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a b s t r a c t

This paper presents two ways to transfer a spacecraft to distant periodic orbits in the

Earth–Moon system. These unstable periodic orbits of the restricted three-body

problem reveal a rich phase-portrait structure that can be used by space missions.

Through the perspective of dynamical system theory, distant periodic orbits’ invariant

manifolds can be exploited to design novel low-energy trajectories in the Earth–Moon

framework. Interior and exterior transfers are presented. The latter use impulsive, high-

thrust propulsion to target the stable manifold from the exterior. Interior transfers are

instead formulated with continuous, low-thrust propulsion. The attainable sets are used

in both cases to handle families of either coast arcs or low-thrust orbits. First guess

solutions are optimized in the framework of the Sun–Earth–Moon–Spacecraft restricted

four-body problem through direct transcription and multiple shooting. The novelty of

the presented solutions, as well as their efficiency, is demonstrated through examples.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Unstable orbits analysis shows many opportunities,
from purely theoretical speculations to practical applica-
tions [24]. Unstable orbits were first found by numerically
exploring the Hill’s limiting case of the restricted three-
body problem by Hénon [9], who systematically studied
and classified symmetrical, simple-periodic orbits (i.e.,
orbits that are symmetric with respect to the x-axis and
intersect it only twice). As the Hill’s problem admits an
integral of motion, G, the orbits are organized into one-
parameter families. Families a, c, f, g, g0 were found, and
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their stability was studied. Among these, orbits belonging
to the g-family are of interest in this work. These orbits
can be continued into the restricted three-body problem
(by using the mass ratio as continuation parameter)
staring from the initial conditions in [9] and solving a
two-point boundary value problem at each step. More
specifically, a subset of the g-type orbits is considered in
this paper for which Go4:99986 and the stability index is
greater than one (see Table 4 in [9]). As the g-orbits
originate from the central orbits around the smaller
primary, they are stable in the region close to the smaller
primary, though their stability index continuously varies
when G decreases (and the orbit’s size increases accord-
ingly). In particular, for Go4:99986 the g-orbits become
unstable. Since this condition is reached when portions of
the orbits lie far from the smaller primary (farther then
the two equilibrium points close to it), these orbits are
labeled as distant periodic orbits (DPOs). This terminology
is used in the reminder.

From the astrodynamics perspective, DPO belonging to
the Earth–Moon restricted three-body problem are of
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interest. If combined with the Sun–Earth restricted three-
body problem, Earth–Moon DPO may define low-energy
trajectories from the Earth’s vicinity to the Moon’s neigh-
borhood and return. This can be done in a deterministic
fashion [13]. Using DPO’s intrinsic dynamics to design
low-energy lunar transfers mimics the technique already
established in literature, with the exception that the
invariant manifolds associated to the DPO are exploited
in place of those associated to the libration point orbits
[8,10,11,14,15]. This approach is also used in Mingotti and
Gurfil [18] to design transfers to DPO around Mars (with
and without lunar gravity assists).

In the present study, two types of transfers to DPO in
the Earth–Moon system are presented. These two strate-
gies differ in the kind of propulsion considered, which in
turn affects the structure of the transfers as well as their
geometry. In both cases, the concept of stable manifold
associated to DPO is used: in order to reach the final
periodic orbit, the spacecraft has to be placed, in the
phase space sense, on the stable manifold of that orbit.
This requires handling a global representation of the
stable manifold. In the RTBP, these can be determined
by backward integrating the periodic orbit perturbed
along the stable eigendirection [7,27]. Once placed on
the stable manifold, the dynamical system provides at
bringing the spacecraft to the final orbit at zero cost. To do
this, it is important to assess whether or not the stable
manifold associated with the final DPO approaches the
Earth, or, more specifically, the departure orbit. It can be
shown that the invariant manifolds associated with DPO
around the Moon do not approach the Earth [17]. For this
reason, the focus is to maneuver the spacecraft (starting
from a prescribed Earth orbit) such that the DPO stable
manifold is reached. The stable manifold is made up by
two branches, and each of them can be targeted. In this
perspective, it would be desirable to choose the propul-
sion system that better fits the branch of the manifold to
target. In particular, using the low-thrust propulsion to
reach the exterior branch is not deemed a viable option as
it would require long transfer times and high propellent
consumptions. Thus, we consider the high-thrust propul-
sion to reach the exterior branch of the stable manifold.
The low-thrust propulsion is instead considered in the
interior branch case. This is deemed more efficient than
possible two-impulse transfers associated to high-thrust
propulsion. In summary, the two following options are
considered, depending on the propulsion used.

Low-thrust, interior transfers to DPO. Low-thrust solu-
tions are found by targeting a piece of the interior branch
of the stable manifolds of the DPO. This is done by
spiraling around the Earth up to reach a point that lies
on the stable manifold. This strategy recalls that already
formulated to design low-thrust transfers to halo orbits in
the Earth–Moon system [14].

Single-impulse, exterior transfers to DPO. Impulsive
transfers to DPO are found with the coupled restricted
three-body problem approximation [8,11]. In this frame-
work, two pieces (one defined in the Sun–Earth problem
and the other in the Earth–Moon problem) are patched
together to define the whole transfer trajectory [15]. The
originality of such approach consists in using, in the
second part of the transfer, the stable manifold of the
DPO, so extending the approach based on the exploitation
of the Lyapunov orbits’ stable manifolds.

In both cases, attainable sets are introduced to handle
families of orbits at once. This includes both thrust and
coast arcs, with the latter thought as propelled orbits with
zero thrust. This approach generalizes the concept of
attainable set with respect to previous works where only
tangential thrust orbits where considered [19,20,22].
Attainable sets manipulation allows us to defined accu-
rate first guess solutions that are later optimized in a
more refined gravitational model by means of a direct
transcription and multiple shooting procedure.

Summarizing, the purposes of the work are:
�
 to extend the design technique proposed by Koon et al.
[11] and further developed by Mingotti et al. [15] (by
including low-thrust propulsion) to the case of final
DPO orbits around the Moon;

�
 to design low-thrust, stable-manifold interior trajec-

tories to final DPO around the Moon in analogy with
low-thrust transfers to halos [14].

The remainder of the paper is organized as follows. The
dynamical models are recalled, and the statement of the
problems are given in the first part of the paper. In the
second part, the trajectory design strategy is described by
defining the attainable sets. The optimization problem is
formulated in the third part where sample optimal solu-
tions are also shown.

2. Background

This section summarizes all the notions underlying the
present work. As the main scope of the paper is to design
transfers to DPO around the Moon, the background
material is defined by using references, and going into
details would lead us beyond the scopes of the paper. The
reader can consult references for a compete derivation of
the equations of motion and distant periodic orbits.

2.1. The planar circular restricted three-body problem

The motion of the spacecraft, m3, is studied in the
gravitational field generated by the mutual circular
motion of two primaries of masses m1, m2, respectively,
about their common center of mass (see Fig. 1(a)). It is
assumed that m3 moves in the same plane of m1, m2 under
the following equations [26]:

€x�2 _y ¼
@O
@x

, €yþ2 _x ¼
@O
@y

, ð1Þ

where the auxiliary function is

Oðx,y,mÞ ¼ 1

2
ðx2þy2Þþ

1�m
r1
þ
m
r2
þ

1

2
mð1�mÞ, ð2Þ

and m¼m2=ðm1þm2Þ is the mass parameter of the three-
body problem. Eqs. (1) are written in a barycentric
rotating frame with nondimensional units: the angular
velocity of m1, m2, their distance, and the sum of their
masses are all set to the unit value. It is easy to verify that



Fig. 1. Mathematical models used to catch the physics of the problem. (a) Planar circular restricted three-body problem. (b) Moon-perturbed Sun–

Earth RFBP.
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the primary of mass 1�m, is located at ð�m,0Þ, whereas the
smaller primary m, is located at ð1�m,0Þ; thus, the dis-
tances between m3 and the primaries in Eq. (2) are

r1 ¼ ½ðxþmÞ2þy2�1=2, r2 ¼ ½ðxþm�1Þ2þy2�1=2: ð3Þ

For fixed m, the Jacobi integral reads

Jðx,y, _x, _yÞ ¼ 2Oðx,y,mÞ�ð _x2
þ _y2
Þ, ð4Þ

and, for a given energy C, it defines a three-dimensional
manifold

FðCÞ ¼ fðx,y, _x, _yÞ 2 R49Jðx,y, _x, _yÞ�C ¼ 0g: ð5Þ

The projection of F(C) on the configuration space (x,y)
defines the Hill’s curves bounding the allowed and for-
bidden regions associated with prescribed values of C. The
vector field defined by Eq. (1) has five well-known
equilibrium points, known as the Lagrange points, Lj,
j¼ 1, . . . ,5. There exists a family of retrograde Lyapunov
orbits around L1, L2, and two-dimensional stable and
unstable manifolds emanating from them [3,12].

The system governed by Eq. (1) is used alternatively to
describe the motion of the spacecraft either in the Sun–
Earth (SE) or in the Earth–Moon (EM) system. The mass
parameter value assumed for these models are mSE ¼

3:0034� 10�6 and mEM ¼ 1:2150� 10�2, respectively.
As for the SE model, the generic periodic orbit about Lj,

j¼1, 2, is referred to as gj, whereas its stable and unstable
manifolds are labeled Ws

ðgjÞ, Wu
ðgjÞ. In the EM model, the

generic periodic orbit about Lj, j¼1, 2, is called lj, while
its stable and unstable manifolds are named Ws

ðljÞ,
Wu
ðljÞ.

2.2. The Moon-perturbed Sun–Earth restricted three-body

problem

When the gravitational attraction of the Moon is
considered in the SE model, a bicircular restricted four-
body problem (RFBP) is defined (see Fig. 1(b)). To derive
the equations of this model, the following assumptions
are considered, recalling that the orbits of the primaries
show low eccentricities (C0:01, C0:05, for the Earth,
Moon, respectively), and the Moon inclination on the
ecliptic is small (C51):
�
 the Sun and the Earth move on circular orbits around
their common center of mass;

�
 the Earth–Moon barycenter moves on a circular orbit

around the center of mass of the Sun–Earth–Moon
system.

Under these assumptions, the equations of motion of
the spacecraft are [22]

€x�2 _y ¼
@OM

@x
, €yþ2 _x ¼

@OM

@y
, _y ¼oM , ð6Þ

where the auxiliary function is

OMðx,y,yÞ ¼Oðx,y,mSEÞþ
mM

rM
�

mM

r2
M

ðx cos yþy sin yÞ: ð7Þ

The dimensionless physical constants introduced to
describe the Moon influence are coherent with those of
the SE model. Thus, the distance between the Moon and
the Earth is rM ¼ 2:5721� 10�3, the mass of the Moon is
mM ¼ 3:6942� 10�8, and its angular velocity with respect
to the SE rotating frame is oM ¼ 1:2367� 101. The loca-
tion of the Moon is at (1�mSEþrM cos y,rM sin y), such
that the Spacecraft–Moon distance is

rM ¼ ½ðx�1þmSE�rM cos yÞ2þðy�rM sin yÞ2�1=2: ð8Þ

2.3. Distant periodic orbits

In the framework of Hill’s problem (m-0) there exist
periodic orbits. Due to the existence of the integral of
motion, these orbits are grouped in one-parameter
families, each family containing a simple infinity of
periodic orbits, whose properties vary continuously from
one end of the family to the other. For nonzero mass
parameters, a transformation is needed to obtain these
orbits in the RTBP from those available [9].

Theory predicts, however, that there are infinitely
many families of periodic orbits. The simplest of them
are those symmetric with respect to the x-axis, and



Fig. 2. Distant periodic orbits belonging to the g-family [9] and their invariant manifolds. In (b), both the interior branch (I) and the exterior branch (E) of

the stable manifold Ws
DPO are drawn (DPO shown bold). (a) Family g of DPO in the Hill’s problem (rotating frame). (b) A g-type orbit and its stable

manifold in the Earth–Moon system (rotating frame).
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simple-periodic; i.e., intersecting the x-axis only twice.
According to Hénon nomenclature [9], there are five
groups. Orbits of families a and c originating as libration
point orbits, are all unstable. Orbits of family f, originating
as retrograde orbits about the smaller primary, are all
stable. Orbits of families g and g 0, originating as orbits
only around the smaller primary, are stable in some
intervals. These orbits are computed numerically from
the initial conditions in Hénon [9]. A numerical continua-
tion procedure, implementing m as continuation para-
meter, together with a simple shooting algorithm,
delivers DPO in the RTBP with good accuracy (see Fig. 2).

The orbits belonging to the unstable g-family show an
interesting behavior as they possess local stable and
unstable manifolds that can be globally extended. The
structure of these manifolds define subsets that may pro-
vide free transport channels (see Fig. 2(b)). From a mission
design point of view, a spacecraft can travel naturally to or
from unstable periodic orbits along their stable or unstable
manifolds, respectively [23]. This complex structure inter-
sects many interesting regions in the RTBP: the small
primary neighborhood and the libration point vicinity.

3. Attainable sets and low-thrust propulsion

A general approach useful to handle coast arcs, low-
thrust arcs, and invariant manifolds is proposed. This
formulation is based on a perturbed version of the RTBP.
The perturbation is the low-thrust propulsion, whose
profile over time can be designed to achieve different
types of transfer arcs, as well as several final conditions at
Moon arrival.

To model the controlled motion of m3 under both the
gravitational attractions of m1, m2, and the low-thrust
propulsion, the following differential equations are con-
sidered:

€x�2 _y ¼
@O
@x
þ

Tx

m
, €yþ2 _x ¼

@O
@y
þ

Ty

m
, _m ¼�

T

Ispg0

, ð9Þ
where T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

xþT2
y

q
is the thrust magnitude, Isp the

engine’s specific impulse, and g0 the gravitational accel-
eration at sea level [15]. The controlled RTBP can be seen
as a special Hamiltonian system with dissipation [2]. The
equations refer to the planar, circular, restricted three-
body problem, expressed in a synodic reference frame
rotating with the angular velocity of the primaries.

The thrust law TðtÞ ¼ fTxðtÞ,TyðtÞg
>, t 2 ½ti,tf �, has to be

determined by solving an optimal control problem (ti and
tf are the initial and final time, respectively). However, in
order to build first guess solutions, the profile of T over
time is prescribed at this stage. In particular, using
tangential thrust, attainable sets can be defined in the
same fashion as reachable sets are defined by Dellnitz
et al. [4].

Let yi ¼ fxi,yi, _xi, _yi,mig
> be a vector representing a

generic initial state, and let the flow of system of Eq. (9)
at time t be fTðtÞðyi,ti; tÞ, starting from ðyi,tiÞ and consider-
ing the thrust profile TðtÞ, t 2 ½ti,t�. With this notation, it is
possible to define the generic point of a tangential low-
thrust trajectory through

yðtÞ ¼fT ðyi,ti; tÞ, ð10Þ

where T ¼ T ðv=vÞ, v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2
þ _y2

q
, v¼ f _x, _yg>. Eq. (10) repre-

sents the flow of the differential system of Eq. (9), when
constant tangential thrust of magnitude T is considered
(see Mingotti et al. [16] for a comparison between
tangential thrust in either rotating or inertial frame is
shown). The low-thrust orbit, at time t, can be expressed
as

gT ðyi,tÞ ¼ ffT ðyi,ti; tÞ9trtg, ð11Þ

where the dependence on the initial state yi is kept. The
attainable set, at time t, can be defined as

AT ðtÞ ¼
[

yi2Y
gT ðyi,tÞ, ð12Þ

where Y is a domain of admissible initial conditions.
Attainable set in Eq. (12) is associated with a generic Y;
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this set can be defined for the different types of transfers.
Thanks to the definition of AT ðtÞ, low-thrust propulsion
can be incorporated in a three-body frame, using the same
methodology developed for the invariant manifolds [11].
See Mingotti et al. [19,20,22] for further features and
applications of attainable sets. The attainable sets form-
alism can be adapted to design either low-thrust transfer
to the Moon or single-impulse stable manifold trajectories
to lunar DPO. For the latter it is important to note that
attainable sets associated to coast arcs are defined by
simply setting T ¼ 0 in Eq. (12).

4. Earth escape stage

In this section, the first part of the transfers is
described. As for the interior low-thrust stable manifold
trajectories, the Earth escape stage is performed through a
continuous low-thrust spiral orbit, defined in the Earth–
Moon RTBP. Pertaining the exterior transfers, the Earth
escape trajectory is achieved by an impulsive maneuver
that places the spacecraft on a translunar orbit that flies in
the proximity of the Sun–Earth invariant manifolds.

4.1. Low-thrust escape

In the low-thrust, stable manifold transfers to DPO
around the Moon, the Earth escape stage is defined as
follows. The spacecraft is assumed to be initially on a
Geostationary Transfer Orbit (GTO) about the Earth,
although the formulation is valid for any initial orbit with
given eccentricity, e, and periapsis radius rp. The orienta-
tion of this orbit, oE, is not fixed (see Fig. 3(a)). The
transfer begins when the spacecraft is at the perigee.
From this initial point on, the spacecraft can use the low-
thrust system to raise the orbit as shown in Fig. 3(b).

The initial state, yi, corresponds to the periapsis point
of departure orbit. As both eccentricity and apsidal
altitudes are prescribed, this initial state depends only
upon the argument of perigee; i.e. yi ¼ yiðoEÞ. The domain
of admissible initial states can be written as

YE ¼ fyiðoEÞ9oE 2 ½0;2p�g, ð13Þ
Fig. 3. Initial orbit and low-thrust escape trajectory. (a) Initia
and therefore the attainable set at time t of interior Earth-
escape orbits, EðI=TÞðtÞ, is

EI
T
ðtÞ ¼

[
yi2YE

gT ðyiðoEÞ,tÞ: ð14Þ

It is important reminding that the time t in Eq. (14)
stands for the duration of tangential low-thrust. Typically,
for short times the low-thrust is not able to sufficiently
raise the initial orbit, while for long times the orbit energy
is increased too much. The attainable set in Eq. (14) has to
be searched within the time interval t 2 ½0,TE�, where TE is
a certain prescribed upper bound for the duration of the
low-thrust portion.
4.2. Single-impulse escape

In low-energy, exterior transfers to lunar DPO, the
spacecraft is assumed to be initially on a circular orbit
around the Earth at an altitude hE. An impulsive maneu-
ver, DvE, places the spacecraft on a translunar trajectory.
From this point on, no maneuvers are admitted, and the
spacecraft has to achieve capture at the Moon at zero cost.

In the SE model, a Jacobi constant CSEtC2 assures that
both g1 and g2 exist together with their stable and
unstable manifolds, g2, Ws

ðg2Þ and Wu
ðg2Þ, respectively.

To exploit the structure of both Ws
ðg2Þ and Wu

ðg2Þ, two
surfaces of section are introduced to study their cuts.
Section SA, making an angle jA (clockwise) with the x-axis
and passing through the Earth, is considered to cut Ws

ðg2Þ,
whereas section SB, inclined by jB (counterclockwise) on
the x-axis and passing through the Earth, is assumed for
Wu
ðg2Þ (see Fig. 4(a)). The corresponding section curves,

@Gs
2, @Gu

2, represented on the ðr2, _r2Þ-plane, are diffeo-
morphic to circles (in Fig. 4(b), r2 ¼ y, _r2 ¼ _y as x¼ 1�m,
jA ¼jB ¼ p=2).

The Earth-escape set, EE
SE, obtained in the SE model,

uses orbits that are close to both Ws
ðg2Þ and Wu

ðg2Þ, and
that, at the same time, intersect the departure orbit. This
piece of trajectory is the same used to construct exterior
Earth–Moon transfers. The reader can refer to Mingotti
et al. [15] for a detailed derivation of EE

SE, and to Mingotti
et al. [22] for the inclusion of lunar gravity assists.
l transfer orbit. (b) Low-thrust Earth escape trajectory.



Fig. 4. Stable and unstable manifolds Ws
ðg2Þ, Wu

ðg2Þ associated with the L2 Lyapunov orbit g2, and their section curves @Gs
2, @Gu

2, respectively. In (a), the

bold line stands for a sample Earth escape trajectory. In (b), the set _G
s

2 (gray) is made up by the points of SA that lie inside @Gs
2, whereas the line l (dashed)

is the locus of points being at hE ¼ 167 km altitude above the Earth surface. (a) Ws
ðg2Þ and Wu

ðg2Þ. (b) @Gs
2, _G

s

2, and @Gu
2 sets.

Fig. 5. Stable manifold Ws
ðl1Þ and its section curve @Ls

1. The latter is used to define the set of orbits that lead to Moon capture KI
EM (gray area). The Earth

low-thrust escape set EðI=TÞðtÞ defined in Section 4.1 is reported in (a). (a) Interior branch of Ws
ðl1Þ. (b) EðI=TÞðtÞ and KI

EM sets.
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5. Stable manifold capture at the Moon

5.1. Interior capture

In the EM model, if the energy is restricted to CEM tC1,
l1 exists, and the Hill’s regions are opened at L1. To
consider a capture via L1, Ws

ðl1Þ is computed. Section SC,
making an angle jC (clockwise) with the x-axis and
passing through the Earth, is considered to cut Ws

ðl1Þ.
The corresponding section curve, @Ls

1 is represented in
the ðr1, _r1Þ-plane. The set KI

EM ¼
_L

s

1 is defined, being _L
s

1 2

SC the set of points inside @Ls
1, as the set that leads to

lunar capture from interior (see Fig. 5).
Let us now consider a g-type DPO, with J¼

3.00002258271 in the EM system (Fig. 6(a)). Its stable
manifold does not reach the Earth at a sufficiently low
altitude to permit a direct insertion from a parking orbit.
When a continuously propelled arc is introduced, it is
possible to raise the initial orbit to place the spacecraft on
the DPO stable manifold [14]. Thus, the initial part of the
transfer is an orbit belonging to EðI=TÞðtÞ. The second part
of the transfer is made up by ballistic orbits that reach the
final DPO. These orbits can be thought as a special
attainable set with T¼0 (no thrust). The transfer ends
when the spacecraft reaches a point of the final DPO about
the Moon. This orbit is assumed fixed and chosen accord-
ing to prescribed mission requirements (e.g., the period,
the altitude with respect to the Moon surface, etc). In
details, the final state of the transfers, yf , can be any point
that belongs to the DPO (insertion point, yINS, in Fig. 6(a)).
The generic insertion point is found by flowing the initial
nominal point yi for a time tM rPDPO, being PDPO the
DPO’s period

yf ¼ yðtMÞ ¼fðyi,0; tMÞ: ð15Þ

The domain of admissible final states is then written as
follows:

YM ¼ fyf ðtMÞ9tM 2 ½0,PDPO�g, ð16Þ

and the attainable set, for some tZ0 (i.e., �t is a backward
integration), containing stable manifold trajectories is

CI
Wð�tÞ ¼

[
yf 2YM

gWðyf ðtMÞ,�tÞ: ð17Þ



Fig. 6. Construction of the first guess interior transfer through the transfer pointW I ¼ EðI=TÞðtÞ \ CI
Wð�tÞ. (a) Final DPO and stable manifold construction.

(b) EðI=TÞðtÞ and CI
Wð�tÞ sets.

Fig. 7. Stable manifold Ws
ðl2Þ and its section curve @ ~L

s

2. The latter is used to define the set of orbits that lead to Moon capture ( ~KE

EM). In (a), the bold line

shows a sample Moon capture trajectory. (a) Exterior branch of Ws
ðl2Þ. (b) EE

SE and ~KE

EM sets.

G. Mingotti et al. / Acta Astronautica 79 (2012) 20–3226
The stable manifold orbit in Eq. (17) can be expressed as

gWðyf ,�tÞ ¼ ffðyf 7dys,ti;�tÞ9�tZ�tg, ð18Þ

where ys is the local stable eigenvector and d is a small
number (the 7 ambiguity is solved by choosing the sign
that generates the interior branch of the manifold). Since
the first part of the transfer is defined on EðI=TÞðtÞ, low-
thrust trajectories to DPO are contained in the set

WI ¼ EI
T
ðtÞ \ CI

Wð�tÞ: ð19Þ

5.2. Exterior capture

In the EM model, by fixing CEM tC2, both l1 and l2

exist. The stable manifold Ws
ðl2Þ is considered to

approach the Moon from the exterior (see Fig. 7(a)). The
stable manifold associated with l2, Ws

ðl2Þ, is computed
starting from l2 and integrating backward until a certain
surface of section is reached. Section SC, making an angle
jC (counterclockwise) with the x-axis and passing
through the Earth, is considered to cut Ws

ðl2Þ (jC ¼ p=2
in Fig. 7(a)). The corresponding section curve, @Ls

2

(computed on the ðr1, _r1Þ-plane), is diffeomorphic to a
circle. The set KE

EM ¼
_L

s

2 is defined, where _L
s

2 2 SC is the
set of points inside @Ls

2, that leads to the Moon capture.
The set KE

EM is defined on section SC (EM model).
However, it is possible to represent KE

EM on SB (SE model)
through the transformation ~KE

EM ¼MðKE
EMÞ. The operator

M maps states on SC (EM model) to states on SB (SE
model). In Fig. 7(b), ~KE

EM and @ ~L
s

2 are reported. Ballistic
low energy Earth–Moon transfers are defined by EE

SE \
~KE

EM (see Mingotti et al. [15] for details).
Let us consider a g-type DPO about the Moon, with

J¼3.00002258271 in the EM system (see Fig. 8). The idea
is to achieve Moon capture by using its exterior stable
manifold. The transfer ends when the spacecraft reaches a
point of the DPO. In analogy with Section 5.1, the final
state of the transfer, yf , can be defined by

yf ¼ yðtMÞ ¼fðyi,0; tMÞ: ð20Þ

The domain of admissible final states is then written as
follows:

YM ¼ fyf ðtMÞ9tM 2 ½0,PDPO�g, ð21Þ



Fig. 8. The first guess exterior stable manifold capture solution as the transfer pointWE ¼ EE
SE \

~CE

Wð�tÞ, the latter reported on section SB in (b). (a) Stable

manifold capture trajectory. (b) EE
SE and ~CE

Wð�tÞ sets.

Fig. 9. Optimization process, dynamical model, and integration scheme. (a) Sun-perturbed Earth–Moon problem. (b) Direct multiple shooting scheme.
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and the attainable set, for some tZ0 (i.e., �t is a backward
integration), containing stable manifold trajectories is

CE
Wð�tÞ ¼

[
yf 2YM

gWðyf ðtMÞ,�tÞ: ð22Þ

Each stable manifold orbit that leads to the final DPO
around the Moon proposed in Eq. (22), at time �t, can be
expressed as

gWðyf ,�tÞ ¼ ffðyf 7dys,ti;�tÞ9�tZ�tg, ð23Þ

where ys is the local stable eigenvector and d is a small
number. The 7 ambiguity is solved by choosing the sign
that produces the exterior branch. Since the first part of
the transfer is defined on EE

SE, single-impulse Earth–Moon
transfers are generated by

WE ¼ EE
SE \

~CE

Wð�tÞ, ð24Þ

where ~CE

Wð�tÞ ¼MðCE
Wð�tÞÞ (see Fig. 8(b)).

6. Trajectory optimization

First guess solutions found with either Eq. (19) or Eq.
(24) are optimized into a four-body framework. The
model used to take into account low-thrust propulsion
and the gravitational attractions of the Sun, the Earth, and
the Moon is [25]

€x�2 _y ¼
@OS

@x
þ

Tx

m
, €yþ2 _x ¼

@OS

@y
þ

Ty

m
, _y ¼oS,

_m ¼�
T

Isp g0

, ð25Þ

where

OSðx,y,yÞ ¼Oðx,y,mEMÞþ
mS

rS
�

mS

r2
S

ðx cos yþy sin yÞ, ð26Þ

and

rS ¼ ½ðx�rS cos yÞ2þðy�rS sin yÞ2�1=2: ð27Þ

See Fig. 9(a) and Mingotti et al. [15,20,22] for details on
this model.

The controlled dynamics (25) is written in the first-
order form

_x ¼ vx,

_y ¼ vy,

_vx ¼ 2vyþOSxþTx=m,

_vy ¼�2vxþOSyþTy=m,
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_y ¼oS,

_m ¼�T=ðIspg0Þ, ð28Þ

with vx ¼ _x and vy ¼ _y. In a compact explicit form, system
(28) reads

_y ¼ f½yðtÞ,TðtÞ,p,t�, ð29Þ

where f is the vector field, T¼ fTx,Tyg
> is the thrust

vector, the state vector is y¼ fx,y,vx,vy,y,mg>, and p is a
vector of parameters. The aim is finding the guidance law
T¼ TðtÞ, t 2 ti,tf

� �
, that minimizes a prescribed scalar

performance index

J¼ Jðy,T,p,tÞ, ð30Þ

while satisfying certain mission constraints.

6.1. Numerical scheme

The optimal control problem is transcribed into a
nonlinear programming (NLP) problem and solved with
a multiple shooting scheme [1]. The main idea is to divide
the trajectory into N�1 intervals. Thus, the time domain is
discretizes as

ti ¼ t1ot2o � � �otN�1otN ¼ tf , ð31Þ

and the NLP vector if variables is

x¼ fv1,v2, . . . ,vN�1,vN ,ti,tf ,pg>, ð32Þ

where v is a vector containing the states and the controls
(see below). The initial value of each trajectory segment,
vj, is propagated forward under Eq. (28), from tj to tjþ1,
j¼ 1, . . . ,N�1. In this work, a fixed step Runge–Kutta–
Fehlberg scheme of the eighth order is implemented. The
respect of the dynamics is obtained by enforcing

gj ¼ vj�vjþ1 ¼ 0, ð33Þ

where v j is the result of the integration within the j-th
interval. The complete constraint vector is assembled in
the following form:

cðxÞ ¼ fwi½vðt1Þ,t1,p�,g1, . . . ,gN�1,wf ½vðtNÞ,tN ,p�g>, ð34Þ

where wi and wf are generic initial and final boundary
nonlinear conditions. In the same way, the performance
index is expressed as a function of the NLP variables; i.e.,
J¼ JðxÞ.

According to the direct approach followed in this
paper, the quantities v are made up by the state y and
the control u. The control law is expressed within each
interval by using a second level time grid [6]. Let the time
domain be divided into a two-level grid: the main N nodes
grid, as described before, and the second level subdivision
of each N�1 intervals into M�1 subsegments, as shown in
Fig. 9(b). According to this formulation, the sates yj of the
problem are associated with each j¼1,y,N grid node; as
for the controls, they are organized in a vector with the
form uj,k. The first subscript j stands for the main level
grid, while the second k¼ 1, . . . ,M�1 subscript represents
the second level subdivision for each j-node. In this way, a
third-order spline interpolation of the controls is assumed
within each main level interval, when M¼4 is chosen.
6.2. Low-thrust problem statement

In low-thrust, interior transfers, the vector of variables is

x¼ fðy,TÞ1, . . . ,ðy,TÞN ,t1,tN ,pg>: ð35Þ

Although the first guess control law is aligned with the
synodic velocity of the spacecraft (tangential thrust of
magnitude T ), the optimization processes all the variables
in Eq. (35), and therefore it is free to modify the control
direction and magnitude.

The spacecraft is assumed to be initially on a GTO about
the Earth. The initial state, y1, corresponds to the periapsis
of such orbit. As both eccentricity and apsidal altitudes are
prescribed, this initial state depends only upon the argu-
ment of perigee oE. The initial boundary condition is

wi ¼ y1�yiðoEÞ ¼ 0: ð36Þ

The transfer ends when the spacecraft reaches any point of
the prescribed DPO. The final state is defined by Eq. (15),
and therefore the final boundary condition reads

wf ¼ yN�fðyi,0; tMÞ ¼ 0: ð37Þ

The two scalars tM and oE define the vector of parameters p.
These are taken as variables in Eq. (35) to find their optimal
values. The nonlinear equality constraint vector is made up
by the boundary conditions and the integration defects

cðxÞ ¼ fwi,g1, . . . ,gN�1,wf g
>: ð38Þ

To avoid collision with the two primaries, the follow-
ing inequality constraints are imposed:

Wc
j ðyjÞ :¼

R2
E�ðxjþmÞ2�y2

j r0

R2
M�ðxj�1þmÞ2�y2

j r0,

8<
: j¼ 2, . . . ,N�1: ð39Þ

The quantities RE and RM are the radius of the Earth and
the Moon, respectively. The flight time has to be positive,

Wt
¼ t1�tN r0: ð40Þ

Finally, another inequality constraint is imposed along the
whole transfer to model the saturation of the low-thrust
engine,

Ws
j ðTjÞ ¼ Tj�Tmaxr0, j¼ 1, . . . ,N, ð41Þ

where Tmax ¼ 0:5 N. The complete inequality constraint
vector is

gðxÞ ¼ fWs
1,Wc

2,Ws
2, . . . ,Wc

N�1,Ws
N ,Wt
g>: ð42Þ

The performance index to minimize is

J¼

Z tf

ti

TðtÞ

Isp g0

dt, ð43Þ

that corresponds to the propellant mass, mp ¼mi�mðtf Þ,
needed to perform the transfer. The optimization problem
for the low-thrust interior transfers is defined by

min
x

JðxÞ subject to
cðxÞ ¼ 0,

gðxÞr0:
ð44Þ

6.3. Single-impulse problem statement

In single-impulse, exterior transfers the variable vector is

x¼ fðy,WÞ1, . . . ,ðy,WÞN ,t1,tN ,pg>, ð45Þ
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where W¼ f0;0g>; i.e., a ballistic transfer is a ‘‘special’’ low-
thrust transfer with zero thrust.

The equality constraint vector is constructed in the
same way as Eq. (38), with the exception of the initial
condition. In this case, the transfer begins from a circular
parking orbit around the Earth. The initial boundary
conditions are therefore

wiðy1,t1Þ :¼
ðx1þmÞ2þy2

1�r2
i ¼ 0,

ðx1þmÞð _x1�y1Þþy1ð _y1þx1þmÞ ¼ 0,

(
ð46Þ

which forces the initial state to belong to a circular orbit
of radius ri ¼ REþhE; the final condition reads as stated in
Eq. (37). As for the inequality constraint vector, this is
defined in the same way as in Eq. (42), with the constraint
in Eq. (41) that is automatically satisfied.

The performance index to minimize is the initial
velocity variation

JðxÞ ¼Dv1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _x1�y1Þ

2
þð _y1þx1þmÞ2

q
�vi, ð47Þ

where vi is the velocity on the circular parking orbit. The
optimization problem for the single-impulse, exterior
transfers is stated in the same fashion of Eq. (44).

6.4. Hints on numerical implementation

All numerical integrations have been carried out with a
Runge–Kutta–Fehlberg scheme with absolute and relative
tolerances set to 10�10. This tolerance is deemed sufficient
to accurately describe close Moon encounter (no regular-
ization of collisions is implemented). In the definition of
the first guess solutions, Eqs. (19) and (24), small dis-
continuities are tolerated. Solutions whose distance is in
the range ½10�6

210�4
� are admitted to the optimization;

this tolerance guarantees the convergence of the subse-
quent optimization. Four first guesses have been opti-
mized for the two trajectory cases considered. The
optimization problems have been solved with a sequen-
tial quadratic programming scheme implementing an
active-set strategy with tolerance on equality and
Fig. 10. Optimized low-thrust, stable-manifold transfer to a distant periodic orb

guess low-thrust, stable-manifold trajectory (rotating EM reference frame). (b)

frame).
inequality constraints set to 10�10. The gradient of the
objective function as well as the Jacobians of the equality
and inequality constraints are calculated numerically.
Once an optimal solution is found, it is assessed a poster-
iori by forward integrating the optimal initial condition
under a Runge–Kutta–Fehlberg scheme of the eighth
order, and by cubic interpolation of the discrete optimal
control solution.

In low-thrust transfers N¼81 and M¼4 are chosen.
This means that the complete trajectories are divided into
80 uniform main intervals and into 320 uniform second
level subsegments. This leads 1204 variables (considering
p¼ foE,tMg), 82 equality constraints, and 162 inequality
constraints. The average computational time for this kind
of problem is a few hours on a standard desktop pc.

In single-impulse transfers N¼41 and M¼4 are cho-
sen. This having 40 first level intervals and 160 second
level subsegments. This leads to 243 variables (consider-
ing p¼ ftMg), 42 equality constraints, and 82 inequality
constraints. The average computational time for this kind
of problem is a few tens of minutes on a standard
desktop pc.
7. Optimized transfer solutions

Optimal solutions to distant prograde orbits around
the Moon are shown. Two mission concepts are proposed:
(a) low-thrust, stable-manifold interior transfers; (b)
single-impulse, stable-manifold exterior transfers. Both
examples are shown in the EM rotating (first guess and
optimized solutions) and Earth-centered inertial frame
(optimized solution only); see Figs. 10 and 12(a) for
concept (a), Figs. 11 and 12(b) for concept (b). In both
cases, the transfers terminate when the spacecraft reaches
a point of the g-type DPO chosen (in the examples below
the chosen DPO has the period equal to that of the Moon;
i.e., 1:1 resonance).

The results are shown in Table 1. The first two solu-
tions (sol.1, sol.2) correspond to the low-thrust, stable
it around the Moon. These figures correspond to sol.2 in Table 1. (a) First

Optimized low-thrust, stable-manifold trajectory (rotating EM reference



Fig. 11. Optimized single-impulse, stable-manifold transfer to a distant periodic orbit around the Moon. These figures correspond to sol.4 in Table 1. (a)

First guess single-impulse trajectory (rotating EM reference frame). (b) Optimized single-impulse trajectory (rotating EM reference frame).

Fig. 12. Optimized low-thrust, stable-manifold and single-impulse, stable-manifold transfers to a distant periodic orbit around the Moon. These figures

correspond to sol.2 and sol.4 in Table 1 and are drawn in the inertial geocentric reference frame. (a) Optimized low-thrust, stable-manifold trajectory

(inertial geocentric reference frame). (b) Optimized single-impulse trajectory (inertial geocentric reference frame).

Table 1
Optimized transfers to lunar DPO. The transfers are compared to two

reference, impulsive solutions (ref.1 and ref.2) having the same final

DPO [21].

Type Origin Dvi (m/s) Dvf (m/s) ft (adim.) Dv (m/s) Dt (days)

sol.1 GTO – – 0.107 1446 125

sol.2 GTO – – 0.105 1417 121

sol.3 LEO 3161 – 0.658 3161 92

sol.4 LEO 3154 – 0.657 3154 90

ref.1 LEO 3166 603 0.722 3769 20

ref.2 LEO 3138 748 0.733 3886 38
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manifold transfers. The remaining two (sol.3, sol.4) repre-
sent the single-impulse, stable manifold transfers. These
solutions are compared to reference interior transfers to
the same final DPO [21]. The latter are obtained by
targeting a piece of the interior stable manifold of DPO
with a two-impulse strategy (see Mingotti et al. [21] for
more details).

The second column of Table 1 represents the initial
orbit. In the third column, Dvi stands for the magnitude of
the initial impulsive maneuver. In the fourth column, Dvf

represents the final impulsive maneuver that permits a
stable permanent capture into the final orbit around the
Moon. This term is not contemplated in our study as
stable manifolds associated to the DPO are used (in [13]
those of the Lyapunov orbits are considered).

In the fifth column of Table 1, ft is the overall
mass fraction necessary to carry out the transfer.
For single-impulse transfers this is

f t ¼ 1�exp �
Dvi

Iht
sp g0

 !
, ð48Þ
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where Iht
sp ¼ 300 s is assumed for high-thrust, chemical

engines. In case of low-thrust transfers ft is

f t ¼
1

mi

Z tf

ti

TðtÞ

Ilt
sp g0

dt, ð49Þ

where Ilt
sp ¼ 3000 s is the specific impulse of low-thrust,

electrical engines. An initial mass of mi ¼ 1000 kg is
considered in Eq. (49). The term Dv in the sixth column
is the total cost of the transfer. For impulsive solutions,
Dv¼DviþDvf ; for low-thrust solutions,
Dv¼�Ilt

spg0 logð1�f tÞ. This indicator is useful to compare
the low-thrust with impulsive solutions, although the
dependency on the engine efficiency (i.e., Isp) remains.
The last column of Table 1 is the overall transfer time.
7.1. Discussion of the results and possible applications

By comparing Fig. 10(a) with Fig. 10(b) and Fig. 11(a)
with Fig. 11(b), it can be noticed that the general shape of
the transfer, as viewed in the rotating frame, is not subject
to major variations when going from the first guess to the
optimized solution. The optimal control step solves the
discontinuity in the first guess and refines locally the
trajectory by considering the perturbation of the Sun.

First of all, as far as it concerns the optimization
algorithm, comparing Fig. 10(a) with Fig. 10(b) and
Fig. 11(a) with Fig. 11(b), it is possible to notice that the
general shape of the transfers changes just a little bit: the
formulation of the optimal control problem, basically,
solve the discontinuity in the first guess solutions and
refine them considering also the gravitational attraction
of the Sun.

Solutions sol.3 and sol.4 outperform those found in
literature in terms of propellant mass consumption, while
the transfer time is higher (starting from the same LEO
and targeting the same DPO). Basically, in the single-
impulse transfers the savings are associated to a better
exploitation of the invariant manifolds structure directly
associated to the DPO.

As far as it concerns sol.1 and sol.2, a fair comparison is
not possible as the initial conditions of the transfers are
different: GTO for the low-thrust case and LEO for the
impulsive case. Therefore, sol.1 and sol.2 are optimal in
the class of low-thrust tangential transfers. Assuming a
different control law (e.g., a variable-direction low-thrust)
those results could be ameliorated.

About the 10% of the total mass is needed to reach the
DPO about the Moon departing from a GTO. This is a little
higher than the 9% needed to reach the L1 and L2 halos
departing from the same orbit [14]. This occurs as the
energy level of the DPO is higher than that of the halos.
On the other side, while the halos remain at about the
same distance to the Moon, the DPO offer the opportunity
to perform close encounters with the Moon (which can be
exploited, for instance, to deliver payloads on the Moon
surface).

As for the impulsive case, the cost to reach the chosen
DPO is equivalent to that needed to place the spacecraft
into an exterior low-energy transfer [22]. However, in the
case of transfers to DPO, in principle no maneuvers are
needed to keep the spacecraft about the Moon (while a
second maneuver is needed in low-energy transfers to
stabilize the spacecraft about the Moon).

Special DPO families around the Moon have been
studied. These show integer resonance with Moon’s orbit,
as well as integer relationships with the Moon’s rotational
motion. DPO around the Earth and around the Moon may
have appealing properties from the practical point of
view. Among them, DPO around the Earth offer the
possibility of avoiding magnetic and radiation fields, and
therefore they are useful for astrophysical applications.
DPO around the Moon may be used by data-relay satel-
lites to establish almost permanent communications with
the far side of the Moon with only one spacecraft. DPO can
also be exploited in formation flying applications [5]. In
general, it is possible to devise many new-concept space
mission applications involving DPO [18].
8. Conclusions

In this paper two different techniques to design Earth-
to-Moon transfers have been investigated. Both techni-
ques exploit the stable manifold of the distant periodic
orbits about the Moon. It is shown that such orbits are
accessible with either interior or exterior transfers, as
well as with either high- and low-thrust propulsion.
Optimized solutions are obtained in the framework of
an optimal control problem. The results show reduced
costs and moderate flight times.

Alike periodic orbits around the collinear equilibrium
points of the restricted three-body problem, distant per-
iodic orbits present a rich phase-space structure. How-
ever, the latter offer the advantage of orbiting around the
Moon too, and therefore they are suitable for many
applications where halo or Lissajous orbits cannot be
used. The stable manifolds of distant periodic orbits lead
to a permanent capture stage about the Moon. This
feature has high potentialities, and may be exploited to
devise novel space mission concepts.
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