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Posterior Computation with the Gibbs Zig-Zag
Sampler∗

Matthias Sachs†,‖,∗∗, Deborshee Sen‡,‖, Jianfeng Lu§, and David Dunson¶

Abstract. An intriguing new class of piecewise deterministic Markov processes
(PDMPs) has recently been proposed as an alternative to Markov chain Monte
Carlo (MCMC). We propose a new class of PDMPs termed Gibbs zig-zag sam-
plers, which allow parameters to be updated in blocks with a zig-zag sampler
applied to certain parameters and traditional MCMC-style updates to others. We
demonstrate the flexibility of this framework on posterior sampling for logistic
models with shrinkage priors for high-dimensional regression and random effects,
and provide conditions for geometric ergodicity and the validity of a central limit
theorem.

Keywords: Gibbs sampler, Markov chain Monte Carlo, non-reversible, piecewise
deterministic Markov process, sub-sampling.

1 Introduction

Despite alternative methods ranging from sequential Monte Carlo (Del Moral et al.,
2006) to variational inference (Beal, 2003), Markov chain Monte Carlo (MCMC) meth-
ods remain the default approach among Bayesian statisticians and show no signs of
diminishing in importance. The overwhelming majority of the literature on MCMC
methods has focused on reversible Markov chains (that is, Markov chains which sat-
isfy a detailed balance condition), typically constructed as instances of the Metropolis-
Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970). This includes MH
samplers that obtain efficient joint proposals using gradient information, ranging from
Hamiltonian Monte Carlo (HMC, Duane et al., 1987) to Metropolis-adjusted Langevin
algorithms (Roberts and Tweedie, 1996). Likewise, this includes the Gibbs sampler (Ge-
man and Geman, 1987) and generalizations that replace sampling parameters one at a
time from their conditional posterior distributions with block updating using a broad
class of MH steps.

Data sub-sampling has been explored as a way to speed up MCMC for large datasets
(Welling and Teh, 2011; Maclaurin and Adams, 2015; Quiroz et al., 2018). Sub-samples
are used to approximate transition probabilities and reduce bottlenecks in calculating
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2 Posterior Computation with the Gibbs Zig-Zag Sampler

likelihoods and gradients, with the current literature focusing mostly on modifications of
the MH algorithm. A major drawback of these approaches is that it is typically difficult
to create schemes which preserve the correct target distribution. While there has been
work on quantifying the error for such approximate MCMC schemes (Pillai and Smith,
2014; Johndrow et al., 2015; Johndrow and Mattingly, 2017), it is in general difficult to
do so. The pseudo-marginal approach of Andrieu and Roberts (2009) offers a potential
solution, but it is generally impossible to obtain the required unbiased estimators of
likelihoods using data sub-samples (Jacob and Thiery, 2015).

There is evidence to show that non-reversible MCMC methods can offer drastic in-
creased sampling efficiency over reversible MCMC methods (Diaconis et al., 2000; Sun
et al., 2010; Chen and Hwang, 2013; Rey-Bellet and Spiliopoulos, 2015). A recently
popularized class of non-reversible stochastic processes that can be used to construct
sampling algorithms (Peters, 2012; Vanetti et al., 2017; Fearnhead et al., 2018) are piece-
wise deterministic Markov processes (PDMPs). PDMPs follow a Markov jump process,
where the process evolves deterministically according to some predefined dynamics in
between jump events, with the event times being distributed according to a Poisson pro-
cess. Examples of PDMPs include the bouncy particle sampler (BPS; Bouchard-Côté
et al., 2018) and the zig-zag (ZZ) process (Bierkens et al., 2019a). Very interestingly, in
contrast to traditional MH-based algorithms, PDMPs allow error-free sub-sampling of
the data. This remarkable feature has been shown to hold for a wide range of PDMPs
(Vanetti et al., 2017).

Although theoretically well-founded, PDMP approaches have not yet found wide-
spread use in Bayesian statistics. A major reason for this is the fact that the application
of these methods is in general not straightforward. The implementation of PDMPs
requires the derivation of upper bounds for the gradient of the log posterior density.
These upper bounds must be sufficiently tight for the sampling to remain efficient. While
there have been attempts to automate the construction of such upper bounds (Pakman
et al., 2017) as well as relax the need for upper bounds (Cotter et al., 2020), these
lack theoretical guarantees for the exact preservation of the target measure and as such
fall into a similar category as approximate MCMC schemes. An additional challenge is
that the upper bounds typically deteriorate as the dimension of the parameter space
increases, although this can be mitigated to a certain extent using non-uniform sub-
sampling schemes (Sen et al., 2020).

In this article, we address the problem of increasing the versatility of PDMP-based
sampling approaches by introducing a new framework which allows the inclusion of
component-wise MCMC updates within a PDMP process. The main idea is to update
blocks of components for which efficient upper bounds can be easily derived by a PDMP
process, and update blocks of components for which such upper bounds are not eas-
ily available with a suitable MH scheme. This allows us to combine the versatility of
traditional MCMC approaches with the advantages of PDMPs in sampling problems.
This is particularly relevant to Bayesian hierarchical models, where is it common for
certain parameters to have conditional posteriors distributions that are easy to sample
from via a Gibbs step, while other parameters can be efficiently updated using a PDMP.
In order to keep the presentation simple and accessible, we focus our attention on the
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ZZ process in terms of PDMPs, and we refer to our framework as the Gibbs-zig-zag
(GZZ) sampler/process. However, we remark that the proposed framework is generic
and allows combining a wide class of PDMPs with block-wise MH updates, as detailed
in Section 3 of the supplementary material (Sachs et al., 2022).

The rest of the article is organized as follows. We begin with reviewing the ZZ
process in Section 2. We present the GZZ sampler in Section 3. In particular, we dis-
cuss its construction in Section 3.1, present its application to posterior sampling from
Bayesian hierarchical models in Section 3.2, and summarize its main ergodic proper-
ties in Section 3.3. Section 4 contains numerical examples for two different contexts
related to logistic regression. Finally, Section 5 concludes. Proofs and additional details
of sampling algorithms are deferred to the supplementary material.

2 The zig-zag sampler

We review the zig-zag (ZZ) process as introduced in Bierkens et al. (2019a) in this
section. Consider the problem of sampling from a probability measure

π(dζ) =
1

Z
exp{−U(ζ)}dζ,

where U ∈ C2(Ωζ ,R) is a smooth potential function defined on Ωζ ⊂ R
d. For the

remainder of this paper, we describe the ZZ sampler when Ωζ = R
d; however, Ωζ can

be a strict subset of Rd as well (Bierkens et al., 2018). The ZZ process {ζ(t),θ(t)}t≥0 is
a piecewise deterministic continuous-time Markov process which lives on an augmented
phase space Ωζ × {−1, 1}d and is constructed such that the process is ergodic with
respect to the product measure π̃(dζ, θ) = π(dζ)μ(θ), where μ is the uniform measure
on {−1, 1}d. The components ζ(t) and θ(t) are commonly referred to as the position
and velocity of the process, respectively.

For a starting point ζ0 and initial velocity θ0, the ZZ process evolves deterministi-
cally as

ζ(t) = ζ0 + θ0t, θ(t) = θ0. (1)

At random times (T k)k∈N, bouncing events occur which flip the sign of one component
of the velocity θk−1. The process then evolves as (1) with the new velocity until the
next change in velocity; that is,

ζ(T k + s) = ζk + θks, θ(T k + s) = θk, (2)

for s ∈ [0, T k+1 − T k], where θk = FIk(θk−1), with random component index Ik as
specified below and Fi denoting the operator which changes the sign of the i-th compo-
nent of its argument, that is Fi : {−1, 1}d → {−1, 1}d with {Fi(θ)}j = θj if j �= i and
−θj if j = i. The random event times (T k)k∈N correspond to arrival times of a non-

homogeneous Poisson arrival process whose intensity function m(t) =
∑d

i=1 mi(t) de-
pends on the current phase space value of the process, that is,mi(t) = λi{ζ(t),θ(t)} (i =
1, . . . , d), where λ1, . . . , λd are referred to as rate functions. The k-th waiting time
τk = (T k+1 − T k) of this arrival process is τk = τkIk with Ik = argmini∈{1,...,d}{τki },
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where τki (i = 1, . . . , d) are random times whose densities are specified by the hazard
rates mk

i (s) = λi{ζ(T k + s),θ(T k + s)}.
Let (x)+ = max{0, x} denote the positive part of x ∈ R. If the rate functions have

the form

λi(ζ, θ) =

{
θi
∂U(ζ)

∂ζi

}+

+ γi(ζ) (i = 1, . . . , d)

with γi(ζ) ≥ 0, this ensures that π̃ is an invariant measure of the process (Bierkens et al.,
2019a), where ζ = (ζ1, . . . , ζd). The γis are known as the refreshment rates. Slightly more
restrictive conditions ensuring exponential convergence in law to the measure π̃ and the
validity of a central limit theorem can be found in Bierkens and Duncan (2017) (see
also Bierkens et al., 2019b).

In general, the integrals
∫ s

0
mk

i (r) dr of the rate functions m
k
i (s) do not have a simple

closed form, and thus the corresponding first arrival times τki cannot be sampled using
a simple inverse transform. Instead, arrival times are usually sampled via a Poisson
thinning step (Lewis and Shedler, 1979) as follows. Assume that we have continuous
functions Mi : Ωζ × {−1, 1}d × R+ → R+ such that λi(ζ + sθ, θ) ≤ Mi(ζ, θ, s). Then

mk
i (s) = λi(ζ

k + sθk,θk) ≤ Mi(ζ
k,θk, s) =: Mk

i (s) (i = 1, . . . , d; s ≥ 0). (3)

Let τ̃k1 , . . . , τ̃
k
d be the first arrival times of Poisson processes with ratesMk

1 (s), . . . ,M
k
d (s),

respectively. Let Ik = argmini∈{1,...,d}{τ̃ki } denote the index of the smallest arrival time.
Then, if

(i) ζ(t) is evolved according to (2) for time s = τ̃kIk , and

(ii) after time τ̃Ik the sign of θIk is flipped with probability mk
i0
(τ̃Ik)/Mk

Ik(τ̃Ik),

the resulting process can be shown to be a ZZ process with intensities mi(t) = λi{ζ(t),
θ(t)} (i = 1, . . . , d) (Bierkens et al., 2019a).

A particularly appealing feature of the ZZ sampler (and PDMPs in general) is that
the Poisson thinning procedure can be modified in a way which allows replacing the par-
tial derivatives of the potential function in computations of the event times of bounces
by unbiased estimates without changing the invariant measure of the simulated ZZ pro-
cess (Vanetti et al., 2017). The unbiased estimates can be obtained by sub-sampling of
the data when observations are independent.

3 The Gibbs zig-zag sampler

3.1 Process description

In practice, derivation of tight upper boundsMi(t) as described in the previous section is
often challenging. While using generalized sub-sampling schemes can help in improving
the tightness of upper bounds in the setup of sub-sampling (Sen et al., 2020), the
construction of upper bounds nonetheless remains a fundamental hurdle limiting the
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use of PDMPs in practice. In order to simplify applications of the ZZ sampler, we
introduce a novel extension which combines elements of Gibbs sampling with a PDMP
framework.

Consider a decomposition of the parameter vector as

ζ = (ξ, α) ∈ Ωξ × Ωα = R
p × R

r,

where d = (p + r), and let θ ∈ {−1, 1}p =: Ωθ. The idea of the Gibbs zig-zag (GZZ)
sampler is to combine updates of the component ξ via a ZZ process, which for fixed
value of α preserves the conditional measure

π(dξ | α) ∝ exp{−U(ξ, α)} dξ,

with conventional (Markov chain) Monte Carlo updates of the second component α,
which for given value of ξ preserve the conditional measure

π(dα | ξ) ∝ exp{−U(ξ, α)} dα.

These updates are combined in such a way that the resulting process is a PDMP which
samples the target distribution π.

More precisely, let LZZ denote the generator of the process which leaves the second
component α constant while evolving the first component ξ in the corresponding affine
subspace according to a ZZ process with rate function

m̃i(t, α) = [θi∂ξiU{ξ(t), α}]+ + γi{ξ(t), α} (i = 1, . . . , p; t ≥ 0); (4)

we have used the shorthand notation ∂ξiU to denote (∂/∂ξi)U . The generator LZZ takes
the form of the differential operator

(LZZf) (ξ, α, θ) =

p∑
i=1

θi∂ξif(ξ, α, θ) + λi(ξ, α, θ) [f{ξ, α, Fi(θ)} − f(ξ, α, θ)] , f ∈ S ,

when considered as an operator on the set of smooth test functions S = C∞(Ω,R).
Here and in the sequel, we consider Ω = Ωξ ×Ωα×Ωθ to be equipped with the product
topology induced by the Euclidean norms on Ωξ and Ωα, and the discrete topology on
Ωθ, so that a function f : Ω → R is continuous exactly if fθ : (ξ, α) 
→ f(ξ, α, θ) is
continuous for all θ ∈ Ωθ. Similarly, we consider the function f to be differentiable if
the partial derivatives ∂ξifθ (i = 1, . . . , p) and ∂αifθ (i = 1, . . . , r) are well defined for
all θ ∈ Ωθ and measurable if fθ is Lebesgue measurable for all θ ∈ Ωθ; we have used the
shorthands ∂ξifθ and ∂αifθ to denote (∂/∂ξi)fθ and (∂/∂αi)fθ, respectively.

Let Q be a Markov kernel which is such that for any ξ ∈ Ωξ, the conditional measure
π(dα | ξ) is preserved under the action of Q in the sense that

∫
Q{(ξ, α′), A}π(dα′ | ξ) =∫

1A(α)π(dα | ξ) for any measurable set A ⊂ Ωα, where 1A(α) stands for the indicator

function which is such that 1A(α) = 1 if α ∈ A and zero otherwise. Let (T̃ k)k∈N denote
event times of a Poisson process with constant rate η > 0. The generator of the PDMP
in Ωα which is constant in between event times (T̃ k)k∈N and whose state is resampled
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from the Markov kernel Q at event times takes the form ηLGibbs, where

(LGibbsf) (ξ, α, θ) =

∫
Ωα

{f(ξ, α′, θ)− f(ξ, α, θ)}Q{(α, ξ), dα′}, f ∈ S . (5)

We obtain the GZZ process by superimposing the two processes described above; that
is, we construct the GZZ process as the process whose generator is

LGZZ = LZZ + ηLGibbs.

The corresponding process {ξ(t),θ(t),α(t)}t≥0 is a PDMP whose trajectory is piecewise
linear in ξ and piecewise constant in α. It follows from classical results on the simulation
of non-homogeneous Poisson processes that the process can be simulated by generating
skeleton points {(ξk,θk,αk, T k)}k∈N according to Algorithm 1 below, which are then
linearly interpolated as

ξ(t) = ξk + θk(t− T k), α(t) = αk, θ(t) = θk, for T k ≤ t < T k+1. (6)

Remark 1. We mention two recently proposed sampling schemes that – similar to
the GZZ sampler – combine ideas of PDMP with aspects of classical Gibbs sampling,
but whose constructions are in fact conceptually very different from the proposed GZZ
sampler.

1. The PDMP proposed in Wu and Robert (2020), termed the coordinate sampler,
resembles aspects of a classical Gibbs sampler, but other than the fact that certain
components are kept constant in between jump events it bears no resemblance to
the GZZ sampler. In terms of its construction, the coordinate sampler falls into
the same framework as other popular PDMP processes such as the ZZ sampler
(Bierkens et al., 2019a) and the BPS (Bouchard-Côté et al., 2018), and unlike
the GZZ process, it does not allow the incorporation of MH-updates.

2. In Zhao and Bouchard-Côté (2021), the authors propose a local BPS-within-Gibbs
algorithm for the sampling of the posterior distribution of parameters of a contin-
uous Markov chain. Unlike the GZZ sampler, which is a piecewise deterministic
continuous time Markov process, the sampling scheme proposed in that work is con-
structed as a Markov chain where in each step parameters are block-wise updated
using either a local BPS sampler or an HMC sampler. A similar construction of
a Markov chain that combines a BPS sampler and a Metropolis-Hastings scheme
has been also considered in Zhang et al. (2021).

As we discuss in Section 3.3, the GZZ process is path-wise ergodic with respect to
the augmented measure

π̃(dζ, θ) = π(dζ)μ(θ), (7)

where μ is the uniform measure on {−1, 1}d, under some mild conditions on the potential
function U . As such, it can be used similarly to other PDMP samplers as a Monte
Carlo method for the approximate computation of expectations by finite time trajectory
averages, that is,

E(ξ,α)∼π {f(ξ, α)} ≈ 1

t

∫ t

0

f{ξ(t),α(t)} dt.
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Algorithm 1 Gibbs zig-zag (GZZ) algorithm.

Input: (ξ0,α0,θ0) ∈ Ωξ × Ωα × Ωθ

1: for k = 1, 2, . . . do
2: Draw τ ′ ∼ Exponential(η) and τ̃1, . . . , τ̃p such that

P(τ̃i ≥ s) = exp

{
−
∫ s

0

m̃i(T
k + r,αk) dr

}
(i = 1, . . . , p). (8)

3: Let τk = min {τ ′, τ̃1, . . . , τ̃p}.
4: Set ξk+1 = ξk + τk θk and T k+1 = T k + τk.
5: if τ = τ ′ then
6: Draw αk+1 ∼ Q{(ξk+1,αk), ·}.
7: Set θk+1 = θk.
8: else
9: Set αk+1 = αk.

10: Bounce: θk+1 = Fi0(θ
k), with i0 = argmini∈{1,...,p} τ̃i.

11: end if
12: end for
Output: Skeleton points {(ξk,αk,θk, T k)}k∈N.

Practically, ZZ updates of the ξ component can be performed using Poisson thinning.

In this case, an upper bound M̃i : Ωξ × Ωα × {−1, 1}d × R+ → R+ satisfying λi(ξ +

sθ, α, θ) ≤ M̃i(ξ, α, θ, s) for all s ≥ 0 is required.

The approach is particularly useful if the restriction of the ZZ process onto the

component ξ simplifies construction of upper bounds, and efficient MCMC updates

for the remaining component α are available. Such a decomposition is often naturally

available in the context of Bayesian posterior distributions with hierarchical priors. We

describe the application of the GZZ sampler to such models in Section 3.2. In addition,

in the context of Bayesian posterior computation, the GZZ sampler can be modified to

allow for sub-sampling of data while exactly preserving the measure π̃. This is explored

numerically in Section 4.

3.2 Bayesian posterior sampling with hierarchical priors

Hierarchical Bayesian models can often be specified as

X1, . . . , Xn
iid∼ f(x | ξ), ξ | α ∼ h(ξ | α), α ∼ p0(α),

where α are hyperparameters with hyper-prior p0(α), h denotes the conditional dis-

tribution of the parameters given the hyperparameters, and f denotes the likelihood

of observations given parameters. Bayesian posterior sampling typically proceeds by
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sampling from

p(ξ, α | X1, . . . , Xn) ∝
n∏

j=1

f(Xj | ξ)× h(ξ | α) p0(α),

whose marginal distribution for ξ is the posterior distribution of ξ given X1, . . . , Xn,
which is p(ξ | X1, . . . , Xn) ∝

∏n
j=1 f(Xj | ξ)

∫
Ωα

h(ξ | α) p0(α) dα. Letting ζ = (ξ, α),

this corresponds to sampling the Gibbs measure π(dζ) = Z−1 exp{−U(ζ)} dζ with
potential function

U(ζ) = U0(ξ, α) +

n∑
j=1

U j(ξ), (9)

where U0(ξ, α) = − log h(ξ | α) − log p0(α) and U j(ξ) = − log f(Xj | ξ). The GZZ
sampler can readily be applied in this context, with Q corresponding to either an exact
update for the hyperparameters (which is the case when using conditionally conjugate
priors), or using a suitable Metropolis-Hastings (MH) scheme such as random walk MH
or Hamiltonian Monte Carlo (HMC), when such an exact update is not possible. We
consider numerical examples of this in Section 4.

3.3 Ergodic properties

We provide a high level overview of theoretical results on the ergodic properties of the
GZZ sampler in this section. Detailed conditions and theorems as well as proofs are
deferred to Section 1 of the supplementary material. These results pertain to the long
term properties of trajectory averages

ϕ̂t =
1

t

∫ t

0

ϕ{ξ(s),θ(s),α(s)} ds

of π̃-integrable functions ϕ, and as such are intended to justify the usage of the GZZ
sampler as a Monte Carlo method. First, Theorem 1 states that under relatively mild
conditions (summarized in Assumption 1) on the Markov transition kernel Q and the
refreshment rate functions λi (i = 1, . . . , p), the trajectory averages converge almost
surely to corresponding expectations, that is,

lim
t→∞

ϕ̂t = E(ξ,α,θ)∼π̃{ϕ(ξ, α, θ)} almost surely.

Secondly, we show in Theorem 3 that under additional conditions on the potential
function U (see Assumption 2), the GZZ process is geometrically ergodic. This implies
a central limit theorem (Corollary 2) of the form

√
t
[
ϕ̂t − E(ξ,α,θ)∼π̃{ϕ(ξ, α, θ)}

] law−−−→
t→∞

N (0, σ2
ϕ) for some σ2

ϕ > 0

which holds for a wide class of real-valued functions ϕ.

Assumption 1 explicitly requires the refreshment rate function λi to be strictly pos-
itive. This drastically simplifies the proof of irreducibility of the process. By doing so,
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we circumvent difficulties (as described and tackled in Bierkens et al., 2019b in the case
of the standard ZZ process) in the proof of the irreducibility of the process. From a
theoretical perspective, this makes the presented results less interesting. However, we
expect that the GZZ process will typically be used in combination with a sub-sampling
scheme so that vanishing refreshment rates are unlikely in practice. Likewise, conditions
on the potential function U are rather restrictive in terms of the tail properties of the
corresponding density and the coupling between the parameters ξ and the hyperpa-
rameters α. We acknowledge that some of these conditions might not hold in practice.
Instead, we demonstrate in numerical experiments (see Section 4) that the central limit
theorem remains valid in settings beyond what it is covered by our theoretical results.

4 Numerical examples

Consider the following generic logistic regression model,

Yj ∼ Bernoulli

(
1

1 + e−ψj

)
(j = 1, . . . , n), (10)

where Y1, . . . , Yn ∈ {0, 1} denote observations and ψ1, . . . , ψn are linear predictors that
are further assigned a model in a context-specific manner. This is a highly flexible
model for which various complexities can be induced by considering different forms for
the predictors. PDMP methods for logistic regression with simple (non-hierarchical)
priors tend to be efficient (Bouchard-Côté et al., 2018; Bierkens et al., 2019a), but it is
not straightforward to modify these samplers to account for hierarchical structure.

We run the GZZ sampler for 107 iterations in all our examples. That is, we run
Algorithm 1 for k = 1, . . . , 107 attempts. We consider sub-sampling, with a sub-sample
of size n1 < n meaning that n/n1 iterations of the GZZ sampler corresponds to approx-
imately one epoch of data evaluation,1 and therefore 107 iterations of GZZ corresponds
to n1/n×107 epochs of data evaluation. We compare the GZZ sampler to HMC-within-
Gibbs. We run the Gibbs sampler for a total of 104 iterations for each setting, which
means that we make a total of 104 HMC steps as well. For HMC, we consider the
leapfrog integrator as described in, for example, Section 2.3 of Neal (2011). Therefore,
for L leapfrog steps, we have L× 104 epochs of data evaluation for HMC-within-Gibbs.

4.1 Random effects model

Random effects models are routinely applied in a wide variety of disciplines. We consider
the following model as illustration,

Yij | βj ∼ Bernoulli

(
1

1 + e−ψij

)
,

ψij = m+ βj +X

ijυ,

βj
iid∼ Normal(0, φ−1),

(11)

1In reality, this is actually less than one epoch as updating the hyperparameter α does not involve
the data.
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where j = 1, . . . ,K index K groups and i = 1, . . . , n index n subjects per group,2 and
βj is the random effect for the jth group. For the ith observation from the jth group,
Yij ∈ {0, 1} denotes the response variable and Xij = (Xij1, . . . , Xijp) ∈ R

p denote
covariates. In addition, m denotes an overall intercept, υ = (υ1, . . . , υp) denotes the
fixed effect coefficients, and X


ijυ =
∑p

l=1 Xijlυl. We consider the following priors:

m ∼ Normal(0, φ−1), υl
iid∼ Normal(0, σ2) (l = 1, . . . , p),

φ ∼ Ga(aφ, bφ), σ2 ∼ IG(aσ, bσ),

where Ga denotes a gamma distribution and IG denotes an inverse-gamma distribution.
For this problem, we can use a ZZ process with sub-sampling to update (υ,m, β1, . . . , βK)
conditionally on the hyperparameters (φ, σ2), while the conditional distributions for the
hyperparameters can be exactly sampled from; details are provided in Section 4.1 of the
supplementary material. In the notation of Section 3.1, we have ξ = (υ1, . . . , υp,m,
β1, . . . , βK) and α = (φ, σ2).

We consider synthetic data generated from model (11) with true (m, δ, ξ) =
(mtrue, δtrue, ξtrue) ∈ R

1+K+p. The covariates Xijls are sampled from the mixture dis-
tribution �ε(dx) = εδ0(dx) + (1 − ε)ρ(dx), where δ0(dx) is a point mass at zero, ρ
is a standard normal density, and ε ∈ (0, 1] denotes the level of sparsity among the
covariates.

In a first experiment, we study the effect of the switching rate η on the mixing of
process; recall that this is given in equation (5). To this end, we consider a simple setup
with n = 10, K = 2, and p = 2, and we also choose ε = 0.5. We run the GZZ sampler
for various values of the switching rate for mini-batch size ten. We plot the integrated
auto-correlation time of the slowest component of ξ in the left panel of Figure 1. The
mixing improves to a certain point as the switching rate increases, beyond which the
improvement tapers off. In particular, for η ≤ 10−1 the integrated auto-correlation time
of the slowest component is approximately proportional to η−1.

In another experiment, we compare the mixing of the process to the size of the
mini-batch used. This is shown in the right panel of Figure 1. When the switching rate
is low, increasing the mini-batch size does not have a noticeable effect on the mixing
of the process. However, when the switching rate is in the “flat” part of the left panel
of Figure 1 (that is, η = 6.47), increasing the mini-batch size has a clear effect on the
mixing of the process.

Remark 2. We obtain the integrated auto-correlation times as follows. We first extract
equally-spaced samples from the continuous-time process obtained by running the GZZ
sampler. We plot each component of ξ’s auto-correlation function and calculate its inte-
grated auto-correlation time by observing when the auto-correlation function converges
to zero and then summing the auto-correlation function up to that time. We do not
display these plots here, but these can be found in the notebooks accompanying our code.

Next, we compare the GZZ sampler to HMC-within-Gibbs. We choose ε = 5×10−2,
which means that the covariates are 95% sparse. For HMC-within-Gibbs, we replace the

2We assume that each group is of the same size for simplicity; however, this can easily be extended.
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Figure 1: Sensitivity to switching rate η and mini-batch size for the random effects
model. The red line in the left plot shows the graph of η−1.

Figure 2: Comparison of effective sample size per epoch of data evaluation for Gibbs
zig-zag with sub-sampling and Hamiltonian Monte Carlo for the random effects model.

ZZ updating by HMC. In this case, we choose n = 100 and p = 5, and vary the number
of groups K. As K increases, both the dimension of the sampling problem (1+K+p) as
well as the total number of observations K × n increases. We tune HMC by choosing a
range of different leapfrog steps and stepsizes, and looking at cases where the acceptance
rate is close to the optimal acceptance rate of 0.651 (Beskos et al., 2013). Among them,
we choose the combination of step-size and number of leapfrog steps which gives the
highest effective sample size per epoch of data evaluation. We plot the relative effective
sample size per epoch of data evaluation for GZZ with sub-sampling divided by the
same for HMC in Figure 2, where we observe that the relative performance of using
GZZ over HMC increases as the number of groups increases.

Remark 3. The total number of observations Kn increases as the number of groups
K increases, which makes each iteration of HMC slower. However, since GZZ uses
sub-sampling, the time per iteration of GZZ remains the same. The number of random
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Figure 3: Quantile-Quantile (QQ) plots for the mixed effects model providing empirical
evidence for a central limit theorem.

effects increases as the number of groups increases, which means that the dimension of
the parameter space increases (if we treat the random effects as “parameters” whose
posterior is to be sampled from). While it is true that GZZ performs worse as the
dimension increases, this is offset by the slower run time of HMC.

We acknowledge that the assumptions made in order to prove the central limit
theorem (Corollary 2), namely Assumptions 1 and 2, do not hold for this example. We
nevertheless demonstrate numerically that a central limit theorem does appear to hold
for this example. To this end, we choose a simple setting with K = 5 groups and n = 50
observations per group, and we choose p = 10 covariates. We let the test function ϕ
be simply the identity function and estimate ϕtrue := E(ξ,α,θ)∼π̃{ϕ(ξ, α, θ)} by running
Algorithm 1 for a very long time. We then choose several different time horizons T1 <
· · · < TM and run the GZZ sampler up to each Tm; this can be achieved by running
Algorithm 1 till the total time T k reaches Tm. We run the GZZ sampler independently
R = 2 × 102 times for each Tm and obtain estimates ϕ̂Tm, r for m = 1, . . . ,M and

r = 1, . . . , R. Corollary 2 implies that {T 1/2
m (ϕ̂Tm,r − ϕtrue)}Rr=1 should converge to

samples from a Gaussian distribution with zero mean as m increases. We demonstrate
this by noting that if X ∼ Normalp(μ,Σ), then (X −μ)
Σ−1(X −μ) ∼ χ2

p. This means

that {[T 1/2
m (ϕ̂Tm,r − ϕtrue)]


Σ̂−1
m [T

1/2
m (ϕ̂Tm,r − ϕtrue)]}Rr=1 should converge to samples

from a χ2
p distribution as m increases, where Σ̂m is the empirical covariance matrix of

{T 1/2
m [ϕ̂Tm,r − ϕtrue]}Rr=1. We display QQ plots for this in Figure 3, where we observe

that a central limit theorem appears to hold in this setting.

4.2 Shrinkage prior

Consider the case where we have p covariates and let Xj = (Xj1, . . . , Xjp) be the
covariates for the jth observation Yj . Equation (10) then corresponds to a typical logistic
regression model with ψj = υ0 +

∑p
i=1 Xjiυj , where υ = (υ1, . . . , υp) are coefficients for

the covariates and υ0 is an intercept term. Even when p is relatively small compared to
n, the posterior for υ is not concentrated around a reference point if the covariates are
sparse and the prior is isotropic Gaussian. We instead use the GZZ sampler to employ a
shrinkage prior for υ. A popular shrinkage prior is the spike-and-slab prior (Mitchell and
Beauchamp, 1988; Ishwaran and Rao, 2005), which is a mixture of a spike at zero and a
higher variance component. We consider the following specification of the spike-and-slab



M. Sachs, D. Sen, J. Lu, and D. Dunson 13

Figure 4: Sensitivity to switching rate η and mini-batch size for logistic regression with
spike-and-slab prior. The red line in the left plot shows the graph of η−1.

prior:

υi
ind∼ γi Normal(0, ντ2i ) + (1− γi)Normal(0, τ2i ),

γi
iid∼ Bernoulli(π) (i = 1, . . . , p),

ν ∼ IG(aν , bν), π ∼ Beta(aπ, bπ),

where γi ∈ {0, 1} (i = 1, . . . , p), and we choose υ0 ∼ Normal(0, σ2
0) for the intercept.

Finally, as recommended by Polson and Scott (2012), we choose i.i.d. half-Cauchy priors
for the τis as p0(τi) ∝ (1 + τ2i /dτ )

−(dτ+1)/2 (i = 1, . . . , p). In terms of the notation of
Section 3.1, a ZZ process with sub-sampling can be used to update ξ = (υ0, . . . , υp)
conditionally on the hyperparameters α = (γ1, . . . , γp, τ

2, π, ν), while the conditional
distributions for the hyperparameters can be sampled from using MCMC update steps.
Details are provided in Section 4.2 of the supplementary material. In contrast to the
random effects model of Section 4.1, the dimension of the hyperparameter α is more
than twice that of the parameter ξ in this case. We consider synthetic data with the
covariates being generated in the same way in Section 4.1. The responses Yi are sampled
from model (10) with “true” υ = υtrue ∈ R

p+1.

In a first experiment, we study the effect of varying mini-batch sizes and varying
switching rates η on the efficiency of the GZZ sampler. We choose a simple example
with n = 50 and p = 20, and ε = 0.4, and we make the “true” (υ1, . . . , υp) sparse
by setting only 20% of its components to be non-zero. We run the GZZ sampler for
various values of the switching rate for mini-batch size ten and plot the integrated auto-
correlation time of the slowest component of ξ in the left panel of Figure 4, and look
at the sensitivity to the mini-batch size in the right panel of Figure 4. The results are
similar to those in Section 4.1. In particular, the mixing improves to a certain point with
increasing switching rate, beyond which it tapers off, and for η ≤ 10−1 the integrated
auto-correlation time of the slowest component is again approximately proportional
to η−1. Increasing the mini-batch size does not have a noticeable effect on the mixing
for low switching rates and has a clear effect when the switching rate is sufficiently high.
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Figure 5: Comparison of effective sample size per epoch of data evaluation for Gibbs
zig-zag with sub-sampling and Hamiltonian Monte Carlo while using a shrinkage prior;
the left plot is for p = 102, and the right plot is for n = 102.

We compare the GZZ sampler to HMC-within-Gibbs. We consider p = 102 and
varying values of n. We also choose the “true” (υ1, . . . , υp) to be sparse with only 10%
of its components being non-zero. For each value of n, we choose ε such that ε × n is
fixed at 50. We tune HMC in the same way as in Section 4.1 and compare the effective
sample size per epoch of data evaluation of the GZZ sampler with sub-sampling and
HMC in the left plot of Figure 5. We observe that as n increases, the GZZ sampler
improves upon HMC; this is due to GZZ being faster due to sub-sampling.

We also perform experiments where we fix n = 102 and consider increasing values
of p. The “true” (υ1, . . . , υp) is again chosen to be sparse with only 10% of its components
being non-zero for each value of p. The right plot of Figure 5 displays the effective sample
size per epoch of data evaluation of the GZZ sampler with sub-sampling as compared
to HMC. We observe that HMC becomes more efficient as compared to GZZ as the
dimension p increases.

Finally, in a last set of experiments, we follow the same procedure as in Section 4.1
to emperically demonstrate the validity of a centeral limit theorem; see Figure 6.

4.3 Choice of rate parameter η

In the above reported numerical experiments, we observed that the integrated auto-
correlation time of the slowest mixing component is monotonically decreasing, approxi-
mately proportional to η−1 for sufficiently small η, and approximately constant for large
values of η. This observation is consistent with the large-deviation results for similar
systems (see Lu and Vanden-Eijnden, 2019) and can be used to derive the following
heuristic for the parametrization of η.

Let CGibbs and CZZ denote the total computational time incurred for updates of
the hyperparameters α and the parameters ξ during a simulation of the GZZ process,
respectively. We suggest choosing η such that CGibbs and CZZ are of comparable magni-
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Figure 6: QQ plots for the spike-and-slab prior.

tude (for example, such that rGibbs = CGibbs(CGibbs + CZZ)
−1 ≈ 0.2). This can be easily

achieved in practice since CGibbs ∝ ηT , and thus the computational time associated with
Gibbs updates can be easily controlled by varying the value of η.

The motivation behind the heuristic is as follows. Let ηopt > 0 denote a value of η
that results in maximal sampling efficiency (measured in terms of effective sample size
of the slowest mixing component per computational cost). If the determined value of
η is larger than ηopt, then it follows that the loss in sampling efficiency relative to an
optimal choice of η is bounded from above by rGibbs. Otherwise, if the determined value
of η is smaller than ηopt, then, since the decrease of the integrated auto-correlation time
is at most proportional to η−1, a further increase of η would not result in significant
increase of sampling efficiency.

5 Discussion

Piecewise deterministic Markov process (PDMP) methods present a promising alter-
native to traditional (reversible) MCMC algorithms for sampling from posteriors in
Bayesian inference. In this paper, we have combined one of the popular PDMPs, the
zig-zag process, with Gibbs-like updates. Other variants of the framework that incor-
porate different PDMPs can be straightforwardly implemented as well (see Section 3
of the supplementary material). PMDP-based sampling schemes have found limited ap-
plications in past years, mainly due to the fact that for many sampling problems the
construction of suitable tight upper bound is cumbersome, if not impossible. This in-
cludes the type of posterior sampling problems with hierarchical priors considered in
this article. Thus, the proposed framework contributes to extending the applicability of
PDMP-based sampling.

In terms of performance, our approach inherits both positive and negative features of
classical PDMP-based approaches. Exact sub-sampling allows for computationally very
efficient and asymptotically exact sampling in the presence of large data. However, as
also demonstrated for other PDMP sampling methods (see, for example, Quiroz et al.,
2021), sampling efficiency in comparison to HMC-within-Gibbs tends to deteriorate as
the dimensionality of the sampling problem increases relative to the number of obser-
vations.

There are many interesting follow-up directions. While we have focused on PDMP
schemes that preserve the exact target distribution, it could be useful to combine Gibbs-
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like updates with PDMP schemes that only approximately preserve the target distri-
bution like those in Pakman (2017); Cotter et al. (2020). Theoretically, it would be
interesting to study high-dimensional scaling limits of the GZZ process along the lines
of Bierkens et al. (2022); Deligiannidis et al. (2021). Moreover, the derivation of η-
dependent spectral estimates for the generator of the GZZ process using the Hypocoer-
civity framework by Dolbeault et al. (2015) (see Andrieu et al. (2021) for an adoption of
that framework to PDMPs) would be of interest in order to gain a better understanding
of the effect of parameter choices for η on sampling efficiency of the GZZ sampler.

Supplementary Material

Posterior computation with the Gibbs zig-zag sampler. Supplementary material
(DOI: 10.1214/22-BA1319SUPP; .pdf).
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