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Value has often been used as a synonym
for reward, with a focus on its hedonic
aspect while overlooking its functional
concept-like nature. Recent research
has started to highlight its functional
and goal-dependent aspects by directly
manipulating the goal of the task and
introducing the concept of usefulness.

Constructing value representations of
usefulness involves the process of
abstraction, thus reducing dimen-
Colombian drug lord Pablo Escobar, while on the run, purportedly burned two
million dollars in banknotes to keep his daughter warm. A stark reminder that,
in life, circumstances and goals can quickly change, forcing us to reassess and
modify our values on-the-fly. Studies in decision-making and neuroeconomics
have often implicitly equated value to reward, emphasising the hedonic and
automatic aspect of the value computation, while overlooking its functional
(concept-like) nature. Here we outline the computational and biological principles
that enable the brain to compute the usefulness of an option or action by creating
abstractions that flexibly adapt to changing goals. We present different algorithmic
architectures, comparing ideas from artificial intelligence (AI) and cognitive neuro-
science with psychological theories and, when possible, drawing parallels.
sions and coding only relevant infor-
mation. Neural mixed selectivity may
be the underlying coding principle of
abstract value representations.

Information is selected through cognitive
mechanisms like memory and attention.
This process requires crosstalk between
different brain regions that include sen-
sory cortices, the hippocampus, and
the prefrontal cortex.

Metacognition can provide amechanism
for the concurrent roles of monitoring
and updating abstract value representa-
tions. Algorithmic architectures and their
neural implementations are presented
and discussed.
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The flexibility of value-based choices
What is value? In everyday language, value and reward (see Glossary) are often used
interchangeably: if something is rewarding, then it is valuable. Conversely, things are valuable
because they are rewarding (e.g., I value coffee since I find drinking it very rewarding). But there is
more to value than its rewarding aspect. For example, consider for a moment your dining table.
You may not have thought about it much before now or thought of it as a valuable possession.
But imagine that while dining, your room starts shaking, and the chandeliers begin to swing.
Books, pots, and frames topple from the shelves. You are in the middle of an earthquake. Suddenly,
that unassuming table might have just become the most valuable object you own.

How do you judge whether your table is indeed a valuable earthquake shelter (Figure 1)? After all,
the table is not intrinsically valuable or rewarding. It acquires its value by construction as a shelter
and only for pursuing a precise goal (protecting your body in an earthquake). Furthermore, the
table’s value as a shelter is determined by only a subset of its features: the sturdiness of the
tabletop and the thickness of the material are relevant, but its colour is not. This small subset of
relevant features must be selected from perception through attention and selective retrieval
from memory. For instance, if you (similarly to the authors of this review) grew up in a region
prone to earthquakes, youmight remember a safety drill in your school. Or youmight recall seeing
on the news the images of Japanese citizens finding shelter under tables during the Kobe
earthquake of 1995. But even if you lack such memories, you would still be able to generalise
from what you have learnt throughout your life: hard and flat surfaces can protect your body
from falling objects.

How do we accomplish these feats? To answer this question, we will first look at the difference
between reward, value, and utility, providing a brief overview of how the fields of economics
and psychology have differentiated these concepts. We will then present the computational
principles that allow the brain to build a low-dimensional abstract value representation to fulfill
a particular goal. Following this, we will dive into the cognitive machinery used to select the
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Glossary
Cognitive control: the set of
processes upon which an agent selects
relevant information and inhibits irrelevant
information to attain a specific goal.
Context: a configuration of the
environment that determines the nature of
the outcome of the agent’s actions over
time. Can be explicit but also implicit
(i.e., decision-maker might be unaware or
not access it verbally). It is usually
distinguished from cues and stimuli.
Cortico-thalamic loops: the set of
connections linking cortical areas such as
occipital, parietal, or prefrontal cortices to
the thalamus, a set of nuclei found in the
inner, subcortical part of the brain.
Curse of dimensionality: the problem
arising in learningwhen the dimensionality
of the space is too large for the algorithm
to converge to a solution by brute force.
Dimensionality reduction:
transformation of data from a high-
dimensional space to low-dimensional
space, while retaining core properties of
the original data.
Goals: the object of an agent’s effort. A
goal is often endogenous and is
characterised by intentionality
(i.e., sense of agency) with (usually) an
active component from the
decision-maker.
Mixed selectivity: the property
harboured by many neurons in prefrontal
regions; display complex responses tuned
to multiple stimuli, features, context, or
combinations thereof.
Model-based learning: in RL, a class
of learning algorithms in which the agent
builds a predictive model of the
environment (i.e., transition and reward
functions) based on its interaction with it.
Model-free learning: in reinforcement
learning, model-free algorithms learn the
consequence of an action by adjusting
their strategy (i.e., policy) to maximise
overall reward, but they do not require a
representation of the dynamic of the
environment (i.e., state transitions and
reward functions).
Reward: (hedonic value); construct
used in neuroscience, psychology, and
economics to describe the pleasurable
aspects of a positive outcome.
Rule(s): similar to context, it is a specific
mapping of environmental variables and
agent’s action/response with outcomes.
However, unlike context, it is always
explicit (i.e., known to the decision-maker
and verbally accessible). It is often not set
by the agent and is limited to specific
circumstances or amount of time.
information that should be included in these abstract value representations. Finally, we will
present some putative mechanisms that allow the brain to monitor, update, or replace value
abstractions that stop being or fail to be useful.

Value, reward, and utility
Utility and reward in economics
The true nature of value has puzzled scholars for centuries. The English moral philosopher and
social reformer Jeremy Bentham described value as ‘that property in any object, whereby it
tends to produce benefit, advantage, pleasure, good, or happiness...[or] to prevent the happening
of mischief, pain, evil, or unhappiness’. According to Bentham’s view, value strongly resembles the
definition of reward (positive value) or punishment (negative value), yet a clear division between
reward and value was not made explicit in his definition. Roughly at the same time, Swiss
mathematicians Nicolas and Daniel Bernoulli realised that humans’ choices are not always driven
by the maximisation of external objective rewards but by an internal representation of value,
so-called ‘utility’. Imagine that you are playing a game of chance in which you are asked to
repeatedly flip a fair coin. You start from £2: every time ‘heads’ comes up, the amount doubles
(£2 - £4 - £8 - £16 - £32 ….); however, if ‘tails’ comes up, you lose everything. The objective
expected reward doubles on each flip ad infinitum:

Coin flip ðexpected valueÞ
¼ 1

2
� 2þ 1

4
� 4þ 1

8
� 8þ 1

16
� 16…

¼ 1þ 1þ 1þ 1… ¼ ∞

½1�

Most of us will probably decide to stop playing this game after ten lucky flips or less. What we
have described is called the St. Petersburg paradox, a problem invented by Nicolas Bernoulli
and analysed by his cousin, Daniel. The latter suggested that utility (U) follows a logarithmic
relation:

U wð Þ ¼ ln wð Þ ½2�

where w is the total wealth of the gambler [1].

The key intuition in Bernoulli’s analysis is that people’s choices are not determined by a numeric
objective reward but instead by an internal representation of utility. That is, subjective value or
utility might be different from an objective numerical reward.

But how is this subjective utility constructed by an individual in the first place? Animal behavioural
theories and the field of reinforcement learning (RL) have provided some answers.

Learning the value of options and actions: RL
First, some utilities are not constructed but have instead been sculpted in our genes by our
evolutionary history. A baby does not need to learn that milk is valuable, while a loud noise is
not. These innate values can be extremely useful in some circumstances, they can even save
our lives, but they are limited in scope and egregiously inflexible.

A more flexible way to construct utility during repeated interaction with the environment is through
model-free learning. The goal of the agent is to maximise the total amount of current and future
rewards. Value is therefore built through iterative updates of trial and error (Box 1). For well-
defined classes of problems, model-free architectures can be powerful and in their more complex
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instantiations, such as deep RL, can achieve superhuman performance [2–4], but are otherwise
slow when goals change, resulting in less flexible behaviour.

The most flexible system for assigning utility to the environment or one’s actions ismodel-based
learning. At the computational level, model-based RL requires a more complete understanding
of the environment structure [5–8]. Interactions between midbrain dopamine areas and
the striatum are thought to provide the substrate for reward predictions (value), which could
largely influence goal-directed processes. However, there are constraints on the computational
capability of the brain and how humans learn from small training samples [9] that are not yet
fully understood.

These learning algorithms must contend with the fact that the information we receive from the
environment is rich and complex. Therefore, the brain must construct a compact description of
the current setting that is relevant to the current goal: a ‘state’, as commonly referred to in RL.
Think about the table example and imagine you are a small child who is learning which surfaces
are good for stopping falling objects. The colour of the surface should not be part of your state,
but its material or thickness should. However, if your goal changes and you want to determine
whether that same table is a good surface on which to play marbles, the thickness would be
irrelevant while the smoothness and the colour (since this might make the marbles more visible)
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 1. The construction of abstract, goal-based value representations. The table in the example introduced in the main text acquires value based on the
context and the goal of the decision-maker. In the construction of abstract, goal-dependent value representations, there are three main steps. First and foremost,
the brain (or the artificial system doing the valuation) needs to build an abstract representation from purely sensorial information. For instance, if the goal is to evaluate
the usefulness of a table for a meeting, it might focus on a subset of features such as the size, the design, the colour, etc. The selection of these features for
abstraction is operated (mainly, but not exclusively by) attention and memory. Finally, if the goal changes, for instance, because of a sudden earthquake, the brain
needs to update this value representation, extracting new/different features such as sturdiness, height, and location, while disregarding other features irrelevant to the
new behavioural goal (i.e., colour, design).
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Box 1. How artificial intelligence (AI) agents learn from multiple goals

Reinforcement learning (RL) is generally seen as a ‘single objective’ algorithm [108]. The agent seeks to find the best policy
to solve one problem (e.g., exit a maze) by maximising future returns or minimising future punishments (integrating a single
scalar on each outcome). While humans and other animals undoubtedly use this type of RL [109–111], practical problems
in real life are often complex and containmultiple rewards or objectives in parallel (e.g., a drug needs to be effective, have as
few side effects, be inexpensive, easy to produce….).

These intuitions have led to important algorithmic developments in AI. In the 1990s, hierarchical RL expressed as mixture-
of-experts was developed to deconstruct complex problems through a divide and conquer strategy. There, a controller
allocates a new case to one or a few subnetworks (experts). This architecture was first used for pattern recognition
problems, such as phoneme discrimination [112] and vowel recognition [113] and, later, for applications in robotics and
motor control [114,115]. Hierarchical or modular RL and multi-agent RL are similar algorithms designed to solve tasks
made of multiple subproblems.

In contrast, multiobjective (or multigoal) reinforcement learning (MORL) [116,117] confronts classes of problems where the
agent explicitly trades multiple (often conflicting) objectives. The single scalar reward limitation arising in standard RL is
overcome by defining vectors of reward signals, one for each objective. Values are encoded separately for each objective.
The agent learns the relative importance of fulfilling each objective using preference weights. These weights can be
dynamic [118], increasing the flexibility of the agent to changing or a priori unknown conditions. MORL aims to maximise
rewards over all objectives simultaneously, weighted by their relative importance. Thus, in MORL there exists a set of
optimal policies, called the Pareto Front (from the Italian economist Vilfredo Pareto), outside of which no other policy is
equal or better in all objectives [117]. However, MORL is computationally demanding and introduces new problems, such
as the horizon of objectives (the number of objectives can quickly grow to become intractable) and the nontrivial solutions
to Pareto optimality.

The development of new multigoal algorithms might benefit from a deeper understanding of how humans solve multigoal
problems. It has been documented that in multitask RL, people evaluate a set of previously learned policies considering the
currently valid reward function and task states [119]. This finding is particularly interesting because it suggests a single
abstract value representation can be pairedwithmultiple policies. Others have found that people aremore flexible in updating
goal-directed task feature processing toward rewards than toward punishments in dynamic multigoal scenarios [120].
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should be part of your state representation [10] (for an extensive discussion, see [11]). In machine
learning, this problem can be often circumvented by hand-crafting the correct state or directly
using low-level inputs as a state, although this latter approach requires a huge amount of training
data [3].

In the next sections, we will discuss some mechanisms that the brain might implement to con-
struct these subjective value representations by abstracting the correct state to fulfill a goal.
Most of these mechanisms can apply equally to: (i) learning problems, and (ii) simple everyday
goal-value decisions like the one presented in the opening example.

Abstractions
We define abstractions as high-level compact representations that are transferable to new situa-
tions, allowing agents to quickly adapt when goals or the environment change. We will focus on
how abstractions are formed to fulfill a precise goal and guide value-based choice.

Reducing dimensions
A key step in building useful abstract value representations is dimensionality reduction, which
has been studied in fields ranging from computational linguistics to visual processing [12,13],
statistical learning [14,15], categorizations [16–18], and concepts or rules [19,20]. For example,
humans can recognise items that belong to the same category (e.g., chairs, food) even when the
visual inputs are extremely different by focusing only on those dimensions that are important for
the categorization. This powerful cognitive tool may be a critical ingredient for the brain to
overcome, during learning, the so-called curse of dimensionality [21] by reducing the complexity
of the underlying representations [22].
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We recently investigated how humans learn to solve decision problems based on abstractions
[23]. In the task, hidden rules defined what information was relevant or irrelevant. Rules could
be learnt via two different strategies: (i) using all (redundant) stimuli features; or (ii) using abstrac-
tion (integration of relevant information alone). People who based their decision strategies on
abstractions learnt faster and weremore confident about their performance. Simulations in RL ar-
tificial agents replicated accelerated learning. This ability was underpinned by value signals in the
ventromedial prefrontal cortex (vmPFC), an area prioritised during abstraction. Abstractions were
learnt: at the beginning people largely used raw task features, while later they relied on abstract
reasoning. Others have made similar findings [24], for example, during navigation the brain also
learns the relevant abstractions (e.g., a stylized representation of a maze [25,26]).

The field of cognitive control has made the most progress in understanding how a behavioural
demand or goal triggers a reduction in dimensions. However, most experimental tasks used in
this field (such as the Stroop task, Eriksen flanker task, and n-back task [27]) are relatively simple
compared with the tasks used in value-based decisions. This is because experiments in cognitive
control aremostly concernedwith understanding the input–output remapping in response to task
demands (i.e., goal manipulation). In contrast, the field of value-based choice adopts a different
approach, in which tasks tend to be characterised by rich stimuli and complex structures.
Moreover, in the majority of value-based tasks, the goal is generally singular and straightforward
(to maximise a numeric reward) and is seldom manipulated during the task. A direct comparison
of these two approaches can be found in an in-depth review by Frömer & Shenhav [28].

Are low-dimensional abstract representations always useful? Theoretical and empirical work has
demonstrated a trade-off between low and high dimensionality of representations [29–31]. While
low-dimensional representations are robust to noise and changes in input, they fail to separate
similar inputs. This cost is probably inconsequential in value tasks, which, unlike perceptual
discrimination, use stimuli that are perceptually easy to separate (e.g., a banana and ice cream).
But given that stimuli are composed of many features/dimensions, a more serious concern in
value-based choice is the possibility of compressing the wrong dimensions. If the abstraction is
built at the wrong level, such as overly simple features, then the process becomes slow and
inefficient [23,32]. We will come back to this problem later and discuss putative mechanisms
that can monitor the reliability of the current abstraction given the agent’s overarching goal(s).

Goals also define the hierarchy of abstraction and along which dimensions abstraction should
develop. For example, abstractions can be: (i) at the stimulus level, a representation of colour
and texture, ignoring shape and size; or (ii) at the task or conceptual level, such as multiple stimuli
linked by a rule, or category; and even (iii) in time, merging information across trials to represent
task structure. Value-based abstractions are thus forged through the integration of sensory stim-
uli withmotor and/ormemory representations. Howmuch dowe know about how this integration
is instantiated at the neural and algorithmic levels?

Mixed selectivity
In many brain areas, most notably in the prefrontal cortex (PFC), neurons often display complex
firing responses, apparently mixing information sources such as cues, stimuli, contexts,
rewards, etc., a phenomenon named mixed selectivity (Figure 2A). Theoretical work has
shown that populations of mixed-selective neurons can control the trade-off between general-
isation and discrimination, mapping onto high and low level of abstraction [33]. High-
dimensional neural representations with mixed selectivity allow a simple linear readout to
generate a vast number of unique potential responses. In contrast, neural representations
based solely on specialised neurons (high selectivity) will lead to low-dimensional neural
Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1 69
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Figure 2. Mixed selectivity and goal-directed abstraction in decisions. Mixed selectivity is a possible algorithmic
implementation that allows an optimal mixture of low/high-dimensional coding and representations. (A) Graphical
illustration of neurons with various levels of selectivity, from pure selective to a single task variable (e.g., yellow neuron
exclusively coding ‘taste’) to mixed selectivity over multiple variables (e.g., red-green neuron coding a mixture of ‘colour’
and ‘weight’). (B) Participants were asked to rate the usefulness of common objects under two different goals. In the first
goal, participants had to judge how useful an item was to light a fire, and in the second goal, participants had to do so
with respect to how well an item could be used to anchor a raft. In this experiment, perceptually similar stimuli (such as a
wooden chair and a metal chair) flexibly rearrange into new goal-dependent representations that emphasise goal-relevant
features. If one’s goal is to choose a burnable object, a wooden chair and bottle of whisky will be closer in the representational
space than a metal chair and a (perceptually more similar) wooden chair. Both panels adapted from [42].
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patterns [29]. In humans, high-dimensional neural representations predict effective learning
[34] and better episodic memory [35].

So far, we have discussed abstraction as a process that reduces the dimensionality of information.
However, this idea seems to contradict the experimental and theoretical evidence introduced in the
previous paragraph, exemplified by neural recordings showing these representations are simulta-
neously abstract and high-dimensional [36]. How can this apparently counterintuitive mechanism
be advantageous? One reason is that it leads to an agent that avoids large information loss because
it does not ‘relearn’ dimensions and instead can resurface information as needed for on-the-fly com-
putations. Therefore, the representations used to guide behaviour are functionally low-dimensional,
but the underpinning neural code might be high-dimensional (for further reading, see [29,31,37]).

While PFC neurons show complex and mixed response profiles, each cell’s activity nevertheless
primarily covaries with a single task parameter, including value, as extracted from computational
70 Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1
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models of choice behaviour [38]. Thus, prefrontal neurons may implement a multiplexed coding
principle, the readout of which depends on the demands of downstream neurons or circuits.
Importantly, neurons also have other means of controlling the dimensionality of representations
(besides mixed selectivity), such as synchronisation across neurons [39] and oscillatory
dynamics [40]. It remains to be further investigated how these different mechanisms are
connected and their role in value-based abstractions.

On-the-fly abstractions for value-based choice
Beyond learning, in most value-based choices abstractions can be summoned or modified on-
the-fly [41]. Changes in goals quickly rearrange the neural representations, neural manifolds,
and the compression of relevant dimensions. A recent study from one of our labs has shown
that such rearrangements are virtually instantaneous and unfold as an automatic process [42].
In this work, participants were asked to picture themselves in an emergency and imagine using
everyday items to fulfill two goals: lighting a fire or anchoring a boat. Using representational
similarity analysis, the study showed that activity patterns in visual regions coding for object
representations were clustered according to their perceptual features. Meanwhile, in regions of
the PFC (usually associated with value computation), the pattern of representation similarity
was reshaped by the goal. For example, if the goal was burning, the representation of a wooden
chair was more like a bottle of whiskey (both flammable items) than a metal chair (Figure 2B).
In Box 2, we discuss the puzzling existence of aesthetic values as an extreme form of value
abstractions that is portable across wildly different scenarios.

Information selection
As hinted in the previous sections, a critical step in building abstract (compact) value
representations is selecting the correct information. Here, we focus on the role of attention
and memory.
Box 2. Aesthetic values

How can we explain aesthetic values in the framework we proposed? It is difficult to imagine how listening to the Chaconne
from Bach or watching the northern lights is a useful pursuit (Figure I). What is even more puzzling is that aesthetic values
activate the same brain network [121] that is involved in the goal-dependent value representations discussed throughout this
article. How aesthetic preferences develop has flummoxed philosophers for centuries [122,123]. Recently, neuroscientists
have started to tackle this problem experimentally [124,125]. An ingenious recent study used deep convolutional networks
to show how low-level perceptual features are combined and integrated to predict subjective preference for visual art
[126]. Nevertheless, the relation between aesthetic and goal-dependent value is still opaque. We briefly present some ideas
that admittedly are very speculative, but we hope they might inspire future computational and experimental work.

In everyday language, we apply aesthetic categories such as ‘beautiful’ or ‘ugly’ to describe different phenomena across
many different domains. A chess player might say ‘this position is beautiful’; a mathematician ‘this proof is correct but ugly’.
What does a beautiful chess position have in common with an elegant mathematical proof? Is it just imprecise use of
language or is there something more to it? We suggest that aesthetic judgement is a form of (very) high-level abstraction
that captures some statistical regularity in the environment (both natural but also cultural). Because of the high degree of
abstraction, these representations might not be fully accessible to awareness or verbal reports beyond the very coarse
definitions that we use in aesthetic judgement (beautiful, ugly, graceful…). These abstract aesthetic value representations
can capture commonalities and relations that exist in the cultural and natural environment, while at the same time
discarding lower-level features specific to a given situation or modality. These representations are therefore extremely
portable, allowing for an impressive degree of generalisation and reducing the amount of training required by the human
brain. For example, if one learns complex relations in the visual domain (e.g., a painting), one might be able to learn more
easily similar relations in the musical domain (e.g., music). These aesthetic values when formed are not static, but they get
updated with experience. If one is used only to classical music from the Baroque or romantic period, one will probably find
the Rite of Spring of Igor Stravinsky ugly due to the strident dissonances. However, with time, we intuitively discover new
hidden structures and relations. While we are unable to describe this verbally, these newly discovered relations might
change our aesthetic judgement about that piece of music. The understanding and appreciation of these new abstract
relations can in turn affect the aesthetic valuation of a painting by Rothko or an unusual dessert by Jordi Roca.
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Figure I. Aesthetic values. (Top) Johann Sebastian Bach score of the incipit of the Partita No. 2 for solo violin
(BWV1004). (Bottom) A photo of the northern lights (aurora borealis).
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Attention
Attention is arguably the main mechanism the brain uses to prioritise information processing.
During perception, (top-down) attention modifies sensory representations. This happens in
vision, where attention strengthens the representation of attended stimuli, for example, by
increasing the selectivity of population responses [43] or enhancing local fMRI signals [44–46].
Attention effects on sensory representations require a direct prefrontal control of sensory neurons
[47,48], including PFC-driven dampening of visual distractors [49].

Something analogous might be triggered by goals. In the study presented in Figure 2B, the
usefulness of an item changed its internal representations, even in occipital areas [42], which
were incrementally recruited according to the item’s usefulness. This finding is reminiscent of
the value-driven attentional capture of high-value sensory features [50]. More broadly, neural
coding in the sensory cortex is sensitive to the effect of reward [51–53]. Orbitofrontal cortex
neurons have been shown to exert direct control over sensory cortices in value-based choices
[54,55].
72 Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1
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These results across sensory domains have been interpreted in different ways. Any good
mechanism needs to explain a two-way interaction between sensory cortices and PFC: (i) a
top-down strengthening of relevant sensory representations; (ii) prioritisation of the ‘relevant’
sensory features that are combined to form an abstraction in PFC on which learning or choice
operates.

We recently studied how reward guides attention selection and how it relates to the formation
of abstract representations during learning [23]. We tested the hypothesis that, during learning,
reward should operate a similar attention-capture mechanism on sensory features relevant for
abstraction. Based on fMRI data analysis, we found the area of the vmPFC encoding value
strength (as calculated by an RL model) was functionally coupled with the occipital and lingual
gyri in episodes that lead to reward. The strength of the coupling was relevant to behaviour, as
it was correlated with participants’ ability to build abstractions and learn more efficiently. To
investigate the directionality of this coupling, we exogenously paired the sensory neural
representation of a target feature with monetary reward using neurofeedback. In this proce-
dure, each participant received a reward every time we detected a neural multivariate activity
pattern classifying a specific visual feature. This was done in the absence of visual stimuli
and with participants unaware of which feature was paired with reward. In a follow-up test,
we showed that participants learnt faster when the feature tagged with a reward (via
neurofeedback) was part of the correct abstraction.

But the relationship between attention and value has been intensely studied over the past de-
cade, especially in the context of simple choice (i.e., outside learning). A well-known empirical
finding is that people tend to look longer at more valuable items. In addition, the time spent
attending to an item is proportional to the probability that the item will be eventually chosen.
The intuition was that, during value comparison, attention boosts the value of the attended
item either by amplifying its magnitude [56–58] or by shifting its baseline upwards by a con-
stant amount [59]. However, often (with a few exceptions [60,61]) the goal of the task was
not directly manipulated. Therefore, choosing which snack to eat (i.e., goal value) was equiv-
alent to choosing the snack I like most (i.e., hedonic value). In a recent study, we used a simple
goal-framing manipulation in which participants were sometimes asked to choose the least
preferred item. We showed that, contrary to the commonly held view, attention does not
boost reward processing per se but selectively prioritises information relevant to achieving
the current goal [62]. This effect also generalised to perceptual tasks. The implication of
these findings is that behavioural goals shape the type of information that is processed and
integrated from the very incipit of the evaluation process. An analogous mechanism has
been detected in recent studies on confirmation bias [63–65]. The simple (and often inconsequen-
tial) commitment to a choice influences how information is thereafter acquired and processed.

Memory
While attention is crucial for information selection and prioritisation, memory is arguably the
primary source of information from which abstract value representations are constructed. For
example, in the studies presented in the previous paragraph, it is questionable that spending
more time looking at a picture of a well-known snack item would provide more sensory informa-
tion to compute the value of the item. It is more likely that information is retrieved from memory
and (for unknown reasons) eye gaze provides a window into the internal sampling process
[66,67]. This makes the problem of dimensionality reduction that we introduced earlier in the
context of perception even more severe. There are effectively endless memories stored in the
brain and only a tiny fraction of them are important for the current decision. An important feature
of memories is the way they can be structured in schemas, which are compositions of primary
Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1 73
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information [68], allowing faster access to target information [69]. For example, it is easier to recall
the name of a work colleague in an office environment than in a bar.

We suggest that there is a fundamental similarity at the computational level between schema and
the abstract value representations so far discussed. This would explain why lesions in the same
brain region (vmPFC) impair both the formation and retrieval of schematic memory and value-
based choice [70,71]. In support of this view, recent studies have shown that vmPFC plays a
critical role that requires a novel combination of information in an abstract representation to
compute value [41,72].

The exact relation between schemas and value is not yet fully understood. However, one can
speculate that abstract value representations are constructed similar to schemas. The goal
provides the context to retrieve information, aiming to fulfill a specific behavioural goal. Akin to
perception, the goal constrains the retrieval content; retrieval in turn could initiate a circuit rever-
beration, amplifying only what is relevant (Figure 3). Like the process of filtering and prioritising
perceptual information, attention also modulates the memory retrieval process [73]. A new fruitful
research agenda has started to dissect the interaction between attention and memory [74–76];
this will shed light on the algorithmic and neural mechanisms involved in the formation of goal-
dependent value representations.

Moreover, memory is central in RL algorithms. A promising approach, known as ‘successor
representation RL’ (SR), stores long-term predictions of future states that will be visited. SR
shares the simplicity of model-free RL but is still capable of approximating (some of) the flexibility
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 3. The link between ventromedial prefrontal cortex (vmPFC) and hippocampus (HPC) in evaluating and
updating goal-dependent values. The vmPFC encodes high-level schemas or maps that are described here as abstrac
goal-value mappings. These maps guide the HPC in the retrieval (or encoding) of specific relevant elements (in the example
grey colour objects vs. triangles), ignoring the irrelevant memories. This can trigger a recursive process in which the HPC
amplifies only what is relevant and in doing so shapes the goal-dependent map built by vmPFC.
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of model-based RL [77,78]. An open question is whether goalsmodulate the encoding and/or the
retrieval of these future states represented by the SR algorithm.

Control of the representations: monitoring and updating
Goal-dependent values must adapt when situations change and an abstraction fails to be useful.
In the table example, one might notice that the wood is starting to crack under the weight of the
debris. This observation makes the table less valuable (useful) for one’s protection and one might
seek refuge in a door frame instead. The brain needs a two-step mechanism that monitors
the quality of a value abstraction and updates/replaces the representation when it ceases to be
useful.

The human brain has developed a sophisticated mechanism for monitoring internal representa-
tions and adjusting behaviour. The ability to evaluate our own thoughts or performance
(i.e., metacognition) is often measured in the lab using confidence reports. In computational
terms, metacognition can be quantified as the mutual information between the accuracy of the
agent’s choices and their confidence reports [79]. Recent work from ours and other labs has
shown that, throughmetacognition, people can alsomonitor their value representation and adjust
behaviour [80–85]. At the neural level, confidence signals can be tracked across different subre-
gions of the prefrontal and cingulate cortices, including vmPFC [86]. Overlapping signals for value
and confidence are associated with control of behavioural measures such as choice and reaction
time. These findings point to a deeper algorithmic role of confidence in adaptive behaviour and
the control of internal representations. In line with this idea, reliability (measured experimentally
using confidence reports) appears to be an intrinsic feature of value [83,85,87,88]. Usefulness,
Box 3. Algorithms for monitoring, controlling, and updating abstract value representations

Hierarchical switch-evidence variable

In an influential study conducted by Sarafyazd and Jazayeri on monkeys performing a task that required credit assignment of an error source, it was suggested that
confidence controls the accumulation of evidence in favour of a behaviour switch to the alternative strategy [127]. This was achieved using a simple but compelling
hierarchical algorithm that uses a ‘switch evidence variable’ as input to a step function, in that it signals 0 (stay) if the switch evidence is below a threshold and 1 (switch)
otherwise (Figure I, top-left). The critical question is how the switch variable is computed and used by the brain. Experimental findings indicated the dorsomedial frontal
cortex accumulated switch evidence, while the dorsal anterior cingulate cortex operated downstream to determine the behaviour course [127].

Concurrent behavioural strategies selection

A related line of research on reasoning in humans has put forward an influential cognitive model postulating that the brain performs two parallel computations to solve the
exploit/explore problem, which can be adapted to our case as: ‘exploit’ = continue using the current abstraction; ‘explore’ = change abstraction [128,129]. This model
considers that humans evaluate a few alternatives and use hypothesis testing to select a strategy (Figure I, bottom-left). This resembles a decision-theoretical idea in
economics, in which agents engage with one hypothesis at a time (i.e., an abstract representation in our case). When this hypothesis stops being appropriate, it is
rejected and replaced by the next best one that has been selected, following Bayes’ rule [130].

Meta-learning

Similar control mechanismsmust apply when the representations are learnt. Meta-learning is a suitable candidatemechanism in RL to perform a similar type of control. In
meta-learning the agent learns hierarchical aspects of a task, over different timescales [108,131,132] (Figure I, top-right). The cortico-thalamic loops linking the PFC
and basal ganglia/thalamus provide the neural underpinning for meta-learning [133,134]. Artificial neural networks designed to mimic this dual neural component model
display efficient episodic learning and hallmarks of classic RL observations [133]. This style of learning allows one to flexiblymap different levels of representations, finding
the most appropriate abstraction to fulfil the current goal.

Mixture-of-experts

The fields of AI and robotics have developed other, related models, such as the mixture-of-experts architecture [113,135]. Although this model fell out of favour due to
over-parameterized and excessively constrained implementations, new work is showing its merit as a neurocognitive mechanism [23,26,136,137]. Mixture-of-experts
can flexibly integrate multiple representations, including multiple levels of abstractions at once: an internal (implicit) controller selects the best expert(s) based on a
‘responsibility’ signal (derived from priors and prediction errors from each expert) [23,114,115] (Figure I, bottom-right). Note the strong similarity between responsibility
and reliability discussed earlier (concurrent behavioural strategies selection). We suggest abstract value representations serve a crucial function: selecting the right
expert(s) (i.e., the right task set or representation).
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Figure I. Algorithms for monitoring and control/update of abstract value representations. Values are computed over time according to a first goal (goal 1).
Changes in the environment, context, rules, etc. should lead the decision-maker to re-evaluate the goal and the value construction process, to best fit current demands.
This arbitration problem is critical and defines abstract goal value. We describe four possible algorithms, which were originally developed in other contexts. Top-left:
hierarchical switch-evidence variable [23]. This model updates the switch evidence XΣ based on the history of previous outcomes (reward vs. error), and the agent’s
belief about the stimulus and rule. After rewarded trials (green circle), XΣ is reset to zero; after each error (red cross), XΣ increases. When XΣ breaches a threshold
(broken line), the model switches the rule. Bottom-left: concurrent behavioural strategies selection. Shapes represent abstractions. Reliabilities of monitored
representations are inferred from action outcomes and used to switch into exploration (test alternative hypotheses) when abstraction(s) becomes unreliable.
Exploration periods end when a new abstraction becomes reliable. Top-right: meta-learning. A set of abstract value representations are learned across goals, over
different timescales, and hierarchically structured. Bottom-right: mixture-of-experts architecture. Each expert (coloured rectangles) represents an abstraction.
Switching between abstractions/representations is done by reweighting the selective importance of each expert in determining the agent’s actions.
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reliability, or value might be partially overlapping psychological constructs that characterise
various aspects of the same algorithm dedicated to implementing actionable goals through the
generation, monitoring, and switching of structured abstract representations [42,89].

However, monitoring the quality of representations is just the first step. The brain also needs a
mechanism that switches and selects new representations when needed. Our understanding of
how the brain achieves this stems from studies on rules, context, and executive functions in
memory or cognitive control. We suggest that the same principle could apply to goal-dependent
76 Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1
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Outstanding questions
How does hedonic reward interact with
goal value? We are still missing a clear
understanding of the computational or-
igin and the objective of hedonic value
and its interaction with functional ab-
stract values (i.e., usefulness) that we
presented in this review.

At the neuromodulatory level, how
do prediction errors mediated by the
dopaminergic system interact with the
opioid system associated with the
hedonic state of an agent?

How do humans set their own goals?
What is the algorithm humans use to
arbitrate amongst different competing
goals? While in most studies goals
(usually one at a time) are set by the
experimenter, this is often not the case
for a real decision-maker operating in a
real environment. We still do not have a
clear algorithmic answer on how human
decision-makers choose among com-
peting goals which one to pursue and
when to switch to a different goal.

What are the differences between goal,
context, or rule? Do these terms map
onto different psychological constructs?
Do goals require a sense of agency
while rules are exogenous to the
decision-maker? If this is the case, we
will then need to understand how to cap-
ture these differences algorithmically and
how they are implemented neurally.

Does the brain map externally imposed
contexts or rules as an internal goal,
such that the same mechanism can
be used across scenarios?
abstract value representations. Howmight this process unfold at the neurocomputational level? An
influential study revealed that context-dependent neural computations in the PFC generated
separable (orthogonal) representations through recurrent dynamics, as the product of a single
process of information selection and integration [90]. Considering the multiplexed nature of single
PFC neurons’ activity, coupled with line attractor and selection vector at the population level, the
function of the PFC may be to generate, link, and select separate representations. The importance
of the PFC in controlling representations was underscored by another study that found PFC
operated as a domain-general controller in working memory, both selection of memory dimension
and attention to stimuli [91]. Other areas, such as the visual or parietal cortex, operated each
process independently.

Studies on rules, and especially rule search, also provide insight into how the brain controls inflow,
processing, and abstraction to separate task-relevant from irrelevant information. Activity in the
medial PFC predicted participants’ future strategy changes [92]. More specifically, when this
region started encoding information irrelevant to the main explicit rule, but necessary for an
undisclosed rule, participants were more likely to discover and switch to the new and more
efficient rule.

Similarly, other regions of the frontal cortex, such as frontopolar cortex, can play a key role inmon-
itoring the quality of a choice during metacognitive judgements in both perceptual [93] and value
domains [83,94]. We believe that it is not an accident that this same region has been shown in
controlling arbitration between different learning strategies [95], managing competing goals
[96], and counterfactual judgements [93]. Although a full picture of the underpinning neural com-
putation that controls and updates abstract value representations remains elusive, some candi-
date algorithmic implementations are discussed in Box 3.

Concluding remarks
These are exciting times in which rapid developments in AI algorithms are fostering the integration
of different domains of psychology and cognitive neuroscience. Such integration will undoubtedly
help to uncover general computational principles, which apply both to the human brain and AI.
However, different fields of cognitive neuroscience have often interpreted their results through
narrow lenses, neglecting data and interpretations from other fields. A paradigmatic example is
the vmPFC, whose function has been linked to the computation of economic value, reward,
and confidence in the field of neuroeconomics [97,98], schemas in the field of memory [68,99],
regulation of impulsivity in the field of cognitive control [100], prioritisation of information in working
memory [101], and more recently to the formation of cognitive maps [102,103]. We believe that it
is possible to reconcile these (superficially) quite different findings under a common computational
language. Other scholars have been advocating a similar research program [28,102,104].

In this review, we have suggested that value is a functional construct that does not necessarily
overlap with reward. These differences are often blurred in experimental designs in which the
goal of the participant is to maximise simple numerical rewards. As we discussed, recent work
has started to disentangle these concepts by manipulating the goal of the task. However, it is
not always clear what constitutes a context, a rule, or a goal manipulation. More experimental
and computational work is required to tease apart these overlapping psychological constructs.

Finally, we still lack a satisfactory neurocomputational account of how an agent endogenously
sets and changes its own goals (see Outstanding questions). Most learning algorithms implicitly
assume that agents have one goal and receive exogenous rewards (often scalar numbers)
from the environment. This scenario is unrealistic for real agents operating in real environments.
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We have only just begun to consider how reward functions might be designed in biological organ-
isms [105]. The notion of homeostatic RL [106,107], where the value of an item depends on the
physiological needs and homeostatic balance of the agent, is a timely new research direction. By
combining ideas drawn from different fields, sophisticated experimental designs, and the formal-
ism of computational models, we are reaching a better understanding of the stupefying human
ability to flexibly respond to everchanging behavioural demands.
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