

University of Birmingham

Beyond formulas-as-cographs
Calk, Cameron; Das, Anupam; Waring, Tim

Citation for published version (Harvard):
Calk, C, Das, A & Waring, T 2020 'Beyond formulas-as-cographs: an extension of Boolean logic to arbitrary
graphs'.

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 12. Jan. 2023

https://birmingham.elsevierpure.com/en/publications/88074001-0fb1-4c22-ada1-0b61589d7221

ar
X

iv
:2

00
4.

12
94

1v
1

 [
cs

.L
O

]
 2

7
A

pr
 2

02
0

BEYOND FORMULAS-AS-COGRAPHS: AN EXTENSION OF

BOOLEAN LOGIC TO ARBITRARY GRAPHS

CAMERON CALK1, ANUPAM DAS2, AND TIM WARING3

Abstract. We propose a graph-based extension of Boolean logic called Boolean
Graph Logic (BGL). Construing formula trees as the cotrees of cographs, we
may state semantic notions such as evaluation and entailment in purely graph-
theoretic terms, whence we recover the definition of BGL. Naturally, it is con-
servative over usual Boolean logic.

Our contributions are the following:
(1) We give a natural semantics of BGL based on Boolean relations, i.e. it

is a multivalued semantics, and show the adequacy of this semantics for
the corresponding notions of entailment.

(2) We show that the complexity of evaluation is NP-complete for arbitrary
graphs (as opposed to ALOGTIME-complete for formulas), while en-
tailment is Πp

2
-complete (as opposed to coNP-complete for formulas).

(3) We give a ‘recursive’ algorithm for evaluation by induction the modular
decomposition of graphs. (Though this is not polynomial-time, cf. point
(2) above).

(4) We characterise evaluation in a game-theoretic setting, in terms of both
static and sequential strategies, extending the classical notion of posi-
tional game forms beyond cographs.

(5) We give an axiomatisation of BGL, inspired by deep-inference proof the-
ory, and show soundness and completeness for the corresponding notions
of entailment.

One particular feature of the graph-theoretic setting is that it escapes cer-
tain no-go theorems such as a recent result of Das and Strassburger [DS15,
DS16], that there is no linear axiomatisation of the linear fragment of Boolean
logic (equivalently the multiplicative fragment of Japaridze’s Computability
Logic or Blass Game Semantics for Multiplicative Linear Logic).

1. Introduction

Boolean logic, a.k.a classical propostional logic, lies at the heart of multiple
areas, including algebra, proof theory and computational complexity. Axiomatisa-
tions and proof systems for this logic generally manipulate Boolean formulas, built
from ¬,∨,∧ or some other adequate basis of connectives. These include the clas-
sical Hilbert-Frege style axiomatic systems and Gentzen style sequent and natural
deduction systems, as well as more recent methodologies such as Belnap’s display
logic, cf. [Jr.82], and Guglielmi’s deep inference, cf. [Gug15]. The latter, along with
Girard’s linear logic [Gir87], has also been responsible for a more graph-based view-
point on proof theory, for instance via proof nets [Gir87], expansion proofs [Mil84],
atomic flows [GG08] and combinatorial proofs [Hug06]. Nonetheless such systems

1Laboratoire d’Informatique de l’École Polytechnique, Palaiseau, 91120, France.
2University of Birmingham, Birmingham, B15 2TT, UK.
3University of Copenhagen, Copenhagen, 2100, Denmark.

Date: April 28, 2020.
1

http://arxiv.org/abs/2004.12941v1

2 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

still fundamentally deal with the same underlying structure, formulas, with various
annotations/decorations.

One viewpoint of formulas is to construe formula trees as the cotrees of cographs,
leading to the notion of ‘co-occurrence graph’ (in Boolean function theory, e.g.
[CH11b]) or ‘relation web’ (in structural proof theory, e.g. [Gug07]). This viewpoint
has been exploited several times in order to prove fundamental properties of Boolean
logic. A notable result is seminal theorem of Gurvich:

Theorem ([Gur77]). A Boolean function f is computed by a read-once formula if
and only if every minterm and maxterm of f has singleton intersection.

More recently, one the current authors, Das, proved with Strassburger that the
linear fragment of Boolean logic admits no polynomial-time axiomatisation (unless
coNP = NP), crucially exploiting the graph-theoretic viewpoint [DS15, DS16].
This result is important since it immediately implies the non-axiomatisability of
multiplicative fragments of Japaridze’s Computability logic, cf. [Jap05], and Blass’
game semantics for linear logic [Bla92], resolving a problem that was open since
the ’90s (see [Jap17]).

One feature of the graph-theoretic setting is that semantic notions such as eval-
uation and entailment may be framed in purely graph-theoretic terms, e.g. as ex-
ploited in [Gur77, DS16]. In particular, these characterisations are meaningful for
all graphs, not just the cographs that correspond to formulas. In this work we
further develop this idea into a bona fide logical system, which we call ‘Boolean
Graph Logic’ (BGL). We establish various fundamental properties of BGL, from the
viewpoints of complexity theory, game theory and proof theory, using graph theo-
retic tools throughout. BGL is conservative over usual Boolean logic (as expected),
and semantically it corresponds to a natural extension to Boolean relations rather
than Boolean functions. One particular feature of BGL is that entailment is much
more fine-grained, admitting interpolations that are impossible in usual Boolean
logic. An example of this is given in Section 3.3, where a minimal 10 variable linear
inference from [Das13] is decomposable in BGL.

At least one motivation of this work is the issue of (linearly) axiomatising the
linear fragment of Boolean logic. The impossibility result of [DS15, DS16] cru-
cially exploited the fact that the graphs corresponding to formulas are P4-free (i.e.
cographs). In particular, their critical Lemma 5.8 does not scale to arbitrary graphs.
It is natural to ask whether this impossibility result can be extended to BGl or
whether BGL might admit a linear axiomatisation. One way of looking at this
motivation is with the following question: can we establish a Boolean proof the-
ory without any structural behaviour, such as duplication and erasure? A positive
answer would be complementary to the established orthodoxy in structural proof
theory.

Our contributions are the following:

(1) We give a natural semantics of BGL based on Boolean relations, i.e. it is
a multivalued semantics, and show the adequacy of this semantics for the
corresponding notions of entailment.

(2) We show that the complexity of evaluation is NP-complete for arbitrary
graphs (as opposed to ALOGTIME-complete for formulas), while entail-
ment is Πp

2-complete (as opposed to coNP-complete for formulas).

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 3

(3) We give a ‘recursive’ algorithm for evaluation by induction the modular
decomposition of graphs. (Though this is not polynomial-time, cf. point
(2) above).

(4) We characterise evaluation in a game-theoretic setting, in terms of both
static and sequential strategies, extending the classical notion of positional
game forms beyond cographs.

(5) We give an axiomatisation of BGL, inspired by deep-inference proof theory,
and show soundness and completeness for the corresponding notions of
entailment.

1.1. History and related work. The ideas behind the Boolean Graph Logic
project were already mentioned in the aforementioned paper [DS16], where Section 9
proposed the basic notions of entailment as the possible basis of a proof theory on
arbitrary graphs. The research behind BGL properly began in 2016 when the
author Calk conducted his Bachelor’s thesis project under the supervision of the
author Das [Cal16]. This comprised mainly of the results from Sections 3 and 5.
The results of Section 4 were established by Das and have been circulated in private
correspondence [Das19]. The author Waring conducted his Master’s thesis under
the supervision of Das in 2019 [War19], comprising of the results of Sections 6 and
parts of 3 and 7, as well as supplementary material found in the appendix.

In parallel other groups of authors have become interested in the prospect of
logic and proof theory based on arbitrary graphs. In particular, Acclavio, Horne
and Strassburger have investigated a structural proof theory of arbitrary graphs,
from a linear logic perspective [AHS20]. They obtain a cut-elimination result for
a conservative extension of multiplicative linear logic, via the ‘splitting’ method
of deep inference proof theory. Their syntax of graphs is identical to ours, only
interpreting conjunction and disjunction by their multiplicative variants. However
their logic and BGL seem to be incomparable, at the level of validity, distinguishing
these two graph settings from their restriction to formulas. It would be interesting
to establish a graph level semantics of their logic to more fully understand the
differences between these two approaches; relevant work in this direction includes
recent work of Seiller and Nguyen, who developed a model of multiplicative linear
logic with a form of nondeterminism via ‘interaction graphs’ [NS18].

Beyond structural proof theory, there are several systems that operate with
objects other than formulas. These include circuit-based systems (e.g. [Jap05] and
[Jeř04]), algebraic systems (e.g. [BIK+94] and [CCT87]) and systems operating
with forms of decision diagrams (e.g. [AKV04] and [BDK20]). Of these, algebraic
systems are particularly interesting (and thematically relevant to this work) since
they extend the usual Boolean semantics conservatively to an arithmetic setting.

1.2. Perspectives on Boolean Graph Logic. Given that this article collects
various research carried out by the three authors, it is natural that different readers
will take interest in different parts. We give the mutual dependencies between
sections in Figure 1, and we give some possible readings of this article below:

• Complexity theoretic viewpoint: Sections 2, 3 and 4.
• Game theoretic viewpoint: Sections 2, 3, 5 and 6.
• Proof theoretic viewpoint: Sections 2, 3, 5 and 7.

It is our intention that this article be an introduction to BGL and serve as a
reference for later research.

4 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

2

3

Complexity theoretic
perspective

4 5

Game theoretic
perspective

6 Proof theoretic
perspective

7

Figure 1. Dependencies of sections in this paper, and the view-
points of Boolean Graph Logic given by different readings of the
paper. For Section 7, familiarity with the content of Section 5 is
helpful but not strictly necessary.

2. Preliminaries

Throughout this work let us fix a set V of variables that will be used in various
contexts, e.g. nodes of a graph, Boolean variables etc. This overloading is inten-
tional as we will often identify these objects later on. We write

(

X

2

)

for the set of
unordered pairs of a set X .

2.1. Graphs. In this work we deal with undirected finite graphs that are simple
and loopless. We specify a graph G by a pair (V,E) such that V is a finite set of

nodes or vertices, typically a subset of V , and E ⊆
(

V

2

)

the set of edges. The dual

or complement G of a graph G = (V,E) is
(

V,
(

V

2

)

\ E
)

. The size of a graph G,

written |G|, is just its number of vertices, i.e. |V |.
We will use standard graph-theoretic terminology, e.g. neighbours, adjacency,

cliques, stable sets, connected etc. Sometimes we will write V (G) (or E(G)) to
denote the set of vertices (respectively edges) of a graph G when it is not completely
specified.

For convenience, we will often (but not always) draw graphs with red solid lines to
indicate edges and green dotted lines to indicate non-edges, to allow for incomplete
information to be presented. I.e. we may say “ x y in G” to denote that
{x, y} ∈ E(G) and “ x y in G” to denote that {x, y} /∈ E(G).

Example 1 (Paths, cycles and complete graphs). Let Vn = {x1, . . . , xn}. We will
use the following graphs throughout this work.

• Pn := (Vn, {{x1, x2}, . . . , {xn−1, xn}}) is the n-path. For instance, here
are some (equivalent) representations of the 4-path, P4:

(1)
x1 x2 x3 x4

x2 x3

x1 x4

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 5

• Cn := Pn ∪ {xn, x1} is the n-cycle. For instance, here are the 4-cycle C4

and 5-cycle C5, respectively:

(2)

x2 x3

x1 x4

x1

x2

x3x4

x5

• Kn :=
(

Vn,
(

Vn

2

)

)

is the n-complete-graph. For instance here are the graphs

K3 and K5, respectively:

x1

x2

x3

x1

x2

x3x4

x5

Definition 2 (Subgraphs). A graph G is a subgraph of a graph H, written G ≤ H,
if V (G) ⊆ V (H) and E(G) ⊆ E(H). For X ⊆ V (G) we say that G ↾X :=
(

X,
(

X
2

)

∩ E(G)
)

is the subgraph of G induced by X. We will sometimes simply

write X instead of G↾X, as an abuse of notation, when the ambient graph G is
clear from context.

Definition 3 (Homomorphisms and freeness). For graphs G and H, we say that
ϕ : V (G) → V (H) is a homomorphism if {x, y} ∈ E(G) implies that {ϕ(x), ϕ(y)} ∈
E(H), or ϕ(x) = ϕ(y).1 If ϕ is a bijection then we say it is an isomorphism.

We say that G is H-free if no induced subgraph of G is isomorphic to H.

Remark 4 (Variants of homomorphisms). It would have been quite natural for
us to consider homomorphisms that further satisfy the following dual property: if
{ϕ(x), ϕ(y)} /∈ V (H) then {x, y} /∈ V (G), i.e. ϕ reflects green edges. This is
pertinent because of the notion of disjunctive entailment ⇒

∨
we introduce in the

next section, but we do not develop this notion of homomorphism formally.
We could rather consider homomorphisms that preserve more structure, for in-

stance ‘preserving green edges’ too. Such a property is satisfied by the ‘quotient
homomorphisms’ we discuss in Section 5. More detailed investigations studying the
links between logical phenomena and classes of homomorphisms have been carried
out in [RS19].

We will often speak about graphs up to isomorphism, when there is no ambiguity.

Example 5 (Cographs). A cograph is a graph for which every induced subgraph is
either disconnected or its complement is disconnected.

For instance, the P4 (cf. (1)) is not a cograph, but the C4 is (cf. (2)). Notice
that the C5 is not a cograph since it has a P4 as an induced subgraph. This means
that the C5 is not P4-free.

We have the following well-known characterisation of cographs, immediately
yielding an efficient algorithm for cograph-recognition.

1This caveat is because we deal with loopless graphs. However note that this convention does
not affect the notions of clique, stable set and connectedness that we rely on throughout this work.

6 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

Fact 6. G is a cograph if and only if it is P4-free.

Finally, we introduce some topological aspects of graphs that we use throughout.

Definition 7 (Cliques, stable sets and connectedness). For a graph G, a subset
of its nodes X ⊆ V (G) is a clique if G↾X is isomorphic to some Kn. If G↾X is
isomorphic to some Kn then we say that X is a stable set. We say that a clique
(stable set) is maximal in G if it cannot be extended to a larger clique (respectively
stable set). We write MC (G) (MS (G)) for the set of maximal cliques (respectively
stable sets) of G.

A graph G is connected if, for every x, y ∈ V (G), there is an induced subgraph
isomorphic to some Pn containing x and y. Otherwise G is disconnected. G is
co-connected if, for every x, y ∈ G, there is an induced subgraph isomorphic to
some Pn containing x and y. Otherwise G is co-disconnected.

Note, in particular, that a graph may be both connected and coconnected, in
particular the P4:

x2 x3

x1 x4

Notice that co-connectedness can be seen visually as ‘green’ connectedness, whereas
connectedness is ‘red’ connectedness.

The following result is immediate from the definitions of homomorphisms and
cliques:

Observation 8 (Homomorphisms preserve cliques). Let ϕ : V (G) → V (H) be a
homomorphism from a graph G to a graph H. Then, if S is a clique in G then
ϕ(S) is a clique in H.

Following on from Remark 4, for homomorphisms that reflect green edges we
have a dual result to that above: if T is stable in H then ϕ−1(T) is stable in G.
On the other hand if green edges are preserved then so are stable sets.

Notice, however, that maximality of a clique is not preserved by a homomor-
phism. A very simple example is given by the map below:

ϕ : x

y0

y1

7→ x y

by the homomorphism {x 7→ x, y0 7→ y, y1 7→ y}. Here the maximal clique {y0, y1}
on the LHS is mapped to the clique y on the RHS, but this is clearly not maximal.
This example also shows that, a priori, stable sets are not reflected by homomor-
phisms: {y} is stable on the RHS but its preimage {y0, y1} is clearly not stable on
the LHS.

2.2. Boolean logic. We will consider positive Boolean formulas (henceforth simply
formulas), built as follows:

• Any variable x ∈ V is a formula;
• If A and B are formulas then so is (A ∨B);
• If A and B are formulas then so is (A ∧B).

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 7

We call a formula linear or read-once if each variable occurs at most once in
it.2 Formulas compute Boolean functions in the usual way. We identify Boolean
assignments V → {0, 1}, with subsets of V as expected: α : V → {0, 1} is identified
with the subset {x ∈ V : α(x) = 1} ∈ P(V). In this way, a Boolean function is a
map P(V) → {0, 1}. Note that, throughout this work, we assume that the support
of assignments is finite, so that only finite subsets of variables need be considered.

Formally, for a formula A, we write A(X) for its Boolean output on input X ,
defined recursively as follows:

x(X) :=

{

1 x ∈ X

0 otherwise

(A ∨B)(X) := max(A(X), B(X))
(A ∧B)(X) := min(A(X), B(X))

In our setting, where we do not admit negation, the functions computed by for-
mulas are monotone, i.e. if X ⊆ Y then A(X) ≤ A(Y). For us this is sufficiently
general since any Boolean tautology A(x1, . . . , xn, x1, . . . xn), with all literals dis-

played, is equivalent to a monotone implication
n
∧

i=1

(xi ∨ x
′
i) ⇒ A(~x, ~x′). Note that

if A is read-once then the resulting monotone implication is a linear inference, i.e.
both the LHS and RHS are read-once on the same variables.

More generally, we may speak of arbitrary Boolean functions f : P(V) → {0, 1}
being monotone if X ⊆ Y =⇒ f(X) ≤ f(Y). Again, since we are only considering
finite Boolean functions, such functions f are determined by their actions on some
finite set of variables Vn = {x1, . . . , xn} that they ‘depend on’.

We introduce now a standard semantic abstraction of monotone Boolean func-
tions, which we will later link to graph-theoretic notions.

Definition 9 (Minterms and maxterms). Let f : P(V) → {0, 1} be a monotone
Boolean function.

• A minterm of f is a minimal set X ⊆ V such that f(X) = 1.
• Dually, a maxterm of f is a minimal set X such that f(X) = 0.

Since we identify formulas with the monotone Boolean functions they compute, we
may also speak of the minterms and maxterms of a formula.

Notice that minterms correspond to the terms of the irredundant disjunctive
normal form of a function, while maxterms correspond to the clauses of the irre-
dundant conjunctive normal form of a function (see, e.g., [CH11a]). Consequently
we have the following (well-known) characterisations of evaluation and entailment
in terms of their minterms and maxterms:

Proposition 10 (Characterisations of evaluation). For a monotone Boolean func-
tion f : P(V) → {0, 1}, we have the following:

(1) f(X) = 1 if and only if there is a minterm S of f such that S ⊆ X.
(2) f(X) = 0 if and only if there is a maxterm T of f such that T ∩X = ∅.

Proposition 11 (Characterisations of entailment). For a monotone Boolean func-
tion f : P(V) → {0, 1}, the following are equivalent

(1) f ≤ g, i.e. if f(X) = 1 then g(X) = 1.

2The nomenclature ‘linear’ comes from term rewriting, e.g. [Ter03], where as ‘read-once’ comes
from complexity theory and Boolean function theory, e.g. [CH11a].

8 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

(2) For each minterm S of f there is a minterm S′ of g such that S′ ⊆ S.
(3) For each maxterm T of g there is a maxterm T ′ of f such that T ′ ⊆ T .

Both results are folklore, but proofs may be found in, e.g., [DS16], along with
several examples. Naturally, the book [CH11a] also constitutes good reference
material.

2.3. Relation webs. Now we introduce a useful abstraction of Boolean formulas,
that relates them (and their semantics) to the graph theoretic notions we introduced
earlier.

Definition 12 (Least common connectives and relation webs). For a linear formula
A containing (distinct) variables x and y, the least common connective (lcc) of
x and y in A is the main connective, ∨ or ∧, of the smallest subformula of A
containing both x and y.

The relation web, or simply web, of A, written W(A), is the graph defined as
follows:

• The nodes of W(A) are the variables of A.
• The edges of W(A) are those {x, y} where the lcc of x and y is ∧ in A.

Relation webs are also known as ‘co-occurrence’ graphs, though we follow the
nomenclature from structural proof theory here.

Example 13. The formula ((v ∨ (w ∧ x)) ∨ y) ∧ z has the following relation web:

(3)

z

v

wx

y

Notice that we can also see the web as drawing a ‘red edge’ between variables whose
lcc is ∧ and a ‘green edge’ between variables whose lcc is ∨.

The graph above is also the relation web of, e.g., z ∧ (((x ∧ w) ∨ y) ∨ v).

In fact, webs represent precisely the quotients of linear formulas modulo asso-
ciativity and commutativity of ∨ and ∧:

Fact 14. W(A) = W(B) if and only if A and B are equivalent modulo the following
equational theory:3

A ∨B =AC B ∨ A
A ∧B =AC B ∧ A

A ∨ (B ∨C) =AC (A ∨B) ∨ C
A ∧ (B ∧C) =AC (A ∧B) ∧ C

This fact is well-known and may be proved by induction on the length of a
=AC -derivation. The graph classification of relation webs is well-known:

Fact 15. Any relation web is a cograph. Conversely, any cograph (with nodes in
V) is the web of some linear formula.

This is readily proved by induction on the size of graphs, using either the un-
derlying formula structure of a web or the fact that cograph-ness is closed under
taking induced subgraphs.

3As usual, equational theories operate under ‘deep inference’, i.e. if A =AC A′ then B[A] =AC

B[A′] for any formula context B[·].

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 9

Notice that the above fact also gives us another characterisation of relation webs
in terms of forbidden induced subgraphs:

Corollary 16 (of Proposition 6). Any relation web is a P4-free. Conversely, any
P4-free graph (with nodes in V) is the web of some linear formula.

This alternative characterisationmakes it abundantly clear that the relation webs
really only span a small subset of all possible graphs: almost all graphs contain P4s,
in a standard sense, by a simple counting argument:

Remark 17 (Counting cographs). Appealing to the probabilistic method, note that
the uniform distribution on graphs (of fixed size) is induced by independently as-
signing edges to pairs of variables with probability 1

2 . In this case, for any fixed
four nodes, the chance that they do not form a P4 is some fixed ε < 1. Thus for
a graph with, say, 4n nodes, the chance there is no P4 is bounded above by εn by
partitioning the nodes into sets of 4 (since P4-ness of disjoint sets are independent
events). Therefore the class of cographs, as we increase the number of nodes, is
sparse in the class of all graphs.

As we have mentioned the point of this work is to study an extension of the
notion of web to arbitrary graphs. In order to do so we will need characterisations
of logical concepts in terms of graphs. Namely, we have the following results from
[DS15, DS16]:

Proposition 18 (Characterisation of maximal cliques and stables sets of webs).
We have the following, for any linear formula A:

(1) S is a minterm of A if and only if it is a maximal clique of W(A).
(2) T is a maxterm of A if and only if it is a maximal stable set of W(A).

This result is proved by a routine induction on the structure of the formula A.
This gives us purely graph theoretic characterisations of evaluation and entailment,
thanks to Propositions 10 and 11, which will induce the graph logic we define in the
next section. Notice also that this means that distinct webs correspond to distinct
Boolean functions, since two webs are the same just if they have the same maximal
cliques and stable sets, just if they have the same minterms and maxterms, just if
they compute the same Boolean function. Since we also have that webs quotient
formulas exactly by associativity and commutativity of ∨ and ∧, cf. Fact 14, we
also have the following well-known result:

Corollary 19 (E.g., [DS16]). Read-once/linear formulas compute the same Boolean
function if and only if they are equivalent modulo =AC .

Example 20. Revisiting Example 13, notice that the two formulas whose web is (3)
are equivalent modulo =AC , so let us write f for the Boolean function they compute.
Notice that X = {w, y, z} contains the maximal clique {y, z}, and so f(X) = 1.
Dually, Y = {v, w, y} is disjoint from the stable set {z}, and so f(Y) = 0. Both
of these facts are readily verifiable by computing the output of f using the formulas
from Example 13.

Example 21 (Switch and medial). Here are two common rules from deep inference
proof theory [BT01]:

s : x ∧ (y ∨ z) → (x ∧ y) ∨ z
m : (w ∧ x) ∨ (y ∧ z) → (w ∨ y) ∧ (x ∨ z)

10 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

In terms of relation webs, the two rules above induce the following action on graphs:

s : x

y

z

→ x

y

z

m :

w x

y z

→

w x

y z

We may verify that these rules are indeed sound by checking that every maximal
clique on the LHS has a subset that is a maximal clique on the RHS, under Proposi-
tions 18 and 11. For s the two maximal cliques {x, y} and {x, z} are sent to {x, y}
and {z} respectively. For m the two maximal cliques {w, x} and {y, z} are sent to
themselves. Notice that s removes edges and reduces the size of cliques, whereas m

adds edges but does not increase the size of any maximal cliques, it only adds new
ones, here {w, z} and {x, y}.

We may also verify soundness using the dual condition, that every maximal stable
set of the RHS has a subset maximally stable in the LHS. The argument is similar
and we leave the details to the reader.

Several other examples on viewing evaluation and entailment in the setting of
relation webs can be found in [DS16].

3. Boolean graph logic

We will now consider arbitrary graphs, not just the cographs, and study the
notions of evaluation and entailment induced on them by the characterisations of
the previous section. We call the resulting framework Boolean Graph Logic (BGL).

We present the basic logic in the next subsection, give some properties of eval-
uation and entailment in BGL in Subsection 3.2. We present a case study of these
concepts in action in Subsection 3.3, and we conclude in Subsection 3.4 by char-
acterising the graphs which compute deterministic and total Boolean relations, i.e.
the Boolean functions.

We will only present the case of ‘linear’ graphs here, where each variable is
associated to at most one node. This is sufficiently general for all of our theoret-
ical development, but we nonetheless give an extension to the nonlinear case in
Section 7.

3.1. Evaluation and entailment. While formulas compute Boolean functions,
our extension to graphs has a natural semantics based on Boolean relations.

Definition 22 (Evaluation). We construe graphs (with vertices in V) as binary
relations P(V)× {0, 1}, defined as follows:

• G(X, 0) if ∃T ∈ MS (G).X ∩ T = ∅.
• G(X, 1) if ∃S ∈ MC (G).X ⊇ S.

Notice that, under the results of the previous section, we have that, for any linear
formula A and X ⊆ V :

• W(A)(X, 0) iff A(X) = 0; and,
• W(A)(X, 1) iff A(X) = 1.

Thus the notion of evaluation above is indeed conservative over usual evaluation on
formulas.

One immediate observation is that while evaluation is total and deterministic
for cographs, since they are the webs of linear formulas which compute Boolean

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 11

functions, this is no longer necessarily the case for arbitrary graphs. In general
they compute Boolean relations which might be nondeterministic, partial, or both.
Let us consider an example of evaluation being nonfunctional, known already from
[DS16].

Example 23 (Evaluating P4). Let us again consider the following graph G that is
isomorphic to the P4:

w x

y z

We have that G({w, y}, 1), since {w, y} ∈ MC (G), and G({x, y}, 0), since {x, y} is
disjoint from {w, z} ∈ MS (G). It is not difficult to see that G is indeed functional
on these assignments, i.e. it is not the case that G({w, y}, 0) or G({x, y}, 1).

On the other hand, we have that both G({w, x}, 0) and G({w, x}, 1), since {w, x} ∈
MC (G) and {w, x} is disjoint from {y, z} ∈ MS (G). So G is not deterministic on
this assignment. Furthermore, we have that neither G({y, z}, 0) nor G({y, z}, 1),
by inspection of the maximal cliques and maximal stable sets of G. So G is not
total on this assignment.

Entailment in BGL is similarly induced by our previous characterisations:

Definition 24 (Entailment). We define binary relations ⇒
∧

and ⇒
∨

on graphs (with

vertices in V) as follows:

• G⇒
∧
H if ∀S ∈ MC (G).∃S′ ∈ MC (H).S′ ⊆ S.

• G⇒
∨
H if ∀T ∈ MS (H).∃T ′ ∈ MS (G).T ′ ⊆ T .

Again, the richer setting of arbitrary graphs means that previously equivalent
notions of entailment no longer coincide, which is why we distinguish ⇒

∨
and ⇒

∧
. Let

us consider the following example, which partly appeared in [DS16], to highlight
the difference between the two forms of entailment.

Example 25 (5-cycle and 5-path). We have the following relationships between P5

and C5:
v

w

xy

z

6⇒
∨

⇒
∧

⇐
∨

6⇐
∧

v

w

xy

z

The argugments are as follows:

• 6⇒
∨

since {v, x} and {z, x} are maximally stable on the RHS, but on the LHS

only the maximal stable set {v, x, z} concerns these three nodes.
• ⇒

∧
since every maximal clique of the LHS is just an edge which is preserved

in the RHS.
• ⇐

∨
by sending {v, x, z} to {v, x} or {z, x}, and every other maximal stable

set of the LHS to itself in the RHS.
• 6⇐

∧
since the maximal clique {v, z} on the RHS has no subset that is a

maximal clique on the LHS.

12 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

Despite the fact that we now have two notions of evaluation and two notions of
entailment, they are still ‘compatible’ in a natural sense. Before proving this, we
make the following remark to simplify proofs throughout this work.

Remark 26 (Duality). Many of the arguments in this work follow by ‘duality’. By
this we mean not only that an argument is similar to a previous one, but further
that there is a formal reduction. Such reduction is exhibited by the following facts:

• G(X, 1) if and only if G(X, 0).
• G⇒

∧
H if and only if H ⇒

∨
G.

The proofs are routine and left to the reader.

Theorem 27 (Adequacy). For graphs G and H, we have:

(4) G⇒
∧
H iff ∀X.(if G(X, 1) then H(X, 1))

(5) G⇒
∨
H iff ∀X.(if H(X, 0) then G(X, 0))

Proof. We prove only (4), the argument for (5) being dual.
For the left-right implication, suppose G⇒

∧
H and G(X, 1). Then there is some

S ∈ MC (G) that is contained in X . Since G⇒
∧
H , there is some S′ ∈ MC (H) s.t.

S′ ⊆ S and so also S′ ⊆ X , so we indeed have that H(X, 1).
For the right-left implication, suppose the RHS and let S ∈ MC (G). Clearly we

have that G(S, 1), since S ⊆ S, and so by assumption we have that H(S, 1). So
there is some S′ ∈ MC (H) with S′ ⊆ S. Since the choice of S was arbitrary, we
may indeed conclude that G⇒

∧
H , as required. �

The above result shows that evaluation essentially yields a Tarskian-style seman-
tics for entailment by reduction to classical material implication.

3.2. Some properties of evaluation and entailment. As we saw in the previ-
ous subsection, there are graphs that compute nonfunctional relations, for instance
the P4. However we also have examples of graphs that are deterministic but not
total (i.e. partial Boolean functions), and total but not deterministic (i.e. Boolean
multifunctions), as we see in the following two examples.

Example 28 (Determinism of the Bull). While P4 is not deterministic, it has an
extension that is deterministic by adding a ‘settling’ node:

v

x y

w z

The new node v is called the ‘nose of the bull’, which is particularly important in
so-called ‘prime graphs’, that we discuss in Section 5.

The Bull computes a deterministic relation, in the sense that it never evaluates
to both 0 and 1. We leave it to the reader to verify the cases, but this fact is also
an immediate consequence of Proposition 32 later in this section.

The Bull does not compute a total relation since, by taking the assignment
{v, x, y}.

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 13

Example 29 (Totality of the 5-cycle). Let us consider the 5-cycle:

v

w

xy

z

Notice that C5 has the special property that it is isomorphic to its dual, i.e. C5
∼= C5.

Its maximal cliques and maximal stable sets are just pairs.
In fact, the C5 computes a total Boolean relation. To see this, let us consider

the possible assignments X: if |X | ≤ 2 then there is always a maximal stable set
disjoint from X, whereas if |X | ≥ 3 then there is always a maximal clique contained
in X.

However, the C5 is not deterministic: for instance, writing X = {v, x, z}, we
have that C5(X, 1) since X contains the maximal clique {v, z}, but also C5(X, 0)
since X is disjoint from the maximal stable set {w, y}.

We point out that the relational properties of totality and determinism behave
well under duality:

Observation 30. G is deterministic (or total) if and only if G is deterministic
(respectively total).

This follows immediately from Remark 26 by dualising assignments.
One interesting observation is that the class of deterministic graphs coincides

with a well-studied class in graph theory, namely the CIS graphs, where every
maximal clique and maximal stable set intersect [ABG06b].

Definition 31 (CIS graphs). A graph G is CIS if ∀S ∈ MC (G).∀S ∈ MS (G).S ∩
T 6= ∅

Notice that cliques and stable sets may intersect at most once, so the above
definition is equivalent to requiring that every maximal clique and maximal stable
set have singleton intersection.

It is not hard to see the following:

Proposition 32. A graph G is deterministic if and only if it is CIS.

Proof. For the left-right implication we prove the contrapositive. Suppose S ∈
MC (G) and T ∈ MS (G) such that S ∩ T = ∅. Then G(S, 0) since S ⊆ S and also
G(S, 1) since S ∩ T = ∅.

For the right-left implication we also prove the contrapositive. Suppose G(X, 0)
and G(X, 1) for some assignment X . Thus there is some S ∈ MC (G) and T ∈
MS (G) with S ⊆ X and T ∩X = ∅, and so S ∩ T = ∅. �

As we saw in Example 28, adding a ‘settling node’ was a way to force the CIS
property for the P4. However, every P4 configuration in a graph being ‘settled’
does not suffice to conclude that the graph is CIS. Indeed, consider the following

14 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

example from [ABG06a]:

x′

x y

y′

z

z′

This graph contains three P4 configurations, all of which are ‘settled’, but {x, y, z}
is a maximal clique which is disjoint from the maximal stable set {x′, y′, z′}. Indeed,
characterising CIS graphs is not easy; it is an open problem whether they can be
recognised in polynomial time [ABG06a] pp. 2 (though obviously CIS is in coNP).
Therefore, deciding whether a graph computes a deterministic relation is a priori
computationally difficult.

It seems more difficult to establish a characterisation of the total graphs by
structural graph theoretic properties. This is because the definition of totality a
priori is more logically complex that that of determinism, a priori a Πp

2-property.
We do not know of any better upper bound for recognising totality.

Determinism and totality of a graph also has an effect on when the two notions
of entailment, ⇒

∧
and ⇒

∨
coincide:

Proposition 33. If G is deterministic and H is total, then:

(6) if G⇒
∨
H then G⇒

∧
H

(7) if H ⇒
∧
G then H ⇒

∨
G

Proof. We rely on the adequacy of our relational semantics, Theorem 27. For (6)
we proceed as follows:

G⇒
∨
H ∴ if H(X, 0) then G(X, 0) by adequacy

∴ if ¬G(X, 0) then ¬H(X, 0) by contraposition
∴ if G(X, 1) then ¬H(X, 0) by determinism of G
∴ if G(X, 1) then H(X, 1) by totality of H
∴ G⇒

∧
H by adequacy

The proof of (7) is similar. �

Of course, an immediate consequence of the above result is that, on the class of
deterministic and total graphs, ⇒

∧
=⇒

∨
. This is subsumed by our later characteri-

sation of the graphs computing Boolean functions as just the P4-free ones, i.e. the
relation webs.

It would be interesting to establish some sort of converses to the above result,
determining whether a graph is total or deterministic based on how it interacts
with respect to the two notions of entailment. We leave this for future work.

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 15

3.3. Case study: finer interpolation of linear inferences. At least one ad-
vantage of Boolean Graph Logic is that we have a finer notion of entailment that
in turn admits a richer notion of ‘proof’. We discuss a particular example in this
subsection.

From [Das13] we have that the following is a valid implication:

(8)
(u ∨ (v ∧ v′)) ∧ (w ∨ x) ∧ (w′ ∨ x′) ∧ ((y ∧ y′) ∨ z)

⇒ (u ∧ (w ∨ y)) ∨ (w′ ∧ y′) ∨ (v′ ∧ x′) ∨ ((v ∨ x) ∧ z)

In terms of relation webs, the implication above corresponds to the following en-
tailments on graphs,
(9)

u

v

v′

w

x

w′

x′

y

y′
z ⇒

⋆ u

w

y

w′

y′

v′

x′

v

x

z

for ⋆ ∈ {∨,∧}.
This is a minimal linear inference in the sense that no linear formula (over

the same variables) simultaneously implies the RHS and is implied by the LHS.
However, in our graph-theoretic setting, we may indeed ‘interpolate’ this inference
thanks to the following intermediate graph:

(10)

w u y

w′

y′

v′

x′

v z x

Note that we have indicated only edges, not non-edges, with black lines, for clarity.
(10) contains several P4s, e.g. {w, u, y, y

′} and {y, y′, v′, v}. It does not compute a
deterministic relation since {w, y, v′, x} ∈ MS (10) is disjoint from {v, z} ∈ MC (10).
On the other hand:

Claim 34. (10) computes a total relation.

Proof. Let X be an assignment such that ¬(10)(X, 1), and let us try to construct
a maximal stable set T disjoint from it. Note that X cannot contain all of S =
{y, w′, y′} ∈ MC (10) and all of S′ = {v′, x, v} ∈ MC (10), so let b ∈ S and b′ ∈ S′

be distinct nodes with b, b′ /∈ X .
Similarly, we must have that X does not contain one of w or u, say a, and that

X does not contain one of z or x, say c.
In fact, all possible values of a, b, b′, c yield a maximal stable set, which by con-

struction is disjoint from X . Note in particular that, if a = u then b 6= y, otherwise
we would have (10)(X, 1), and if c = z then b′ 6= v, for the same reason. Thus
(10)(X, 0) as required. �

As we mentioned, (10) indeed interpolates the inference from (8), in fact for
both versions of entailment, as we will now show. The entailments LHS (9) ⇒

∧
(10)

and (10) ⇒
∨

RHS(9) require quite a large case analysis, due to the high number of

maximal cliques in LHS (9) and the high number of maximal stable sets in RHS(9).
However the other two entailments are much easier to prove directly:

16 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

Proposition 35. We have that LHS(9) ⇒
∨

(10) and (10) ⇒
∧

RHS(9).

Proof. For LHS (9) ⇒
∨

(10), we describe how to map each maximal stable set T of

(10) to a subset that is maximally stable in LHS(9). We have the following cases:

• If T ∋ u then we map it to {u}.
• if T ∋ z then we map it to {z}.
• Otherwise T must contain w and x, so we may map it to {w, x}.

For (10) ⇒
∧

RHS(9), we describe how to map each maximal clique of (10) to a

subset that is a maximal clique of RHS(9):

• {w, u}, {u, y}, {v, z} and {z, x} are all mapped to themselves.
• {y, w′, y} and {w′, y′, v′} are mapped to {w′, y′}.
• {y′, v′, x′} and {v′, x′, v} are mapped to {v′, x′}. �

Now, since (10) computes a total relation, by Claim 34 above, we may conve-
niently appeal to Proposition 33 to immediately recover the other two entailments.

Corollary 36. We have both of the following:

• LHS (9) ⇒
∧

(10) ⇒
∧

RHS(9)

• LHS (9) ⇒
∨

(10) ⇒
∨

RHS(9)

We point out that we only used the fact that LHS(8) and RHS(8) are deter-
ministic to obtain the other two entailments, not that they are total. It would be
interesting to develop this case study further, establishing a maximal sequence of
graphs interpolating (9). This is also related to the question of finding the ‘minimal
linear inference’, cf. [Sip12]. Such development, however, is beyond the scope of
this work.

3.4. Deterministic and total graphs are P4-free. We finish this section with
a somewhat surprising result: the only graphs that are both deterministic and
total (i.e. Boolean functions) are already P4-free, i.e. they are the relation webs of
formulas.

Theorem 37. A graph is deterministic and total if and only if it is P4-free.

One proof of this result is by a reduction to a classical result of Gurvich:

Theorem 38 ([Gur77]). Suppose f : P(V) → {0, 1} is monotone and depends on
variables Vn = x1, . . . , xn. f is computed by a read-once formula (over Vn) if and
only if, for every minterm S of f and every maxterm T of f , |S ∩ T | = 1.

We give the reduction of Theorem 37 to Theorem 38 here, but a self-contained
proof can be found in the appendix, Section A.

Proof of Theorem 37. Let G be a deterministic and total graph, and define the
following two Boolean functions:

TG(X) :=

{

1 G(X, 1)

0 otherwise
FG(X) :=

{

0 G(X, 0)

1 otherwise

Since G is deterministic and total, we have that TG and FG are actually the same
Boolean function, say g. What is more, g may be written simultaneously as the

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 17

following (irredundant) DNF and CNF:
∨

S∈MC(G)

∧

S = TG = g = FG =
∧

T∈MS(G)

∨

T

Thus the minterms of g are just the maximal cliques of G and the maxterms of g
are the maximal stable sets of G. Since cliques and stable sets may only intersect at
most once (by simplicity of the graph), and minterms and maxterms must intersect
at least once (by determinism of functions), we have from Gurvich’s theorem above
that g is computed by some read-once formula, say A. But now we must have that,
indeed W(A) = G, since otherwise they would have different maximal cliques and
stable sets, and so compute different relations. Thus G is the web of some formula
and, indeed, P4-free. �

4. Computational Complexity of Boolean Graph Logic

In this section we study the computational complexity of evaluation and en-
tailment in BGL. In particular we show that evaluation (to either 0 or to 1) is
NP-complete and entailment (either disjunctive or conjunctive) is Πp

2-complete. In
contrast, for Boolean formulas evluation is ALOGTIME-complete and entailment
is coNP-complete, suggesting that BGL is much more computationally rich than
Boolean logic.

4.1. Preliminaries on computational complexity. We will assume prior knowl-
edge of deterministic and (co-)nondeterministic Turing and oracle machines. For a
language L we write NP(L) for the class of languages accepted by a nondetermin-
istic Turing machine in polynomial time with access to an oracle for L. For a class
of languages C we write NP(C) for

⋃

L∈C

NP(L). From here recall that the levels of

the polynomial hierarchy are defined as follows:

• Σp
0 = Πp

0 = P.
• Σp

i+1 = NP(Σp
i).

• Πp
i+1 = coΣp

i+1.

Of course, Σp
1 is just NP and Πp

1 is just coNP.

Let us write ~∃CNF for the class of true (closed) quantified Boolean formulas

(QBFs) of the form ∃~x.ϕ, where ϕ is a CNF. Similarly we write ~∀~∃CNF for the
class of true (closed) quantified Boolean formulas (QBFs) of the form ∀~x.∃~y.ϕ,

where ϕ is a CNF. It is well-known that ~∃CNF is NP-complete (being the same as

SAT), and that ~∀~∃CNF is Πp
2-complete (e.g. see [SU08]).

4.2. Complexity of entailment. We show that the relations ⇒
∧

and ⇒
∨

are com-

plete for Πp
2, i.e. coNP(NP).

Theorem 39. ⇒
∧

and ⇒
∨

are Πp
2-complete.

Proof. We reduce ~∀~∃CNF to ⇒
∨
, whence the case for ⇒

∧
follows by duality. Fix an

instance ϕ,

∀~x.∃~y.

N
∧

n=1

∨

Cn

18 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

where each Cn is a set of literals over the variables ~x, ~y. Write ϕ0 for the matrix of

ϕ, i.e.
N
∧

n=1

∨

Cn.

Remark 40. Without loss of generality, we assume ~x and ~y are disjoint and that
each xi and yi occurs both positively and negatively in ϕ (otherwise replace it by 0
or 1 appropriately). Furthermore, we suppose that that each Cn contains some xi
and some yj (i.e. a universally bound variable and an existentially bound variable),
either positively or negatively. This is because if this were not the case for some
clause C, then it could equivalently be replaced by clauses C ∪ {z} and C ∪ {¬z},
for any variable z. Such a procedure at most multiplies the size of ϕ0 by 2.

Now we define the graphs G = (V,EG) and H = (V,EH) as follows:

• The set V of vertices of both G and H is the set of literal occurrences in
ϕ0. Formally, we write V = {xji , x

k
i , y

j
i , y

j
i}i,j , where j identifies the specific

occurrence of each literal and i, j range appropriately.
• The set EG of edges of G consists of:

– an edge between any two nodes in the same clause (so that each Cn is
a clique); and,

– an edge between any two nodes of the form yji and yki (i.e. any dual
literal occurrences that are existentially bound).

• EH consists only of edges between nodes of the form xji and xki (i.e. any
dual literal occurrences that are universally bound).

We claim that G ⇒
∨
H if and only if ϕ is true, as required. First suppose that

G⇒
∨
H and let X ⊆ ~x be an assignment to the xi’s. Let X1 ⊆ V identify the true

literal occurrences under X , i.e.:

(11) X1 := {xji : xi ∈ X} ∪ {xki : xi /∈ X}

Now define T to be the set of all ~y-literal occurrences and the true ~x-literal occur-
rences under X , i.e.:

T = {yji }i,j ∪ {yki }i,k ∪X1

Notice that T is a stable set in H by definition of EH and the fact that X1

does not contain dual literals. Furthermore it is maximally stable since the only
remaining nodes are ~x-literals that are false under X , and so have an edge to some
true literal occurrence in X1 (cf. Remark 40).

Thus, since G ⇒
∨
H , there is a set T ′ ⊆ T that is maximally stable in G. Now,

notice that,

(1) By maximality, T ′ must intersect every Cn, since there is some xji or xki in
each Cn, by Remark 40 and by the definition of EG; and,

(2) T ′ cannot contain any dual pair ylj and ymj , by the definition of EG.

Thus T ′ induces a consistent assignment Y ⊆ ~y to the yis (just take the set of
~y-literals in T ′), by 2, that further ensures that there is a true literal in each Cn

under X,Y , by 1, as required.
Conversely, suppose that ϕ is true and let T ∈ MS (H). By the definition of

EH , T induces a consistent assignment X ⊆ ~x to the xis in the natural way, so
let Y ⊆ ~y be an assignment to the yis obtained by the truth of ϕ, i.e. such that
ϕ0(X,Y) is true. Let X1 be defined as above in (11) and Y1 be defined similarly, i.e.
X1 ⊆ V and Y1 ⊆ V consist of the true ~x-literal occurrences and ~y-liter occurrences,

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 19

respectively, under X and Y , respectively. Note that X1 ∪ Y1 must intersect each
Cn, since ϕ0(X,Y) is true.

Now we are almost able to define an appropriate subset of T that is maximally
stable in G, but for one technicality: X1 ∪ Y1 could intersect some clause Cn twice,
i.e. there could be two true literals in Cn.

4 For this reason, we rather set T ′ to be
an arbitrary subset of X1 ∪ Y1 that intersects each Cn exactly once:5

T ′ := {least literal in (X1 ∪ Y1) ∩Cn : 0 < n ≤ N}

Now we have the following:

• T ′ is stable in G, since it only contains one node in each Cn and is consistent
with the truth assignment Y to the yis, cf. the definition of EG; and,

• Furthermore T ′ is maximally stable in G, since it already intersects each
Cn.

We have T ′ ⊆ T (since T contains, in particular, all ~y-literal occurrences), so we
indeed have that G⇒

∨
H , as required. �

Remark 41. In [Str12] Straßburger showed that the linear fragment of Boolean logic
is coNP-complete, by rewriting every Boolean tautology ∀~x.ϕ as a linear inference
∀~x.(ϕ ⊃ ψ), where ϕ and ψ are monotone and linear. It would be natural to try use
this approach here to show Πp

2-completeness of entailment, but we point out that
such an approach could not work, unless polynomial hierarchy collapses to coNP.

This is because the set of true ~∀~∃-formulas whose matrices are even monotone
implications, let alone linear, is already in coNP. To see this, suppose otherwise,
and consider a closed formula:

(12) ∀~x.∃~y.(ϕ(~x, ~y) ⊃ ψ(~x, ~y))

where ϕ and ψ are monotone. We have the following:

∃~y.(ϕ(~x, ~y) ⊃ ψ(~x, ~y)) ⇐⇒ ∀~yϕ(~x, ~y) ⊃ ∃~yϕ(~x, ~y) by De Morgan equivalences

⇐⇒ ϕ(~x,~0) ⊃ ψ(~x,~1) by monotonicity

Thus we have reduced the truth of (12) to the truth of ∀~x.(ϕ(~x,~0) ⊃ ψ(~x,~1)), which
is, of course, in coNP.

4.3. Complexity of evaluation. By adequacy, Theorem 94, and unwinding the
definition of evaluation, we already have as a corollary of Theorem 39 that there can-
not be a polynomial-time algorithm for evaluation, unless the polynomial-hierarchy
collapses to coNP. In fact we even have that there cannot be such an algorithm
in coNP ∩NP, for the same reason.

In this section we go further and show that evaluation is in fact NP-complete.
This suggests that there is no ‘local’ vertex-contraction style procedure for evalua-
tion, unless P = NP.

Theorem 42. The graph evaluation problems, i.e. G(X, 0) and G(X, 1), are NP-
complete.

4We could have avoided this issue by working with generalisations of exactly-one-in-three-SAT,
but this is not standard and is beyond the scope of this work.

5We assume there is some fixed established ordering of the literals.

20 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

Proof. We reduce ~∃CNF (i.e. SAT) to graph evaluation, namely the problemG(X, 0).
(Again, the case of G(X, 1) is obtained by duality).

Let ϕ be a formula ∃~x.
N
∧

n=1

∨

Cn where each Cn is a set of literals over the

variables ~x. Write ϕ0 for the matrix of ϕ, i.e.
N
∧

n=1

∨

Cn.

Remark 43. We assume without loss of generality that each Cn contains at most
one of x and x, for any variable x (otherwise just delete the clause).

Let L denote the set of literal occurrences in ϕ0 and define a set of fresh nodes
C = {c1, . . . , cN}. We define the graph G = (V,E) as follows:

• The set V of nodes of G is L ∪ C.
• The set E of edges of G consists of:

– an edge between any two literal occurrences in the same clause; and,
– an edge between any occurrence of xi and any occurrence of xi; and,
– an edge between any literal occurrence in a clause Cn and cn.

We claim that G(C, 0) if and only if ϕ is true, as required. First, suppose that
G(C, 0) and let T ∈ MS (G) be disjoint from C, by definition of G(C, 0). We have
the following:

• T intersects each Cn. Otherwise, it would contain cn and thus intersect C.
• T is consistent, i.e. if it contains an occurrence of x it does not contain an
occurrence of x̄, by definition of E.

Thus T induces an assignment X ⊆ ~x in the natural way such that ϕ0(X) is true.
Conversely, suppose that ϕ is true and let X ⊆ ~x be a satisfying assignment

for ϕ0. The set of true literal occurrences in G under X (defined just like X1 was
defined in (11)) almost serves as an appropriate maximal stable set but for the
technicality, as before, that it may intersect some clause more than once. Again,
we avoid this issue by making arbitrary choices. Define:

T := {least true literal under X in Cn : 0 < n ≤ N}

We have the following:

• T is stable, by Remark 43 and consistency of X ;
• T intersects each Cn, since X was a satisfying assignment for ϕ0, and so T
is furthermore maximally stable by definition of E; and,

• T does not intersect C, by construction.

Thus T ∈ MS (G) such that T ∩C = ∅, as required. �

5. Modular decomposition and an algorithm for evaluation

Despite evaluation being NP-complete, we can still define a “recursive” algo-
rithm for it based on known graph decompositions. While this algorithm does not
operate in polynomial time, it does allow us to reduce evaluation, as well as deter-
mining whether a graph is deterministic or total, to the so-called “prime” graphs.

5.1. Modules: ‘zooming’ out of graphs. The notion of a module generalises
the notion of a formula context to arbitrary graphs.

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 21

Definition 44 (Modules). For a graph G = (V,E) a module is a set M ⊆ V
such that every element of M has the same neighbourhood outside M in G. I.e.
∀x, y ∈M.∀z ∈ V \M.({x, z} ∈ E iff {y, z} ∈ E).

The sets V,∅ and {x}, for x ∈ V , are always modules and are known as the
trivial modules. Any module M (V is a proper module.

Rephrasing the above definition visually, M being a module means that, for any
z /∈M , either:

• ∀m ∈M.m y ; or

• ∀m ∈M.m y .

As a notational convention, given a graph G, for two sets of nodes X,Y we write
X Y (or X Y) to express that for all x ∈ X and all y ∈ Y , x y

(respectively, x y) in G.

Observation 45. For disjoint modulesM,N , we have either M N or M N

In this way, modules allow us to ‘zoom out’ and see graphs as compositions of
smaller graphs. This is similar to how we displayed the graphs in the case study of
Section 3.3. Let us elaborate on this idea more formally.

Definition 46 (Quotients). Fix a graph G = (V,E) and let P ⊆ P(V) be a
partition of V into (nonempty) modules (called a modular partition). The quotient
graph G/P is defined as follows:

• The set of vertices of G/P is just P .

• {M,N} is an edge of G/P just if M N in G.

Notice that we deliberately use modules themselves as nodes in a quotient graph.
This allows us to freely switch between consideration of the entire graph and just
its quotient when seeing graphs visually. For the same reason, we will often only
speak about quotients up to isomorphism.

Example 47. Consider the following graph G, written with only edges indicated:

v′

x′

v

x

u

w′

w

Here we have identified two nontrivial modules, M = {v′, x′} and N = {v, x}
whose elements have the same adjacencies. From this presentation, we may isolate
a particular partition of the vertices into modules:

P = {M,N, {u}, {w′}, {w}}

The graph G/P is thus the following:

M N

u

w′

w

Notice that, as an overloading of notation, we may use the same diagram above as
a representation of G itself, identifying M and N with G↾M and G↾N respectively.

22 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

Notice that the module M in the previous example is not maximally proper, as
it may be extended by w′. The point of modular decompositions we later define
is to take quotients as finely as possible, recursively expressing it as a ‘graph of
graphs’. However, some graphs cannot be simplified in this way, and these form
the critical points of modular decomposition.

Definition 48 (Prime graphs). Let G be a graph of size at least 3. If every module
in G is trivial, we say that G is a prime graph.

Prime graphs have been studied extensively, see for example [CI98] [IV14] [HP10].

5.2. Modular decomposition of a graph. We have the following natural alge-
braic properties of modules:

Proposition 49 (Algebra of modules). Let G be a graph with modules M and N .

(1) M ∩N is a module.
(2) If M ∩N 6= ∅ then M ∪N is a module.

As a result of this algebraic structure, we have the following well-known decom-
position result for graphs:

Proposition 50 (Modular decomposition of a graph, [Gal67]). For every nonempty
graph G, we have exactly one of the following:

(1) G is a singleton graph {x}.
(2) G is disconnected.
(3) G is co-disconnected (i.e. G is disconnected).
(4) V (G) is partitioned by its maximal proper modules.

This motivates the following definition:

Definition 51 (Prime quotient). Given a biconnected graph G = (V,E), its prime
quotient, written PG, is the set of its maximal proper modules.

Under Proposition 50, we have that G/PG (often simply written PG, as abuse)

is a graph with edges {M,N} just if M N in G. As the name suggests, the
prime quotient is indeed a prime graph:

Fact 52. The prime quotient of a bi-connected graph is a prime graph.

Example 53. Revisiting Example 47, notice that the module M is not maximally
proper, since it may be extended by w′. Let us call the resulting module M ′. The
prime quotient of G is PG = {M ′, N, {u}, {w}}, so that G/PG is actually a P4:

M ′ N u w

The P4 is the smallest prime graph.

We are ready to define the modular decomposition tree of a graph.

Definition 54 (Decomposition tree). We define the decomposition tree of a graph
G, written T (G) by induction on its size, under the classification of Proposition 50:

(1) If G has just one node, i.e. is ({x},∅), then T (G) := G.

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 23

(2) If G is disconnected with connected components G1, . . . , Gn, then T (G) is:

∨

T (G1) T (Gn)· · ·

We write T (G) = ∨(T (G1), . . . ,T (Gn)) as a more compact notation.
(3) If G is disconnected with connected components G1, . . . Gn, then T (G) is:

∧

T (G1) T (Gn)· · ·

We write T (G) = ∧(T (G1), . . . ,T (Gn)) as a more compact notation.
(4) Otherwise let PG = {M1, . . . ,Mn} and define T (G) as,

G/P

T (M1) T (Mn)· · ·

where we identify each Mi with the corresponding induced subgraph G↾Mi.
We write T (G) = (G/P)(T (M1), . . . ,T (Mn)) as more compact notation.

Remark 55. Notice that, identifying formulas with their formula trees, the map-
ping T (·) on cographs is precisely the inverse of the mapping W(·), mapping a
formula to its relation web, up to associativity and commutativity of ∨ and ∧.

Let us see some examples of decomposition trees in action.

Example 56. Revisiting Examples 47 and 53, we have that T (G) is as follows:

P4

∨

v′ x′ w′

∨

v x

u w

Notice that we have simply written P4 as the root of T (G) rather than the proper
isomorphic quotient graph, but this causes no ambiguity here.

The compact notation for T (G) is P4(∨(v
′, x′, w′),∨(v, x), u, w).

24 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

Example 57. Let G be the following graph:

c d e f

ga b

Notice that we may equivalently write G in the following way,

a

b

c d e

f

g

and thus T (G) has the following form:

∨

∧

a b

P4

c d e ∧

f g

5.3. Maximal cliques and stable sets via modular decomposition. In this
subsection we outline an algorithm for evaluation that operates recursively on the
modular decomposition tree. This essentially reduces the problem of evaluation to
the prime graphs.

Observation 58. Let G = (V,E) be a graph and P a modular partition. The map
ϕ : V → V/P by ϕ(x) =M unique such that M ∋ x induces a homomorphism from
G to G/P . Therefore the images of cliques under ϕ are again cliques.

In fact the particular homomorphisms induced by quotients preserve a lot more
structure. For instance stable sets are also preserved, as well as maximality, as we
will now show. The point of this is that, in order to evaluate graphs recursively on
their modular decomposition, we need to first classify their maximal cliques and
stable sets in this way.

Lemma 59. Let G = (V,E) be a graph and P ⊆ P(V) be a modular partition. For
X ⊆ V we have:

• X ∈ MC (G) iff there exists S ∈ MC (G/P) and some SM ∈ MC (M), for
M ∈ S, s.t. X =

⋃

M∈S

SM .

• X ∈ MS (G) iff there exists T ∈ MS (G/P) and some TM ∈ MC (M), for
M ∈ S, s.t. X =

⋃

M∈T

TM .

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 25

Proof sketch. We prove only the statements regarding maximal cliques, the ones
for maximal stable sets following by duality.

For the left-right implication, let X ∈ MC (G) and set S = {M ∈ P : X ∩M 6=
∅}.

• S is a clique of G/P : for any distinct M,M ′ ∈ S there are some x ∈ M
and y ∈M ′ by nonemptiness, and we have x y in G since x, y ∈ X ∈

MC (G). Thus M M ′ in G/P by modularity.

• S is maximal: suppose there is some M ′ /∈ S such that M ′ S in G/P .

Any x ∈M ′ is not in X , by definition of S, and we have x M in G for

all M ∈ S. Therefore x X in G (since P partitions V) contradicting
maximality of X .

Now we may define SM = X ∩M for each M ∈ S.

• Each SM is a clique of M , since SM ⊆ X ∈ MC (G).

• Each SM is maximal: suppose there is some x ∈ M \ SM with x SM

in M . By modularity we must have that x S in G and hence already
x ∈ S by maximality of S.

Since P is a partition of V , we also have that {SM : M ∈ S} partitions X , so
X =

⋃

M∈S

SM , as required.

For the right-left implication, suppose S ∈ MC (G/P) and SM ∈ MC (M), for
M ∈ S, s.t. X =

⋃

M∈S

SM . To show that X is a clique, let x, y ∈ X be distinct. We

have two cases:

• there is M s.t. x, y ∈M , in which case x, y ∈ SM so x y in G; or,

• there are disjoint M,M ′ with x ∈M and y ∈M ′, in which case M M ′

in S and so also x y in G.

For maximality, suppose x /∈ X s.t. x X in G. Again we have two cases:

• if there is M ∈ S with x ∈M , then SM can be extended by x;
• if x ∈M /∈ S, then we must have M S by modularity, and so S can be
extended by M .

In either case we have a contradiction, concluding the proof. �

Since the disjunctive and conjunctive nodes in the decomposition tree are special
cases of a modular partition, the following characterisation is now immediate from
the preceding lemma:

Proposition 60 (Maximal cliques and stable sets via modular decomposition).
Let G be a graph and X ⊆ V (G). We have:

(1) If G is the singleton graph {x} then MC (G) = MS (G) = {{x}}.
(2) If T (G) = ∨(T (G1), . . . ,T (Gn)) then:

• X ∈ MC (G) if and only if, for some i, X ∈ MC (Gi).
• X ∈ MS (G) if and only if, for every i, X ∩ V (Gi) ∈ MS (Gi).

(3) If T (G) = ∧(T (G1), . . . ,T (Gn)) then:
• X ∈ MC (G) if and only if, for every i, X ∩ V (Gi) ∈ MC (Gi).
• X ∈ MS (G) if and only if, for some i, X ∈ MS (Gi).

(4) If T (G) = (G/P)(T (M1), . . . ,T (Mn)) then,

26 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

• X ∈ MC (G) iff there exists S ∈ MC (G/P) and some Si ∈ MC (Mi),
for Mi ∈ S, s.t. X =

⋃

Mi∈S

Si.

• X ∈ MS (G) iff there exists T ∈ MS (G/P) and some Ti ∈ MS (Mi),
for Mi ∈ T , s.t. X =

⋃

Mi∈T

Ti for some Ti ∈ MC (Mi).

5.4. Evaluation via modular decomposition. We give a characterisation of
evaluation by recursion on the decomposition tree of graphs. In effect, this yields
an algorithm for evaluation by reduction to prime graphs.

Since our semantics is multivalued, we have to be a little careful with how we
construct assignments during recursion on the decomposition tree.

Definition 61 (Positive and negative quotient assignments). Let G = (V,E) be a
graph and P ⊆ P(V) be a modular partition. For an assignment X ⊆ V , we define
the following subsets of P , relative to G:

PosP (X) := {M ∈ P :M(X, 1)}
NegP (X) := {M ∈ P : ¬M(X, 0)}

Lemma 62. Let G = (V,E) be a graph and P ⊆ P(V) be a modular partition. For
an assignment X ⊆ V we have:

(1) G(X, 1) if and only if (G/P)(PosP (X), 1)
(2) G(X, 0) if and only if (G/P)(NegP (X), 0).

Proof. We prove only (1), the case of (2) following by duality.
For the left-right implication, let S ∈ MC (G) with S ⊆ X . By Lemma 59, there

is SP ∈ MC (G/P) s.t. S =
⋃

M∈SP

SM for some SM ∈ MC (M), for M ∈ SP . Now,

for each M ∈ SP , we have that SM ⊆ S ⊆ X , so M(X, 1) and SM ∈ PosP (X).
Thus we have that (G/P)(PosP (X), 1), as required.

For the right-left implication, let S ∈ MC (G/P) with S ⊆ PosP (X). By defini-
tion of PosP (X) we have ∀M ∈ S.M(X, 1). so for each M ∈ S fix SM ∈ MC (M)
s.t. SM ⊆ X . Now, by Lemma 59 we have S′ ∈ MC (G) with S′ =

⋃

M∈S

SM . Since

SM ⊆ X for each M ∈ S, we also have S′ ⊆ X , so G(X, 1) as required. �

The following result, computing evaluation by recursion on a decomposition tree,
is now immediate from the Lemma above and Proposition 60:

Theorem 63 (Evaluation by recursion on decomposition trees). Let G be a graph
and X ⊆ V (G). We have:

(1) If G is a singleton graph with V (G) = {x} then:
• G(X, 1) if and only if x ∈ X.
• G(X, 0) if and only if x /∈ X.

(2) If T (G) = ∨(T (G1), . . . ,T (Gn)) then:
• G(X, 1) if and only if, for some i, Gi(X, 1).
• G(X, 0) if and only if, for every i, Gi(X, 0).

(3) If T (G) = ∧(T (G1), . . . ,T (Gn)) then:
• G(X, 1) if and only if, for every i, Gi(X, 1).
• G(X, 0) if and only if, for some i, Gi(X, 0).

(4) If T (G) = (G/P)(T (G1), . . . ,T (Gn)) then:
• G(X, 1) if and only if (G/P)(PosP (X), 1)
• G(X, 0) if and only if (G/P)(NegP (X), 0).

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 27

6. Positional games beyond cographs

A refined view of evaluation can be given in a game theoretic setting; in partic-
ular, extensive game forms forms have been studied in connection with read-once
formulas, leading to the notion of positional games, e.g. [Gur82, GGCH11]. In this
section, we will see how to extend the ‘evaluation game’ on formulas to arbitrary
graphs. Along the way, we recover a distinction between the static and sequential
versions of this game, a distinction which does not exist at the level of formulas.

The evaluation game of a formula is played as follows. Two players construct
a path through the formula tree, with one player (‘Eloise’) choosing directions
at disjunction nodes and the other (‘Abelard’) choosing directions at conjunction
nodes. The possible ‘outcomes’ of the play are then the leaves of the tree, i.e.
the variables of the formula, and a notion of winning can be imposed via some
Boolean payoff set (i.e. an assignment). In this way, the strategies of the Eloise and
Abelard are determined precisely by the minterms and maxterms, respectively, of
the formula they are playing on. One interesting pursuit is to establish which game
forms correspond to evaluation games, a question resolved for formulas in [Gur82],
though extending this result to arbitrary graphs is beyond the scope of this work.

Let us consider an example of the evaluation game on formulas.

Example 64 (Evaluation games). Let A be the following formula:

w0 ∨ (x ∧ (y ∨ (z0 ∧ z1 ∧ z2 ∧ z3))) ∨ w1

The formula tree T (A) is as follows:6

∨

w0 ∧

x ∨

y ∧

z0 z1 z2 z3

w1

A possible play of the corresponding game would be as follows:

• The root of the tree is labelled with a ∨, so Eloise plays one of its children. If
she chooses w0 or w1 then the play ends with outcome w0 or w1, respectively.
Suppose she picks the ∧ child.

• It is now Abelard to choose, and he has two choices: either x, again termi-
nating the play with outcome x, or ∨. Suppose he chooses the latter.

• At this point let us suppose that Eloise ends the play by choosing y.

The strategy employed by Eloise in this play corresponds to the minterm {x, y}, in
the sense that she always makes a choice that admits the possibility of an outcome in
that set. Abelard’s strategy corresponds to several maxterms, namely {w0, w1, y, zi}

6Notice that there is some mismatch here in the sense that formulas have binary connectives
but our decomposition trees allow arbitrary fan-in. We gloss over this mismatch in this example,
and wherever it is not ambiguous.

28 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

for any i < 4, for the same reason. The play terminated before Abelard had to
choose a zi, which is why it is consistent with multiple strategies.

Equipped with an assignment X ⊆ {w0, w1, x, y, z0, z1, z2, z3}, we may say that
the play above is winning for Eloise if the outcome y is in X, and otherwise winning
for Abelard.

6.1. Games on arbitrary graphs. In order to extend the evaluation game to
arbitrary graphs, it thus suffices to establish rules of play at prime nodes in the
decomposition tree. As hinted at in the previous example, one way to see the play
is that Eloise is playing according to some maximal clique whereas Abelard plays
according some maximal stable set. We directly import this idea into the following
definition of games on arbitrary graphs, though we will see that the games induced
become more sensitive to the format of gameplay than before.

Definition 65 (Games on graphs). We define a two-player game, with players
Eloise and Abelard by recursion on the decomposition tree of a graph. Plays of the
game have outcome that is either a variable x ∈ V or ∅.

Let G be a graph, and let us define a play of G and the outcome of a play as
follows:

(1) If V (G) is the singleton {x} then the play is empty and the outcome is x.
(2) if T (G) has the form ∨(T (G1), . . . ,T (Gn)), then Eloise chooses one of the

Gis and the play continues on Gi.
(3) If T (G) has the form ∧(G1, . . . , Gn), then Abelard chooses one of the Gis

and the play continues on Gi.
(4) If T (G) has the form (G/P)(M1, . . . ,Mn), then:

• Eloise chooses some S ∈ MC (G/P); and,
• Abelard chooses some T ∈ MS (G/P),

and the play continues on the unique module Mi in the intersection S ∩ T ,
if it exists. If there is a deadlock, i.e. S ∩ T = ∅, then the play ends with
outcome ∅.

We construe plays as the sequence of graphs induced by the choices of Eloise
and Abelard following the rules above. This sequence always determines a path
through the decomposition tree of G from the root to either a leaf, if the outcome
is the corresponding variable, or an internal prime node, if the play hits a deadlock.

Remark 66 (Deadlocks and determinism). Note that on deterministic graphs max-
imal cliques and stable sets always intersect, since they are CIS, and therefore a
play always has a non-empty outcome.

Example 67 (A play of a graph). Let G be the graph in Figure 6.1, given in both
the usual red-green presentation, left, and its ‘modular’ presentation, right. The
decomposition tree T (G) is:

∨

∧

j k

P4

a b c d

P4

e f g ∧

h i

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 29

a b c d

e f g
h

i
j

k

,

j

k

e f g

h

i

a b c d

Figure 2. An example of a graph and its modular presentation,
obtained by recursively partitioning the graph into maximal proper
modules.

We will now run through a possible play on G:

(1) The root of T (G) is ∨, so Eloise plays first and chooses the rightmost child,
P4, corresponding to the following maximal proper module, left, and subtree,
right:

e f g

h

i

,

P4

e f g ∧

h i

(2) The root is now P4, which is prime.
• Eloise chooses the maximal clique {g, {h, i}}, consisting of the third
and fourth child.

• Abelard chooses the maximal stable set {e, {h, i}}, consisting of the
first and fourth child.

(3) The intersection is nonempty, corresponding to the following module, left,
and subtree, right:

h

i

,
∧

h i

Since the root is ∧, it is Abelard to play, and he chooses h.
(4) h is a leaf of the decomposition tree, so the play ends with outcome h.

If at step (2) Eloise had chosen {f, g} and Abelard had chosen {e, {h, i}} then the
play would end with outcome ∅, since the intersection of these sets is empty.

6.2. Boolean payoffs and strategies. In order to talk about the ‘winner’ of a
game, we introduce standard Boolean payoff sets, playing the role of assignments
earlier.

30 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

Definition 68 (Winning under an assignment). Let G = (V,E) be a graph and
X ⊆ V be an assignment. Given a play of G, we say that:

• Eloise wins if the outcome of the play is some x ∈ X.
• Abelard wins if the outcome of the play is some x /∈ X.
• The play is a draw if the outcome of the play is ∅.

As mentioned earlier, evaluation games with Boolean payoff gave us a game-
theoretic characterisation of evaluation in the case of formulas, equivalently cographs.
There the situation was simple: evaluating to 1 corresponds to a winning strategy
for Eloise, and evaluating to 0 corresponds to a winning strategy for Abelard. Here
it is not so simple, not only because our semantics is relational but also since de-
terminacy is sensitive to the ‘mode’ of play.

Recalling Definition 65, notice that we did not specify at a prime node whether
Eloise and Abelard make their choices independently of each other, or whether one
player is able to make their choice once the other has already declared theirs. In
the formula setting this makes no difference: the player with a winning strategy
has a uniform strategy no matter the moves of the opponent, - just play according
to some minterm or maxterm. For arbitrary graphs it turns out that there is an
advantage for the second player, since they may react to the choices of the first.

Definition 69 (Sequential and static strategies). Let G = (V,E) be a graph. A
strategy on G is a specification of choices for a player at each relevant node of
T (G).7 Formally, a strategy for Eloise is a map that associates:

• to each ∨ node of T (G) a child of that node; and,
• to each prime node G/P of T (G) some S ∈ MC (G/P).

Dually, a strategy for Abelard is a map that associates:

• to each ∧ node of T (G) a child of that node; and,
• to each prime node G/P of T (G) some T ∈ MS (G/P).

Furthermore, we may distinguish different modes of strategy:

• If a strategy σ for a player p at prime nodes may depend on the other
player’s choice, then we call σ a reactionary strategy for p.

• Otherwise, if a strategy σ for a player p does not depend on the choice of
the other player at prime nodes, then we call σ a static strategy for p.

We say that a p-strategy σ is winning with respect to an assignment X if every
play according to σ results in a win for p. We say that σ is drawing with respect
to X if every play according to σ results in a win or draw for p.

6.3. Characterisation of evaluation via static strategies. Let us first con-
sider the somewhat simpler case of static games, since the results and arguments
are similar to the formula setting, only accounting for nonfunctionality and the
possibility of draws. Table 6.3 summarises the circumstances in which each of the
players have a winning or drawing strategy, given an assignment X . This of course
depends on what G may evaluate to on X , but we also distinguish whether G is
deterministic or not, since in the former case draws are impossible, by the CIS
property. The entries of the table are justified by the following result:

7Note that we only consider ‘positional’ strategies here, where the choice of a player does
not depend on the history of the play. It is not hard to see that this is sufficiently general for
determinacy.

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 31

Static games:

G(X) = {1} G(X) = {0} G(x) = ∅ G(X) = {0, 1}

Det.
Eloise has a

winning strategy
Abelard has a

winning strategy
- N/A

Non-det.
Eloise has a

drawing strategy
Abelard has a

drawing strategy
-

Eloise and
Abelard have a
drawing strategy

Table 1. Winning/drawing strategies for static games. We write
G(X) = B if G(X, b) ⇐⇒ b ∈ B. - denotes the situation where
neither player has a winning or drawing strategy, and N/A denotes
a situation that cannot occur.

Theorem 70. Let G be a graph and X ⊆ V (G) an assignment. We have the
following:

(1) G(X, 1) if and only if Eloise has a static drawing strategy.
(2) G(X, 0) if and only if Abelard has a static drawing strategy.

If G is deterministic then the above can be strengthened to static winning strategies.

Proof. Notice that the final clause on deterministic graphs follows immediately from
(1) and (2) by the CIS property, Proposition 32.

For the left-right implication of 1, the idea is that Eloise plays to remain in
a maximal clique inside the given assignment. Formally, given a graph G, an
assignment X , and some maximal clique S ⊆ X , we describe what it means for
Eloise to play according to S, appealing to the classification of maximal cliques in
Propostion 60:

• If T (G) is a singleton then there is nothing to play and, since S is nonempty,
Eloise wins.

• If T (G) = ∨(T (G1), . . . ,T (Gn), then we must have S ∈ MC (Gi), and so
Eloise chooses this Gi and continues playing according to S.

• If T (G) = ∧(T (G1), . . . ,T (Gn)), then we must have that Si = S∩V (Gi) ∈
MC (Gi), so if Abelard chooses Gi Eloise continues playing according to Si.

• If T (G) = (G/P)(T (M1), . . . ,T (Mn)), then S =
⋃

i∈I

Si, for some {Mi}i∈I ∈

MC (G/P) and Si ∈ MC (Mi). Eloise plays the maximal clique {Mi}i∈I

and, if the play continues on some module Mi, with i ∈ I, then she contin-
ues playing according to Si.

There are two options for a play of this strategy: either a variable is reached (the
first case) and Eloise wins, or at a prime node (fourth case) the intersection of
Eloise’s and Abelard’s sets is empty and the game is drawn.

Conversely, suppose σ is a static drawing strategy for Eloise and write T (σ) for
the subtree of T (G) induced by it. Formally, T (σ) is the smallest subtree satisfying:

• The root of T (G) belongs to T (σ);
• For any ∨ node in T (σ) the child chosen by σ belongs to T (σ);
• For any ∧ node in T (σ), all its children also belong to T (σ);
• For a prime node G/P in T (σ), all children in the maximal clique chosen
by σ belong to T (σ).

Let us write L(σ) for the set of leaves of T (σ). We have the following:

32 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

• L(σ) is a clique of G: let x, y ∈ L(σ) be distinct and let us inspect the root
of the smallest subtree of T (σ) (equivalently T (G)) containing both x and
y. It cannot be a ∨ node by construction of T (σ), and if it is a ∧ or G/P
node, then x y in G by construction of T (σ).

• L(σ) is maximal: suppose not and let z /∈ L(σ) such that z L(σ) in G.

Let us take the smallest subtree of T (σ) whose root ν induces a subtree of

T (G) containing z. ν cannot be a ∨ node, since that contradicts z L(σ);

ν cannot be a ∧ node since that contradicts leastness of ν; finally, if ν is a
prime node G/P , then by modularity we have that the clique chosen by σ
can be extended to the module containing z, contradicting maximality.

2 follows by duality. �

If X evaluates to neither 0 nor 1, it follows that neither player necessarily has
a drawing/winning strategy in a static setting. Note that this does not contradict
finite determinacy, which a priori holds only for sequential games.

Example 71 (Non-determinacy). Let us revisit the P4:

(13)

x y

w z

Recall that under the assignment X = {w, z}, we have neither G(X, 0) nor G(X, 1).
It turns out that neither player has a static drawing strategy in this circumstance,
as we now argue. Since the P4 is prime, the corresponding game is one-shot, so it
suffices to show that neither player has a drawing move.

• If Eloise plays {x, y} then she will lose if Abelard plays {x, z} or {w, z};
• If Eloise plays {x,w} then she will lose if Abelard plays {x, z};
• If Eloise plays {y, z} then she will lose if Abelard plays {w, y}.

Since the P4 is isomrophic to its dual, it is immediate that Abelard too has no
drawing strategy.

As we will see in the next subsection, finite derminacy does apply to sequential
games, and in situations like the P4 above, it is the second player who actually has
a winning strategy.

It is natural to wonder whether any of the results of Table 6.3 can be strengthened
from drawing to winning. This is not the case, as we can see from the following
example.

Example 72. Let us recall the 5-cycle:

(14)

v

w

xy

z

Recall that this graph is not deterministic (though it is total) since the assignment,
say, {v, w} evaluates to both 0 (being disjoint from the maximal stable set {x, z})

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 33

Sequential games:

G(X) = {1} G(X) = {0} G(X) = ∅ G(X) = {0, 1}

Det.

As the second
player, Eloise
has a winning

strategy

As the second
player, Abelard
has an winning

strategy

As the second
player, Eloise
and Abelard

have a winning
strategy

N/A

Non-det.

As the second
player, Eloise
has a winning

strategy

As the second
player, Abelard
has a winning

strategy

As the second
player, Eloise
and Abelard

have a winning
strategy

As the second
player, Eloise and
Abelard have a
drawing strategy

Table 2. Winning/drawing strategies for sequential games. N/A
denotes a situation that cannot occur. We write G(X) = B if
G(X, b) ⇐⇒ b ∈ B.

and 1 (being a maximal clique itself). It is also a prime graph and so the corre-
sponding game is one-shot.

Now, if we take the slightly larger assignment {v, z, w}, the graph still evaluates
to 1 but no longer evaluates to 0. Nonetheless, Eloise cannot force a win: whichever
maximal clique she chooses, Abelard may choose a disjoint maximal stable set, as
reasoned above, by the symmetry of the graph.

6.4. Characterisation of evaluation via sequential strategies. For sequential
games, the second player has an advantage since they have strictly more information
to exploit at each prime node, namely the opponent’s move at that node.

Example 73 (Winning sequentially). Revisiting Example 72, where the drawing
player could not force a win, let us consider what happens in a sequential setting.
Taking the same graph (14) and the same assignment {v, z, w}, it is clear that
Eloise can force a win since every maximal stable set intersects the assignment,
and so she can react to Abelard’s move with the appropriate maximal clique.

What is more, finite determinacy now applies and so the game is completely
determined.

Example 74 (Determinacy and non-totality). Revisiting Example 71, where nei-
ther player could force even a draw, let us consider what happens in a sequential
setting. Taking the same graph (13) and assignment X = {w, z}, it turns out that
the second play can actually force a win. In fact, the case analysis of Example 71
immediately shows that Abelard wins when playing second.

Table 6.4 summarises the circumstances in which a player has a winning or
drawing reactionary strategy. The results for static strategies naturally still hold
for the first player. Again, we distinguish deterministic graphs from general graphs.

The entries of the table are justified by the following result, along with Theo-
rem 70:

Theorem 75. Let G be a graph and X ⊆ V (G) an assignment. We have the
following:

34 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

(1) ¬G(X, 0) if and only if Eloise has a reactionary winning strategy.
(2) ¬G(X, 1) if and only if Abelard has a reactionary winning strategy.

Proof. For the left-right implication of 1, the idea is that Eloise aims to maintain
the property that all maximal stable sets consistent with the play thus far intersect
the given assignment. Formally, given an assignment X intersecting every stable
set of a graph G, we define what it means to play according to X , appealing to the
classification of maximal stable sets in Propostion 60:

• If T (G) is a singleton there is nothing to play and, since X is nonempty,
Eloise wins.

• If T (G) = ∨(T (G1), . . . ,T (Gn) then X must intersect some Gi, and so
Eloise chooses this Gi and continues to play according to X ∩ V (Gi).

• If T (G) = ∧(T (G1), . . . ,T (Gn)) then X must intersect every Gi, so if
Abelard chooses some Gi then Eloise continues to play according to X ∩
V (Gi).

• If T (G) = (G/P)(T (G1), . . . ,T (Gn)) and Abelard plays T ∈ MS (G/P),
then we must have that X intersects some M ∈ T , and so Eloise chooses
any maximal clique of G/P extending M .

Notice that any play of this strategy cannot reach a deadlock, by construction, and
so it must terminate in the first case, at a variable, and Eloise wins.

Conversely, let σ be a reactionary winning strategy for Eloise and, for any max-
imal stable set T , take the play induced by σ when Abelard plays according to T
(cf. the proof of Theorem 70). By induction on the length of the play, it is not
difficult to see that the play always intersects T , and hence ¬G(X, 0), as required.

2 follows by duality. �

Notice that the bottom-right entry of the table, when G evaluates to both 0 and
1, is inherited directly from the static case, Theorem 70, and cannot be strengthened
for obvious reasons.

7. A proof system for entailment via non-linear graphs

In this section we give a complete inference system for Boolean Graph Logic
in the style of ‘deep inference’: inference rules may rewrite induced subgraphs of
a graph under certain situations. In order to admit a complete system, we first
(conservatively) extend BGL to account for non-linearity.

7.1. Nonlinear graphs. We now consider graphs where the same variable may
occur many times as a node. To avoid ambiguity, the graphs considered until now
will now be referred to as ‘linear’ graphs. We now reserve the set V for Boolean
variables, equipping graphs with an explicit labelling function assigning a variable
to each node:

Definition 76 ((Non-linear) graphs). A (labelled) graph is a tuple G = (V,E, L)

where V is an arbitrary finite set and, as expected, E ⊆
(

V

2

)

. Furthermore L is a
function V → V. For a set U ⊆ V , we write ⌊U⌋ := {L(v) : v ∈ U}.

We may extend the notions of evaluation and entailment to non-linear graphs in
a natural way.

Definition 77. Let G and H be (non-linear) graphs and X ⊆ V. We define the
following notions of evaluation,

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 35

• G(X, 1) if ∃S ∈ MC (G).⌊S⌋ ⊆ X.
• G(X, 0) if ∃T ∈ MS (G).⌊T ⌋ ∩X = ∅.

and the following notions of entailment:

• G⇒
∧
H if ∀S ∈ MC (G).∃S′ ∈ MC (H).⌊S′⌋ ⊆ ⌊S⌋.

• G⇒
∨
H if ∀T ∈ MS (H).∃T ′ ∈ MS (H).⌊T ′⌋ ⊆ ⌊T ⌋.

Clearly these notions admit the anlogous ones for linear graphs as special cases.
What is more, they are conservative over the analogous notions for non-read-once
formulas, when restricted to non-linear cographs. We do not go into detail on this
point but leave the verification of this fact as an exercise to the reader.

7.2. Deep inference and rules on modules. Let us write G[M] to distinguish
a module M in a graph G. We may then write G[M ′] for the graph where M is
replaced by M ′ in G, retaining all the edges connected to the module.

Example 78. Let G[M] be the following graph, with only edges indicated, where
M is the module {x, y}:

v w x

y0

y1

z

If we set M ′ to be the graph below, left, then G[M ′] is the graph below, right:

x

x

y0

y1

, v w

x

x

y0

y1

z

Formally speaking, the two occurrences of x above are different nodes with the same
label. When displaying graphs visually, we do not make this distinction explicitly,
but formally if we indicate multiple occurrences of the same graph G, it means that
they are all label-preserving isomorphic to G.

Notice that M and M ′ are relation webs, and that, say, M ⇒
∧
M ′. We also have

that G[M] ⇒
∧
G[M ′]. This is no coincidence, as we will see in the next result.

Lemma 79 (Deep inference on graphs). SupposeM is a module of G andM ⇒
⋆
M ′,

for ⋆ ∈ {∨,∧}. Then G[M] ⇒
⋆
G[M ′].

Proof. We consider only the case when ⋆ = ∧, the case of ⋆ = ∨ being dual.
Let S ∈ MC (G[M]). We have the following cases:

• If S ∩M = ∅ then also S ∈ MC (G[M ′]).
• Otherwise, we may write S = SM ⊔ S′ for some SM ∈ MC (M), by
Lemma 59. Now, since M ⇒

∧
M ′, we have some S′

M ⊆ SM with S′
M ∈

MC (M ′). Therefore, again by Lemma 59, we have that S′
M⊔S′ ∈ MC (G[M ′]).

Thus indeed G[M] ⇒
∧
G[M ′]. �

The proposition above is a generalisation of ‘deep inference’ reasoning on formu-
las, where we may operate under arbitrary alternations of ∨ and ∧.

36 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

Definition 80 (Inference rules, systems and derivations). An inference rule on
graphs is simply a binary relation → on graphs. A proof system is a set of inference
rules,8 and a derivation in a proof system is just a sequence of graphs (G1, . . . , Gn)
where each (Gi, Gi+1) is an instance of a rule in the system.

Inference rules may be specified in many different ways, and we will introduce
some bespoke notation in what follows in order to compactly write inference rules.

Given the proposition above, we may safely import the standard structural rules
from deep inference proof theory, restricted to modules:

Definition 81 (Structural rules). The system str consists of the following rules:9

wr : Gi →

G0

G1

cr :

G

G
→ G

wl :

G0

G1

→ Gi

cl : G →

G

G

for i ∈ {0, 1}. The fact that the LHS and RHS of these rules are boxed indicates
that the corresponding induced subgraphs must be modules in the LHS and RHS,
respectively, of an instance of the rule. There may be an ambient surrounding
graph that is not indicated, but no nodes outside the module are affected by the rule.
There are no further restrictions on the graphs indicated or the surrounding graph
outside the module.

For comparison, we give also the formula theoretic versions of some of the rules
above:

(15)
wr : Ai → A0 ∨ A1

cr : A ∨ A → A
wl : A0 ∧ A1 → Ai

cl : A → A ∧A

Usually in deep inference proof theory we must operate under some equational
theory, here associativity and commutativity of ∨ and ∧. However this is implicit
in the graph theoretic setting.

Definition 82 (Soundness and completeness). We say that an inference rule → is
sound for ⇒

⋆
, for ⋆ ∈ {∨,∧}, if whenever G → H we have G ⇒

⋆
H. A system is

sound whenever all its inference rules are. We say that a system is complete for
⇒
⋆

if, whenever G⇒
⋆
H, there is a derivation from G to H.

Since str was induced by a sound system on formulas, we immediately have the
following from Lemma 79:

Proposition 83. str is sound for both ⇒
∧

and ⇒
∨
.

8Note that, in this presentation there is not much difference between a rule and a system, but
we maintain the distinction as it is natural from the proof theory and rewriting theory points of
view.

9The subscripts l and r are usually written as annotations ↑ and ↓ respectively, but we chose
a different notation to reduce the number of arrows in use. The l and r subscripts is a reference
to sides of the sequent calculus.

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 37

Remark 84 (Structural rules beyond modules). Despite the fact that we have
restricted our deep inference rules to modules, it is not hard to see that there are
variations of the rules wr and cl that operate on arbitrary (induced) subgraphs yet
remain sound. We do not give details here, being beyond the scope of this work,
but we do point out a fundamental problem with extending the other structural rules
to non-modular subgraphs, in particular the cr rule. Consider, for example, the
following situation:

x

y

y

Attempting to apply cr to the two y nodes would leave us with a choice of how to
resolve the clash between the upper x y and the lower x y .

7.3. Entailment-specific rules. Notice that all the rules thus far introduced are
sound for both ⇒

∨
and ⇒

∧
. Since we know that these two entailments are distinct,

any complete system for either entailment must have additional rules. We introduce
these in the following definition:

Definition 85. We define the following rules,10

d∧ : x

R0

R1

→

x R0

x R1

d∨ : x

G0

G1

→

x G0

x G1

where:

• For d∧, {R0, R1} partitions the set {y : {x, y} ∈ E(LHS)}, i.e. R0 ⊔R1 is
the set of ‘red’ edges of the LHS including x.

• For d∨, {G0, G1} partitions the set {y : {x, y} /∈ E(LHS)}, i.e. G0 ⊔G1 is
the set of ‘green’ edges of the LHS including x.

Neither the LHS nor the RHS of each rule need form modules, but the indicated
edge-relationships must hold. There are no restrictions on the unindicated edges
further to the conditions on R0, R1, G0, G1 above. On the RHS of both rules there
are two occurrences of x; formally, these are two different nodes with the same label
x.

We will soon use these rules to achieve normal forms of graphs that drive our
ultimate completeness proof. The point of these rules is not only that they are
sound for⇒

∧
and⇒

∨
, respectively, but moreover that they do not change the Boolean

relation computed, as shown in the following result.

Lemma 86. We have the following:

(1) If G→
d∧

H then ⌊MC (G)⌋ = ⌊MC (H)⌋, i.e. G and H have the same maxi-

mal cliques, up to the variables occurring in them.
(2) If G→

d∨

H then ⌊MS (G)⌋ = ⌊MS (H)⌋, i.e. G and H have the same maximal

stable sets, up to the variables occurring in them.

10Notice that we could have allowed x to be an arbitrary module M instead, but the following
exposition is slightly simpler by restricting to this atomic version.

38 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

Proof. We prove only 1, the case of 2 being dual.
Consider the corresponding instance of d∧,

x

R0

R1

→

x R0

x R1

and let us call the node labelled x on the LHS v, the upper node labelled x on the
RHS v0, and the lower node labelled x on the RHS v1. Assume all other nodes of
the RHS have the same name as their corresponding nodes on the LHS.

Suppose S ∈ MC (LHS), and notice that S must be disjoint from either R0 or

R1, since R0 R1 . We define S′ ∈ MC (RHS) with ⌊S′⌋ = ⌊S⌋ as follows:

• If v /∈ S then we define S′ = S;
• If v ∈ S and S ∩ V (R0) = ∅, then we define S′ = (S \ {v}) ∪ {v1};
• If v ∈ S and S ∩ V (R1) = ∅, then we define S′ = (S \ {v}) ∪ {v0}.

By construction we have that S ∼= S′, so S′ is a clique, and maximality is immediate.
For the converse direction, notice that any maximal clique of the RHS also

cannot intersect both R0 and R1, and furthermore cannot contain both v0 and v1,
since v0 v1 . Thus the mapping from S to S′ above is a bijection MC (LHS) →
MC (RHS), finishing the proof. �

The following is an immediate consequence of the preceding lemma:

Proposition 87. We have the following:

(1) Both d∧ and d−1
∧ are sound for ⇒

∧
.

(2) Both d∨ and d−1
∨ are sound for ⇒

∨
.

7.4. Reductions to DNF and CNF. Our completeness strategy is motivated
by the disjunctive and conjunctive normal forms of Boolean functions. In fact,
Boolean relations may naturally be associated with a DNF, determining evaluation
to 1, and a CNF, determining evaluation to 0. Let us frame these normal forms in
a graph-theoretic context.

Definition 88 (DNFs and CNFs). A DNF is a graph where all maximal cliques
are disjoint. A CNF is a graph where all maximal stable sets are disjoint.

Of course, DNFs are just (non-linear) relation webs of formulas of the form
∨

i

∧

j xij and CNFs are just (non-linear) relation webs of formulas of the form
∧

i

∨

j xij . We will thus identify DNFs and CNFs with their formula representations
when it is convenient.

The main result of this subsection is that we may generate DNFs and CNFs of
arbitrary graphs using our entailment-specific rules:

Lemma 89. For any graph G we have the following:

(1) There is a DNF A with G→
d∧

∗ A

(2) There is a CNF B with G→
d∨

∗ B.

In what follows, we will only concern ourselves with DNFs and completeness for
⇒
∧
, with the case of CNFs and ⇒

∨
following by duality.

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 39

Notice that the rule d∧ bears semblance to the distibutivity rule on formulas:

d′∧ : A ∧ (B ∨ C) ⇒ (A ∧B) ∨ (A ∧C)

Indeed, the rule above is a special case of d∧ when all nodes are indicated: if
d′∧ : A → B then d∧ : W(A) → W(B).11 On the other hand, d∧ is strictly more
general than d′∧, as shown in the following example.

Example 90. Consider the following instance of d∧:

w x

y z

→

w x

w

y z

Notice that the LHS is the relation web of the formula (w ∨ z) ∧ (x ∨ y), while the
RHS is isomorphic to the P5, and so corresponds to no formula.

However, it is not hard to see that DNFs remain the only normal forms of d∧:

Observation 91. The only normal forms of d∧ are DNFs, and the only normal
forms of d∨ are CNFs.

Proof sketch. Any graph that is not a DNF has two intersecting maximal cliques,
which would form a redex for d∧. The argument for d∨ is dual. �

Example 92. Revisiting the above Example 90, we may continue applying d∧ as
follows (now with only edges indicated):

w x

w

y z

→

w x

w

y z

z → · · · →

w x

xw

y

y z

z

The first step applies d∧ on z, and then there are two steps applying d∧ to x and
y in any order. The resulting graph is a DNF. There is also a derivation from the
original formula (w ∨ z)∧ (x ∨ y) to DNF by continuously applying d′∧ (using deep
inference), but by definition that derivation only includes cographs, unlike the one
above.

We are now ready to prove the main result of this subsection.

Proof of Lemma 89. We prove only (1), since (2) follows by duality. By Obser-
vation 91 above, it suffices to show that the rule d∧ is terminating, i.e. that any
d∧-derivation has finite length.

Recall from the proof of Lemma 86 that the number of maximal cliques remains
constant for any instance of d∧. However, we have strictly reduced the number
of intersections, since any maximal cliques intersecting at the duplicated variable
become disjoint on the RHS. Thus any d∧ derivation must terminate, as required.

�

11This holds also for deep versions of d′
∧

if we allow d∧ to operate within modules too.

40 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

7.5. A completeness result. We are now ready to give our systems for both
entailment relations.

Definition 93 (Systems for entailment). We define the following systems of infer-
ence rules:

• →
∧

:= str ∪ {d∧, d
−1
∧ }.

• →
∨

:= str ∪ {d∨, d
−1
∨ }.

Notice that it is immediate from Propositions 83 and 87 that →
∧

and →
∨

are sound

for ⇒
∧

and ⇒
∨

respectively. The main goal of this section is to establish the converse

result:

Theorem 94 (Completeness). We have:

(1) If G⇒
∧
H then G→

∧
H.

(2) if G⇒
∨
H then G→

∨
H.

We are almost ready to prove this, but we need the following intermediate result,
which is well-known in deep inference proof theory:

Lemma 95 (Completness for DNFs and CNFs). We have the following:

(1) If a DNF A logically implies a DNF B then there is a str derivation A→∗ B.
(2) If a CNF A logically implies a CNF B then there is a str derivation A→∗ B.

Proof. We only prove (1), the case of (2) being dual. Since the statement only con-
cerns formulas and any rule instance of str preserves cograph-ness, we will present
the argument in terms of formulas, cf. (15).

Suppose we have a valid implication,

(16)
∨

i∈I

∧

Si ⇒
∨

j∈J

∧

S′
j

for some sets of variables Si and S
′
j . Recall that we each

∧

Si and
∧

S′
j are called

terms. Appealing to the definition of ⇒
∧
, there must be some function f : I → J

such that ⌊S′

f(i)⌋ ⊆ ⌊Si⌋. We thus have derivations:

(17) {wl, cl} :
∧

Si →∗
∧

S′

f(i)

(cl is required in case there are multiple occurrences of variables in the RHS).
Applying these to each term of LHS(16) yields a DNF

∨

i∈I

∧

S′

f(i). To arrive at

RHS(16), we need to use the dual rules:

• If f is not surjective, e.g. ∀i ∈ I.f(i) 6= j, then we may apply wr to recover
the missing terms, e.g.:

wr :
∨

i∈I

∧

S′

f(i) →
∨

i∈I

∧

S′

f(i) ∨
∧

S′
j

• If f is not injective, e.g. f(i) = f(i′) = j for some distinct i, i′, then we
may apply cr to remove duplicate terms, e.g.:

cr :
∧

Sj ∨
∧

S′
j →

∧

Sj

We have thus derived (16) in {wl, cl,wr, cr}, as required. �

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 41

We are now ready to prove the main completeness result:

Proof of Theorem 94. We prove only (1), the case of (2) following by duality. Sup-
pose G⇒

∧
H , and by Lemma 89 let A and B be DNFs such that:

(18) G→
d∧

∗ A

(19) H →
d∧

∗ B

Notice that, since G and A have the same maximal cliques up to variables occurring,
by Lemma 86, we have that G and A are equivalent. Similarly for H and B so,
since G ⇒

∧
H , we also have that A logically implies B. We may thus build the

following →
∧
-derivation:

G →
d∧

∗ A by (18)

→
str

∗ B by Lemma 95

→
d
−1

∧

∗ H by (19)

This concludes the proof. �

7.6. On atomicity and linearity. Though the structural proof theory of Boolean
Graph Logic is beyond the scope of this paper, we make some observations here
that suggest that BGL should enjoy decomposition theorems similar to those of
deep inference proof theory [BT01]. We do not give a formal development, saving
that for future work.

A key feature of deep inference is that the contraction rules, cl and cr may be
reduced to atomic form. This is thanks to the medial rule:

m : (A ∧B) ∨ (C ∧D) → (A ∨ C) ∧ (B ∨D)

For instance, we may transform a cr inference (A ∧ B) ∨ (A ∧ B) → (A ∧ B) into
one with smaller contraction redexes as follows:

(A ∧B) ∨ (A ∧B) →
m

(A ∨A) ∧ (B ∨B)

→
cr

A ∧ (B ∨B)

→
cr

A ∧B

The reduction for cl is dual. A similar reduction can be carried out in the graph the-
oretic setting by introducing the following medial rule for prime graphs P [v1, . . . , vn]
(all nodes indicated):

P [G1, . . . , Gn] ∨ P [G
′
1, . . . , G

′
n] → P [G1 G′

1 , . . . , Gn G′
n]

It is not hard to verify that this rule is sound for both ⇒
∧

and ⇒
∨
, and also allows us

to reduce contraction inferences to atomic form, though we omit the details here.
The medial rule above is an example of a linear rule: it does not duplicate or

erase any nodes in a graph. At the level of formulas such rules are important, since
decomposition theorems of deep inference are typically agnostic about the choice
of linear rules, once all the structural rules have been made atomic, cf. [GG08].
One issue for our system →

∧
(and →

∨
) is that the rule d∧ (dually d∨) is not linear.

42 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

However, it turns out that we may decompose it into atomic contraction inferences
and the following linear rule:12

M0

M1

R0

R1

→

M0 R0

M1 R1

where {R0, R1} partition the set of edges to the indicated module on the LHS.
It would be interesting to establish whether the incorporation of these linear

rules (and perhaps others) and atomisation of the structural rules could lead to a
well-behaved proof theory on arbitrary graphs, similar to deep inference.

8. Conclusions

In this work we presented a graph theoretic extension of Boolean logic that
we called Boolean Graph Logic (BGL). BGL extended the semantics of Boolean
logic from Boolean functions to more general Boolean relations, and we recovered a
decomposition of entailment into two dual notions. The purpose of this article was
to establish the fundamental theory behind BGL, for which we gave perspectives
via complexity (Section 4), games (Section 6) and proofs (Section 7).

In future work we are most interested in developing the structural proof theory of
BGL, building on the discussion of Section 7.6 to establish decomposition theorems,
à la deep inference. Such an investigation would also help compare BGL with the
approach of [AHS20], complementary to a semantic investigation. Conversely, it
would be interesting to see how the logic of [AHS20] may be extended by structural
rules, which can be problematic for the ‘splitting’ technique there used.

It would also be interesting to examine how to incorporate forms of negation
and implication natively into BGL. For this it would be natural to consider the
behaviour of analogous connectives from Computability Logic, cf. [Jap17].

References

[ABG06a] D Andrade, Endre Boros, and Vladimir Gurvich. On graphs whose maximal cliques
and stable sets intersect. Technical report, 2006.

[ABG06b] Diogo V Andrade, Endre Boros, and Vladimir Gurvich. On graphs whose maximal
cliques and stable sets intersect. 2006.

[AHS20] Matteo Acclavio, Ross Horne, and Lutz Strassburger. Logic beyond formulas: A graph-
ical linear proof system. Accepted to LICS 2020, 2020.

[AKV04] Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint propagation
as a proof system. In Mark Wallace, editor, Principles and Practice of Constraint
Programming - CP 2004, 10th International Conference, CP 2004, Toronto, Canada,
September 27 - October 1, 2004, Proceedings, volume 3258 of Lecture Notes in Com-
puter Science, pages 77–91. Springer, 2004.

[BDK20] Sam Buss, Anupam Das, and Alexander Knop. Proof complexity of systems of (non-
deterministic) decision trees and branching programs. In Maribel Fernández and Anca
Muscholl, editors, 28th EACSL Annual Conference on Computer Science Logic, CSL
2020, January 13-16, 2020, Barcelona, Spain, volume 152 of LIPIcs, pages 12:1–12:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[BIK+94] Paul Beame, Russell Impagliazzo, Jan Kraj́ıcek, Toniann Pitassi, and Pavel Pudlák.
Lower bound on hilbert’s nullstellensatz and propositional proofs. In 35th Annual
Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-
22 November 1994, pages 794–806. IEEE Computer Society, 1994.

12This observation was made by Lutz Strassburger.

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 43

[Bla92] Andreas Blass. A game semantics for linear logic. Ann. Pure Appl. Log., 56(1-3):183–
220, 1992.

[BT01] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In
R. Nieuwenhuis and Andrei Voronkov, editors, Logic for Programming, Artificial Intel-
ligence, and Reasoning (LPAR), volume 2250 of Lecture Notes in Computer Science,
pages 347–361. Springer-Verlag, 2001.

[Cal16] Cameron Calk. A graph-theoretic extension of boolean logic. 2016.
http://www.anupamdas.com/graph-bool.pdf.

[CCT87] William J. Cook, Collette R. Coullard, and György Turán. On the complexity of
cutting-plane proofs. Discret. Appl. Math., 18(1):25–38, 1987.

[CH11a] Y. Crama and P.L. Hammer. Boolean Functions: Theory, Algorithms, and Applica-
tions. Encyclopedia of Mathematics and its Applications. Cambridge University Press,
2011.

[CH11b] Yves Crama and Peter L Hammer. Boolean functions: Theory, algorithms, and ap-
plications. Cambridge University Press, 2011.

[CI98] Alain Cournier and Pierre Ille. Minimal indecomposable graphs. Discrete Mathematics,
183(1):61 – 80, 1998.

[Das13] Anupam Das. Rewriting with linear inferences in propositional logic. In Femke van
Raamsdonk, editor, 24th International Conference on Rewriting Techniques and Ap-

plications (RTA), volume 21 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 158–173. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2013.

[Das19] Anupam Das. Complexity of evaluation and entailment in Boolean Graph Logic. 2019.
www.anupamdas.com/complexity-graph-bool-note.pdf.

[DS15] Anupam Das and Lutz Straßburger. No complete linear term rewriting system for
propositional logic. In Maribel Fernández, editor, 26th International Conference on
Rewriting Techniques and Applications (RTA 2015), volume 36 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 127–142, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[DS16] Anupam Das and Lutz Straßburger. On linear rewriting systems for boolean logic and
some applications to proof theory. Logical Methods in Computer Science, 12(4):9:1–27,
2016.

[ER90] Andrzej Ehrenfeucht and Grzegorz Rozenberg. Primitivity is hereditary for 2-
structures. Theoretical Computer Science, 70(3):343–358, 1990.

[Gal67] Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18(1-
2):25–66, 1967.

[GG08] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference via
atomic flows. Logical Methods in Computer Science, 4(1):9:1–36, 2008.

[GGCH11] Martin C. Golumbic, Vladimir Gurvich, Yves Crama, and Peter L. Hammer. Read-
once functions, page 448486. Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, 2011.

[Gir87] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
[Gug07] Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Com-

putational Logic, 8(1):1:1–64, 2007.
[Gug15] Alessio Guglielmi. Deep inference. In David Delahaye and Bruno Woltzenlogel Pa-

leo, editors, All About Proofs, Proofs for All, volume 55 of Mathematical Logic and
Foundations, pages 164–172. College Publications, 2015.

[Gur77] V. A. Gurvich. Repetition-free boolean functions. Uspekhi Matematicheskikh Nauk,
32(1):183–184, 1977.

[Gur82] Vladimir Alexander Gurvich. On the normal form of positional games. In Doklady
Akademii Nauk, volume 264, pages 30–33. Russian Academy of Sciences, 1982.

[HP10] Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular
decomposition. Computer Science Review, 4(1):41–59, 2010.

[Hug06] Dominic J.D. Hughes. Proofs Without Syntax. Annals of Mathematics, 143(3):1065–
1076, November 2006.

[IV14] P. Ille and R. Villemaire. Recognition of prime graphs from a prime subgraph. Discrete
Mathematics, 327:76 – 90, 2014.

[Jap05] Giorgi Japaridze. Introduction to cirquent calculus and abstract resource semantics.
CoRR, abs/math/0506553, 2005.

http://www.anupamdas.com/graph-bool.pdf
www.anupamdas.com/complexity-graph-bool-note.pdf

44 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

[Jap17] Giorgi Japaridze. Elementary-base cirquent calculus I: parallel and choice connectives.
CoRR, abs/1707.04823, 2017.

[Jeř04] Emil Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and derandomiza-
tion. Annals of Pure and Applied Logic, 129:1–37, 2004.

[Jr.82] Nuel D. Belnap Jr. Display logic. J. Philosophical Logic, 11(4):375–417, 1982.
[Mil84] Dale Miller. Expansion tree proofs and their conversion to natural deduction proofs.

In Robert E. Shostak, editor, 7th International Conference on Automated Deduction,
Napa, California, USA, May 14-16, 1984, Proceedings, volume 170 of Lecture Notes
in Computer Science, pages 375–393. Springer, 1984.

[NS18] Lê Thành Dung Nguyên and Thomas Seiller. Coherent interaction graphs. In Thomas
Ehrhard, Maribel Fernández, Valeria de Paiva, and Lorenzo Tortora de Falco, editors,
Proceedings Joint International Workshop on Linearity & Trends in Linear Logic and
Applications, Linearity-TLLA@FLoC 2018, Oxford, UK, 7-8 July 2018, volume 292
of EPTCS, pages 104–117, 2018.

[RS19] Benjamin Ralph and Lutz Straßburger. Towards a combinatorial proof theory. In
Serenella Cerrito and Andrei Popescu, editors, Automated Reasoning with Analytic
Tableaux and Related Methods - 28th International Conference, TABLEAUX 2019,
London, UK, September 3-5, 2019, Proceedings, volume 11714 of Lecture Notes in
Computer Science, pages 259–276. Springer, 2019.

[Sip12] Alvin Sipraga. An automated search of linear inference rules. 2012.
http://arcturus.su/mimir/autolininf.pdf.

[Str12] Lutz Straßburger. Extension without cut. Annals of Pure and Applied Logic,
163(12):1995–2007, 2012.

[SU08] Marcus Schaefer and Christopher Umans. Completeness in the polynomial-time hier-
archy: A compendium. 2008. http://ovid.cs.depaul.edu/documents/phcom.pdf.

[Ter03] Terese. Term rewriting systems, volume 55 of Cambridge tracts in theoretical computer
science. Cambridge University Press, 2003.

[War19] Tim Waring. A graph-theoretic extension of boolean logic. 2019.
http://anupamdas.com/thesis_tim-waring.pdf.

Appendix A. Deterministic and total graphs are P4-free

In this section we give a self-contained proof of Theorem 37, showing that a
graph that is deterministic and total is P4-free. We need to introduce an additional
concept first.

Definition 96. Let G be a graph and Y ⊆ V (G). A selection with respect to Y is
a set Sel = {Tx | Tx ∈MS(G) and Tx ∩ Y = {x}}.
We call a selection w.r.t Y a covering if there is a D ∈MS(G) with D ⊆ ∪x∈Y Tx
and D ∩ Y = ∅.
We call a selection w.r.t Y a non-covering if it is not a covering.

Example 97. If we choose Y so that Y is a clique, then a covering always exists.
On the other hand, if we choose Y = V (G), then a selection w.r.t Y does not exist.
Take the following simple example: Let G be the following graph:

a b

c d

Then G is deterministic, and thus CIS. Let Y = {a, c, d}. Then Y is a maximal
clique, and a selection exists with Sel = {{a}, {b, c}, {b, d}}.

http://arcturus.su/mimir/autolininf.pdf
http://ovid.cs.depaul.edu/documents/phcom.pdf
http://anupamdas.com/thesis_tim-waring.pdf

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 45

For a less trivial example, take the following graph:

a

b d

c e

f

Let Y = {c, e}. Then the only stable set intersecting c is {c, e, f}, but that
also intersects e, so there is no selection. Now let Y = {b, c, d}. Then we have
the selection Sel = {{b, d}, {c, e, f}, {d, a}}. Not only is it a selection, it is also
covering, because we have {a, e} ⊆ V (G) = {b, d} ∪ {c, e, f} ∪ {d, a}, and {a, e} ∈
MS(G).

The following Lemma sheds some more light on coverings, and is the key piece
to proving the theorem:

Lemma 98. Let G be a total graph, and Y ⊆ V (G) such that Y is not a clique.
Then every selection w.r.t Y is covering.

Proof. We prove the contrapositive. Assume there is a non-covering selection Sel =
{Tx | Tx ∈MS(G) and Tx ∩ Y = {x}} w.r.t. Y . Define the set

B := (V (G) \
⋃

x∈Y

Tx) ∪ Y

Notice that B intersects every T ∈ MS(G): If T is a maximal stable set that in-
tersects Y , then, as Y ⊆ B, T also intersects B. If T is a maximal stable set that
doesn’t intersect Y , then, because Sel is not a covering, we have T * ∪x∈Y Tx, so
T intersects B, by the definition of B.
There is no maximal stable set disjoint from B, so G doesn’t evaluate B to 0. G is
total, so eG(B, 1), i.e. there exists a S ∈MC(G) with S ⊆ B.

By the definition of the Tx’s, we get Tx ∩ Y = {x}, and by the definition of B
therefore also Tx ∩ B = {x} for every x ∈ Y . We have Tx ∈ MS(G) for every
x ∈ Y , and S ∈ MC(G), so, because G is deterministic, by the CIS property we
get |S ∩ Tx| = 1 for all x ∈ Y . Because S is contained in B, we get S ∩ Tx = {x}
for all x ∈ Y . So Y ⊆ S. �

Example 99. Take the following graph, and let Y = {c, f}:

a

b c

d e

f

g

Then Y is not a clique. We haveMS(G) = {{g, c}, {gde}, {gdb}, {acf}, {abdf}, {aedf}}.
Then with Tc = {g, c} , Tf = {a, b, d, f}, the set Sel = {Tc, Tf} is a selection.

46 BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC

We have ∪x∈Y Tx = Tc ∪ Tf = {a, b, c, d, f}. Also, {g, d, b} is a maximal stable
set with ⊆ {a, b, c, d, f} and {g, d, b}∩Y = ∅. Therefore, Sel is not only a selection,
but also a covering.

We now have all the results we need to prove the characterisation of Boolean
functions.

of Theorem 37. We prove the left-right implication. Assume G has a P4 generated
by the nodes {a, b, c, d} like seen below.

b c

a d

We can extend the edges {a, b}, {c, d} to maximal cliques S1, S2 ∈MC(G).
We write S1 = {a, b} ⊔ Sab, S2 = {c, d} ⊔ Scd, where Sab, Sc,d are (possibly

empty) sets of nodes, and ⊔ denotes the disjoint union. Likewise, we extend
the edges {a, c}, {b, d} to maximal stable sets T1, T2, and write T1 = {a, c} ⊔ Tac,
T2 = {b, c} ⊔ Tbd.

b c

a d

S1 S2
b c

a d

T1T2

Notice that by the CIS property, we get |S1 ∩ T1| = |S1 ∩ T2| = |S2 ∩ T1| =
|S2 ∩ T2| = 1, so we have S1 ∩ T1 = {a}, S1 ∩ T2 = {b}, S2 ∩ T1 = {c},
S2 ∩ T2 = {d}. Therefore, we can easily check that the three sets i) {a, b, c, d},
ii) Sab ∪ Scd, iii) Tac ∪ Tbd are all pairwise disjoint:

We show that i), ii) are disjoint:
By definition, a, b /∈ Sab. Without loss of generality, assume a ∈ Scd. Then
|S2 ∩ T1| = 2, which is a contradiction. So a, b /∈ Scd. A completely symmetric
argument shows that c, d /∈ Sab, and therefore the two sets are disjoint.
The sets i), iii) are disjoint by the exact same argument.

To show that ii), iii) are disjoint, notice that

(Sab ∪ Scd) ∩ (Tac ∪ Tbd) = (Sab ∩ Tac) ∪ (Sab ∩ Tbd) ∪ (Scd ∩ Tac) ∪ (Scd ∩ Tbd)

Due to CIS, the only candidates for these intersections would be a, b, c, d, but by the
previous observations, these cannot be contained in the intersection. Thus, each of
the four intersections must be empty, and therefore ii), iii) must be disjoint.

The set {a, d} is not a clique, so by the previous lemma, every selection with
respect to it is covering. Notice that the set Sel = {T1, T2} is a selection w.r.t to
{a, d} and is therefore covering. So there is a D ∈MS(G) with D∩{a, d} = ∅ and
D ⊆ T1 ∪ T2. By the previous observation, we have (T1 ∪ T2) ∩ S1 = {a, c}, and
(T1∪T2)∩S2 = {b, d}. D is a maximal stable set, so by CIS, |D∩S1| = |D∩S2| = 1,
so, because a, d /∈ D, we get D ∩ S1 = {c}, and D ∩ S2 = {b}.

BEYOND FORMULAS-AS-COGRAPHS: BOOLEAN GRAPH LOGIC 47

So we get b, c ∈ D ∈ MS(G), which is a contradiction, because there is a red
edge between b and c. �

	1. Introduction
	1.1. History and related work
	1.2. Perspectives on Boolean Graph Logic

	2. Preliminaries
	2.1. Graphs
	2.2. Boolean logic
	2.3. Relation webs

	3. Boolean graph logic
	3.1. Evaluation and entailment
	3.2. Some properties of evaluation and entailment
	3.3. Case study: finer interpolation of linear inferences
	3.4. Deterministic and total graphs are P4-free

	4. Computational Complexity of Boolean Graph Logic
	4.1. Preliminaries on computational complexity
	4.2. Complexity of entailment
	4.3. Complexity of evaluation

	5. Modular decomposition and an algorithm for evaluation
	5.1. Modules: `zooming' out of graphs
	5.2. Modular decomposition of a graph
	5.3. Maximal cliques and stable sets via modular decomposition
	5.4. Evaluation via modular decomposition

	6. Positional games beyond cographs
	6.1. Games on arbitrary graphs
	6.2. Boolean payoffs and strategies
	6.3. Characterisation of evaluation via static strategies
	6.4. Characterisation of evaluation via sequential strategies

	7. A proof system for entailment via non-linear graphs
	7.1. Nonlinear graphs
	7.2. Deep inference and rules on modules
	7.3. Entailment-specific rules
	7.4. Reductions to DNF and CNF
	7.5. A completeness result
	7.6. On atomicity and linearity

	8. Conclusions
	References
	Appendix A. Deterministic and total graphs are P4-free

