

University of Birmingham

Learning Probabilistic Termination Proofs
Abate, Alessandro; Giacobbe, M.; Roy, Diptarko

DOI:
10.1007/978-3-030-81688-9_1

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Abate, A, Giacobbe, M & Roy, D 2021, Learning Probabilistic Termination Proofs. in A Silva & KRM Leino (eds),
Computer Aided Verification: 3rd International Conference, CAV 2021, Virtual Event, July 20–23, 2021,
Proceedings, Part II. 1 edn, Theoretical Computer Science and General Issues, vol. 12760, Springer, Cham, pp.
3–26, 33rd International Conference on Computer-Aided Verification, 18/07/21. https://doi.org/10.1007/978-3-
030-81688-9_1

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 03. Aug. 2023

https://doi.org/10.1007/978-3-030-81688-9_1
https://doi.org/10.1007/978-3-030-81688-9_1
https://doi.org/10.1007/978-3-030-81688-9_1
https://birmingham.elsevierpure.com/en/publications/46ffc73a-9f67-4623-942b-a3304c6f1754

Learning Probabilistic Termination Proofs

Alessandro Abate(B), Mirco Giacobbe(B),
and Diptarko Roy(B)

University of Oxford, Oxford, UK
{alessandro.abate,mirco.giacobbe,

diptarko.roy}@cs.ox.ac.uk

Abstract. We present the first machine learning approach to the ter-
mination analysis of probabilistic programs. Ranking supermartingales
(RSMs) prove that probabilistic programs halt, in expectation, within
a finite number of steps. While previously RSMs were directly synthe-
sised from source code, our method learns them from sampled execution
traces. We introduce the neural ranking supermartingale: we let a neu-
ral network fit an RSM over execution traces and then we verify it over
the source code using satisfiability modulo theories (SMT); if the latter
step produces a counterexample, we generate from it new sample traces
and repeat learning in a counterexample-guided inductive synthesis loop,
until the SMT solver confirms the validity of the RSM. The result is thus
a sound witness of probabilistic termination. Our learning strategy is
agnostic to the source code and its verification counterpart supports the
widest range of probabilistic single-loop programs that any existing tool
can handle to date. We demonstrate the efficacy of our method over a
range of benchmarks that include linear and polynomial programs with
discrete, continuous, state-dependent, multi-variate, hierarchical distri-
butions, and distributions with undefined moments.

1 Introduction

Probabilistic programs are programs whose execution is affected by random vari-
ables [17,19,23,29,36]. Randomness in programs may emerge from numerous
sources, such as uncertain external inputs, hardware random number generators,
or the (probabilistic) abstraction of pseudo-random generators, and is intrinsic
in quantum programs [34]. Notable exemplars are randomised algorithms, cryp-
tographic protocols, simulations of stochastic processes, and Bayesian inference
[7,33]. Verification questions for probabilistic programs require reasoning about
the probabilistic nature of their executions in order to appropriately characterise
properties of interest. For instance, consider the following question, correspond-
ing to the program in Fig. 1: will an ambitious marble collector eventually gather
any arbitrarily large amounts of red and blue marbles? Intuitively, the question
has an affirmative answer regardless of the initially established target amounts,
since there is always a chance of collecting a marble of either color. Notice that,
if the probabilistic choice is replaced with non-determinism, as often happens
in software verification, an adversary may exclusively draw one color of marble

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 3–26, 2021.
https://doi.org/10.1007/978-3-030-81688-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-81688-9_1

4 A. Abate et al.

and make the program run forever. The question that matches the original intu-
ition is whether the expected number of steps to termination is finite; this is the
positive almost-sure termination (PAST) question [8,10,13,19,27].

Fig. 1. The ambitious marble collector (the variables red and blue are initialised non-
deterministically).

Probabilistic termination analysis is typically mechanised through the auto-
mated synthesis of ranking supermartingales (RSMs), which are functions of the
program variables whose value (i) decreases in expectation by a discrete amount
across every loop iteration and (ii) is always bounded from below; an RSM
formally witnesses that a program is PAST [10,13]. Early techniques for discov-
ering RSMs reduced the synthesis problem from the source code of the program
into constraint solving [10]. These methods have lent themselves to various gen-
eralisations, including polynomial programs, programs with non-determinism,
lexicographic and modular termination arguments, and persistence properties
[2,14–16,20,25]. Recently, for special classes of probabilistic programs or term
rewriting systems, novel automated proof techniques that leverage computer
algebra systems and satisfiability modulo theories (SMT) have been introduced
[5,6,38,39,41]. All the above methods are sound and, under specific assumptions,
complete; they represent the state of the art for the class of programs they have
been designed for. However, their assumptions are often too restrictive for the
analysis of many simple programs. In particular, to the best of our knowledge,
none can identify an RSM for the program in Fig. 1. For this simple program, it
is easy to argue that the expected output of the neural network depicted in Fig. 2
decreases after every iteration of the loop and that it is always non-negative (see
Ex. 1). As such, this neural network is an appropriate RSM for the program.

Fig. 2. A neural ranking supermartingale for the program in Fig. 1.

Learning Probabilistic Termination Proofs 5

We present a novel method for discovering RSMs using machine learning
together with SMT solving. We introduce the neural ranking supermartingale
(NRSM) model, which lets a neural network mimic a supermartingale over sam-
pled execution traces from a program. We train an NRSM using standard optimi-
sation algorithms over a loss function that makes the neural network decrease—
in average—across sampled iterations. We phrase the certification problem into
that of computing a counterexample for the NRSM. To do so, we encode the
neural network together with the expected value of the program variables; then,
we use an SMT solver for verifying that the expected output of the network
decreases along every execution. If the solver falsifies the NRSM, then it pro-
vides a counterexample that we use to guide a resampling of the execution
traces; with this new data we retrain the neural network and repeat verifica-
tion in a counterexample-guided inductive synthesis (CEGIS) fashion, until the
SMT solver determines that no counterexample exists [4,44]. In the latter case,
the solver has certified the generated NRSM; our method thus produces a sound
PAST proof or runs indefinitely. Our procedure does not return for programs that
are not PAST and may, in general, not return for some PAST instances. How-
ever, we experimentally demonstrate that, in practice, our method succeeds over
a broad range of PAST benchmarks within a few CEGIS iterations. Previously,
machine learning has been applied to the termination analysis of deterministic
programs and to the stability analysis of dynamical systems [1,12,21,24,28,30–
32,42,43,45]; our method is the first machine learning approach for probabilistic
termination analysis.

Our approach builds upon two key observations. First, the average of expres-
sions along execution traces statistically approximates their true expected value.
Thanks to this, we obtain a machine learning model for guessing RSM candidates
that only requires execution traces and is thus agnostic to the source code. Sec-
ond, solving the problem of checking an RSM is simpler than solving the entire
termination analysis problem. Reasoning about source code is entirely delegated
to the checking phase which, as such, supports programs that are out of reach
to the available probabilistic termination analysers.

We experimentally demonstrate that our method is effective over many pro-
grams with linear and polynomial expressions, with both discrete and continuous
distributions. This includes joint distributions, state-dependent distributions,
distributions whose parameters are in turn random (hierarchical models), and
distributions with undefined moments (e.g., the Cauchy distribution). We com-
pare our method with a tool based on Farkas’ lemma and with the tools Amber
and Absynth [2,39,41]; whilst our software prototype is slower than these alter-
natives, it covers the widest range of benchmark single-loop programs.

Summarising, our contribution is fivefold. First, we present the first machine
learning method for the termination analysis of probabilistic programs. Second,
we introduce a loss function for training neural networks to behave as ranking
supermartingales over execution traces. Third, we show an approach to verify
the validity of ranking supermartingales using SMT solving, which applies to
a wide variety of single-loop probabilistic programs. Fourth, we experimentally

6 A. Abate et al.

demonstrate over multiple baselines and newly-defined benchmarks the practical
efficacy of our method. Fifth, we built a software prototype for evaluating our
method.

Fig. 3. Syntax of loop-free probabilistic programs.

2 Termination Analysis of Probabilistic Programs

We treat the termination analysis of single-loop probabilistic programs. We con-
sider an imperative language that includes C-like arithmetic and Boolean expres-
sions, and sequential and conditional composition of commands [13,17,19,23].

Syntax. A grammar for this language is shown in Fig. 3. We analyse single-loop
programs of the form

while G do
U

od

where the loop guard G is a Boolean expression and the update statement U is
a command. Variables are real-valued and can be either assigned to arithmetic
expressions using the usual = operator, or sampled from probability distributions
using the ∼ operator. Probability distributions, which can be either discrete or
continuous, take not only parameters that are constant, and thus known at
compile time, but also parameters that depend on other variables, and thus
determined only at run time. In other words, distributions may depend on the
current state of the program, which is a random variable. Also, they may depend
on other random variables; as such, distributions may be multi-variate, resulting
from models with coupled and hierarchically-structured variables.

Learning Probabilistic Termination Proofs 7

Semantics. The operational semantics of a probabilistic program induces a prob-
ability space over runs, together with a stochastic process [13]. A state of the
process is an element of IRn with n = |Vars|, that is, a valuation of the variables
in the program. The space of outcomes Ωrun of a program is the set of runs. A
run is a possibly infinite sequence of variable valuations (taken at the beginning
of every loop iteration). This comes with a σ-algebra F of measurable subsets of
Ωrun. Initial states are chosen non-deterministically and, thereafter, the process
is purely probabilistic. Every initial state x0 ∈ IRn determines a unique prob-
ability measure P

(x0) : F → [0, 1], namely a probability measure conditional on
the state x0. The associated stochastic process is X(x0) = {X

(x0)
t }t∈IN, where

X
(x0)
t is a random vector representing the state at the t-th step, initialised as

X
(x0)
0 = x0. Given an initial condition x0 and a solution process X(x0), the asso-

ciated termination time is a random variable T (x0) denoting the length of an
execution, which takes values in IN ∪ {∞}.

Positive Almost-Sure Termination. Runs are probabilistic and thus also the
notion of termination requires a quantitative semantics. The termination ques-
tion is generalised to the notions of almost-sure and positive almost-sure termina-
tion. Almost-sure termination (AST) indicates whether the joint probability of
all runs that do not terminate is zero; positive almost-sure termination (PAST),
which is stronger, indicates whether the expected number of steps to termination
is finite. Formally, a probabilistic program terminates positively almost-surely
if E[T (x0)] < ∞ for all x0 ∈ IRn. Notably, this implies that the program also
terminates almost-surely, that is, P[T (x0) < ∞] = 1 for all x0 ∈ IRn. We provide
conditions ensuring that probabilistic programs are PAST and, consequently,
that they are AST. Notice that the converse may not be true, that is, there
exist programs that are AST but not PAST. Our method addresses the PAST
question only, by building upon the theory of ranking supermartingales [10].

Ranking Supermartingales. A scalar stochastic process {Mt} is an RSM if, for
some ε > 0 and lower bound K ∈ IR,

E [Mt+1 | Mt = mt, . . . ,M0 = m0] ≤ mt − ε (1)

and Mt ≥ K for all t ≥ 0. In other words, this a process whose values are
bounded from below and whose expected value decreases by a discrete amount
at each step of the program. We prove that a program is PAST by mapping
X(x0) into an RSM. Our goal is finding a function η : IRn → IR such that, for
every initial condition x0, it satisfies the following two properties:

(i) E[η(X(x0)
t+1) | X

(x0)
t = x] ≤ η(x) − ε for all x ∈ I and

(ii) η(x) ≥ K for all x ∈ I,

where I ⊆ IRn is some sufficiently strong loop invariant that can be the loop
guard or, possibly, a stronger condition. Function η maps the entire stochastic
process into an RSM. For this reason, we call η an RSM for the program.

8 A. Abate et al.

Input: Single-loop probabilistic program (G,U),
Initial state x0 ∈ IRn

Output: Transition samples S ⊂ IRn × P(IRn)
1 S ← ∅;
2 P ′ ← {x0};
3 for i ← 1 to k do // k = path length

4 P ← P ′;
5 P ′ ← ∅;
6 p ← pick arbitrary element from P ;
7 if eval(G,p) = True then
8 for j ← 1 to m do // m = branching factor

9 P ′ ← P ′ ∪ {exec(U ,p)}
10 S ← S ∪ {(p, P ′)};

11 return S
Algorithm 1: Interpreter

Example 1. Consider the ambitious marble collector problem from Fig. 1. An
RSM for this program is a function η mapping variables red and blue to IR.
Rephrasing condition (i) over this program, η is required to satisfy

0.01 · η(red − 1, blue) + 0.99 · η(red, blue − 1) ≤ η(red, blue) − ε, (2)

for all red, blue ∈ ZZ that satisfy red > 0 ∨ blue > 0, that is, the loop guard.
So, for example, function η(red, blue) = red + blue satisfies this condition;
however, it may take any negative value over the arguments red and blue such
that red > 0 ∨ blue > 0, thus violating condition (ii). By contrast, the neural
network in Fig. 2 succeeds at satisfying both conditions. In fact, the network
realises function η(red, blue) = max{red, 0} + max{blue, 0}, which satisfies
Eq. (2) and is bounded from below by zero.
�

3 Training Neural Ranking Supermartingales

Our framework synthesises RSMs by learning from program execution traces. We
define a loss function, that measures the number of sampled program transitions
that do not satisfy the RSM conditions. Applying gradient-descent optimisa-
tion to the loss function guides the parameters to values at which the candi-
date’s value decreases, on average, across sampled program transitions. Since
the learner does not require the underlying program (only execution traces),
the learner is agnostic to the structure of program expressions, and the cost of
evaluating the loss function does not scale with the size of the program.

A dataset of sampled transitions is produced using an instrumented program
interpreter (Algorithm 1). At a program state p, the interpreter runs the loop
body m times to sample successor states P ′, where m is a branching factor hyper-
parameter, before resuming execution from an arbitrarily chosen successor. The
dataset S consists of the union of pairs (p, P ′) generated by the interpreter.

Learning Probabilistic Termination Proofs 9

Fig. 4. Neural ranking supermartingale architecture.

The loss function is used to optimise the parameters of an NRSM, whose
architecture is shown in Fig. 4. This is a neural network with n inputs, one
output neuron, and one hidden layer. The hidden layer has h neurons, each of
which applies an activation function f to a weighted sum of its inputs. In our
experiments, the activation function f is either f(x) = x2 or f(x) = ReLU(x),
where ReLU(x) = max{x, 0}.

Therefore, we employ either of the two following functional templates, defined
over the learnable parameters wi,j and bi:

– Sum of ReLU (SOR):

η(x1, . . . , xn) =
h∑

i=1

ReLU

⎛

⎝
n∑

j=1

wi,jxj + bi

⎞

⎠ ; (3)

– Sum of Squares (SOS):

η(x1, . . . , xn) =
h∑

i=1

⎛

⎝
n∑

j=1

wi,jxj + bi

⎞

⎠
2

. (4)

These choices of activation mean that our NRSMs are restricted to non-negative
outputs, and therefore satisfy condition (ii) by construction. The learner there-
fore needs to find parameters that satisfy condition (i), which requires η to
decrease in expectation by at least some positive constant ε > 0.

The role of the loss function is to allow the learner parameters to be optimised
such that the NRSM decreases, on average, across sampled transitions. That is,
the loss function evaluates the number of sampled transitions for which the
NRSM does not satisfy the RSM condition (i), and the lower its value, the more
the neural network behaves like an RSM.

10 A. Abate et al.

Concretely, the loss associated with a state p and its successors P ′ is:

L(p, P ′) = softplus (Ep′∼P ′ [η(p′)] − η (p) + ε) , (5)

where softplus(x) = ln(1 + ex), and Ep′∼P ′ [η(p′)] is the average of η over the
sampled successor states p′ from P ′.

We then train an NRSM by solving the following optimisation problem:

min
1

|S|
∑

(p,P ′)∈S

L(p, P ′), (6)

which aims to minimise the average loss over all sampled transitions in the
dataset S, over the trainable weights w1,1, . . . , wh,n ∈ IR and biases b1, . . . , bh ∈
IR. This objective is non-convex and non-linear, and we resort to gradient-based
optimisation (see Sect. 6).

The softplus in Eq. (5) forces the parameters to satisfy condition (i) uni-
formly across all sampled transitions in the dataset, rather than decreasing by
a large amount in expectation over some transitions at the expense of failing to
decrease sufficiently quickly for others. Furthermore, for NRSMs of SOR form we
replace the ReLU activation function by softplus, to help gradient descent con-
verge faster. Softplus approximates the ReLU function, and has the same asymp-
totic behaviour, but results in an NRSM that is differentiable w.r.t. the network
parameters at all inputs, unlike ReLU [22, p.193]. However, since softplus is a
transcendental function, we revert back to using a simpler ReLU activation when
verifying an SOR candidate.

Fig. 5. CEGIS architecture for the adversarial training of NRSM.

A CEGIS loop integrates the learner and verifier (Fig. 5). The dataset S
sampled by the interpreter is used to train an NRSM candidate η according to
Eq. (6). The verifier checks whether η satisfies condition (i), concluding either
that the program is PAST, or producing a counterexample program state xcex

for which η does not satisfy (i). The interpreter generates new traces, starting
at xcex, forcing it to explore parts of the state space over which the NRSM fails
to decrease sufficiently in expectation.

Learning Probabilistic Termination Proofs 11

Fig. 6. Verifier architecture.

4 Verifying Ranking Supermartingales by SMT Solving

To verify an NRSM we must check that it decreases in expectation by at least
some constant (condition (i)). Condition (ii) is satisfied by construction because
the network’s output is non-negative for every input, leaving only condition (i)
to verify. The architecture of the verifier is depicted in Fig. 6. First, a program
(G,U) is translated into an equivalent logical formulation denoted by Ḡ and
Ū (‘Encode’ block), which are used to construct a closed-form term E[η̄] for
the NRSM’s expected value at the end of the loop body (‘Marginalise’ block).
Secondly, given an NRSM η, its parameters are rounded and encoded as a logical
term η̄ (‘Round’ block). Then, the satisfiability of the following formula is decided
using SMT solving:

Ḡ(x1 . . . xn) ∧ E[η̄](x1 . . . xn) > η̄(x1 . . . xn) − ε. (7)

This is the dual satisfiability problem for the validity problem associated with
condition (i) on page 5. If Eq. (7) is unsatisfiable, then η̄ is a valid RSM and we
conclude the program is PAST. Otherwise, the solver yields a counterexample
state xcex ∈ IRn.

The rounding strategy (‘Round’ block) provides multiple candidates to the
verifier by adding i.i.d. noise to parameters and rounding them to various preci-
sions. Setting parameters that are numerically very small to zero is useful since
learning that a parameter should be exactly zero could require an unbounded
number of samples; rounding provides a pragmatic way of making this work in
practice. If none of the generated candidates are valid NRSMs, all counterexam-
ples are passed back to the interpreter which generates more transition samples
for the learner (Fig. 5).

Fig. 7. Quantifier-free first-order logic formulae.

12 A. Abate et al.

Notice that, if a program’s guard predicate is not strong enough to allow a
valid RSM to be verified as such, the CEGIS loop will run indefinitely. In general,
stronger supporting loop invariants may need to be provided.

4.1 From Programs to Symbolic Store Trees

We now introduce a translation from a loop-free probabilistic program to a
symbolic store tree (Fig. 8), a datastructure representing the distribution over
program states at the end of a loop iteration as a function of the variable val-
uation at its start. Marginalising out the probabilistic choices made in the loop
yields the NRSM expectation E[η̄].

Fig. 8. Symbolic store tree.

This requires a form of symbolic execution. We represent program states
symbolically using symbolic stores, denoted Σ (Fig. 8), which map program vari-
ables to probabilistic terms. A probabilistic term π can be either a first-order
logic term (Fig. 7) representing an arithmetic expression, or a placeholder for a
probability distribution whose parameters are terms (allowing them to be func-
tions of the program state). Finally, symbolic store trees σ (Fig. 8) represent the
set of control-flow paths through the loop body, arising from if-statements; it is
a binary tree with symbolic stores at the leaves, and internal nodes labelled by
logical formulae over program variables.

Fig. 9. Translation from a loop-free command to a symbolic store tree.

Learning Probabilistic Termination Proofs 13

Figure 9 defines a translation from an initial symbolic store tree and command
to a new symbolic store tree characterising the distribution over states after
executing the command. At the top level, we provide the command G (the loop
body) and the initial symbolic store {x′

1 → x1, . . . , x
′
n → xn}, where primed

variables represent the variable valuation at the end of the iteration, whereas
unprimed variables represent the variable valuation at the beginning of the loop.

The first four cases of Fig. 9 define the translation of arithmetic expressions
(to terms) and Boolean expressions (to formulae), by replacing program syntax
with the corresponding logical operators.

The next four cases define the translation of commands. skip leaves the
symbolic store unchanged. For deterministic assignments, the right hand side
of the assignment is translated in the current symbolic store and bound to the
variable. Sequential composition involves translating the first command, and
translating the second command in the resulting store tree. A conditional state-
ment creates a new node in the symbolic store tree that selects between the two
recursively-translated branches, based on the formula derived from the guard
predicate. These rules assume the store tree to be a leaf-level symbolic store,
because the next rule handles the case where the initial symbolic store tree
is a node. Finally, if the command is a probabilistic assignment, we translate
the parameters to terms, and bind the resulting probabilistic term to a freshly
generated symbol. This allows variables to be overwritten by multiple proba-
bilistic sampling operations in the body of the loop. The mapping of variables
to distributions in leaf-level stores defines the probability density over particular
probabilistic choices.

Example 2. Figure 10 is the store tree produced for the ambitious marble collec-
tor program (Fig. 1). Each leaf-level store in the program’s store tree corresponds
to a particular control-flow path through the loop body. The interpretation of a
symbolic store tree is that if we fix the outcomes of the probabilistic sampling
operations performed by the loop body, then the state of the variables at the
end of the iteration is determined by the predicates labelling the internal nodes.

Fig. 10. A store tree for the program in Fig. 1.

14 A. Abate et al.

4.2 Marginalisation

To construct the closed-form logical term representing the NRSM’s expected
value at the end of an iteration, the probabilistic choices in the symbolic store
tree must be marginalised out. If the program is limited to discrete random
variables with finite support, we automatically marginalise the random choices
by enumeration (for both SOR- and SOS-form NRSMs), as illustrated by Ex. 3.

Example 3. The ambitious marble collector program of Fig. 1, yields the sym-
bolic store tree of Fig. 10. Suppose we want to marginalise the NRSM:

η(red, blue) = ReLU(w1,1 · red + w1,2 · blue + b1)
+ ReLU(w2,1 · red + w2,2 · blue + b2) (8)

with respect to this symbolic store tree. We first apply the encoding of the NRSM
to each leaf-level symbolic store of Fig. 10, and enumerate the possible choices for
the probabilistic choices (which in this example is limited to ν ∈ {0, 1}), using
the bindings of ν to distributions in leaf-level stores to compute the probability
mass of each choice. After resolving the predicates for each choice of ν, this
yields:

0.01 · η(red − 1, blue) + 0.99 · η(red, blue − 1). (9)

The term (9) is then provided as the value of the NRSM’s expectation to the
verifier.
�

If the program samples from continuous distributions, we marginalise SOS-
form NRSMs (but not SOR-form NRSMs) by substituting symbolic moments
for a set of supported built-in distributions, including Gaussian, Multivari-
ateGaussian, and Exponential, though could include any distribution whose
closed-form symbolic moments are available. Example 4 provides an example.
This strategy is general enough to support a wide variety of programs, includ-
ing those of Sect. 5. If a sampling distribution lacks symbolic moments, the
cumulative distribution function can also be utilised, which is illustrated in the
slicedcauchy case study (Fig. 15).

Example 4. Consider an NRSM η(x) = (wx + b)2 and a symbolic store tree
node(p = 1, σ1, σ2) where σ1 = {x → x + v, v → Exp(λ), p → Bernoulli(3/4)}
and σ2 = {x → x − v, v → Exp(λ), p → Bernoulli(3/4)}. Exp(λ) denotes
the exponential distribution with parameter λ, with pdf denoted pExp(λ)(v).
We apply η to each leaf-level symbolic store, and marginalise the probabilis-
tic choices. We marginalise p first by enumerating over its possible values, and
then marginalise v. There are no dependencies between the distributions in this
example, so the order in which they are marginalised does not matter.

∫ ∞

0

(
3
4
η(x + v) +

1
4
η(x − v)

)
pExp(λ)(v)dv. (10)

Learning Probabilistic Termination Proofs 15

The result of marginalisation is a closed-form expression for Eq. (10). Note that
since

η(x + v) = w2v2 + 2(wx + b)wv + (wx + b)2 (11)

and
∫ ∞
0

vnpExp(λ)(v)dv = n!
λn , we use linearity of integration to perform the

following simplification, by substituting expressions for the moments of v in
terms of the parameter λ:

∫ ∞

0

η(x + v)pExp(λ)(v)dv =
2w2

λ2
+

2(wx + b)w
λ

+ (wx + b)2, (12)

which is used to reduce Eq. (10) to a closed form. This is the method used to
perform marginalisation for several case studies, including crwalk, gaussrw and
expdistrw.
�

Notably, our verifier requires the expected value of the RSM to be com-
puted (or soundly approximated) in closed form. We automate marginalisation
for discrete distributions of finite support, but require manual intervention for
continuous distributions. Nevertheless, our learning component is automated in
both cases. Characterising the space of programs with continuous distributions
that admit fully automated verification of an RSM is an open question.

5 Case Studies

Existing tools for synthesising RSMs reduce the problem to constraint-solving
[2,10,11,14], which can limit the generality of the synthesis framework. For
instance, methods that convert the RSM constraints into a linear program using
Farkas’ lemma can only handle programs with affine arithmetic, and can only
synthesise linear/affine (lexicographic) RSMs [2,10]. A second restriction of exist-
ing approaches is that they typically require the moments of distributions to be
compile-time constants. This rules out programs whose distributions are deter-
mined at runtime, such as hierarchical and state-dependent distributions. Since
the loss function of Eq. (6) only requires execution traces, our learner is agnostic
to the structure of program expressions, imposing minimal restrictions on the
kinds of expressions that can occur, or the kinds of distributions that can be
sampled from. This allows us to learn RSMs for a wider class of programs com-
pared to existing tools, as we will illustrate in this section using a number of
case studies.

5.1 Non-linear Program Expressions and NRSMs

Many simple programs do not admit linear or polynomial RSMs, such as Fig. 1.
Since the program cannot be encoded as a prob-solvable loop (due to the dis-
junctive guard predicate which cannot be replaced by a polynomial inequality),

16 A. Abate et al.

it cannot be handled by another recent tool, Amber [39]. However, this program
admits the following piecewise-linear NRSM:

ReLU(0 · red + 1 · blue + 11) + ReLU(1 · red + 0 · blue + 11), (13)

whose parameters are learnt by our method, within the first CEGIS iteration.

Fig. 11. Probabilistic factorial (probfact).

Similarly, we learn the piecewise-linear NRSM:

ReLU(−1 · i + 0 · s + 12) + ReLU(0 · i + 0 · s + 9) (14)

for the program in Fig. 11, which contains a bilinear assignment (cf. multiplica-
tion of s and i on line 3), so this program is not supported by [2]. The conjunction
in the guard means it is not supported by Amber, either.

Fig. 12. Random walk with correlated variables (crwalk).

5.2 Multivariate and Hierarchical Distributions

Figure 12 is a random walk that samples from a multivariate Gaussian distribu-
tion, with zero mean, unit variances, and correlation sampled uniformly in the
range

[− 1
2 , 1

]
. The MultivariateGaussian of line 4 is an instance of a hierar-

chical distribution, having parameters that are random variables. This program
also contains a non-linear (polynomial) expression that updates the value of x.
For crwalk we learn an SOS-form NRSM:

(0.1 · x − 47.2)2, (15)

Learning Probabilistic Termination Proofs 17

proving this program is PAST. To verify this, the NRSM expectation is com-
puted via the symbolic moments of the multivariate Gaussian distribution, given
its covariance matrix (line 3), and then marginalising w.r.t. rho (again, using
the moments of the uniform distribution over

[− 1
2 , 1

]
). Unfortunately, it is chal-

lenging to translate many simple programs containing hierarchical distributions
into ones that can be handled by existing tools. For instance, although it is
possible to simulate sampling from a bivariate Gaussian of arbitrary correla-
tion by sampling from independent standard Gaussian distributions, this would
involve computing a non-polynomial function of the correlation. Similarly, for
the program in Fig. 14 (further discussed below), if a variable is exponentially
distributed, X ∼ Exponential(1), then X

λ ∼ Exponential(λ), providing a way
of simulating an exponential distribution with arbitrary parameter λ. However,
this again requires a non-polynomial program expression (i.e. the reciprocal of
λ) when λ is part of the program state and not a constant, and therefore out of
scope for methods that restrict program expressions to being linear/polynomial.

5.3 State-Dependent Distributions and Non-Linear Expectations

Fig. 13. Gaussian random walk with time-varying and coupled noise (gaussrw).

Once we allow hierarchical distributions, it is natural to consider state-dependent
distributions, i.e. distributions whose parameters depend on the program state
rather than being sampled from other distributions. As an example, consider the
program in Fig. 13 (a 2-dimensional Gaussian random walk with state-dependent
moments). This is unsupported by existing tools because the mean of the Gaus-
sian is a non-polynomial function of the program state. However, after defining
the function

√
1 + x2 by means of the following polynomial logical inequalities:

mu x2 = 1 + x2 (16)
mu x ≥ 1 (17)

18 A. Abate et al.

(similarly for mu y), we express the expected value of an SOS-form NRSM in
terms of symbolic moments mu x, etc. Since these moments are state-dependent,
we cannot marginalise them out as in the hierarchical case. Instead we perform
non-deterministic abstraction, providing inequalities 1

10 ≤ vx, vy ≤ 2 and −1 ≤
rho ≤ 1 as further verifier assumptions.

Fig. 14. State-dependent exponential random walk (expdistrw).

Even if program expressions are linear, the presence of state-dependent dis-
tributions can result in a non-linear verification problem, if the moments are
themselves non-linear functions of the program variables. For instance, the pro-
gram in Fig. 14 represents a 1-dimensional random walk, with steps sampled
from an exponential distribution. Since the nth moment of Exponential(λ) is
n!
λn , the expectation of an SOS-form NRSM is non-polynomial but still express-
ible in the theory of non-linear real arithmetic (see Ex. 4). For expdistrw we
learn

(0.1 · x − 3.3)2, (18)

whereas for gaussrw in Fig. 13 we learn

(0 · x − 1 · y + 11)2 + (0 · x + 0 · y + 8)2. (19)

We translate the program in Fig. 14 for Amber by replacing the update for λ
by instead sampling it uniformly from [1, 10]. Amber correctly identifies the
program is AST, and that (10−x) is a supermartingale expression (note, not an
RSM), though does not report that the program is PAST (answering “maybe”).

5.4 Undefined Moments

The ability to evaluate the cumulative distribution function (CDF) of a sampled
distribution could be useful in marginalisation, even if the moments of the sam-
pled distribution are undefined or not known analytically to infinite precision.
An example is Fig. 15: the program samples from the standard Cauchy distri-
bution, for which all moments are undefined. Since the sampled value is only

Learning Probabilistic Termination Proofs 19

used to determine which branch of a conditional is taken, the RSM expectation
is well defined, and can be expressed in terms of the standard Cauchy CDF.
Namely, the if-branch is taken with probability q = 1− (

1
π arctan(10) + 1

2

)
. This

equation is not expressible using polynomials; so we perform a sound approx-
imation by introducing a new variable that is quantified over a small interval
surrounding a finite precision approximation to q. This allows us to learn and
verify the SOR-form NRSM:

ReLU(1.2 · x + 9.1). (20)

Fig. 15. Sliced Cauchy distribution (slicedcauchy).

For our experimental evaluation (Sect. 6) we create a modified version of each
of the six case studies described in this section, as follows:

– program marbles3 is a generalisation of marbles to three marble types,
instead of two;

– probfact2 uses 5/8 as the Bernoulli parameter, rather than 3/4;
– crwalk2 samples rho from a Beta(1, 3) distribution, instead of a uniform

distribution over
[− 1

2 , 1
]
;

– expdistrw2 samples from an exponential distribution, where parameter
lambda is replaced by lambda*lambda;

– gaussrw2 uses [3 + 1/(1 − x), 3 + 1/(1 − y)]T for its mean vector, instead of
[
√

1 + x2,
√

1 + y2]T ; and
– slicedcauchy2 has a loop guard of x < 10, instead of x > 0, and swaps the

two branches of the conditional.

5.5 Rare Transitions

A limitation of relying on a sampled transition dataset to learn NRSM parame-
ters is we rely on the average Ep′∼P ′ [η(p′)] in Eq. (5) being accurate (see Sect. 3).
This assumption is challenged by programs that have certain control-flow paths
of very low probability, which are unlikely to be sampled by the interpreter. For
example, in the context of the ambitious marble collector (Fig. 1), Fig. 16 shows
that when the probability of obtaining a red marble decreases below 2−7, our
success rate drops. This is because a lower probability makes the corresponding
control-flow path rarer in the dataset, to the point where the expected value of
the NRSM cannot be estimated accurately.

20 A. Abate et al.

Fig. 16. Success rate and execution times for the ambitious marble collector program
(Fig. 1), where p is the probability of taking the if-branch. Success rate refers to the
fraction of 10 executions that succeeded in finding an NRSM before a timeout of 300 s.
Execution times show the median time with the error bar ranging between the minimum
and maximum times of the 10 executions.

6 Experimental Results

We built a prototype implementation of our framework (in Python) and present
experimental results for benchmarks adapted from previous work, as well as our
own case studies (from Sect. 5). The case studies illustrate programs for which
our framework synthesises an RSM, yet existing tools cannot prove to be PAST.

The learner is implemented with Jax [9]. To train NRSMs, we use AdaGrad
[18] for gradient-based optimisation, with a learning rate of 10−2. Parameters
are initialised by sampling from Gaussian distributions: weight parameters are
sampled from a zero-mean Gaussian, whereas the bias parameters are sampled
either from a Gaussian with mean 10 (for SOR candidates) or mean 0 (for SOS
candidates). We verify the NRSMs using the SMT solver Z3 [26,40]. The out-
comes are obtained on the following platform: macOS Catalina version 10.15.4,
8 GB RAM, Intel Core i5 CPU 2.4 GHz QuadCore, 64-bit.

As mentioned in Sect. 4, the verifier checks a candidate NRSM over states
satisfying the loop predicate, which characterises the set of reachable states. For
our experiments, we manually provide the NRSM expectation, and augment the
guard predicate with additional invariants where necessary. We generate out-
comes using two different rounding strategies (Sect. 4): an “aggressive” rounding
strategy which generated between 80 and 120 candidates per CEGIS iteration,
and a “weaker” rounding strategy producing between 15 to 25 candidates per
CEGIS iteration. The outcomes in Table 1 used the aggressive rounding strategy.

Learning Probabilistic Termination Proofs 21

Table 1. Experimental results over existing (top section) and newly added bench-
marks (bottom section); (c) indicates the benchmark uses continuous distributions, (d)
indicates it only uses discrete distributions. All reported times are in seconds, oot indi-
cates time-out after 300 s, n/a indicates the tool terminated without definite answer,
and—indicates the benchmark is unsupported. Our method is run 10 times with dif-
ferent seeds; the overall success rate is reported. Runtimes of interpretation, training,
verification phases, and # of CEGIS iterations refer to the run with median total
runtime.

Program Amber

[39]

Farkas’

lemma [2]

Absynth

[41]

Succ.

rate

Inter. Train. Verif. #iter NRSM

Hare & Tortoise (d) 0.04 ≈0 0.09 10/10 0.61 3.86 0.70 0 SOR

exmini/terminate (d) — 0.02 oot 10/10 1.75 29.35 7.67 2 SOR

aaron2 (d) 0.03 0.02 0.02 10/10 0.04 2.27 0.01 0 SOR

catmouse (c) 0.03 0.02 — 9/10 0.39 12.41 3.68 1 SOS

counterex1c (d) — 0.02 0.22 8/10 1.00 6.71 0.02 0 SOR

easy1 (d) 0.12 0.01 0.05 10/10 1.12 5.55 1.27 0 SOR

easy2 (c) 0.04 0.02 — 10/10 1.55 6.79 0.18 0 SOS

ndecr (d) 0.04 0.02 0.03 10/10 1.18 5.63 0.02 0 SOR

random1d (c) 0.05 0.02 — 10/10 1.14 4.86 0.79 0 SOS

rsd (d) error 0.01 oot 10/10 1.14 6.18 2.04 0 SOR

speedFails1 (d) 0.07 0.01 0.04 10/10 0.45 4.09 0.67 0 SOR

speedPldi2 (d) — 0.02 0.40 9/10 1.36 7.85 0.02 0 SOR

speedPldi3 (d) — 0.02 0.36 8/10 2.58 30.70 2.12 1 SOR

speedPldi4 (d) — 0.02 0.17 10/10 0.68 5.07 0.04 0 SOR

speedSingleSingle (c) 0.03 0.02 — 10/10 0.39 2.85 0.51 0 SOS

speedSingleSingle2 (d) — 0.02 0.15 10/10 0.83 7.30 0.04 0 SOR

wcet0 (d) — 0.02 0.10 10/10 1.45 5.64 0.09 0 SOR

wcet1 (d) — 0.02 0.10 10/10 0.85 4.31 0.09 0 SOR

probfact (d) — — n/a 10/10 0.49 6.12 0.16 0 SOR

probfact2 (d) — — n/a 10/10 0.45 5.89 0.23 0 SOR

marbles (d) — — n/a 10/10 0.84 10.83 0.91 0 SOR

marbles3 (d) — — n/a 10/10 0.40 70.14 7.87 2 SOR

crwalk (c) — — — 10/10 0.53 3.06 1.56 1 SOS

crwalk2 (c) — — — 10/10 1.32 3.11 0.75 1 SOS

expdistrw (c) n/a — — 10/10 0.05 1.53 0.01 0 SOS

expdistrw2 (c) n/a — — 10/10 4.92 3.15 1.03 1 SOS

gaussrw (c) — — — 10/10 10.30 3.45 0.75 0 SOS

gaussrw2 (c) — — — 9/10 15.46 4.91 5.33 0 SOS

slicedcauchy (c) — — — 10/10 0.02 3.31 0.01 0 SOR

slicedcauchy2 (c) — — — 10/10 0.01 2.16 0.03 0 SOR

Benchmarks from Previous Work. We run our prototype on single-loop programs
from the WTC benchmark suite [3], augmented with probabilistic branching and
assignments [2]. These correspond to the programs in the first section of Table 1.
We perturb assignment statements by adding noise sampled from a discrete
uniform distribution of support {−2, 2}, or a continuous uniform distribution on

22 A. Abate et al.

the interval [−2, 2]. The while loops are also made probabilistic; with probability
1/2 the loop is executed, and with the remaining probability a skip command
is executed.

We compare our framework against three existing tools. The first is Amber
[39]: where possible, we translate instances from the WTC suite into the lan-
guage of Amber, but this is not possible for some programs where the loop pred-
icate is a logical conjunction or disjunction of predicates (indicated by dashes in
Table 1). Second, we compare against a tool for synthesising affine lexicographic
RSMs (referred to as Farkas’ lemma) for affine programs (i.e. containing only lin-
ear expressions), based on reduction to linear programming via Farkas’ lemma
[2]. This is applicable to probabilistic programs with nested-loops, unlike our
method. However, since it is limited to affine programs and affine lexicographic
RSMs, it is not able to analyse all the programs we consider (again, indicated
by dashes in Table 1). The third tool is Absynth [41], for which we are able to
encode all programs that were limited to discrete random variables.

The experimental results (Table 1) show that for all the WTC benchmarks
our approach has a success rate of at least 8/10, and is able to synthesise an RSM
within 2 iterations (for the seed that results in median total execution time). For
15 of the 18 WTC benchmarks no full CEGIS iterations are required. As expected
our approach, particularly the learning component, is much slower than all three
tools. However, our framework has broader applicability, as illustrated with the
next set of experiments.

Newly Defined Case Studies. The examples in the second section of Table 1
(from Sect. 5) are not proven PAST by any of the three tools. Our approach
is able to do so with a success rate of at least 9/10, under the “aggressive”
rounding strategy. Of the new examples, marbles3 (Sect. 5) requires the longest
time, since we use an NRSM with h = 3 ReLU nodes (see Sect. 3), and six of
the nine parameters must be brought sufficiently close to zero to learn a valid
RSM. For gaussrw/gaussrw2, we find it necessary to set an SMT solver time
limit within the CEGIS loop (of 200 ms for gaussrw, and 5 s for gaussrw2),
such that candidates taking longer than this to verify are skipped. The fact that
these examples are harder to verify is unsurprising, given that they give rise
to non-polynomial decision problems, containing equationally defined rational
expressions. In comparing the two rounding strategies, we find that using the
“aggressive” strategy tends to result in fewer CEGIS iterations, reducing the
learner time, while increasing the verifier time: this is to be expected, since a
larger number of candidates needs to be checked in each CEGIS iteration.

7 Conclusion

We have presented the first machine learning method for the termination anal-
ysis of probabilistic programs. We have introduced a loss function for training
neural networks so that they behave as RSMs over sampled execution traces; our
training phase is agnostic to the program and thus easily portable to different

Learning Probabilistic Termination Proofs 23

programming languages. Reasoning about the program code is entirely delegated
to our checking phase which, by SMT solving over a symbolic encoding of pro-
gram and neural network, verifies whether the neural network is a sound RSM.
Upon a positive answer, we have formally certified that the program is PAST;
upon a negative answer, we obtain a counterexample that we use to resample
traces and repeat training in a CEGIS loop. Our procedure runs indefinitely for
programs that are not PAST, as these necessarily lack a ranking supermartin-
gale, and may run indefinitely for some PAST programs. Nevertheless, we have
experimentally demonstrated over several PAST benchmarks that our method
is effective in practice and covers a broad range of programs w.r.t. existing tools.

Our method naturally generalises to deeper networks, but whether these
are necessary in practice remains an open question; notably, neural networks
with one hidden layer were sufficient to solve our examples. We have exclu-
sively tackled the PAST question, and techniques for almost-sure (but not nec-
essarily PAST) termination and non-termination exist [16,37,39]. Our results
pose the basis for future research in machine learning (and CEGIS) for the for-
mal verification of probabilistic programs. Different verification questions will
require different learning models. Our approach lends itself to extensions toward
probabilistic safety, exploiting supermartingale inequalities, and towards the
non-termination question, using repulsing supermartingales [16]. Adapting our
method to termination analysis with infinite expected time is also a matter for
future investigation [37]. Moreover, we have exclusively considered purely proba-
bilistic single-loop programs: generalisations to programs with non-determinism,
arbitrary control-flow, and concurrency are material for future work [15,20,35].

Acknowledgments. This work was in part supported by a partnership between
Aerospace Technology Institute (ATI), Department for Business, Energy & Industrial
Strategy (BEIS) and Innovate UK under project HICLASS (113213), by the Engineer-
ing and Physical Sciences Research Council (EPSRC) Doctoral Training Partnership,
by the Department of Computer Science Scholarship, University of Oxford, and by the
DeepMind Computer Science Scholarship.

References

1. Abate, A., Ahmed, D., Giacobbe, M., Peruffo, A.: Formal synthesis of Lyapunov
neural networks. IEEE Control. Syst. Lett. 5(3), 773–778 (2021)

2. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:
an efficient approach to termination of probabilistic programs. Proc. ACM Pro-
gram. Lang. 2(POPL), 34:1–34:32 (2018)

3. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) Static Analysis, pp. 117–133. Springer, Berlin, Heidelberg (2010)

4. Alur, R., et al.: Syntax-guided synthesis. In: FMCAD, pp. 1–8. IEEE (2013)
5. Avanzini, M., Dal Lago, U., Yamada, A.: On probabilistic term rewriting. Sci.

Comput. Program. 185, 102338 (2020)

24 A. Abate et al.

6. Avanzini, M., Moser, G., Schaper, M.: A modular cost analysis for probabilistic
programs. Proc. ACM Program. Lang. 4(OOPSLA), 172:1–172:30 (2020)

7. Batz, K., Kaminski, B.L., Katoen, J.-P., Matheja, C.: How long, O Bayesian net-
work, will I sample thee? In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp.
186–213. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1 7

8. Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl,
J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-32033-3 24

9. Bradbury, J., et al.: JAX: composable transformations of Python+NumPy pro-
grams (2018). http://github.com/google/jax

10. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 34

11. Chakarov, A., Voronin, Y.-L., Sankaranarayanan, S.: Deductive proofs of almost
sure persistence and recurrence properties. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 260–279. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9 15

12. Chang, Y., Roohi, N., Gao, S.: Neural Lyapunov control. In: NeurIPS, pp. 3240–
3249 (2019)

13. Chattenjee, K., Fu, H., Novotný, P.: Termination analysis of probabilistic programs
with martingales. In: Barthe, G., Katoen, J.P., Silva, A. (eds.) Foundations of
Probabilistic Programming, p. 221–258. Cambridge University Press (2020)

14. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4 1

15. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
ACM Trans. Program. Lang. Syst. 40(2), 7:1–7:45 (2018)

16. Chatterjee, K., Novotný, P., Zikelic, D.: Stochastic invariants for probabilistic ter-
mination. In: POPL, pp. 145–160. ACM (2017)

17. Dahlqvist, F., Silva, A.: Semantics of probabilistic programming: a gentle intro-
duction. In: Barthe, G., Katoen, J.P., Silva, A. (eds.) Foundations of Probabilistic
Programming, pp. 1–42. Cambridge University Press (2020)

18. Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learn-
ing and stochastic optimization. In: COLT, pp. 257–269. Omnipress (2010)

19. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: Soundness, completeness,
and compositionality. In: POPL, pp. 489–501. ACM (2015)

20. Fu, H., Chatterjee, K.: Termination of nondeterministic probabilistic programs. In:
Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 468–490. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11245-5 22

21. Giacobbe, M., Kroening, D., Parsert, J.: Neural termination analysis. CoRR
abs/2102.03824 (2021)

22. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT Press (2016)
23. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-

gramming. In: FOSE, pp. 167–181. ACM (2014)
24. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning termi-

nating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
797–813. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 53

https://doi.org/10.1007/978-3-319-89884-1_7
https://doi.org/10.1007/978-3-540-32033-3_24
http://github.com/google/jax
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1007/978-3-319-08867-9_53

Learning Probabilistic Termination Proofs 25

25. Huang, M., Fu, H., Chatterjee, K., Goharshady, A.K.: Modular verification for
almost-sure termination of probabilistic programs. Proc. ACM Program. Lang.
3(OOPSLA), 129:1–129:29 (2019)

26. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 27

27. Kaminski, B.L., Katoen, J.-P., Matheja, C.: On the hardness of analyzing prob-
abilistic programs. Acta Informatica 56(3), 255–285 (2018). https://doi.org/10.
1007/s00236-018-0321-1

28. Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Aréchiga, N.: Simulation-
guided Lyapunov analysis for hybrid dynamical systems. In: HSCC, pp. 133–142.
ACM (2014)

29. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

30. Kura, S., Unno, H., Hasuo, I.: Decision tree learning in CEGIS-based termination
analysis. In: CAV (2021)

31. Le, T.C., Antonopoulos, T., Fathololumi, P., Koskinen, E., Nguyen, T.: DynamiTe:
Dynamic termination and non-termination proofs. Proc. ACM Program. Lang.
4(OOPSLA), 189:1–189:30 (2020)

32. Lee, W., Wang, B.-Y., Yi, K.: Termination analysis with algorithmic learning.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 88–104.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 12

33. Lee, W., Yu, H., Rival, X., Yang, H.: Towards verified stochastic variational infer-
ence for probabilistic programs. Proc. ACM Program. Lang. 4(POPL), 16:1–16:33
(2020)

34. Li, Y., Ying, M.: Algorithmic analysis of termination problems for quantum pro-
grams. Proc. ACM Program. Lang. 2(POPL), 35:1–35:29 (2018)

35. Lin, A.W., Rümmer, P.: Liveness of randomised parameterised systems under arbi-
trary schedulers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780,
pp. 112–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 7

36. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, Berlin (2005)

37. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.: A new proof rule for almost-
sure termination. Proc. ACM Program. Lang. 2(POPL), 33:1–33:28 (2018)

38. Meyer, F., Hark, M., Giesl, J.: Inferring expected runtimes of probabilistic integer
programs using expected sizes. In: TACAS 2021. LNCS, vol. 12651, pp. 250–269.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2 14

39. Moosbrugger, M., Bartocci, E., Katoen, J.-P., Kovács, L.: Automated termina-
tion analysis of polynomial probabilistic programs. In: ESOP 2021. LNCS, vol.
12648, pp. 491–518. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72019-3 18

40. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

41. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource anal-
ysis for probabilistic programs. In: PLDI, pp. 496–512. ACM (2018)

42. Nori, A.V., Sharma, R.: Termination proofs from tests. In: ESEC/SIGSOFT FSE,
pp. 246–256. ACM (2013)

43. Richards, S.M., Berkenkamp, F., Krause, A.: The Lyapunov neural network: Adap-
tive stability certification for safe learning of dynamical systems. In: CoRL. Pro-
ceedings of Machine Learning Research, vol. 87, pp. 466–476. PMLR (2018)

https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/s00236-018-0321-1
https://doi.org/10.1007/s00236-018-0321-1
https://doi.org/10.1007/978-3-642-31424-7_12
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-540-78800-3_24

26 A. Abate et al.

44. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS, pp. 404–415. ACM (2006)

45. Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and
pieces. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
54–70. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 4

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-49674-9_4
http://creativecommons.org/licenses/by/4.0/

	Learning Probabilistic Termination Proofs
	1 Introduction
	2 Termination Analysis of Probabilistic Programs
	3 Training Neural Ranking Supermartingales
	4 Verifying Ranking Supermartingales by SMT Solving
	4.1 From Programs to Symbolic Store Trees
	4.2 Marginalisation

	5 Case Studies
	5.1 Non-linear Program Expressions and NRSMs
	5.2 Multivariate and Hierarchical Distributions
	5.3 State-Dependent Distributions and Non-Linear Expectations
	5.4 Undefined Moments
	5.5 Rare Transitions

	6 Experimental Results
	7 Conclusion
	References

