation im-
posed by the mean-field variational inference, we pro-
pose two alternative variational inference schemes that
allow for correlations between layers. By relaxing the
mean-field assumption across layers, we aim to uncover
a range of solutions that are consistent with the data and
follow the prior belief about each of the individual layers.
In Sec. 4.1 we present a natural generalisation of a fac-
torised variational distribution (4) to capture the marginal
dependencies between the layers. In Sec. 4.2 we present
an alternative variational approximation that introduces
dependencies between the layers by linking the inducing
points and locations of the neighbouring layers.

4.1 JOINTLY GAUSSIAN INDUCING POINTS

A straightforward modification of the DSVI variational
approximation (Sec. 2) allowing us to capture the depen-
dencies between the layers is to introduce correlations
between the inducing points by modelling them with a
jointly Gaussian variational distribution:

q(u1, . . . ,uL) ∼ N (m,S), (12)

with m ∈ RLM , S ∈ RLM×LM . The variational poste-
rior is then given by

q({f`}, {u`}) = q(u1, . . . ,uL)
L∏

`=1

p(f`|f`−1,u`). (13)

The corresponding likelihood lower bound has
the same structure as (5) with the KL term,
KL[q(u1, . . . ,uL) || p(u1) . . . p(uL)], that can be
computed in closed form (it involves two Gaussians).
The expectation Eq(fL)[log p(y | fL)] is, however, harder
to estimate in case of variational distribution (12).
The integral (6) no longer factorises into a product of
integrals, which means that we can no longer integrate
{u`} out from q({f`}, {u`}) and draw samples from
q(fL) in the same way as in (Salimbeni and Deisenroth,
2017). We consider two approaches to address this issue.

Sampling {u`} We start by noting that, conditioned on
{u`}, we can draw samples from q(fL) in the same way
as in (Salimbeni and Deisenroth, 2017). Specifically, to
estimate Eq(fL)[log p(y | fL)], we

1. Draw S samples
{(us1, . . . ,usL)}Ss=1

iid∼ q(u1, . . . ,uL),

2. For each sample (us1, . . . ,u
s
L), draw

fsL ∼ q(fL | us1, . . . ,usL) by recursively drawing
from p(f` | f`−1,us`), which are regular GP posterior
distributions conditioned on us` ,

3. Compute a Monte Carlo estimate
Eq(fL)[log p(y | fL)] ≈ 1

S

∑
s

log p(y | fsL).

This approach is easy to implement and it can be ap-
plied in a variety of settings (e.g. when q({ui}) is
not Gaussian, as long as we can sample from it and
reparametrise the gradients). However, that comes at
the cost of introducing another sampling step, resulting
in Eq(fL)[log p(y | fL)] being estimated by two nested
Monte-Carlo estimators, implying an increased overall
variance of the estimator and the need to carefully choose
the appropriate number of samples (Rainforth et al.,
2019). Estimating the variance implied by the nested MC
estimator offers a direction for future work. Moreover,
drawing coherent samples from q(u1, . . . ,uL) has com-
putational complexity of O(L3M3) leading to an overall
complexity of O(L3M3 + LNM2) per estimation.

Analytic marginalisation To address statistical and
computational limitations of the above method, we pro-
pose another approach consisting of analytically integrat-
ing {u`} from (13). To do so we assume that q({u`})
admits a chain-like factorisation, namely

q({u`}) = q(uL | uL−1) . . . q(u2 | u1)q(u1). (14)

The precision matrix across all layers,
Λ = S−1 ∈ RLM×LM , encodes the conditional in-
dependence assumptions, and (14) implies that such
matrix is block-tridiagonal (Fig. 4). The advantage
of this assumption is that the number of parameters

in the unconstrained S scales quadratically with the
number of layers, while (14) implies a linear growth.

Λ11

Λ22

Λ33

Λ44

Λ21

Λ32

Λ43

Λ12

Λ23

Λ34

Figure 4: Precision ma-
trix Λ induced by (14).

Assuming that the varia-
tional distribution (12) sat-
isfies the factorisation (14),
we analytically marginalise
{u`} from the variational
posterior (13), obtaining

∫
q({f`}, {u`}) d{u`} =

L∏

`=1

p(f` | f`−1, . . . f1,x),

(15)
where p(f` | f`−1, . . . f`,x) ∼ N (µ̃`, Σ̃`) with the mean
and the covariance are defined recursively as follows:

µ̃1 = µ1(x) + α1(x)T (m1 − µ1(z0))

Σ̃1 = k1(x,x)− α1(x)T (k1(z0, z0)− S11)α1(x)

and α1(x) is defined in (3). For i > 1, µ̃i and Σ̃i are
recursively defined as

µ̃` = µ`(f`) + α`(f`−1)T (m` + S`,`−1 α`−1(f`−1)×
× Σ̃

−1
`−1(f`−1 − µ̃`−1 − α`−1(x)T× (16)

× (m`−1 − µ`−1(z`−2))− µ`(z`−1)),

Σ̃` = k`(f`−1, f`−1)− α`(f`−1)T (k`(z`−1, z`−1)−
− S`` + S`,`−1 α`−1(f`−1)Σ̃

−1
`−1×

× α`−1(f`−1)TS`−1,`)α`(f`−1),
(17)

where Sij = cov(ui,uj).

The derivation is provided in the Supplement. Using
these results, Eq(fL)[log p(y | fL)] can be estimated anal-
ogously to DSVI by recursively sampling fi using (15).

4.2 INDUCING POINTS AS INDUCING
LOCATIONS

In this section we discuss an alternative variational ap-
proximation, that connects the inducing points and the
inducing locations of the neighbouring layers. Instead of
directly modelling the inducing points in every layer, we
only consider the inducing inputs z in the first layer and
variational distributions over {fz` ∼ (f` ◦ . . . ◦ f1)(z)}.
The advantage of such an approach is that unlike the vari-
ational distributions of inducing points, the factorisation
of a variational distribution over {fzi } does not imply
that the variational posterior collapses to a single reali-
sation of a composition fitting the data. In such a setting,
fz`−1 and fz` can be thought of as inducing pairs of the
`-th layer, meaning that the inducing points of a previous
layer are the inducing locations of the next one.

Intuition Let us revisit the illustration given in Fig. 2.
Assuming for this example that z = x, we independently
sample values of f1 and f2 from q(f1)q(f2) (i.e. one of the
two types of coloured lines in panels f1 and f2). Given
such a sample, we can deduce the functions f1, f2, f3.
For example, the colour of f1 denotes the choice of f1,
the second colour of f2 (the first colour is that of f1) cor-
responds to f2, and f3 is chosen to map f2 to the obser-
vations. Thus each sample from q(f1)q(f2) corresponds
to a composition mapping x to y (different samples cor-
respond to different compositions). This is in contrast to
sampling from the factorised distribution of the inducing
points (which directly parametrise each {fi}). In such
case, some compositions (e.g. f1(x) = −x, f2(x) =
f3(x) = x) do not fit the data, making the variational
posterior collapse, as argued in Sec. 3.

Inducing inputs We introduce inducing inputs
z ∈ RM (with M < N) in the input space and de-
note the evaluations of intermediate layers at z as
fz` ∼ (f` ◦ . . . ◦ f1)(z). The augmented DGP joint
distribution is

p(y, fL, . . . , f1, f
z
L, . . . , f

z
1 | x, z) = (18)

= p(y | fL)

L∏

`=1

p(f` | fz` , f`−1, fz`−1)p(fz` | fz`−1),

where p(fz` | fz`−1) ∼ N (µ`(f
z
`−1), k`(f

z
`−1, f

z
`−1)) is an

`-th layer GP prior, and p(f` | fz` , f`−1, fz`−1) is an `-th
layer GP posterior at inputs f`−1 given fz` and fz`−1 in
`-th and (`− 1)-th layers respectively.

Variational lower bound We introduce the following
variational distribution

q({f`}, {fz` }) =
L∏

`=1

p(f` | fz` , f`−1, fz`−1)q(fz`), (19)

where q(fz`) ∼ N (m`,S`). The corresponding likeli-
hood lower bound is as follows

L(y) ≥ Eq
[
log

p(y, {f`}, {fz` })
q({f`}, {fz` })

]
=

= Eq(fL)[log p(y | fL)]− (20)

−
L∑

`=1

Eq(fz`)q(fz`−1)

[
log

q(fz`)

p(fz` | fz`−1)

]
. (21)

Estimating (20) We are estimating an expectation over
the marginal q(fL) ∼ (fL ◦ . . . ◦ f1)(x), which can be
computed by marginalising the intermediate layers in the

joint variational posterior (19):

q(fL) =

∫
q({f`}, {fz` }) d{f`}L−1`=1 d{fzi }L`=1

=

∫
p(fL | fzL, fL−1, fzL−1)q(fzL) dfzL×

×
L−1∏

`=1

p(f` | fz` , f`−1, fz`−1)q(fz`) df` dfz` .

(22)

The integrals in (22) are generally intractable since they
require integrating the kernel matrices, thus we estimate
them by sampling. Overall, the procedure is as follows:

1. Draw S samples
{(fz,s1 , . . . , fz,sL)}Ss=1

iid∼ q(fz1) · . . . · q(fzL),

2. Use the samples of {fz` } to sequentially draw samples
of intermediate layers fs` ∼ p(f` | fz,s` , fs`−1, f

z,s
`−1)

from a GP posterior given fz,s` and fz,s`−1,

3. Use {fsL}ss=1, the samples from q(fL), to estimate the
expectation in (20):
Eq(fL)[log p(y | fL)] ≈ 1

S

∑S
s=1 log p(y | fsL).

Estimating (21) We write the summands in (21) as

Eq(fz`)q(fz`−1)

[
log

q(fz`)

p(fz` | fz`−1)

]
=

= Eq(fz`−1)
KL[q(fz`) || p(fz` | fz`−1)].

(23)

KL divergence between the two Gaussians q(fz`) and
p(fz` | fz`−1) is a function of fz`−1 and can be computed
analytically for a given value of fz`−1. Therefore, to es-
timate it, we use the draws from fz`−1 (which are com-
puted for the estimate of (20) as well): for every such
draw fz,s`−1, we analytically compute the KL divergence
KL[q(fz`) || p(fz` | fz,s`−1)], and then average these values to
obtain a Monte-Carlo estimate of the expectation in (23).

Learning and predictions We maximise the likeli-
hood lower bound (20-21) w.r.t. the variational parame-
ters {m`} and {S`}. The gradients can be obtained using
a reparametrisation trick (Kingma and Welling, 2014).
Given a test input x∗, we can draw the DGP outputs
f∗L ∼ (fL ◦ . . . ◦ f1)(x∗) by drawing from q(f∗l) using
the procedure for estimating (22) described above. We
substitute x∗ instead of x replacing f` with f∗` in (22),
while the rest of the procedure remains the same.

Time complexity The time complexity of estimating
(20) is O(LNM3). Sampling from q(fzi) is O(M3),
while, as discussed in (Salimbeni and Deisenroth, 2017),
sampling from p(fi |fzi , fi−1, fzi−1) can be performed sep-
arately for each element of fi only requiring drawing
from univariate Gaussians, which scales linearly with the

Figure 5: 25 random samples from 2-layer DGPs with squared-exponential and periodic kernels fitted to the obser-
vations in the third column (black dots) using DSVI as well as variational distributions discussed in Sec. 4. The first
and second columns show samples from each of the two layers, while the third one shows samples from the entire
composition (all such samples fit the data despite the variance in f1 and f2 because the two layers are dependent).

ELBO Var [f1(0)] Var [f2(0)]

DSVI 13.43 ± 8.03 1.99 · 10−6 ± 1.76 · 10−7 1.11 · 10−4 ± 1.35 · 10−5

Jointly Gaussian 23.15 ± 6.80 4.23 · 10−5 ± 3.17 · 10−6 3.33 · 10−4 ± 2.12 · 10−5

Inducing points as inducing inputs 36.31 ± 3.55 2.22 · 10−3 ± 2.73 · 10−4 4.98 · 10−2 ± 7.78 · 10−3

Table 1: Evaluations of the DGPs fitted on a dataset in Fig. 5. First column shows lower bounds on marginal likelihood
p(y); the second and third ones show marginal variances of both layers at x = 0. The numbers are the means as well
as standard deviations across 10 trials.

number of layers and training inputs. The estimate of
(21) does not add additional complexity since we use the
samples from q(fzi) drawn for estimating (20), while an-
alytic computation of the KL divergence between q(fz`)
and p(fz` | fz`−1) is O(M3) since it requires inversions of
covariance matrices. Therefore, the overall complexity
of estimating the lower bound is O(LNM3).

5 NUMERICAL SIMULATIONS

Compositional uncertainty As illustrated in Fig. 5
(first row) as well as in Table 1, the intermediate layers
in a DGP with a factorised variational distribution over
the inducing points collapse to nearly deterministic trans-
formations in the range of the observed data ([−1, 1]).
Meanwhile, the models with correlated inducing points
(second and third rows) capture more uncertainty, with
the approach proposed in Sec. 4.2 allowing us to capture
more uncertainty than jointly Gaussian inducing points.
Additional examples are provided in the Supplement.

Likelihood lower bounds In Table 1 we provide the
variational lower bounds of the marginal likelihood5,
p(y). We see that including the dependencies between
the layers to the variational distribution leads to higher
likelihood bounds, suggesting that factorised variational
distributions are suboptimal for DGP inference.

6 APPLICATIONS

As compositions of functions, DGPs provide a natural
way to represent data that is known to have a composi-
tional structure and thus they may be used in applications
to learn a more informative representation of the data.

Non-stationary time series Consider a sequence y ∈
RN that is observed at fixed time inputs x ∈ RN . The

5The baseline estimate of the true marginal likelihood could
be obtained by fitting the DGP using HMC (Havasi et al.,
2018), however, we found the existing implementation of this
scheme to be very unstable (as also noted by the authors) and
the estimation of marginal likelihood from posterior samples to
have high variance, hence we do not report such values.

Figure 6: Compositional model of heartbeats data, comparing results without (top) and with correlations across layers.

observed sequence is assumed to be generated by tempo-
rally warping the inputs x as follows:

y = f(g(x)) + ε, ε ∼ N (0, σ2) (24)

where g(·) is the temporal warping, f(·) is the latent
function that encodes the structure of the observed se-
quence. The model in (24) generates non-stationary se-
quences, which are convenient to model with a composi-
tion of a monotonic transformation of the inputs x and a
GP with a stationary kernel. The previous work on such
models treats the temporal warping g(·) as a determinis-
tic transformation (Snoek et al., 2014; Kazlauskaite et al.,
2019), disregarding the fact that many different compo-
sitions may explain the observed data equally well.

To illustrate this, we consider a recording of a heart-
beat (Bentley et al., 2011), and fit a two layer DGP
with monotonic flow (Ustyuzhaninov et al., 2020) in the
first layer. Here the prior on the warping functions g(·)
dictates that while an identity warp is preferred, other
smooth warps are plausible. The latent functions f(·) are
modelled using a GP with a stationary squared exponen-
tial kernel. Fig. 6 shows how introducing correlations
between the layers allows us to uncover a wide range
of possible solutions that follow the above-defined priors
and are consistent with the data. Meanwhile, the model
with the same prior assumptions that uses a mean-field
approximation collapses to a near-deterministic transfor-
mation, concentrating the probability mass in both layers
on one of the many possible solutions. An application to
sequence alignment is provided in the Supplement.

7 DISCUSSION

We have discussed the issue of compositional uncertainty
in the context of DGPs. This is in contrast to much of the
existing work on DGPs (as well as other Bayesian deep
learning approaches (Gal, 2016)) that primarily focuses

on predictive uncertainty. We argued that the uncertainty
about the function implemented by each individual layer
in the hierarchy provides a more informative model of
the data. The inference in DGP models is typically per-
formed using variational approximations that factorise
across the layers of the hierarchy. While computationally
convenient, such a factorisation implies that the distribu-
tions of the intermediate layers collapse to deterministic
transformations. Such behaviour diminishes some of the
other benefits offered by a compositional model of GPs,
such as a systematic way to impose informative func-
tional priors over each of the layers in the hierarchy and
a way to uncover distributions over each layer.

To gain further insight into the issue of compositional un-
certainty, we proposed two alternatives to the factorised
variational distributions of inducing points that include
some correlations between the layers. Contrary to the
factorised distributions in DSVI, the proposed variational
distributions uncover a range of possible solutions, re-
inforcing the argument that mean-field approximations
are prohibitive when it comes to capturing compositional
uncertainty. These consideration pose many open ques-
tions, ranging from technical considerations of more ef-
ficient ways to introduce correlations across layers and
ways to represent variational distributions that are multi-
modal (Lawrence, 2000), to broader questions about the
structures captured by each layer of the hierarchy, and
the applications that may benefit from the more accurate
estimates of compositional uncertainty.

Acknowledgments

This work has been supported by EPSRC CDE
(EP/L016540/1), CAMERA (EP/M023281/1), EPSRC
DTP, Hans Werthén Fund at The Royal Swedish
Academy of Engineering Sciences, German Federal
Ministry of Education and Research (project 01 IS 18049
A) and the Royal Society.

References
Bentley, P., Nordehn, G., Coimbra, M., and Mannor, S. (2011).

Pascal Classifying Heart Sounds Challenge.

Bijl, H. (2018). LQG and Gaussian process techniques: For
fixed-structure wind turbine control. PhD thesis, Delft Uni-
versity of Technology.

Bui, T., Hernandez-Lobato, D., Hernandez-Lobato, J., Li, Y.,
and Turner, R. (2016). Deep Gaussian processes for regres-
sion using approximate expectation propagation. In Interna-
tional Conference on Machine Learning.

Cutajar, K. (2019). Broadening the scope of Gaussian pro-
cesses for large-scale learning. PhD thesis, Thesis.

Dai, Z., Damianou, A., González, J., and Lawrence, N. D.
(2016). Variational auto-encoded deep Gaussian processes.
In International Conference on Learning Representations.

Damianou, A. (2015). Deep Gaussian processes and varia-
tional propagation of uncertainty. PhD Thesis, University
of Sheffield.

Damianou, A. and Lawrence, N. (2013). Deep Gaussian pro-
cesses. In International Conference on Artificial Intelligence
and Statistics (AISTATS).

Dunlop, M. M., Girolami, M. A., Stuart, A. M., and Tecken-
trup, A. L. (2018). How deep are deep Gaussian processes?
Journal of Machine Learning Research.

Duvenaud, D., Rippel, O., Adams, R. P., and Ghahramani, Z.
(2014). Avoiding pathologies in very deep networks. In In-
ternational Conference on Artificial Intelligence and Statis-
tics (AISTATS).

Gal, Y. (2016). Uncertainty in Deep Learning. PhD thesis,
University of Cambridge.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a Bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. In International Conference on Machine Learning.

Girard, A., Rasmussen, C. E., Candela, J. Q., and Murray-
Smith, R. (2003). Gaussian process priors with uncertain
inputs application to multiple-step ahead time series fore-
casting. In Neural Information Processing Systems.

Havasi, M., Hernández-Lobato, J. M., and Murillo-Fuentes,
J. J. (2018). Inference in deep Gaussian processes using
stochastic gradient Hamiltonian Monte Carlo. In Neural In-
formation Processing Systems.

Hensman, J., Durrande, N., and Solin, A. (2017). Variational
fourier features for Gaussian processes. Journal of Machine
Learning Research (JMLR), 18(1).

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian
processes for big data. In Conference on Uncertainty in Ar-
tificial Intelligence (UAI).

Hensman, J. and Lawrence, N. D. (2014). Nested variational
compression in deep Gaussian processes. arXiv preprint
arXiv:1412.1370.

Jin, M., Damianou, A., Abbeel, P., and Spanos, C. (2017).
Inverse reinforcement learning via deep Gaussian process.
Conference on Uncertainty in Artificial Intelligence (UAI).

Kaiser, M., Otte, C., Runkler, T., and Ek, C. H. (2018).
Bayesian alignments of warped multi-output Gaussian pro-
cesses. In Neural Information Processing Systems.

Kazlauskaite, I., Ek, C. H., and Campbell, N. (2019). Gaus-
sian process latent variable alignment learning. In Inter-
national Conference on Artificial Intelligence and Statistics
(AISTATS).

Kingma, D. P. and Welling, M. (2014). Auto-encoding varia-
tional Bayes. In International Conference on Learning Rep-
resentations.

Lawrence, N. D. (2000). Variational Inference in Probabilistic
Models. PhD thesis, Cambridge University.

Lawrence, N. D. (2004). Gaussian process latent variable mod-
els for visualisation of high dimensional data. Neural Infor-
mation Processing Systems.

Lawrence, N. D. and Moore, A. J. (2007). Hierarchical Gaus-
sian process latent variable models. In International Confer-
ence on Machine Learning.

Lázaro-Gredilla, M. (2012). Bayesian warped Gaussian pro-
cesses. In Neural Information Processing Systems.

Mchutchon, A. and Rasmussen, C. E. (2011). Gaussian process
training with input noise. In Neural Information Processing
Systems.

Rainforth, T., Cornish, R., Yang, H., Warrington, A., and
Wood, F. (2019). On nesting Monte Carlo estimators. Pro-
ceedings of Machine Learning Research, 80.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian
Processes for Machine Learning. MIT Press.

Rudner, T. G. J. and Sejdinovic, D. (2017). Inter-domain deep
Gaussian processes.

Salimbeni, H. and Deisenroth, M. (2017). Doubly stochastic
variational inference for deep Gaussian processes. In Neural
Information Processing Systems.

Snoek, J., Swersky, K., Zemel, R., and Adams, R. (2014). Input
warping for Bayesian optimization of non-stationary func-
tions. In International Conference on Machine Learning.

Sun, S., Zhang, G., Shi, J., and Grosse, R. (2019). Functional
variational Bayesian neural networks. In International Con-
ference on Learning Representations.

Titsias, M. and Lawrence, N. (2010). Bayesian Gaussian pro-
cess latent variable model. Journal of Machine Learning
Research (JMLR), 9.

Ustyuzhaninov, I., Kazlauskaite, I., Ek, C. H., and Campbell,
N. D. F. (2020). Monotonic Gaussian process flow. In Inter-
national Conference on Artificial Intelligence and Statistics
(AISTATS).

Published as a conference paper at ICLR 2020

ROTATION-INVARIANT CLUSTERING OF NEURONAL
RESPONSES IN PRIMARY VISUAL CORTEX

Ivan Ustyuzhaninov,1-3 Santiago A. Cadena,1-3 Emmanouil Froudarakis,4,5 Paul G. Fahey,4,5

Edgar Y. Walker,4,5 Erick Cobos,4,5 Jacob Reimer,4,5 Fabian H. Sinz,4,5

Andreas S. Tolias,1,4-6 Matthias Bethge,1-3,5,† Alexander S. Ecker1-3,5,†,‡,*

1 Centre for Integrative Neuroscience, University of Tübingen, Germany
2 Bernstein Center for Computational Neuroscience, University of Tübingen, Germany
3 Institute for Theoretical Physics, University of Tübingen, Germany
4 Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
5 Center for Neuroscience and Artificial Intelligence, BCM, Houston, TX, USA
6 Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

† Authors contributed equally
‡ Present address: Department of Computer Science, University of Göttingen, Germany

* ecker@cs.uni-goettingen.de

ABSTRACT

Similar to a convolutional neural network (CNN), the mammalian retina encodes
visual information into several dozen nonlinear feature maps, each formed by one
ganglion cell type that tiles the visual space in an approximately shift-equivariant
manner. Whether such organization into distinct cell types is maintained at the
level of cortical image processing is an open question. Predictive models building
upon convolutional features have been shown to provide state-of-the-art perfor-
mance, and have recently been extended to include rotation equivariance in order
to account for the orientation selectivity of V1 neurons. However, generally no di-
rect correspondence between CNN feature maps and groups of individual neurons
emerges in these models, thus rendering it an open question whether V1 neurons
form distinct functional clusters. Here we build upon the rotation-equivariant rep-
resentation of a CNN-based V1 model and propose a methodology for clustering
the representations of neurons in this model to find functional cell types indepen-
dent of preferred orientations of the neurons. We apply this method to a dataset
of 6000 neurons and visualize the preferred stimuli of the resulting clusters. Our
results highlight the range of non-linear computations in mouse V1.

Φ(x)
CNN
core

1 Fit rotation-equivariant CNN

s1

si

sN

×

×

×

a1(x)

ai(x)

aN (x)

Feature weights → clusters

r1

r2

r3

r1

r2Aligned readouts

Raw readout

Orbit under
cyclic rota-
tions

2 Align readouts 3 Cluster aligned readouts

Figure 1: An overview of our approach. 1© Fit rotation-equivariant CNN to predict neural responses
and use readout vectors ri as proxies for neural computations. 2© Align readouts to account for
different preferred orientations. 3© Cluster the aligned readouts.

1

Published as a conference paper at ICLR 2020

1 INTRODUCTION

A compact description of the nonlinear computations in primary visual cortex (V1) is still elusive.
Like in the retina (Baden et al., 2016; Sanes & Masland, 2015), such understanding could come
from a functional classification of neurons. However, it is currently unknown if excitatory neurons
in V1 are organized into functionally distinct cell types.

It has recently been proposed that predictive models of neural responses based on convolutional neu-
ral networks could help answer this question (Klindt et al., 2017; Ecker et al., 2019). These models
are based on a simple principle (Fig. 1- 1©): learn a core (e.g. a convolutional network) that is shared
among all neurons and provides nonlinear features Φ(x), which are turned into predictions of neural
responses by a linear readout for each neuron (Antolík et al., 2016). Models based on this basic ar-
chitecture exploit aspects of our current understanding of V1 processing. First, convolutional weight
sharing allows us to characterize neurons performing the same computation but with differently lo-
cated receptive fields by the same feature map (Klindt et al., 2017; McIntosh et al., 2016; Kindel
et al., 2019; Cadena et al., 2019). Second, V1 neurons can extract local oriented features such as
edges at different orientations, and most low-level image features can appear at arbitrary orienta-
tions. Therefore, Ecker et al. (2019) proposed a rotation-equivariant convolutional neural network
model of V1 that extends the convolutional weight sharing to the orientations domain.

The basic idea of previous work (Klindt et al., 2017; Ecker et al., 2019) is that each convolutional
feature map could correspond to one cell type. While this idea is conceptually appealing, it hinges
on the assumption that V1 neurons are described well by individual units in the shared feature space.
However, existing models do not tend to converge to such solutions. Instead, V1 neurons are better
described by linearly combining units from the same spatial location in multiple different feature
maps (Ecker et al., 2019). Whether or not there are distinct functional cell types in V1 is therefore
still an open question.

Here, we address this question by introducing a clustering method on rotation-equivariant spaces.
We treat the feature weights (Fig. 1- 1©) that map convolutional features to neural responses as
an approximate low-dimensional vector representation of this neuron’s input-output function. We
then split neurons into functional types using a two-stage procedure: first, because these feature
weights have a rotation-equivariant structure, we find an alignment that rotates them into a canonical
orientation (Fig. 1- 2©); in a second step, we cluster them using standard approaches such as k-means
or Gaussian mixture models (Fig. 1- 3©). We apply our method to the published model and data of
Ecker et al. (2019) that contains recordings of around 6000 neurons in mouse V1 under stimulation
with natural images. Our results suggest that V1 neurons might indeed be organized into functional
clusters. The dataset is best described by a GMM with around 100 clusters, which are to some extent
redundant but can be grouped into a smaller number of 10–20 groups. We analyse the resulting
clusters via their maximally exciting inputs (MEIs) (Walker et al., 2018) to show that many of these
functional clusters do indeed correspond to distinct computations.

2 RELATED WORK

Unsupervised functional clustering via system identification As outlined in the introduction,
our work builds directly upon the methods developed by Klindt et al. (2017) and Ecker et al. (2019).
While these works view the feature weights as indicators assigning each neuron to its ‘cell type’
(feature map), we here take a different view on the same model: rather than focusing on the convo-
lutional features and viewing them as cell types, we treat the feature weights as a low-dimensional
representation of the input-output function of each neuron and perform clustering in this space. This
view on the problem has the advantage that there is no one-to-one correspondence between the
number of feature maps and the number of cell types and we disentangle model fitting from its inter-
pretation. On the other hand, our approach comes with an addition complexity: because the feature
weights obey rotational equivariance and we would like our clustering to be invariant to rotations,
we require a clustering algorithm that is invariant with respect to a class of (linear) transformations.

Invariant clustering A number of authors have developed clustering methods that are invariant
to linear (Tarpey, 2007), affine (Brubaker & Vempala, 2008) or image transformations by rotations,

2

Published as a conference paper at ICLR 2020

scalings and translations (Frey & Jojic, 2002). Ju et al. (2019) cluster natural images by using a
CNN to represent the space of invariant transformations rather than specifying it explicitly.

Alignments Instead of using custom clustering algorithms that are invariant under certain trans-
formations, we take a simpler approach: we first transform our features such that they are maximally
aligned using the class of transformations the clustering should be invariant to. This approach has
been used in other contexts before, usually by minimizing the distances between the transformed
observations. Examples include alignment of shapes in Rd using rigid motions (Gower, 1975; Dry-
den & Mardia, 1998), alignment of temporal signals by finding monotonic input warps (Zhou & De
la Torre, 2012), or alignment of manifolds with the distance between the observations being defined
according to the metric on the manifold (Wang & Mahadevan, 2008; Cui et al., 2014). There is
also work on alignment objectives beyond minimizing distances between transformed observations,
examples of which include objectives based on generative models of observations (Kurtek et al.,
2011; Duncker & Sahani, 2018) or probabilistic ones which are particularly suited for alignment
with multiple groups of underlying observations (Kazlauskaite et al., 2019).

3 ROTATION-EQUIVARIANT CLUSTERING

Our goal is to cluster neurons in the dataset into groups performing similar computations. To do so,
we use their low-dimensional representations obtained from the published rotation-equivariant CNN
of Ecker et al. (2019), which predicts neural activity as a function of an external image stimulus. We
briefly review this model before describing our approach to rotation-invariant clustering.

CNN model architecture The model consists of two parts (Fig. 1- 1©):

1. A convolutional core that is shared by all neurons and computes feature representations
Φ(x) ∈ RW×H×K , where x is the input image, W ×H is the spatial dimensionality and
K is the number of feature maps.

2. A separate linear readout wn = sn ⊗ rn ∈ RW×H×K for each neuron n = 1, . . . , N ,
factorized into a spatial mask sn and a vector of feature weights rn.

The predicted activity of a neuron n for image x is

an(x) = f(wn · Φ(x)) = f(rn · sn · Φ(x)) ∈ R (1)

where f(·) is a non-linear activation function. Such a CNN therefore provides K-dimensional fea-
ture weights rn characterising linear combinations of spatially weighted image features sn · Φ(x)
that are predictive of neural activity. We treat these feature weights as finite-dimensional proxies of
actual computations implemented by the neurons. Because masks sn (another component of read-
outs wn defined above) are irrelevant for our analysis, we will often refer to rn simply as readout
vectors. We will be referring to the matrix having ri as its rows as the readout matrix R ∈ RN×K .

Rotation-equivariant core Feature representations Φ(x) are rotation-equivariant, meaning that
weight sharing is not only applied across space but also across rotations: for each convolutional
filter there exist O rotated copies, each rotated by 2π/O. Feature vectors φij(x) at position (i, j)
therefore consist of F different features, each computed in O linearly-spaced orientations (such
that F × O = K). We can think of φij(x) as being reshaped into an array of size F × O. Having
computed φij(x), we can compute φij(x′) with x′ being a stimulus x rotated around (i, j) by 2π/O
by cyclically shifting the last axis of φij(x) by one step (this mechanism is illustrated in Fig. 2).

Rotation-equivalent computations The linear readout adheres to the same rotation-equivariant
structure as the core. As our goal is to cluster the neurons by the patterns of features they pool
while being invariant to orientation, we need to account for the set of weight transformations that
correspond to a rotation of the stimulus when clustering neurons. We illustrate this issue with a
small toy example consisting of six neurons that fall into two cell types (Fig. 2B). Within each cell
type (columns in Fig. 2B), the individual neurons differ only in their orientation. More formally,
we define the computations performed by two neurons ni and nj to be rotation-equivalent if there
exists a rotation ψij such that for any input stimulus x we have ani(x) = anj (ψij(x)). We will
refer to such neurons as rotation-equivalent as well.

3

Published as a conference paper at ICLR 2020

sn · Φ
()

=

[
1 0.4 2.6
0.5 2 0.9

]
; sn · Φ

()
=

[
2.6 1 0.4
0.9 0.5 2

]
; sn · Φ

()
=

[
0.4 2.6 1
2 0.9 0.5

]
.

A

B Type 1: 1× + 2×

a
0
n

()
=

∑([
1 0.4 2.6
0.5 2 0.9

]
⊙

[
1 0 0
2 0 0

])
= 1.5

a
π/3
n

()
=

∑([
1 0.4 2.6
0.5 2 0.9

]
⊙

[
0 1 0
0 2 0

])
= 2.4

a
2π/3
n

()
=

∑([
1 0.4 2.6
0.5 2 0.9

]
⊙

[
0 0 1
0 0 2

]

︸ ︷︷ ︸
feature vectors (reshaped)

)
= 3.5

Type 2: 1× + 2×

a
0
n

()
=

∑([
1 0.4 2.6
0.5 2 0.9

]
⊙

[
1 0 0
0 2 0

])
= 3

a
π/3
n

()
=

∑([
1 0.4 2.6
0.5 2 0.9

]
⊙

[
0 1 0
0 0 2

])
= 2.2

a
2π/3
n

()
=

∑([
1 0.4 2.6
0.5 2 0.9

]
⊙

[
0 0 1
2 0 0

]

︸ ︷︷ ︸
feature vectors (reshaped)

)
= 3.6

Figure 2: Toy example illustrating the computations in a rotation-equivariant CNN with two features
(red and blue; cartoon feature representations are shown on top of corresponding values of Φ(x))
in three orientations (0, π/3, 2π/3). A: Output of the rotation-equivariant CNN for an input image
rotated by π/3 (base orientation) can be computed by a cyclic shift. B: Example of two distinct
types of neurons (columns) in three orientations (rows). Computations for both types consist of
linear combinations of the two features computed by the CNN with the same weights, but in different
relative orientations. Readouts of neurons of the same type in different orientations are cyclic shifts
of each other, since they produce the same outputs on correspondingly rotated inputs.

Readouts of rotation-equivalent neurons Directly clustering the readout matrix R does not re-
spect the rotation equivalence, because readout vectors of neurons implementing rotation-equivalent
computations are not identical (Fig. 2). To address that, we first modify R to obtain a matrix R̃
with the rows corresponding to rotation-equivalent neurons aligned to a canonical form, and then
cluster R̃ to obtain functional cell types. Rotating an input x by a multiple of 2π/O corresponds to
cyclically shifting Φ(x), so the readout vectors of two rotation-equivalent neurons whose orienta-
tion difference ψij is a multiple of 2π/O are also cyclic shifts of each other (Fig. 2). For arbitrary
rotations that are not necessarily a multiple of 2π/O, we assume the readout rnj

of neuron nj to
be a linear interpolation of cyclic shifts of rni

corresponding to the two nearest rotations which are
multiples of 2π/O. Formally, we define a cyclic rotation matrix by an angle α ∈ [0, 2π) as follows
(matrix has shape O ×O; column indices are shown above the matrix):

Sα =

1 i i+ 1 i+ 2 i+ 3 O

0 . . . 0 1− γ γ 0 . . . 0
0 . . . 0 0 1− γ γ . . . 0

...
...

0 . . . 1− γ γ 0 0 . . . 0

,
i =

⌊
αO

2π

⌋
mod O,

γ =
αO

2π
− i.

(2)

Given a readout vector rn ∈ RK , we can think of it as a matrix rn ∈ RO×F with columns corre-
sponding to readout coefficients for different orientations of a single feature. The cyclic rotation of
a readout rn by an angle α ∈ [0, 2π) can be expressed as a matrix multiplication rn(α) = Sαrn.
Note, by writing rn(α) as a function of α we refer to cyclically rotated (transformed) readouts,
while rn are the fixed ones coming from a pre-trained CNN and rn(0) = rn.

For two rotation-equivalent neurons ni and nj , the readout vector rnj
can be computed as a cyclic

rotation of rni
by α, which is the rotation angle of ψij . If α is a multiple of 2π/O; otherwise it is

only an approximation which becomes increasingly accurate as O increases.

Aligning the readouts Assuming V1 neurons form discrete functional cell types, all neurons in
the dataset (and hence the readouts characterising them) can be partitioned into non-overlapping
classes w.r.t. the rotation equivalence relation we introduced above. Choosing one representative of
each class and replacing the rows of R with their class representatives, we can obtain R̃ from R.
Next, we discuss an algorithm for finding such representatives of each class.

4

Published as a conference paper at ICLR 2020

We claim that by minimising the sum of pairwise distances between the cyclically rotated readouts

{α∗
i } = argmin

{αi}

N∑

i=1

N∑

j=i+1

||ri(αi)− rj(αj)||, (3)

we can transform each readout into a representative of a corresponding equivalence class (same for
all readouts of a class), i.e. ri(α

∗
i) = rj(α

∗
j) if neurons i and j are rotation-equivalent. This is

indeed the case because the readouts of the same equivalence class lie on the orbit obtained by cycli-
cally rotating any representative of that class. Such angles {α∗

i } that neurons of the same class end
up on the same point on the orbit (i.e. aligned to the same class representative) clearly minimise
Eq. (3), and since different orbits do not intersect (they are different classes of equivalence), read-
outs of different equivalence classes cannot end up at the same point. Note that the resulting class
representatives are not arbitrary, but those with the smallest sum of distances between each other in
the Euclidean space. This mechanism is illustrated in Fig. 1- 2©.

Clustering aligned readouts Having obtained R̃ with rows ri(α
∗
i), we can cluster the rows of

this matrix using any standard clustering method (e.g. K-Means, GMM, etc.) to obtain groups of
neurons (cell types) performing similar computations independent of their preferred orientations.

Figure 3: Distance between two vec-
tors (top left corner) with first one
fixed and second cyclically shifted
by an angle on the x-axis. Contin-
uous relaxation (shades of blue) of
linearly interpolated (black) cyclic
shifts smooths gradients and helps
overcome local minima.

Continuous relaxation of cyclic rotations The rotation-
invariant clustering described above is based on solving the opti-
misation problem in Eq. (3). To do so, we would typically use a
gradient-based optimisation, which is prone to local minima be-
cause of the way we define cyclic rotations in Eq. (2). According
to that definition, a rotated readout is a linear combination of two
nearest base rotations, or rather a linear combination of all such
rotations with only two coefficients being non-zero. That means
that gradients of all but two coefficients w.r.t. the angle α are
zero, and the optimisation would converge to a local minimum
corresponding to the best linear combination of the two base ro-
tations initialised with non-zero coefficients (Fig. 3).

To address this issue, we propose to approximate Eq. (2), such
that rni

(α) is a linear combination of all base rotations with non-
zero coefficients, with the coefficients for the two nearest base
rotations being the largest. Specifically we compute the coeffi-
cients by sampling the von Mises density at fixed orientations to
ensure cyclic boundary conditions and define r̃ni(α), a continu-
ous relaxation of rni(α), as r̃ni(α) = S̃αrni where

S̃α =

γ1 γ2 . . . γO
γO γ1 . . . γO−1

...
...

γ2 γ3 . . . γ1

 with γi =

exp(T cos(α− (i− 1) · 2π/O))
O∑
i=1

exp(T cos(α− (i− 1) · 2π/O))

. (4)

The parameter T ≥ 0 controls the sparseness of coefficients {γi}. For small T , many of the co-
efficients are significantly greater than zero, allowing the optimiser to propagate the gradients and
reduce the effect of initialisation. As T increases, r̃ni

(α) becomes more similar to rni
(α), and the

rotations by multiples of 2π/O are recovered. In the limit, r̃ni
(2πk/O) → rni

(2πk/O) as T → ∞
(Fig. 3). Instead of fixing T , we learn it by optimising the regularised alignment objective with
additional reconstruction loss preventing trivial solutions (e.g. all coordinates of r̃i(αi) being the
same for T = 0):

{α∗
i } = argmin

{αi},T

N∑

i=1

N∑

j=i+1

||r̃i(αi)− r̃j(αj)||+ β
N∑

i=1

||r̃i(0)− ri||. (5)

5

Published as a conference paper at ICLR 2020

−0.2
0.2
0.6

A

0 π
4

π
2
3π
4
π5π

4
3π
2
7π
4

0
0.7
1.5

R R̃(α∗) R̃(0) R̃(α∗) R̃(0)

φ ≈ 0.283π

φ ≈ 0.479π

β = 2 β = 0.01 B

Figure 4: Synthetic data set: generation, alignment and dependence on noise. A: Panel R shows
the unaligned synthetic data set as well as the corresponding shifted GP samples for each of the two
groups of neurons (see details in the main text). Colored boxes in R correspond to the colors of
corresponding GP samples. Panels R̃(α∗) and R̃(0) show aligned readouts and readouts rotated
by 0 using Eq. (4) respectively. R̃(0) should be similar to R for an adequate choice of β (and
consequently optimised value of T). B: Effect of observation noise. Means of pairwise distances
for each of the two groups shown in matrix R for two levels of Gaussian noise added to the dataset.
Black dashed line: expected pairwise distance due to noise only (i.e. for perfectly aligned data with
added noise). Raw and aligned matrices for each of the two groups are shown below the bar plots.

4 EXPERIMENTS

Synthetic dataset We generate a small toy dataset consisting of 16 hypothetical neurons (readouts)
of two cell types to illustrate the proposed alignment method. Each readout consists of just one
feature in eight base orientations (linearly spaced between 0 and 7π/4) and is generated by one of
the two underlying types of readouts cyclically shifted by a random angle φ ∈ [0, 2π). To generate
such a dataset , we draw two independent noiseless functions from a Gaussian process (GP) with
a periodic kernel (with period 2π), then for each readout we randomly choose one of the two GP
samples, shift it by an angle φ and evaluate the shifted function at the base orientations to obtain an
8-dimensional vector modelling the observed readout values. This process is illustrated in Fig. 4A.

Neural data We use the same dataset as in Ecker et al. (2019), consisting of simultaneous record-
ings of responses of 6005 excitatory neurons in mouse primary visual cortex (layers 2/3 and 4).

Model details We analyse a rotation-equivariant CNN consisting of a three-layer core with 16
features in 8 orientations in each layer (kernel sizes 13, 5, 5) and 128-dimensional readouts (F = 16,
O = 8). We use the pre-trained model provided by Ecker et al. (2019). We align the readout matrix
R by minimising Eq. (5) w.r.t. the rotation angles αi and temperature T . We fit models for 20
log-spaced values of β in [0.001, 10], and choose for analysis the one with the smallest alignment
loss (Eq. (3)) among the models with optimised temperature T > 5. We use Adam (Kingma & Ba,
2015) with early stopping and initial learning rate of 0.01 decreased three times.

Clustering aligned readouts We use the Gaussian mixture model implemented in scikit-learn
(Pedregosa et al., 2011) for clustering the aligned readouts R̃. We use spherical covariances to
reduce the number of optimised parameters. To obtain a quantitative estimate of the number of
clusters in R̃, we randomly split the dataset of 6005 neurons into training (4000 neurons) and test
(2005 neurons) sets, fit GMMs with different numbers of clusters on the training set, and then
evaluate the likelihood of the fitted model on the test set.

6

Published as a conference paper at ICLR 2020

5 RESULTS

5.1 SYNTHETIC DATA SET ALIGNMENT

We start by demonstrating on a synthetic dataset (Sec. 4) that optimising Eq. (5) can successfully
align the readouts (Fig. 4A), assuming β has been chosen appropriately. Note that readouts have
been shifted by arbitrary angles (not multiples of π/4 as demonstrated for readouts in colored boxes
in Fig. 4A), and they are aligned precisely via interpolation Eq. (4). We can also see the effect
of the parameter β, controlling the relative weight of the reconstruction term (i.e. similarity of
readouts rotated by 0 degrees to the observations). Small values of β incur a small cost for poor
reconstructions resulting in small optimised values of T and over-smoothed aligned readouts.

We next ask whether the alignment procedure still works in the presence of observational noise
(Fig. 4B). For small to moderate noise levels (Fig. 4B, left), alignment reduces the pairwise distances
to the level expected from the observation noise (shown at the top), confirming the visual impression
(shown at the bottom) that alignment works well. For high noise levels (Fig. 4B, right), alignment
breaks down as expected, and we observe overfitting to the noise patterns (shown by the pairwise
distances after alignment dropping below the level expected from observation noise alone).

5.2 MOUSE V1 DATASET

1 100 200 300 400 500
200

210

220

Number of clusters

Te
st

lik
el

ih
oo

d

Figure 5: Test set like-
lihood of GMMs applied
to R̃ as a function of the
number of clusters.

Clustering We evaluate the GMM used to cluster R̃ for different
numbers of clusters. The test likelihood starts to plateau at around 100
clusters (Fig. 5), so we use 100 clusters in the following.

Visualization of clusters To visualize the clustering result, we com-
pute a two-dimensional t-SNE embedding (van der Maaten & Hinton,
2008) of the matrix of aligned readouts R̃, which is coloured accord-
ing to the GMM clustering of R̃ with 100 clusters (Fig. 6). Note that
we use the embedding only for visualization, but cluster 128D aligned
readouts in R̃ directly. In addition to the embeddings, we also visualize
the computations performed by some of the clusters by showing maxi-
mally exciting inputs (MEIs). We compute MEIs via activity maximi-
sation (Erhan et al., 2009; Walker et al., 2018) and show the stimuli that
maximally drive the 16 best-predicted neurons of each cluster. We ob-
serve that MEIs corresponding to neurons of the same cluster are generally consistent up to rotation
and receptive field location, suggesting that the proposed clustering method captures the similarities
in the neural computations while ignoring the nuisances as desired.

Network learned redundant features We noticed a number of clusters with similar MEIs (e.g.
Block 9 and Block 13 in Fig. 6). There could be two reasons for this observation: (a) the neural com-
putations corresponding to these clusters could be different in some other aspect, which we cannot
tell by inspecting MEIs as they represent only the maximum of a complex function, or (b) the fea-
tures learned by the CNN could be redundant, i.e. the hidden layers could learn to approximate the
same function in multiple different ways. To answer this question, we compute a cluster confusion
matrix (Fig. 7, left), which quantifies how similar the response predictions of different clusters are
across images. The element (p, q) corresponds to the correlation coefficient between the predicted
responses on the entire training set of hypothetical neurons with cluster means for clusters p and q
used as readouts, accounting for potential differences in canonical orientation across clusters. By
greedily re-arranging clusters in the matrix into blocks based on their correlations, we show that
the 100 clusters in the model can be grouped into a much smaller number of functionally distinct
clusters. Using a correlation threshold of 0.5 in this re-arrangement procedure, we obtain an exam-
ple arrangement into 17 blocks (Fig. 7). Thus, the network has learned an internal representation
that allows constructing very similar functions in multiple ways, suggesting that further pruning the
learned network before clustering could lead to a more compact feature space for V1.

Finally, to quantify how consistent the resulting 17 groups of clusters are, we compute an MEI
confusion matrix (Fig. 7, right panel). Its (i, j) element is the predicted activity of neuron j for the
MEI of neuron i, after accounting for orientation and receptive field location (i.e. aj(yi), where

7

Published as a conference paper at ICLR 2020

Figure 6: 2D t-SNE embedding of the aligned readouts R̃, colored according to the GMM clustering
with 100 components. Black stars show the locations of cluster centers. For some of the clusters,
the MEIs of 16 best predicted neurons of that cluster are shown. The titles in the MEI subfigures
show which matrix block in Fig. 7 (left) that cluster belongs to.

yi is the MEI of neuron i moved and rotated such that it optimally drives neuron j). We show this
matrix using the same grouping as for the cluster confusion matrix above and restrict it to the 542
(out of 6005) best predicted neurons (with test set correlation ≥ 0.7). Note that some of the blocks
from the cluster confusion matrix do not appear here, indicating that those clusters include poorly
predicted neurons (e.g. block 17). The MEI confusion matrix exhibits a block-diagonal structure,
with most MEIs driving neurons within the same blocks most strongly, albeit with different degrees
of within-block similarity.

8

Published as a conference paper at ICLR 2020

Figure 7: Left: Cluster confusion matrix (100 × 100) for 100 clusters shown in Fig. 6. Rows
and columns have been arranged into 17 groups (blocks). Right: MEI confusion matrix for well-
predicted neurons (test correlation ≥ 0.7) arranged into the same 17 blocks as on the left.

6 CONCLUSIONS AND FUTURE WORK

We have presented an approach to clustering neurons into putative functional cell types invariant
to location and orientation of their receptive field. We find around 10–20 functional clusters, the
boundaries of some of which are not very clear-cut. To systematically classify the V1 functional cell
types, these proposals need to be subsequently examined based on a variety of biological criteria
reflecting the different properties of the neurons and the prior knowledge about the experiment.

9

Published as a conference paper at ICLR 2020

REFERENCES

Ján Antolík, Sonja B. Hofer, James A. Bednar, and Thomas D. Mrsic-flogel. Model Constrained
by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes. PLoS Comput
Biol, 2016.

Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias Bethge, and Thomas
Euler. The functional diversity of retinal ganglion cells in the mouse. Nature, 529, 2016.

Spencer Ch. Brubaker and Santosh Vempala. Isotropic pca and affine-invariant clustering. In Pro-
ceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, 2008.

Santiago A. Cadena, George H. Denfield, Edgar Y. Walker, Leon A. Gatys, Andreas S. Tolias,
Matthias Bethge, and Alexander S. Ecker. Deep convolutional models improve predictions of
macaque v1 responses to natural images. PLoS computational biology, 15(4), 2019.

Zhen Cui, Hong Chang, Shiguang Shan, and Xilin Chen. Generalized unsupervised manifold align-
ment. In Advances in Neural Information Processing Systems (NIPS). 2014.

Ian L. Dryden and Kanti V. Mardia. Statistical Shape Analysis. Wiley, Chichester, 1998.

Lea Duncker and Maneesh Sahani. Temporal alignment and latent gaussian process factor inference
in population spike trains. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems (NIPS). 2018.

Alexander S. Ecker, Fabian H. Sinz, Emmanouil Froudarakis, Paul G. Fahey, Santiago A. Cadena,
Edgar Y. Walker, Erick Cobos, Jacob Reimer, Andreas S. Tolias, and Matthias Bethge. A rotation-
equivariant convolutional neural network model of primary visual cortex. In International Con-
ference on Learning Representations, 2019.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. Technical report, University of Montreal, 2009. Also presented at the
ICML 2009 Workshop on Learning Feature Hierarchies, Montréal, Canada.

Brendan J Frey and Nebojsa Jojic. Fast, large-scale transformation-invariant clustering. In Advances
in Neural Information Processing Systems (NIPS). MIT Press, 2002.

James C. Gower. Generalized procrustes analysis. Psychometrika, 40(1), 1975.

Xu Ju, João F. Henriques, and Andrea Vedaldi. Invariant information clustering for unsupervised
image classification and segmentation. In The IEEE International Conference on Computer Vision
(ICCV), 2019.

Ieva Kazlauskaite, Carl Henrik Ek, and Neill Campbell. Gaussian process latent variable alignment
learning. In AISTATS, volume 89. PMLR, 2019.

William F. Kindel, Elijah D. Christensen, and Joel Zylberberg. Using deep learning to probe the
neural code for images in primary visual cortex. Journal of Vision, 19(4), 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In 3rd Interna-
tional Conference on Learning Representations (ICLR), 2015.

David Klindt, Alexander S. Ecker, Thomas Euler, and Matthias Bethge. Neural system identifica-
tion for large populations separating “what” and “where”. In Advances in Neural Information
Processing Systems (NIPS), 2017.

Sebastian A. Kurtek, Anuj Srivastava, and Wei Wu. Signal estimation under random time-warpings
and nonlinear signal alignment. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems (NIPS). 2011.

Lane McIntosh, Niru Maheswaranathan, Aran Nayebi, Surya Ganguli, and Stephen Baccus. Deep
learning models of the retinal response to natural scenes. In Advances in Neural Information
Processing Systems (NIPS). 2016.

10

Published as a conference paper at ICLR 2020

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 2011.

Joshua R. Sanes and Richard H. Masland. The types of retinal ganglion cells: current status and
implications for neuronal classification. Annual review of neuroscience, 38, 2015.

Thaddeus Tarpey. Linear Transformations and the k-Means Clustering Algorithm: Applications to
Clustering Curves. The American Statistician, 61, 2007.

Laurens van der Maaten and Geoffrey E. Hinton. Visualizing high-dimensional data using t-sne.
Journal of Machine Learning Research, 9, 2008.

Edgar Y. Walker, Fabian H. Sinz, Emmanouil Froudarakis, Paul G. Fahey, Taliah Muhammad,
Alexander S. Ecker, Erick Cobos, Jacob Reimer, Xaq Pitkow, and Andreas S. Tolias. Inception in
visual cortex: in vivo-silico loops reveal most exciting images. bioRxiv, 2018.

Chang Wang and Sridhar Mahadevan. Manifold alignment using procrustes analysis. In Proceedings
of the 25th International Conference on Machine Learning (ICML), 2008.

Feng Zhou and Fernando De la Torre. Generalized time warping for multi-modal alignment of
human motion. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.

11

Published as a conference paper at ICLR 2020

A RANDOM PERMUTATIONS OF FEATURES

Figure A1: 2D t-SNE embedding of the aligned readouts R̃ with feature weights randomly permuted
for each of the neurons. The colors correspond to the GMM clustering with 100 components. Black
stars show the locations of cluster centers. For some of the clusters, the MEIs of 16 best predicted
neurons of that cluster are shown.

12

Published as a conference paper at ICLR 2020

Figure A2: 2D t-SNE embedding of the aligned readouts R̃ with feature weights randomly permuted
across the neurons. The colors correspond to the GMM clustering with 100 components. Black stars
show the locations of cluster centers. For some of the clusters, the MEIs of 16 best predicted neurons
of that cluster are shown.

Figure A3: t-SNE embeddings for the aligned readouts (Fig. 6), and the controls with randomly
permuted features for each neuron (Fig. A1) and across the neurons (Fig. A2).

13

Published as a conference paper at ICLR 2020

B SYNTHETIC DATASET: DEPENDENCE ON NOISE

Raw data Aligned t-SNE (raw data) t-SNE (aligned)
Noise SD = 0.00

Raw data Aligned t-SNE (raw data) t-SNE (aligned)
Noise SD = 0.10

Raw data Aligned t-SNE (raw data) t-SNE (aligned)
Noise SD = 0.20

Raw data Aligned t-SNE (raw data) t-SNE (aligned)
Noise SD = 0.50

Raw data Aligned t-SNE (raw data) t-SNE (aligned)
Noise SD = 0.75

Raw data Aligned t-SNE (raw data) t-SNE (aligned)
Noise SD = 1.00

Raw data Aligned t-SNE (raw data) t-SNE (aligned)
Noise SD = 2.00

Raw data Aligned t-SNE (raw data) t-SNE (aligned)
Noise SD = 5.00

Figure B1: Alignment of a synthetic dataset of 100 observations generated using the procedure
described in Sec. 4 for different amount of i.i.d. Gaussian noise added to the observations. The
panels for each noise level show the 16 (out of 100) examples of the raw and aligned data as well
the t-SNE embeddings of raw and aligned data coloured according to the GMM clustering with two
components.

14

Published as a conference paper at ICLR 2020

C MERGES AND SPLITS OF CLUSTER CONFUSION MATRIX BLOCKS

Figure C1: Sequential merges of the three pairs of blocks with the highest correlations in the cluster
confusion matrix (Fig. 7, left). The merged blocks and the correlation values are shown in the titles
of panels.

Figure C2: Sequential splits of the three pairs of blocks in the cluster confusion matrix (Fig. 7, left).
The merged blocks, the correlation values, and the examples of MEIs of one of the GMM clusters
in each of the splitted blocks are shown for each splitting step.

15

Digital twin reveals combinatorial code of
non-linear computations in the mouse

primary visual cortex
Ivan Ustyuzhaninov1,7, Max F. Burg1,2,7, Santiago A. Cadena1,2,7, Jiakun Fu4,5, Taliah Muhammad4,5, Kayla Ponder4,5,

Emmanouil Froudarakis4,5, Zhiwei Ding4,5, Matthias Bethge7, Andreas S. Tolias4,5,6, and Alexander S. Ecker2,3,�

1International Max Planck Research School for Intelligent Systems, University of Tübingen, Germany
2Institute of Computer Science and Campus Institute Data Science, University of Göttingen, Germany

3Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
4Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA

5Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
6Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

7Institute for Theoretical Physics, University of Tübingen, Germany

More than a dozen excitatory cell types have been identi-
fied in the mouse primary visual cortex (V1) based on tran-
scriptomic, morphological and in vitro electrophysiological
features. However, the functional landscape of excitatory
neurons with respect to their responses to visual stimuli
is currently unknown. Here, we combined large-scale two-
photon imaging and deep learning neural predictive mod-
els to study the functional organization of mouse V1 us-
ing digital twins. Digital twins enable exhaustive in silico
functional characterization providing a bar code summariz-
ing the input-output function of each neuron. Clustering the
bar codes revealed a continuum of function with around 30
modes. Each mode represented a group of neurons that
exhibited a specific combination of stimulus selectivity and
nonlinear response properties such as cross-orientation in-
hibition, size-contrast tuning and surround suppression.
These non-linear properties were expressed independently
spanning all possible combinations across the population.
This combinatorial code provides the first large-scale, data-
driven characterization of the functional organization of V1.
This powerful approach based on digital twins is applicable
to other brain areas and to complex non-linear systems be-
yond the brain.

Correspondence: Alexander S. Ecker, ecker@cs.uni-goettingen.de

Introduction
Understanding the functional organization of the primary
visual cortex (V1) has been a longstanding goal in neuro-
science. It has long been known that V1 extracts informa-
tion about local orientation Hubel & Wiesel (1959), often
in a phase-invariant manner (Hubel & Wiesel, 1962). Re-
searchers have described additional V1 nonlinearities, in-
cluding direction selectivity (Adelson & Bergen, 1985) and
various forms of nonlinear contextual modulation (Blake-
more & Tobin, 1972; Cavanaugh et al., 2002; DeAnge-
lis et al., 1992; Gilbert & Wiesel, 1990; Heeger, 1992;
Lamme, 1995; Morrone et al., 1982). However, although
we know many of the building blocks of V1 function, we do
not know how they are organized at the population level.

First, we do not know whether there exists a distinct num-

ber of functional cell types, each of which implements a
specific computation, or whether there is a continuum of
function, where cells do not fall into discrete types. Sec-
ond, independent of whether V1 functions are discrete or
form a continuum, we currently do not know how the differ-
ent nonlinear effects described previously are organized
at the population level: are they strongly correlated – for
instance because they are caused by a common compu-
tational mechanism – or are they present independently of
each other within the population?

A major roadblock in revealing the functional organiza-
tion of V1 has been that traditional experiments probing
the well-known nonlinear mechanisms do not scale well.
Large-scale population recordings are inefficient, because
stimuli need to be optimized to an individual neuron’s re-
ceptive field location, preferred orientation and spatial fre-
quency. In addition, probing all nonlinear mechanisms in
the same neurons is difficult because only a limited num-
ber of stimuli can be shown in an experiment.

We have overcome these limitations by combining large-
scale population recordings with natural stimuli and train-
ing high-performance predictive models based on deep
neural networks (Antolík et al., 2016; Batty et al., 2016; Ca-
dena et al., 2019; Cotton et al., 2020; Klindt et al., 2017;
Lurz et al., 2020; Sinz et al., 2018; Walker et al., 2019).
These models are capable of jointly modeling thousands of
neurons in a completely data-driven way providing a dig-
ital twin: an in silico approximation of the function of pri-
mary visual cortex (Fig. 1A). First, this approach allows us
to quantify the similarity of neurons’ response properties
on the set of natural stimuli by computing a compact, low-
dimensional vector representation of each neuron’s func-
tion (its bar code). This representation is independent of
the neuron’s receptive field location and its preferred ori-
entation and provides an unbiased metric to measure the
similarity of two neurons’ functions. It therefore provides
a principled way to study the functional organization of
V1. Second, the digital twin allows us to carry out ex-
periments with arbitrary stimuli in silico, essentially with-

Ustyuzhaninov et al. | bioRχiv | March 14, 2022 | 1–14

out limitations of experimental time to generate hypothesis
which can then verified back in vivo using the inception
loop paradigm (Bashivan et al., 2019; Walker et al., 2019).
This systematic functional analysis allows us to gain inter-
pretable insights from the model and link to existing litera-
ture.

We found that the functional organization is not entirely
uniform, revealing a number of high-density modes. We
therefore used the bar codes to cluster functionally similar
neurons, which allowed us to analyze the neurons’ func-
tional properties at the cluster level.

Crucially, our analysis revealed that classical non-linear
properties of neurons in V1 are expressed independently
of each other. For instance, knowing the extent of a
neuron’s non-linearity along the simple-complex cell axis
does not provide much information about its degree of sur-
round suppression or cross-orientation inhibition. More-
over, there exist functional clusters expressing all combi-
nations of nonlinear properties (including none or all), sug-
gesting that V1 neurons might be described with a combi-
natorial code in the space of basic nonlinear computations.

Overall, our results suggest the following answers to the
two questions posed above. The functional organization
of V1 appears to form a continuum; however, it is not uni-
form and there are high-density modes in the space of V1
neurons’ functions. This organization is consistent with re-
cent work using transcriptomic, morphological, and elec-
trophysiolocal properties, which showed that cortical neu-
rons are organized in families with a continuum of proper-
ties within them rather than distinct cell types Gouwens
et al. (2020); Network (2021); Scala et al. (2021). With
respect to classical nonlinearities, V1 neurons can be
described by a combinatorial code where each nonlin-
ear computation is expressed along an independent axis
across the population. Such factorized codes have compu-
tational advantages such as higher coding capacity (Fusi
et al., 2016).

Results
Large-scale recording and predictive modeling. We
recorded the activity of more than 45,000 excitatory neu-
rons in layer 2/3 of the primary visual cortex of seven
mice using a wide-field two-photon microscope (Sofroniew
et al., 2016, Fig. 1A). While we imaged, the mice were
head-fixed on a linear treadmill and were viewing natu-
ral images, which covered roughly 120° × 90° of their vi-
sual field (Fahey et al., 2019; Walker et al., 2019). Next,
we selected up to 2,000 neurons from each mouse and
fitted a single predictive model for all mice (Lurz et al.,
2020). The model is based on a convolutional neural net-
work (CNN). It takes as input the image on the screen
and outputs a prediction of the response of each neuron
(Fig. 1C). The model achieved single trial test correlation
of 0.42, and oracle correlation of 0.69. From this model, we
obtained a 128-dimensional vector representation of each

neuron’s function. These vectors can be thought of as “bar
codes” summarizing the neuron’s stimulus-response func-
tion (Fig. 1D).

To describe the neurons’ functional diversity, we removed
two well-known factors of variation across V1 neurons: re-
ceptive field position and preferred orientation. The bar
codes we obtained from our model were independent of re-
ceptive field position and preferred orientation of the neu-
ron: if the responses of two neurons could be made identi-
cal by applying a constant shift and rotation to all images,
these two neurons would obtain the same bar code. We
achieved this property by using a rotation-equivariant CNN
(Ecker et al., 2019; Ustyuzhaninov et al., 2020). Having
bar codes that are independent of receptive field location
and preferred orientation is extremely useful, because it
removes two “trivial” axes of variation and allows us to fo-
cus on and visualize more subtle aspects of the neurons’
selectivity or nonlinear processing.

Predictive modeling reveals functional clusters. We
first asked whether V1 neurons are organized into discrete
functional types or rather form a continuum. A 2D t-SNE
embedding (van der Maaten & Hinton, 2008) of the bar
codes (Fig. 1E) revealed several modes – or regions of
high density. These modes correspond to groups of func-
tionally similar neurons. While there is no strong evidence
for discrete functional types, it is not a uniform distribu-
tion either. We performed k-means clustering (MacQueen
et al., 1967) (using 50 clusters) to identify the modes of the
distribution and simplify downstream analysis.

Neurons within functional clusters have similar MEIs.
Given that V1 neurons can be organized into functional
clusters, we aim at characterizing these clusters. We
start by computing the preferred stimulus of each neu-
ron, sometimes referred to as the most exciting image
(MEI), which is optimized, using the model, to maximize
the neuron’s predicted activity (Fig. 2A). They have been
shown to provide a faithful snapshot of neural computa-
tions (Bashivan et al., 2019; Walker et al., 2019), and
therefore provide convenient single-image visualizations
of a neuron’s selectivity. Neurons within the same clus-
ter had similar MEIs (up to location and rotation), while
MEIs of neurons in different clusters tended to be differ-
ent (Fig. 1F). This result provides a first piece of evidence
that the clusters are a meaningful way of describing the
functional organization of V1.

Note that our data does reproduce the large degree of het-
erogeneity of MEIs and their frequent striking deviations
from Gabor filters (Fig. 1F) that have been reported previ-
ously for mouse V1 (Walker et al., 2019).

Cluster MEIs visualize functional similarities between
the neurons. To focus more on commonalities of function-
ally similar neurons, we next computed optimal stimuli at
the cluster level. To do so, we computed cluster MEIs: im-
age templates that maximize average activity of neurons in

2 | bioRχiv Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex

G
Cluster MEIsFunctional embedding

E F
Individual MEIs

D

=

...feature N
fe

at
ur

e
1

Bar codes t-SNE

B

Blank
0.3-0.5s

Stimulus
0.5s

200 µm

C

Stimulus

Input image

CNN
core

Feature space
Spatial
masks

Feature
weights

x

...

Predictions

Align and cluster

A

In silico experiments

......

Similarity metric

feature N

fe
at

ur
e

1

Mouse V1

Digital twin
≈

Activity

Prediction
≈

Neuron 1

Neuron 2

Neuron N

Neuron 1

Neuron N

Fig. 1. A. Overview of our method. We presented natural images to a mouse and recorded corresponding responses of a large population of neurons in the primary visual
cortex. This dataset allowed us to build a “digital twin” model of the mouse primary visual cortex which provided a functional similarity metric between the neurons, as well as
enabled us to perform in silico experiments. B. Data recording paradigm. We presented an alternating sequence of 4692 natural and blank images to seven different mice.
We showed natural images for 0.5s and blank ones for a random duration between 0.3s and 0.5s. We presented an additional test set of 100 images 10 times each. We
recorded responses of 5 to 8 thousand V1 L2/3 neurons depending on the scan using a wide-range two-photon microscope. Processed calcium traces for three randomly
chosen neurons are shown in the top, and raw scans at three different depths are shown in the bottom. C. Model fitting paradigm. We pooled the data from all 7 mice in
a single dataset and fitted a rotation-equivariant CNN model to predict the recorded neural activity. The model consists of a rotation-equivariant convolutional core shared
across neurons and neuron-specific linear readouts. For each neuron the readout is decomposed into a spatial mask encoding the spatial location of its receptive field
and a vector of feature weights encoding predictive CNN features for this neuron. Feature weights can be thought of as “bar codes” summarizing a neuron’s function. D.
Functional clustering. We collected the feature weights for all neurons into a single matrix (row-wise) and aligned its rows by cycling shifts to remove the differences due to
different preferred orientations of the neurons. We then clustered the rows of the aligned feature weights matrix into 50 clusters using the k-Means algorithm. The aligned
feature weights and the clusters are visualized using a 2D t-SNE embedding. E. A 2D t-SNE functional emedding of the recorded neurons colored according to the cluster
assignment. F. Examples of MEIs of 16 best predicted neurons in 4 different clusters alongside examples of MEIs of other neurons on top of a t-SNE embedding. G. Examples
of cluster MEIs of other neurons on top of a t-SNE embedding.

Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex bioRχiv | 3

Stimulus pixel values

Ac
tiv

ity
 o

f a
 n

eu
ro

n
or

 c
lu

st
er

Optimal GaborOptimal DoG

MEI

Noise

A

C

E F

D

0
π
2 π 3π

2 2π

Orientation, α

0

mean

1
Tuning curve mean

Best fitting A sin(2α + φ)

Orientation tuning Phase tuning

0
π
2 π 3π

2 2π

Phase, α

0

mean

1
Tuning curve mean

Best fitting A sin(α + φ)

Cross-orientation inhibition tuning

xm 1 2
Orthogonal orientation contrast

0.1

0.25

yl

ym Intermediate pref contrasts

Max pref contrast

Size-contrast tuning

5 xm 30 50
Gabor size

0.5

yl

ym
2 Intermediate contrasts

Max contrast

MEI space (all images)
Gabor space
DoG space

Cluster
MEI

Neuron 1

Neuron 2

Neuron N

Shift and
rotate

B

Fig. 2. A. Optimal stimuli. We maximize activity of a neuron or average activity of a cluster with respect to an input stimulus which is constrained to belong to a certain image
space. An illustration shows a response surface of a neuron of a cluster and maximum values on the this surface while restricting ourselves to a specific image space shown
in the XY plane. The space of possible MEIs contains all images, while the spaces of possible Gabors and DoGs are subsets of all images. B. Average cluster activity for a
given stimulus is computed by averaging the responses of neurons in the cluster to the stimuli shifted and rotated to match the location of the receptive field and preferred
orientation of each neuron in that cluster. C-D. Examples of orientation and phase tuning curves for a single neuron. We vary orientation and phase of an optimal Gabor
while keeping all other parameters fixed to generate stimuli for orientation and phase tuning experiments. The numerical tuning indices for these tuning curves are computed
by fitting a sine curve and taking the ratio of its amplitude to the mean of the tuning curve. E. Example of a size-contrast tuning curve for a single neuron. The stimuli for
the size-tuning experiment are constructed by varying size and contrast of an optimal Gabor while keeping all other parameters fixed. The suppression tuning strength is
computed for a tuning curve corresponding to the highest contrast as a relative decrease of activity when increasing the size of the Gabor beyond the size corresponding to
the maximum value of the curve. The contrast tuning strength is computed analogously by transposing size and contrast, i.e. by considering a tuning curve corresponding
to the largest size as a function of the contrast. F. Example of a cross-orientation inhibition (COI) tuning curve for a single neuron. The stimuli for this experiment are called
plaids and constructed by overlaying the optimal Gabor and the Gabor orthogonal to it in different contrasts. The COI tuning strength index is computed using a tuning curve
corresponding to the highest preferred contrast analogously to the suppression index for the size-contrast experiment.

each cluster when accounting for each neuron’s receptive
field location and preferred orientation (Fig. 2B). Cluster
MEIs show a systematic variation along the different axes
of the t-SNE embedding (Fig. 1G): Neighboring clusters
tend to have visually similar cluster MEIs. There appears
to be a global pattern in the t-SNE space with clusters on
the right having oriented, Gabor-like MEIs with higher fre-
quencies and multiple cycles within the envelope, while
those in the middle having lower frequencies and fewer
cycles and those towards the bottom left having more sym-
metric and circular MEIs.

Cluster MEIs visualize common patterns of cluster com-
putations, and since they are designed to capture simi-
larities rather than differences between the neurons, they
exhibit less variability than individual MEIs. Quantitatively
this amounts to cluster MEIs driving the neurons to around

60% of activity of their individual MEIs.

In silico experiments provide an interpretable char-
acterization of functional clusters. While MEIs provide
convenient visualizations of a neuron’s or a cluster’s com-
putations, they capture only a single point – the maximum
– of the tuning function (Fig. 2A). Our predictive model,
however, provides a prediction for arbitrary stimuli. We
used the model as an in silico replica of V1 to perform
experiments. Unlike with experiments in the real brain, in
the model we are not limited in terms of experimental time.
This allowed us to replicate a number of classical experi-
ments in silico and compute tuning curves with respect to
a variety of different non-linear properties. Specifically, we
used Gabor stimuli whose parameters were optimized for
each cluster to quantify strength of orientation selectivity

4 | bioRχiv Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex

(Fig. 2C), phase invariance (Fig. 2D), size-contrast tuning
(Fig. 2E) and cross-orientation inhibition (Fig. 2F). Opti-
mizing Gabors for clusters rather than individual neurons
prevented the possibility of a few neurons within a cluster
having very stimuli in comparison to the rest of the neu-
rons in the cluster due to optimization instability. Further-
more, the cluster optimal Gabors drive the neurons to 87%
of their individual optimal Gabor activity thus these stimuli
are only mildly suboptimal for individual neurons.

Size-contrast tuning curves reveal non-linear surround
suppression effects (Born & Tootell, 1991; DeAngelis et al.,
1992), while cross-orientation inhibition is a nonlinear in-
teraction that arises when two orthogonal Gabor patterns
are superimposed (Morrone et al., 1982). In addition,
we computed the optimal center-surround stimulus (dif-
ference of Gaussian; Fig. 2A) and quantified the degree
of response nonlinearity using a generalized linear model
baseline (see methods). From these in silico experiments,
we obtain a sample from the joint tuning distribution for
more than 10,000 neurons. This enables us to study the
statistical dependencies between the different nonlinear
effects, overcoming the limitations of previous in vivo ex-
periments that could only study each effect in isolation.

In silico experiments reveal shared tuning proper-
ties within functional clusters. The results from the set
of in silico experiments support the functional clustering
(Fig. 3). Many of the modes in the t-SNE embedding
are distinguishable based on one or more of the tuning
properties. In contrast, neurons within most of the clus-
ters exhibit similar tuning strengths to the different types
of non-linarities: all 50 clusters were significantly differ-
ent from the overall population tuning distribution based
on at least one tuning property in Fig.3 and 15 clusters
were significantly different based on all properties (two-
sided Kolmogorov-Smirnov test at α = 0.01; in the case
of random cluster assignments these values are 0 and 1
respectively).

Non-linear tuning properties are independent of each
other. Next, we investigated how different non-linear prop-
erties relate to each other. Qualitatively, it appears that
different non-linear properties have different distributions
(Fig. 3; compare the color patterns in the t-SNE plots).
This qualitative impression is also confirmed by quantita-
tive metrics (Fig. 4A). As expected, non-linearity is corre-
lated with specific nonlinear properties like phase invari-
ance, surround suppression and cross-orientation inhibi-
tion, but not with orientation selectivity. In addition, orien-
tation selectivity is correlated with phase invariance and
cross-orientation inhibition. Importantly, there is no cor-
relation between the three non-linear properties phase in-
variance, surround suppression and cross-orientation inhi-
bition, suggesting that these properties are independently
exhibited from each other. This result is surprising, since
cross-orientation inhibition and surround suppression have
both been hypothesized to arise from a common mecha-

nism: divisive normalization (Carandini & Heeger, 2012).

Because phase invariance, cross-orientation inhibition and
surround suppression are tested using oriented Gabors as
stimuli, we restricted our subsequent analyses to those
clusters for which optimal Gabors are decent stimuli in
comparison to MEIs (i.e. clusters with above average val-
ues of the Gabor vs MEI index). We binarized the tuning in-
dices for these non-linear properties assigning each clus-
ter to either high or low tuning category (Fig. 4B) by setting
a threshold at the average population tuning strength and
examined the combinations of these three tuning proper-
ties (Fig. 4C). We can see there are clusters exhibiting ev-
ery possible combination of the three binary tuning proper-
ties, suggesting that these properties indeed appear to be
independent from each other, and that V1 neurons might
employ a combinatorial code with respect to these non-
linearities.

For the analysis of remaining clusters (i.e. clusters with
below average values of the Gabor vs MEI index, Fig. 4D)
we considered orientation, non-linearity, and DoG vs MEI
tuning. These clusters are mostly linear tuned and unori-
ented with their cluster MEIs ranging from mostly center-
surround shapes in the bottom-right and central parts of
the t-SNE space to various complex shapes in the left part
of the t-SNE space.

In silico tuning curves are good approximations of in
vivo tuning. Since our analysis is based on in silico tun-
ing curves, one concern could be that although the CNN
model predicts neural activities with high accuracy, the cor-
responding in silico tuning curves might be different from
the in vivo tuning curves we are aiming to approximate.
We verified that it is not the case by directly comparing
the in silico and in vivo tuning curves for the same neu-
rons. Specifically, we recorded a dataset containing two
V1 scans of the same neurons in the same mouse. We
used natural images as stimuli for the first scan which al-
lowed us to fit a rotation-equivariant CNN model. For the
second scan we used Gabor stimuli allowing us to com-
pute size tuning curves in vivo and compare them to the
in silico tuning curves obtained from the model fitted to the
first scan (Fig. 5A).

The stimuli for the size tuning experiment should ideally
be constructed based on optimal Gabors for every neuron,
however, that is infeasible in vivo for a sufficiently large
population of neurons. To overcome this limitation, we
investigated to what extent optimal Gabors could be re-
placed with suboptimal ones. We found that tuning curves
obtained using Gabors driving neurons to at least 50% of
their optimal Gabor activities are very similar to the tun-
ing curves obtained with optimal Gabors (Fig. 5C), and
that only 20 different Gabors can be chosen to drive 75%
of the population to at least 50% of optimal Gabor activi-
ties (Fig. 5D-E). This observation allowed us to use these
20 different Gabors as stimuli for the Gabor scan, which
revealed that the correlation between in vivo and in sil-

Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex bioRχiv | 5

Non-linearity

N
on

-li
ne

ar
Li

ne
ar

Gabor vs DoG

G
ab

or
D

oG

Gabor vs MEI

G
ab

or
M

EI

Orientation tuning

Cross-orientation inhibition (COI)

Pref contrastO
rt

h
co

nt
ra

st

Pref contrastO
rt

h
co

nt
ra

st

Phase invariance

SizeSize

Max contra
st

Min contrast

Surround suppression

A B E

G

F

C D

Fig. 3. Results of the in silico experiments. A-D: The scatter plots show t-SNE embeddings colored according to the tuning strengths of cross-orientation inhibition, phase
invariance, orientation tuning and surround suppression experiments. In the bottom left corners of t-SNE embeddings we show histograms of distributions of the tuning
strengths. We additionally show the tuning curves for the 16 best predicted neurons in two different clusters in a separate close-up panel, as well as examples of tuning
curves of high and low tuning strengths alongside the colorbar. E-G: t-SNE embeddings colored according to the tuning strength of Gabor vs MEI, Gabor vs DoG and
non-linearity experiments along with histograms of tuning strengths.

ico tuning curves is about 70% of the oracle correlation
(Fig. 5B), which is similar to the performance of the CNN
model trained and tested on natural images.

Discussion
We built a functional description of the mouse primary vi-
sual cortex based on neural representations in a high per-
forming CNN model predicting responses of a large popu-
lation of neurons on arbitrary natural images. Such an ap-
proach allows us to account for all aspects of the neuronal
stimulus-response function captured by the model, instead
of only a few nonlinear effects as in classical in vivo exper-
iments with parametric stimuli. Thus, our analysis is not
constrained by specific hypotheses of neural functions or
the choice of parametric stimuli. An important limitation
of our study is that we focus on the bottom-up aspects of
stimulus processing; we did not consider how top-down,
behavioral modulation of neural responses affects the re-
sponses of different neurons.

Our examination revealed that the V1 functional landscape
can be described by around 30 modes of functionally sim-
ilar neurons which, however, do not appear to be discrete
cell types but rather high density areas in the continuous
functional space. This finding is in agreement with vari-
ous recent studies. For example, Scala et al. (2021) stud-
ied mouse primary motor cortex neurons based on tran-
scriptomic and morpho-electric properties. They found
that this brain area is organized into a few broad tran-
scriptomic families with continuum of morpho-electric fea-
tures in each family, making the authors question the exis-
tence of discrete transcriptomic cell types. Gouwens et al.
(2020) conducted a similar study of interneurons in mouse

primary visual cortex discovering both discrete and con-
tinuous variation of morpho-electric properties within the
transcriptomic types. Overall, a growing body of literature
suggests that mouse neocortex is organized in a complex
way and cannot be adequately described by either discrete
cell types or a uniform continuum of neurons. This no-
tion of mouse neocortex organization is qualitatively dif-
ferent from the mouse retina, which exhibits discrete cell
types (Baden et al., 2016), raising interesting directions for
future research: how are other areas of neocortex orga-
nized based on various neural properties? and how do
they relate to lower level brain areas projecting into the
corresponding neocortical areas?

As we investigated the variability of individual neurons
within the functional modes, we found visual differences
between cluster and single neuron MEIs. We believe this
is an expected consequence of clustering, which abstracts
away individual neurons’ differences and reduces the com-
plexity of the V1 functional space by focusing on similari-
ties between neurons. To better understand the proper-
ties of functional modes, their correspondence to cluster
MEIs and relate them to previous work, we performed in
silico experiments, which revealed that neurons belong-
ing to the same mode exhibit common response patterns.
This observation suggests that neurons in the same func-
tional cluster may form computational cliques important for
downstream processing, offering an interesting direction
for future research. For example, integrated approaches
combining functional characterization using digital twins
and connectomics data can determine the connectivity of
neurons within and across functional clusters and com-
monalties of their inputs and projection targets (Bae et al.,
2021).

6 | bioRχiv Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex

Orientation

Suppression COI

Phase

Suppression

Phase COI

Su
pp

, p
ha

se Supp, COI

Phase, COI

All None

A

C

B

Orientation Non-linearity DoG vs MEI

D

Fig. 4. A. Pairwise distributions of the in silico tuning properties. Dots in each of the plots correspond to clusters (50 dots in total) showing average tuning strength of neurons
in the cluster. Red dots correspond to clusters with the above average value of the Gabor vs MEI tuning strength (i.e. those clusters for which optimal Gabors are good stimuli
relative to MEIs; in the following called Gabor-like clusters), gray dots correspond to all other clusters. Correlation coefficients and the p-values (in brackets) under the null
hypothesis that the correlation is zero are shown above the plots for Gabor-like clusters (red) and for all clusters (black). B. Subsets of t-SNE embeddings corresponding
to Gabor-like clusters colored according to the binarized strengths of orientation, phase, suppression and plaids tuning. Grey clusters correspond to low tuning strength
(average cluster tuning strength is less than entire population tuning strength average value), clusters of the other color correspond to high tuning strength. C. Subsets of
t-SNE embeddings corresponding to Gabor-like clusters showing 8 possible combinations of low/high values of phase, suppression and plaids tuning. The color code is
illustrated with a color triangle; clusters colored with the colors in the vertices of the triangle exhibit high value of the corresponding tuning property and low values of other
two properties. Clusters colored with the colors in the edges of the triangle exhibit high values of the tuning properties in the adjacent vertices and low value of the other
tuning property. D. Subsets of t-SNE embeddings corresponding to non Gabor-like clusters colored according to the binarized strengths of orientation, non-linearity and DoG
vs MEI tuning.

Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex bioRχiv | 7

N
eu

ro
n

ac
tiv

ity

Gabor size
Neuron 3

Neuron 1Neuron 2

N
eu

ro
n

ac
tiv

ity

Gabor size

CNN model

How similar?

N
eu

ro
n

1 Neuron 2

Neuron 3

A

C D E

B

Fig. 5. A. In vivo verification experiment paradigm. We compare in vivo Gabor size tuning curves to their in silico counterparts computed for the same population of neurons.
B. Correlations between in vivo and in silico Gabor size tuning curves measured as percentage of oracle correlation (error bars shows the standard deviation). We measure
correlation between two types of tuning curves. The “mouse - model” one corresponds to the in vivo and in silico tuning curves obtained using the same experimental stimuli,
which are based on suboptimal Gabors (see main text for more details). In the “mouse - optimal” case, in vivo curves are computed using suboptimal Gabors, but the in
silico curves are computed using optimal Gabors for the corresponding neurons. Moreover, these correlations are computed for different subsets of neurons (x-axis) chosen
such that there exists an experimental stimulus for every neruon in the subset driving this neuron to a certain percentage of the optimal Gabor activity. C. Examples of Gabor
size-contrast in silico tuning curves for 5 randomly chosen neruons (rows) computed using suboptimal Gabors activating the neuron to a certain percentage of the optimal
Gabor activity (first 5 columns; numbers above the first row show the suboptimal Gabor activity as percentage of the optimal Gabor activity) and using the optimal Gabors
(last column). D. Percentages of neurons in the population (x-axis) that can be driven to a certain percentage of the optimal Gabor activity (y-axis) using at least one of the
Gabors in the sets of 1, 10 and 20 Gabors (different curves) chosen to maximize the number of neurons activated by these stimuli. E. 20 Gabor stimuli corresponding the 20
Gabors curve in panel D and used to construct size-tuning stimuli for the in vivo experiment.

Large-scale in-silico experiments allowed us to study sta-
tistical dependencies between various nonlinear phenom-
ena known from single-neuron in-vivo experiments. We
found these effects to be independent of each other, sug-
gesting that V1 might employ a combinatorial code be-
tween modes of functionally similar cells. The mecha-
nisms leading to such a code in V1 and their implications
for downstream processing remain unclear. A speculation
that lies at hand is that there might be a basis of indepen-
dent non-linear computations serving different purposes in
downstream processing, thereby building a foundation for
specializations in higher visual areas. As a potential verifi-
cation of this hypothesis and as a question in itself, future
experimental work could investigate if neurons of the same
functional cluster project to the same downstream area.

Finally, we verified that in silico experiments in a high-
performing CNN model provide a good approximation of
the in vivo tuning curves, thus substantiating our results
based on the analysis of in silico tuning curves. Our in vivo
verification is consistent with the findings of Walker et al.
(2019) who report that in silico model MEIs also highly ac-
tivate actual neurons. Overall, these observations suggest
that high-perfroming CNN models can be considered “dig-
ital twins” of real neurons, a paradigm that has started be-
ing explored relatively recently but already provided signifi-
cant insights into the brain and has a potential of becoming
the main tool for future research.

ACKNOWLEDGEMENTS

The research was supported by the German Federal Ministry of Education
and Research (BMBF) via the Competence Center for Machine Learning (FKZ
01IS18039A); the German Research Foundation (DFG) grant EC 479/1-1 (A.S.E.),
the Collaborative Research Center (SFB 1233, Robust Vision) and the Cluster
of Excellence “Machine Learning – New Perspectives for Science” (EXC 2064/1,
project number 390727645); the Bernstein Center for Computational Neuroscience
(FKZ 01GQ1002); the National Eye Institute of the National Institutes of Health un-
der Award Numbers U19MH114830 (A.S.T.) R01MH109556 (AST), P30EY002520,
and the Intelligence Advanced Research Projects Activity (IARPA) via Department
of Interior/Interior Business Center (DoI/IBC) contract number D16PC00003. The
U.S. Government is authorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright annotation thereon. Disclaimer: The
views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of IARPA, DoI/IBC, or the U.S. Government. The funders
had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

AUTHOR CONTRIBUTIONS

I.U., M.B., A.S.T and A.S.E. designed the study; J.F., T.M., K.P., E.F. and Z.D. per-
formed imaging experiments and pre-processing of raw data; I.U., A.S.E. developed
the in silico analysis framework; I.U., M.F.B., S.A.C. and A.S.E analyzed the data;
I.U., M.F.B. and S.A.C. wrote the original draft; I.U., M.F.B, S.A.C. and A.S.E. re-
viewed and edited the manuscript with the input from M.B. and A.S.T.

Bibliography
Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of

motion. J. Opt. Soc. Am. A, 2(2), 284–299.
URL http://www.osapublishing.org/josaa/abstract.cfm?URI=

josaa-2-2-284

Antolík, J., Hofer, S. B., Bednar, J. A., & Mrsic-Flogel, T. D. (2016). Model constrained by visual
hierarchy improves prediction of neural responses to natural scenes. PLOS Computational
Biology , 12(6), 1–22.
URL https://doi.org/10.1371/journal.pcbi.1004927

Baden, T., Berens, P., Franke, K., Rosón, M. R., Bethge, M., & Euler, T. (2016). The functional
diversity of retinal ganglion cells in the mouse. Nature, 529(7586), 345–350.

Bae, J. A., Baptiste, M., Bodor, A. L., Brittain, D., Buchanan, J., Bumbarger, D. J., Castro, M. A.,
Celii, B., Cobos, E., Collman, F., et al. (2021). Functional connectomics spanning multiple
areas of mouse visual cortex. bioRxiv .

Bashivan, P., Kar, K., & DiCarlo, J. J. (2019). Neural population control via deep image synthesis.
Science, 364(6439).

8 | bioRχiv Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex

Batty, E., Merel, J., Brackbill, N., Heitman, A., Sher, A., Litke, A., Chichilnisky, E., & Paninski,
L. (2016). Multilayer recurrent network models of primate retinal ganglion cell responses. In
International Conference on Learning Representations.

Blakemore, C., & Tobin, E. A. (1972). Lateral inhibition between orientation detectors in the cat’s
visual cortex. Experimental brain research, 15(4), 439–440.

Born, R. T., & Tootell, R. (1991). Single-unit and 2-deoxyglucose studies of side inhibition in
macaque striate cortex. Proceedings of the National Academy of Sciences, 88(16), 7071–
7075.

Cadena, S. A., Denfield, G. H., Walker, E. Y., Gatys, L. A., Tolias, A. S., Bethge, M., & Ecker, A. S.
(2019). Deep convolutional models improve predictions of macaque v1 responses to natural
images. PLoS computational biology , 15(4), e1006897.

Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature
Reviews Neuroscience, 13(1), 51–62.

Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002). Nature and interaction of signals from the
receptive field center and surround in macaque v1 neurons. Journal of Neurophysiology ,
88(5), 2530–2546. PMID: 12424292.
URL https://doi.org/10.1152/jn.00692.2001

Cotton, R. J., Sinz, F. H., & Tolias, A. S. (2020). Factorized neural processes for neural processes:
k-shot prediction of neural responses. arXiv preprint arXiv:2010.11810.

DeAngelis, G. C., Robson, J. G., Ohzawa, I., & Freeman, R. D. (1992). Organization of suppres-
sion in receptive fields of neurons in cat visual cortex. Journal of Neurophysiology , 68(1),
144–163. PMID: 1517820.
URL https://doi.org/10.1152/jn.1992.68.1.144

Ecker, A. S., Sinz, F. H., Froudarakis, E., Fahey, P. G., Cadena, S. A., Walker, E. Y., Cobos, E.,
Reimer, J., Tolias, A. S., & Bethge, M. (2019). A rotation-equivariant convolutional neural
network model of primary visual cortex. In International Conference on Learning Represen-
tations.
URL https://openreview.net/forum?id=H1fU8iAqKX

Fahey, P. G., Muhammad, T., Smith, C., Froudarakis, E., Cobos, E., Fu, J., Walker, E. Y., Yatsenko,
D., Sinz, F. H., Reimer, J., et al. (2019). A global map of orientation tuning in mouse visual
cortex. bioRxiv , (p. 745323).

Fusi, S., Miller, E. K., & Rigotti, M. (2016). Why neurons mix: high dimensionality for higher
cognition. Current opinion in neurobiology , 37 , 66–74.

Gilbert, C. D., & Wiesel, T. N. (1990). The influence of contextual stimuli on the orientation
selectivity of cells in primary visual cortex of the cat. Vision Research, 30(11), 1689–1701.
Optics Physiology and Vision.
URL https://www.sciencedirect.com/science/article/pii/

004269899090153C

Gouwens, N. W., Sorensen, S. A., Baftizadeh, F., Budzillo, A., Lee, B. R., Jarsky, T., Alfiler, L.,
Baker, K., Barkan, E., Berry, K., et al. (2020). Integrated morphoelectric and transcriptomic
classification of cortical gabaergic cells. Cell , 183(4), 935–953.

Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual neuroscience,
9(2), 181–197.

Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex.
The Journal of Physiology , 148(3), 574–591.
URL https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/

jphysiol.1959.sp006308

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of Physiology , 160(1), 106–154.
URL https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/

jphysiol.1962.sp006837

Klindt, D., Ecker, A. S., Euler, T., & Bethge, M. (2017). Neural system identification for large
populations separating “what”and “where”. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, & R. Garnett (Eds.) Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc.
URL https://proceedings.neurips.cc/paper/2017/file/

8c249675aea6c3cbd91661bbae767ff1-Paper.pdf

Lamme, V. (1995). The neurophysiology of figure-ground segregation in primary visual cortex.
Journal of Neuroscience, 15(2), 1605–1615.
URL https://www.jneurosci.org/content/15/2/1605

Lurz, K.-K., Bashiri, M., Willeke, K. F., Jagadish, A. K., Wang, E., Walker, E. Y., Cadena, S.,
Muhammad, T., Cobos, E., Tolias, A., et al. (2020). Generalization in data-driven models of
primary visual cortex. bioRxiv .

MacQueen, J., et al. (1967). Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability , vol. 1, (pp. 281–297). Oakland, CA, USA.

McCullagh, P., & Nelder, J. A. (2019). Generalized linear models. Routledge.
Morrone, M. C., Burr, D., & Maffei, L. (1982). Functional implications of cross-orientation inhibition

of cortical visual cells. i. neurophysiological evidence. Proceedings of the Royal Society of
London. Series B. Biological Sciences, 216(1204), 335–354.

Network, B. I. C. C. (2021). A multimodal cell census and atlas of the mammalian primary motor
cortex. Nature, 598(7879), 86.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge.
International journal of computer vision, 115(3), 211–252.

Scala, F., Kobak, D., Bernabucci, M., Bernaerts, Y., Cadwell, C. R., Castro, J. R., Hartmanis, L.,
Jiang, X., Laturnus, S., Miranda, E., et al. (2021). Phenotypic variation of transcriptomic cell
types in mouse motor cortex. Nature, 598(7879), 144–150.

Sinz, F. H., Ecker, A. S., Fahey, P. G., Walker, E. Y., Cobos, E., Froudarakis, E., Yatsenko, D.,
Pitkow, Z., Reimer, J., & Tolias, A. S. (2018). Stimulus domain transfer in recurrent models for
large scale cortical population prediction on video. In NeurIPS.

Sofroniew, N. J., Flickinger, D., King, J., & Svoboda, K. (2016). A large field of view two-photon
mesoscope with subcellular resolution for in vivo imaging. Elife, 5, e14472.

Ustyuzhaninov, I., Cadena, S. A., Froudarakis, E., Fahey, P. G., Walker, E. Y., Cobos, E., Reimer,
J., Sinz, F. H., Tolias, A. S., Bethge, M., & Ecker, A. S. (2020). Rotation-invariant clustering
of neuronal responses in primary visual cortex. In International Conference on Learning

Representations.
URL https://openreview.net/forum?id=rklr9kHFDB

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning
Research, 9(86), 2579–2605.
URL http://jmlr.org/papers/v9/vandermaaten08a.html

Walker, E. Y., Sinz, F. H., Cobos, E., Muhammad, T., Froudarakis, E., Fahey, P. G., Ecker, A. S.,
Reimer, J., Pitkow, X., & Tolias, A. S. (2019). Inception loops discover what excites neurons
most using deep predictive models. Nature neuroscience, 22(12), 2060–2065.

Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex bioRχiv | 9

Methods
Visual stimuli. We used gray-scale ImageNet images
(Russakovsky et al., 2015) as visual stimuli in the data col-
lection experiment. The number of images varied across
the scans (Tab. 1) with 4692 images in the intersection,
i.e. presented to a mouse in each of the scans. For the
test set we used 100 images each repeated 10 times; for
some scans and some images there were fewer repeats, in
which case we resampled the recording to have 10 repeats
in every scan. The screen was 55 × 31 cm at a distance
of 15 cm, covering roughly 120° × 90°. Each image was
presented for 500 ms followed by a blank screen lasting
between 300 ms and 500 ms. The response of a neuron
to a given stimulus is represented as a number of spikes
in the time interval between 50 ms to 350 ms following the
stimulus onset.

CNN model and rotation-invariant clustering. We used
the same architecture and training of the rotation-
equivariant CNN model as in Ustyuzhaninov et al. (2020).
For the clustering of aligned feature vectors (rotation-
invariant clustering) we used the k-Means algorithm (Mac-
Queen et al., 1967) with 50 clusters, which we empirically
found to provide a good balance between clusters being
small enough to contain similar neurons and the total num-
ber of clusters being relatively small.

GLM model. We also fitted a GLM model (McCullagh &
Nelder, 2019) to every neuron in the recorded dataset to
evaluate the non-linearity of neurons or clusters (as mea-
sured by the non-linearity index, see below). We used
Poisson likelihood as the noise model and log link function
to ensure the predicted neural activities are non-negative.
We cross-validated the L2 regularization coefficient for ev-
ery neuron separately by considering 48 log-spaced val-
ues in [0.1,5].

Optimal stimuli. Classical experiments that we aim at
replicating in silico measure changes in neural activity in
response to a certain type of transformations of an input
stimulus (e.g. an orientation tuning experiment might use
Gabor stimuli in different orientations). Ideally the input
stimuli should be optimized for every neuron separately
which is infeasible in vivo, but can be achieved in silico
using a CNN model. In this section we describe the stimuli
we use in the in silico experiments and how we optimize
them for individual neurons or clusters.

Per neuron optimal Gabors. For every neuron we compute
a Gabor stimulus which maximizes the predicted activity
of this neuron. We parametrize such stimuli in terms of a
spatial location (rx, ry), size σ, spatial frequency ν, con-
trast a, orientation ϕ and phase τ . Specifically the value of
the pixel in the i-th row and j-th column of an input image

is defined using the following expression

x[i, j] = a

2 exp
(
−1

2
(i′)2 +(j′)2

σ2/4

)
cos
(
2π · i′ ·ν+ τ

)
,

(1)

where (i′, j′) = (i− rx, j− ry) [R(ϕ)]T (2)

with R(ϕ) being a 2D rotation matrix by an angle ϕ.

For each neuron we iterate over a large set of Gabor stim-
uli parameterized according to (2) and record the param-
eter set corresponding to a stimulus with the highest CNN
predicted activity. This process is illustrated in Fig. 2A.

Per cluster optimal Gabors. In addition to optimising Gabors
for each neuron separately, we also find optimal Gabors for
the entire clusters. The idea is to find a single Gabor stim-
ulus that maximizes the average activity of neurons in the
cluster and hence servres as a single image representa-
tions of a cluster computation. However, since we the clus-
ters are explicitly constructed to contain neurons with dif-
ferent receptive field locations and preferred orientations,
we constrain the stimuli to be identical for all neurons in
the cluster apart from having neuron-specific spatial loca-
tions (i.e. receptive field centers) and orientations (see an
illustration in Fig. 2A).

To find such an optimal Gabor for a specific cluster, we
iterate over a large set of Gabors with locations and orien-
tations set to a fixed value and all other parameters vary-
ing, generate stimuli for individual neurons by shifting and
rotating the Gabor at the current iteration (Fig. 2A), and
compute the average predicted activity of the neurons in
the cluster. We call the Gabor stimulus (or rather the set
of stimuli up to a spatial location and orientation) corre-
sponding to the maximal average predicted cluster activity
the cluster optimal Gabor.

Per neuron MEIs. An MEI is an input stimulus that activates
the neuron the most, and as such serves as a useful visu-
alization of the computation implemented by the neuron.
It is important to keep in mind that an MEI is only a lo-
cal maximum of a function mapping the input stimuli to the
neural activity. While we aim at describing the entire func-
tion rather than only its maximum, MEIs nevertheless pro-
vide convenient and insightful summaries of computations
performed by each of the neurons.

We compute MEI for every neuron separately by stating
with a noise stimulus and iteratively optimising it to max-
imise the predicted activity of the neuron. Specifically, if
the CNN prediction of activity of the n-th neuron when pre-
sented with a stimulus x is fn(x), we compute an MEI as
a solution of the following optimisation problem:

xMEI
n = argmax

x
[f(x)−γ ·α(x)] , (3)

where α(x) is a regularisation function (e.g. α(x) = ||x||2)
enforcing smoothness of the resulting MEI.

10 | bioRχiv Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex

Fig. 6. Functional modes in the t-SNE space.

Animal # of neurons in the scan Sampled neurons # of train images # of test images

1 5043 1047 5998 1999
2 5984 2000 5973 1090
3 7312 2000 4926 985
4 5335 2000 4994 999
5 8367 2000 4818 964
6 6045 2000 4982 995
7 8316 2000 4991 997

Total 13047 4692 1000

Table 1. Summary of the individual mouse scans comprising the dataset used for the cell types analysis.

Per cluster MEIs. Such MEIs are computed jointly for all
neurons in the entire cluster to maximise the average pre-
dicted activity of all neurons in the cluster. Similarly to
cluster optimal Gabors, these stimuli are constrained to be
identical for all neurons in the cluster apart from having
neuron-specific spatial locations (i.e. receptive field cen-
ters) and orientations (Fig. 2A). To implement these con-
straints in practice, we decompose cluster MEIs in a steer-
able basis and iteratively optimise the coefficients in this
basis to maximize the predicted average activity of neu-
rons in the cluster. Therefore we use a parametric model

of cluster MEIs rather than a non-parametric representa-
tion of single-neuron MEIs, which reduces the spaces of
possible stimuli (for single-neurons MEIs this space con-
sists of all possible images, while in this case it consists
only of the span of the steerable basis), but allows us to
compute stimuli rotations as linear transformations of the
coefficients.

We consider the following parametrization of the stimuli

x = β1 ·ψ1 + . . .+βk ·ψk = βTΨ, (4)

where Ψ = (ψ1, . . . ,ψk)T is a vector of the first k basis

Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex bioRχiv | 11

functions in some steerable basis (we use Hermite polyno-
mials). Rotations of images in such a parametrization cor-
respond to linear transformations of coefficients β, specif-
ically, a stimulus rotated by an angle ϕ can be written as

rotate(x,ϕ) = (R(ϕ)β)T Ψ (5)

for a corresponding rotation matrix R(ϕ).

We denote a translation of an image x by rx pixels along
the first axis and by ry pixels along the second axis as
shift(x, rx, ry). Using center locations of optimal Gabors
(rxn, r

y
n) as receptive fields centers for corresponding neu-

rons, we compute the cluster MEI xMEI
c for a cluster c con-

taining m neurons with indices c1, . . . , cm as a solution of
the following problem

xMEI
c = (β∗)TΨ, where (6)

β∗ = argmax
β

max
ϕ1,...,ϕm

[
1
m

m∑

i=1
Aci

]
, (7)

Aci = fci(shift[rotate(x,ϕi), r1
ci
, r2
ci

]) (8)

Examples of cluster MEI are shown in Fig. 3.

Optimal differences of Gaussians (DoG). Another class of
stimuli we consider are differences of Gaussians, which
allow us to probe to what extent the receptive of a neu-
ron has a center-surround structure. We parametrize such
stimuli in terms of their spatial locations r = (r1, r2), sizes
σcen and σsur of the center and surround Gaussians, as
well as their relative contrasts acen and asur according to
the following equation:

x = acen (1+asur)g(rcen,σcen)−asur g(rsur,σsur), (9)

with g(r,σ)[i, j] = exp
(
− (r1− i)2 +(r2− j)2

2σ2

)
. (10)

Similarly to optimal Gabors and MEIs, we find optimal DoG
stimuli both for every neuron and cluster by iterating over a
large set of parameter values and recording the parameter
combination corresponding to the highest predicted activ-
ity of an individual neuron or average activity of all neurons
in the cluster. In the case of per cluster stimuli, we con-
strain every neuron in the cluster to have exactly the same
optimal stimulus apart from differences in spatial locations
(Fig. 3A).

In silico experiments. In this section we describe spe-
cific in silico experiments that we perform using the optimal
stimuli discussed in the previous section.

Orientation and phase tuning. Optimal Gabors enable us
to compute standard orientation and phase tuning curves.
We use both per neuron and per cluster optimal Gabors to
obtain stimuli for this experiment by varying the orientation
and phase parameters and keeping all other parameters
fixed. Examples of such stimuli are shown in Fig. 2B.

For every neuron we compute numerical indices reflecting
the tuning strength of the neuron. Specifically, we com-
pute the F1/F0 summary statistics for phase tuning and
F2/F0 statistics. These statistics are ratios of the abso-
lute values of the first and second (reflecting periods of
2π for phase tuning and π for orientation tuning) Fourier
coefficients to the mean value of the tuning curve, or al-
ternatively the ratios of amplitudes of the est fitting sine
curves to the means of the tuning curves as illustrated in
Fig. 2B. If r(s) = (r1(s1), . . . , rm(sm)) are responses of a
neuron to Gabors with a parameter of interest (orientation
of phase) taking values s = (s1, . . . ,sm), these indices are
defined as

Fk/F0 =

∣∣∣∣∣
m∑
j=1

rj exp(iksj)
∣∣∣∣∣

m∑
j=1

rj

. (11)

Gabor size-contrast tuning curves. We construct stimuli for
this experiment by using per neuron or per cluster opti-
mal Gabors with all parameters fixed except for the size
and contrast as illustrated in Fig. 2B. The resulting size-
contrast tuning curves allow us to characterize neural com-
putations in terms of surround or contrast suppression ef-
fects, which have been widely studied in the existing liter-
ature.

Denoting predicted activity of n-th neuron when presented
a stimulus at the contrast level c∈ {1, . . . ,C} and size level
s ∈ {1, . . . ,S} as gnc,s, we compute the following suppres-
sion and contrast indices to numerically evaluate the tun-
ing strength:

Suppression index =
gnC −gnC,S

gnC
, gnC = max

s
gns,C ; (12)

Contrast index =
gnS−gnC,S

gnS
, gnS = max

c
gnS,c. (13)

These two indices are highly correlated (ρ = 0.95, p <
0.001) which is why we use only the suppression index for
the analysis. This correlation apparently stems from using
Gabors as stimuli for this experiment. Indeed, increasing
the size of a Gabor also increases the range of each pixel
value, which is a similar effect to increasing the contrast.

Plaid stimuli. Another experiment we do with optimal Gabor
stimuli is the one aimed at probing neurons or clusters for a
potential effect of cross-orientation inhibition. To do some
we construct plaid stimuli by superimposing two Gabors
on each other, the optimal one and the one orthogonal
to the optimal one, while varying the contrasts of both of
these stimuli. Examples of such stimuli are shown in Fig. 2.
The corresponding tuning curves allow us to see potential
non-linear suppressing effect of increasing contrast of the
orthogonal stimulus known as cross-orientation inhibition.

12 | bioRχiv Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex

Denoting predicted activity of n-th neuron when presented
a plaid stimulus with an optimal Gabor at the contrast level
p ∈ {1, . . . ,P} and an orthogonal Gabor at the contrast
level o ∈ {1, . . . ,O} as gnp,o, we compute the following nu-
merical index to quantify the tuning strength:

Plaids index =
gnO−gnP,O

gnO
, gnO = max

p
gnp,C . (14)

Comparison of optimal Gabor, DoG, and MEI stimuli. Opti-
mal MEIs capture a wide variety of patterns in the recep-
tive field, while optimal Gabors and DoGs are explicitly de-
signed to represent a particular pattern. Comparing the
responses to these stimuli allows us to quantify to what
extent the receptive field captured by the MEI can be mod-
elled by oriented gratings (Gabors) or center surround pat-
terns (DoG).

For every neuron we normalize all three (Gabor, DoG,
MEI) optimal stimuli to have same energy (L2 norm) at
E different energy levels; such a normalization ensures
that the stimuli have approximately the same contrast. De-
noting predicted activity of n-th neuron when presented a
Gabor, DoG or MEI at the energy level e as gne , dne , mn

e

respectively, we compute the following summary statistics
for comparing the responses to these stimuli:

Gabor vs DoG = 1
E

E∑

e=1

gne
dne
, (15)

Gabor vs MEI = 1
E

E∑

e=1

gne
mn
e

, (16)

DoG vs MEI = 1
E

E∑

e=1

dne
mn
e

. (17)

Non-linearity index. For every neuron we quantify the non-
linearity computations implemented by this neuron by
comparing the predictions of the GLM and the CNN mod-
els. Specifically, for the n-th neuron we denote the GLM
predictive correlation on the test set as CGLM

n , and the
same quantity computed for the CNN model as CCNN

n .
Then we compute the non-linearity index as follows:

Non-linearity index = CCNN
n

CGLM
n

. (18)

In vivo verfification.

Experimental details. The experimental setting for the Im-
ageNet scan in vivo verification was the same as in the
main experiment (see above). The Gabor stimuli were
presented in maximum contrast in 5 different sizes (σ ∈
[8,13.2,21.8,35.9,59.3]).

Selection of suboptimal stimuli. We find a small number of
Gabor stimuli activating many neurons to a certain per-
centage of their optimal Gabor activities (Fig.5D-E) using
the following procedure:

• We compute predicted activities for every neuron for
a large selection of Gabors located in the center of
the image (the same set of stimuli that we used for
finding the optimal Gabor apart from the differences
in spatial locations; see above),

• We greedily choose the Gabor that activated most
of the neurons to a given percentage of their optimal
Gabor activity until we selected the required number
of stimuli (we use 20 for the experiment).

Data availability. All figures were generated from raw or
processed data. The data generated and/or analyzed dur-
ing the current study are available from the corresponding
author upon request. No publicly available data was used
in this study. All code and data will be available online upon
the publication.

Code availability. Experiments and analyses were per-
formed using custom software developed using the fol-
lowing tools: ScanImage 2018a (Pologruto et al., 2003),
CaImAn v.1.0 (Giovannucci et al., 2019), DataJoint
v.0.11.0 (Yatsenko et al., 2015, 2018), TensorFlow v.1.15.0
(Abadi et al., 2015), NumPy v.1.17.3 (Van Der Walt
et al., 2011), SciPy v.1.5.4 (Virtanen et al., 2020), Docker
v.19.03.12 (Merkel et al., 2014), Matplotlib v.3.1.1 (Hunter,
2007), seaborn v.0.11.1 (Waskom, 2021), pandas v.1.1.5
(McKinney et al., 2010) and Jupyter Notebook v 6.0.1
(Kluyver et al., 2016). The code will be publicly available
upon the publication.

Animal research statement. All experimental procedures
complied with guidelines approved by the Baylor College
of Medicine Institutional Animal Care and Use Committee
(IACUC).

Competing interests. A.S.T. holds equity ownership in
Vathes LLC, which provides development and consulting
for the framework (DataJoint) used to develop and operate
the data analysis pipeline for this publication.

Bibliography
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y.,
Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., & Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous
systems. Software available from tensorflow.org.
URL https://www.tensorflow.org/

Giovannucci, A., Friedrich, J., Gunn, P., Kalfon, J., Brown, B. L., Koay, S. A., Taxidis, J., Najafi,
F., Gauthier, J. L., Zhou, P., et al. (2019). Caiman an open source tool for scalable calcium
imaging data analysis. Elife, 8, e38173.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in science & engineering,
9(03), 90–95.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., Kelley, K.,
Hamrick, J. B., Grout, J., Corlay, S., et al. (2016). Jupyter Notebooks – a publishing format for
reproducible computational workflows., vol. 2016.

McKinney, W., et al. (2010). Data structures for statistical computing in python. In Proceedings of
the 9th Python in Science Conference, vol. 445, (pp. 51–56). Austin, TX.

Merkel, D., et al. (2014). Docker: lightweight linux containers for consistent development and
deployment. Linux journal , 2014(239), 2.

Pologruto, T. A., Sabatini, B. L., & Svoboda, K. (2003). Scanimage: flexible software for operating
laser scanning microscopes. Biomedical engineering online, 2(1), 1–9.

Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex bioRχiv | 13

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The numpy array: a structure for
efficient numerical computation. Computing in science & engineering, 13(2), 22–30.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,
E., Peterson, P., Weckesser, W., Bright, J., et al. (2020). Scipy 1.0: fundamental algorithms
for scientific computing in python. Nature methods, 17 (3), 261–272.

Waskom, M. L. (2021). Seaborn: statistical data visualization. Journal of Open Source Software,
6(60), 3021.

Yatsenko, D., Reimer, J., Ecker, A. S., Walker, E. Y., Sinz, F., Berens, P., Hoenselaar, A., Cotton,
R. J., Siapas, A. S., & Tolias, A. S. (2015). Datajoint: managing big scientific data using
matlab or python. BioRxiv , (p. 031658).

Yatsenko, D., Walker, E. Y., & Tolias, A. S. (2018). Datajoint: a simpler relational data model. arXiv
preprint arXiv:1807.11104.

14 | bioRχiv Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex

	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Why study image representations in deep neural networks?
	List of publications
	Publications constituting a part of this thesis
	Other publications

	Background
	Neural networks
	Texture modelling
	Object-centric representations
	Bayesian deep learning
	Predictive models of primary visual cortex

	What does it take to generate natural textures?
	Motivation
	Results
	Discussion

	Towards causal generative scene models via competition of experts
	Motivation
	Results
	Discussion

	Compositional uncertainty in deep Gaussian processes
	Motivation
	Results
	Discussion

	Rotation-invariant clustering of neuronal responses in primary visual cortex
	Motivation
	Results
	Discussion

	Digital twin reveals combinatorial code of non-linear computations in mouse primary visual cortex
	Motivation
	Results
	Discussion

	Discussion
	What have we learnt about DNN representations?
	Digital twins
	Conclusion

	References
	Appendix

