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RIORDAN MATRICES

AND SUMS OF HARMONIC NUMBERS

Emanuele Munarini

We obtain a general identity involving the row-sums of a Riordan matrix
and the harmonic numbers. From this identity, we deduce several particular
identities involving numbers of combinatorial interest, such as generalized
Fibonacci and Lucas numbers, Catalan numbers, binomial and trinomial co-
efficients and Stirling numbers.

1. INTRODUCTION

In enumerative combinatorics, Riordan matrices [14, 15, 16, 5, 7] form
an important class of combinatorial objects. They are infinite lower triangular
matrices R = [rn,k]n,k>0 = (g(x), f(x)) whose columns have generating series
rk(x) = g(x)f(x)k, where g(x) and f(x) are formal series with g0 = 1, f0 = 0
and f1 6= 0. In particular, a Riordan matrix R = [rn,k]n,k>0 = (g(x), f(x)) induces
a transformation TR on the set of formal series. Specifically, for any formal series

A(x) =
∑

n>0

anx
n, TR is defined by

(1) TRA(x) = g(x)A(f(x)) =
∑

n>0

(
n∑

k=0

rn,k ak

)
xn .

Moreover, associated to a Riordan matrix R = [rn,k]n,k>0 = (g(x), f(x)) we

also have the row-sum sequence {rn}n∈N, where rn =
n
∑

k=0

rn,k, having generating
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series

(2) r(x) =
∑

n>0

rnx
n =

g(x)

1− f(x)
.

Riordan matrices provide a powerful tool for obtaining identities between
combinatorial sequences, as shown, for instance, in [17, 18] (see also [2]). In this
paper, we obtain a general identity involving the row-sums of a Riordan matrix
and the harmonic numbers [3], defined by

Hn =
n∑

k=1

1

k
= 1 +

1

2
+

1

3
+ · · ·+ 1

n

and having generating series

(3) H(x) =
∑

n>0

Hn x
n =

1

1− x
ln

1

1− x
.

From this identity we obtain several particular identities involving combinatorial
sequences, such as generalized Fibonacci and Lucas numbers, Catalan numbers,
binomial and trinomial coefficients, Stirling numbers.

2. THE MAIN IDENTITY

A logarithmic series is a formal series of the form

f(x) =
∑

n>1

fn
xn

n
.

To any ordinary series we can always associate a logarithmic series as follows:

(4) f(x) =
∑

n>0

fnx
n  F (x) =

∑

n>1

fn
xn

n
=

∫ x

0

Rf(t) dt

where R denotes the (incremental ratio) operator defined by

Rf(x) =
f(x) − f0

x
=
∑

n>0

fn+1 xn .

Now, we can prove our main result.

Theorem 1. Let R = [rn,k]n,k>0 = (g(x), f(x)) be a Riordan matrix with as-

sociated row-sum sequence {rn}n∈N. Let {sn}n∈N be a sequence whose ordinary

generating series s(x) =
∑

n>0

snx
n satisfies the relation

(5) Rs(x) =
f ′(x)

1− f(x)
or s(x) = s0 +

xf ′(x)

1− f(x)
.
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Then, the identity

(6)

n∑

k=1

1

k
skrn−k =

n∑

k=0

rn,kHk

holds for every n ∈ N.

Proof. By applying transformation (4) to series s(x) and by identity (5), we obtain
the series

S(x) =
∑

n>1

sn
xn

n
=

∫ x

0

Rs(t)dt =

∫ x

0

f ′(t)

1− f(t)
dt = ln

1

1− f(x)
.

Hence, the left-hand side of identity (6) has generating series

∑

n>0

[
n∑

k=1

1

k
skrn−k

]
xn =

∑

n>0

rn x
n ·

∑

n>1

sn
n

xn

= r(x)S(x) =
g(x)

1− f(x)
ln

1

1− f(x)
= g(x)H(f(x)) = TRH(x) .

This series is the Riordan transformation (1) of series (3), i.e. of the generating
series of harmonic numbers. So, in conclusion, we have identity (6).

Remark. If the row-sums rn cannot be expressed in a closed form, identity (6) can be
written as a double sum:

(7)

n
∑

k=1

sk
k

n−k
∑

i=0

rn−k,i =

n
∑

k=0

rn,kHk .

Riordan matrices form a group with respect to the matrix product [14], and
this group admits several subgroups of combinatorial interest [16]. In particular,
we have the derivative subgroup, consisting of the Riordan matrices (g(x), f(x))
such that g(x) = f ′(x). In this case, Theorem 1 yields the following result.

Theorem 2. Let R = [rn,k]n,k>0 = (f ′(x), f(x)) be a Riordan matrix belonging

to the derivative subgroup, with associated row-sum sequence {rn}n∈N. Then, the

identity

(8)
n∑

k=1

1

k
rk−1rn−k =

n∑

k=0

rn,kHk

holds for every n ∈ N.

Proof. Since g(x) = f ′(x), from (2) and (5), we have Rs(x) = r(x) and sn = rn−1

(for n > 1). So, identity (8) follows immediately from (6).
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3. COMBINATORIAL SEQUENCES

From the general identity (6), we can obtain particular identities involving
several other numerical sequences of combinatorial interest. In particular, we will
consider the following numbers.

• The Fibonacci numbers Fn and the Lucas numbers Ln, defined by the series

F (x) =
∑

n>0

Fnx
n =

x

1− x− x2

L(x) =
∑

n>0

Lnx
n =

2− x

1− x− x2
.

For the Lucas numbers we also have the logarithmic generating series

∑

n>1

Ln
xn

n
= ln

1

1− x− x2
.

This result justifies the generalizations given here below. Moreover, we have
the Binet formulas :

(9) Fn =
ϕn − ϕ̂n

√
5

and Ln = ϕn + ϕ̂n

where ϕ = (1 +
√
5)/2 and ϕ̂ = (1−

√
5)/2.

• The generalized Fibonacci numbers of the first kind f
[m]
n (see [6, 9]) and the

generalized Lucas numbers of the first kind ℓ
[m]
n , with m > 1. They are defined

by the generating series

f [m](x) =
∑

n>0

f [m]
n xn =

1

1− x− x2 − · · · − xm
(10)

ℓ[m](x) =
∑

n>1

ℓ[m]
n

xn

n
= ln

1

1− x− x2 − · · · − xm
.(11)

Moreover, if D denotes the operator of formal differentiation (with respect to
x) and ϑ = xD (so that ϑf(x) = xf ′(x)), then we have

(12)
∑

n>1

ℓ[m]
n xn = ϑℓ[m](x) =

x+ 2x2 + · · ·+mxm

1− x− x2 − · · · − xm
.

Combinatorially, f
[m]
n is the number of all linear partitions of {1, 2, . . . , n}

consisting of blocks of size at most m (see, for instance, [10] and [11]). In

particular, for m = 2, we have f
[2]
n = Fn+1 and ℓ

[2]
n = Ln.

• The generalized Fibonacci numbers of the second kind F
[m]
n and the generalized

Lucas numbers of the second kind L
[m]
n , with m > 1. They are defined by the
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generating series

F [m](x) =
∑

n>0

F [m]
n xn =

1 + x+ x2 + · · ·+ xm−1

1− x− xm
(13)

L[m](x) =
∑

n>1

L[m]
n

xn

n
= ln

1 + x+ x2 + · · ·+ xm−1

1− x− xm
.(14)

Moreover, we have

(15)
∑

n>1

L[m]
n xn = ϑL[m](x) =

x+ (m− 1)xm+1

(1− xm)(1− x− xm)
+

x

1− x
.

Combinatorially, F
[m]
n is the number of all subsets X of {1, 2, . . . , n} such that

|x − y| > m for every x, y ∈ X , x 6= y (see, for instance, [12]). In particular,

for m = 2, we have F
[2]
n = Fn+2 and L

[2]
n = Ln − (−1)n.

• The polynomial coefficients [1], defined by the identity

(m−1)n∑

k=0

(
n;m

k

)
xk = (1 + x+ x2 + · · ·+ xm−1)n .

In particular, for m = 2 we have the binomial coefficients, and for m = 3 we
have the trinomial coefficients.

• The multiset coefficients
((
α
n

))
=

α(α+ 1)(α+ 2) · · · (α+ n− 1)

n!
, such that

∑

n>0

((α
n

))
xn =

1

(1− x)α
.

• The Catalan numbers Cn, the Motzkin numbers Mn, the central binomial

coefficients
(
2n
n

)
, and the central trinomial coefficients Tn =

(
n; 3
n

)
, defined

by the series

C(x) =
∑

n>0

Cnx
n =

1−
√
1− 4x

2x

M(x) =
∑

n>0

Mnx
n =

1− x−
√
1− 2x− 3x2

2x2

B(x) =
∑

n>0

(
2n

n

)
xn =

1√
1− 4x

T (x) =
∑

n>0

Tnx
n =

1√
1− 2x− 3x2

.
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• The Stirling numbers of the first kind and the Stirling numbers of the second

kind [3]. For these numbers we have the identities

∑

n>k

[
n

k

]
xn

n!
=

1

k!

(
ln

1

1− x

)k

∑

n>k

[
n+ 1

k + 1

]
xn

n!
=

1

1− x

1

k!

(
ln

1

1− x

)k

∑

n>k

{
n

k

}
xn

n!
=

(ex − 1)k

k!

∑

n>k

{
n+ 1

k + 1

}
xn

n!
= ex

(ex − 1)k

k!
.

• The preferential arrangement numbers (see, for instance, [4]), or ordered Bell

numbers, On =
n
∑

k=0

{
n
k

}
k! having generating exponential series

O(x) =
∑

n>0

On
xn

n!
=

1

2− ex
.

Remark. As usual, we write [xn]f(x) for the coefficient of xn in the formal series f(x).

See, for instance, [8]. Moreover, the field of complex numbers will be denoted by C. In

what follows, for simplicity, the symbols α, β and q are considered as complex parameters,

but more generally they can be considered as indeterminates.

4. COMBINATORIAL IDENTITIES

All the following relations are obtained by applying identity (6) (or identity
(8), when the Riordan matrix belongs to the derivative subgroup), and hold for
every n ∈ N.

Proposition 3. For every q ∈ C, q 6= 1, we have the identities

n∑

k=0

qn−k Hk =
qn+1Hn(1/q)−Hn

q − 1
(q 6= 0)(16)

n∑

k=0

qk Hk =
Hn(q)− qn+1Hn

1− q
(17)

where Hn(x) =
n
∑

k=1

xk

k
. In particular, we have the identities

n∑

k=0

(−1)n−kHk =
Hn + (−1)nHn(−1)

2
(18)
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n∑

k=0

Hk = (n+ 1)Hn − n .(19)

Proof. For the Riordan matrix

R =
[
qn−k

]
n,k>0

=

(
1

1− qx
, x

)
,

with q 6= 1, we have rn = 1 + q + · · · + qn =
qn+1 − 1

q − 1
. Moreover, we have

Rs(x) =
1

1− x
and sn = 1. If q 6= 0, the first member of (6) becomes

n∑

k=1

1

k

qn−k+1 − 1

q − 1
=

1

q − 1

(
n∑

k=1

qn−k+1

k
−

n∑

k=1

1

k

)
=

qn+1Hn(1/q)−Hn

q − 1
.

So, we have identity (16), which implies identity (17). Then, identity (18) can be
obtained from identity (16) with q = −1. Finally, identity (19) can be obtained in
a similar way from the same Riordan matrix in the case q = 1.

Proposition 4. For every q ∈ C, we have the identity

(20)

n∑

k=0

(
n

k

)
qn−k Hk = (1 + q)nHn −

n∑

k=1

qk(1 + q)n−k

k
.

In particular, we have the identities

n∑

k=0

(
n

k

)
Hk = 2nHn −

n∑

k=1

2n−k

k
(21)

n∑

k=0

(
n

k

)
(−1)kHk = − 1

n
(n > 1)(22)

n∑

k=0

(
n

k

)
(−1)k2n−kHk = Hn −

n∑

k=1

2k

k
(23)

n∑

k=0

(
n

k

)
(−1)n−k2kHk = Hn −

n∑

k=1

(−1)k

k
.(24)

Moreover, we have the identities

n∑

k=0

(
n

k

)
Fn−kHk = F2nHn −

n∑

k=1

F2n−k

k
(25)

n∑

k=0

(
n

k

)
Ln−kHk = L2nHn −

n∑

k=1

L2n−k

k
(26)
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n∑

k=0

(
n

k

)
2n−kFn−kHk = F3nHn −

n∑

k=1

2kF3n−2k

k
(27)

n∑

k=0

(
n

k

)
2n−kLn−kHk = L3nHn −

n∑

k=1

2kL3n−2k

k
.(28)

Proof. For the Riordan matrix

R =

[(
n

k

)
qn−k

]

n,k>0

=

(
1

1− qx
,

x

1− qx

)

we obtain the series

r(x) =
1

1− (1 + q)x
, Rs(x) =

1

(1− qx)(1 − (1 + q)x)
=

1 + q

1− (1 + q)x
− q

1− qx
.

So, we have the coefficients rn = (1 + q)n and sn = (1 + q)n − qn. Now, by
substituting in (6) and simplifying, we obtain identity (20).

Identities (21), (22), (23) and (24) can be obtained respectively for q = 1,
q = −1, q = −2 and q = −1/2. Finally, to obtain identity (25), we substitute in
identity (20) first q = ϕ and then q = ϕ̂, simplify using the relations ϕ2 = ϕ + 1
and ϕ̂2 = ϕ̂+ 1, take the difference of the two identities just obtained, divide both
sides by

√
5, and finally simplify using Binet formulas (9). In a similar way, we can

obtain also identity (26). Finally, to obtain identities (27) and (28), we can proceed
in the same way starting with the substitutions q = 2ϕ2 and then q = 2ϕ̂2, and
using the relations ϕ3 = 2ϕ+ 1 and ϕ̂3 = 2ϕ̂+ 1,

Proposition 5. For every α, β ∈ C, α 6= β, we have the identity

(29)

n∑

k=1

αk + βk

k

αn−k+1 + βn−k+1

α− β
=

n∑

k=⌈n/2⌉

(
k

n− k

)
(−αβ)n−k(α+β)2k−nHk .

In particular, for every m ∈ N, m > 1, we have the identities

n∑

k=1

1

k
Lmk

Fm(n−k+1)

Fm
=

n∑

k=⌈n/2⌉

(
k

n− k

)
(−1)(m+1)(n−k)L2k−n

m Hk(30)

=

⌊n/2⌋∑

k=0

(
n− k

k

)
(−1)(m+1)kLn−2k

m Hn−k .

Proof. For the Riordan matrix

R =

[(
k

n− k

)
(−αβ)n−k(α+ β)2k−n

]

n,k>0

= (1, (α+ β)x − αβx2)

we have the series

r(x) =
1

(1− αx)(1 − βx)
=

α

α− β

1

1− αx
+

β

β − α

1

1− βx
,

Rs(x) =
α+ β − 2αβx

(1− αx)(1 − βx)
=

α

1− αx
+

β

1− βx
.
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So, we have the coefficients rn =
αn+1 − βn+1

α− β
and sn = αn + βn.

Finally, to obtain identity (30), it is sufficient to set α = ϕm and β = ϕ̂m,
and to use Binet formulas (9).

Proposition 6. For every m ∈ N, m > 2, we have the identities

(31)

n∑

k=1

1

k
ℓ
[m]
k f

[m]
n−k =

n∑

k=⌈n/m⌉

(
k; m

n− k

)
Hk =

⌊(m−1)n/m⌋∑

k=0

(
n− k; m

k

)
Hn−k .

In particular, for m = 2, we have the identities

(32)

n∑

k=1

1

k
LkFn−k+1 =

n∑

k=⌈n/2⌉

(
k

n− k

)
Hk =

⌊n/2⌋∑

k=0

(
n− k

k

)
Hn−k .

Proof. For the Riordan matrix

R =

[(
k; m

n− k

)]

n,k>0

= (1, x+ x2 + · · ·+ xm)

we have the series

r(x) =
1

1− x− x2 − · · · − xm
= f [m](x)

Rs(x) =
1 + 2x+ · · ·+mxm−1

1− x− x2 − · · · − xm
= Rϑℓ[m](x) .

Hence, from identities (10) and (12), we have rn = f
[m]
n and sn = ℓ

[m]
n (for n > 1).

Finally, for m = 2, we have f
[2]
n = Fn+1 and ℓ

[2]
n = Ln (for n > 1).

Remark. Identity (32) is also a particular case of identity (30), for m = 1.

Proposition 7. For every m ∈ N, m > 2, we have the identity

(33)

n∑

k=1

1

k
(L

[m]
k − 1)F

[m]
n−k =

n∑

k=0

(⌊(n− k)/m⌋+ k

k

)
Hk .

In particular, for m = 2, we have the identity

(34)
n∑

k=1

1

k
(Lk − 1− (−1)k)Fn−k+1 =

n∑

k=0

(⌊(n+ k)/2⌋
k

)
Hk .

Proof. For the Riordan matrix

R =

[(⌊(n− k)/m⌋+ k

k

)]

n,k>0

=

(
1

1− x
,

x

1− xm

)



Riordan matrices and sums of harmonic numbers 185

we have the series

r(x) =
1 + x+ x2 + · · ·+ xm−1

1− x− xm
= F [m](x)

and then the coefficient rn = F
[m]
n . Moreover, we have

f ′(x) =
1 + (m− 1)xm

(1 − xm)2
and Rs(x) =

1 + (m− 1)xm

(1− xm)(1− x− xm)
.

So, from (15), we obtain sn = L
[m]
n − 1 (for n > 1).

Finally, for m = 2, we have the coefficients
(⌊(n− k)/2⌋ + k

k

)
=
(⌊(n+ k)/2⌋

k

)

(related to the Terquem problem [13, p. 17]). Moreover, we have rn = F
[2]
n = Fn+2

and sn = L
[2]
n − 1 = Ln − 1− (−1)n.

Proposition 8. We have the identities

n∑

k=1

1

k
(L2k − 2)F2n−2k+2 =

n∑

k=0

(
n+ k + 1

n− k

)
Hk(35)

n∑

k=1

1

k
(L2k − 2)L2n−2k+1 =

n∑

k=0

(
n+ k

n− k

)
2n+ 1

2k + 1
Hk .(36)

Proof. For the Riordan matrix

R =

[(
n+ k + 1

n− k

)]

n,k>0

=

(
1

(1 − x)2
,

x

(1 − x)2

)

we have the series

r(x) =
1

1− 3x+ x2
and s(x) = 1− 2

1− x
+

2− 3x

1− 3x+ x2
.

So rn = F2n+2 and sn = L2n − 2 (for n > 1). This proves identity (35). Similarly,
for the Riordan matrix

R =

[(
n+ k

n− k

)
2n+ 1

2k + 1

]

n,k>0

=

(
1 + x

(1− x)2
,

x

(1− x)2

)

we have the series

r(x) =
1 + x

1− 3x+ x2
and Rs(x) =

3− 2x

1− 3x+ x2
− 2

1− x
.

So rn = L2n+1 and sn = L2n − 2 (for n > 1). This proves identity (36).

Proposition 9. We have the identity

(37)
n∑

k=1

(
2k − 1

k − 1

)(
2n− 2k + 1

n− k + 1

)
1

k
=

n∑

k=0

(
2n− k

n− k

)
Hk .
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Proof. The Riordan matrix

R =

[(
2n− k

n− k

)]

n,k>0

= (B(x), xC(x))

belongs to the derivative subgroup. So, in this case, we have

r(x) = Rs(x) = B(x)C(x) =
1−

√
1− 4x

2x
√
1− 4x

.

Hence rn =
(
2n+ 1
n+ 1

)
and sn = rn−1 =

(
2n− 1
n− 1

)
(for n > 1).

Proposition 10. For every m ∈ N, we have the identity

n∑

k=1

(
2k − 1

k − 1

)
1

k

(
m+ 2n− 2k

n− k

)
m+ 1

m+ n− k + 1
(38)

=

n∑

k=0

(
m+ 2n− k

n− k

)
m+ k

m+ 2n− k
Hk .

In particular, for m = 0, 1, 2, we have the identities

n∑

k=1

(
2k − 1

k − 1

)
1

k
Cn−k =

n∑

k=0

(
2n− k

n− k

)
k

2n− k
Hk(39)

n∑

k=1

(
2k − 1

k − 1

)
1

k
Cn−k+1 =

n∑

k=0

(
2n− k

n− k

)
k + 1

n+ 1
Hk(40)

n∑

k=1

(
2k − 1

k − 1

)
3(n− k + 1)

k(n− k + 3)
Cn−k+1 =

n∑

k=0

(
2n− k + 1

n− k

)
k + 2

n+ 2
Hk .(41)

Proof. Consider the Riordan matrix

R =

[(
m+ 2n− k

n− k

)
m+ k

m+ 2n− k

]

n,k>0

= (C(x)m, xC(x)) .

Then, we have

r(x) =
C(x)m

1− xC(x)
= C(x)m+1 and rn =

(
m+ 2n

n

)
m+ 1

m+ n+ 1
.

Moreover, we have f ′(x) =
1√

1− 4x
, and hence

s(x) =
1

2

(
1 +

1√
1− 4x

)
and sn =

1

2

(
2n

n

)
=

(
2n− 1

n− 1

)
(for n > 1) .

In particular, for m = 0, we have r(x) = C(x) and hence rn = Cn. Similarly,
for m = 1, we have r(x) = C(x)2 = RC(x) and hence rn = Cn+1. Finally, for



Riordan matrices and sums of harmonic numbers 187

m = 2, we have r(x) = C(x)3 = C(x)RC(x) = R2C(x) −RC(x). So, we have the
coefficients

rn = Cn+2 − Cn+1 =
3(n+ 1)

n+ 3
Cn+1 .

In this way, we have identities (39), (40) and (41).

Proposition 11. For every m ∈ N, we have the identities

n∑

k=1

(
2k − 1

k − 1

)(
m+ 2n− 2k

n− k

)
(m+ 3)(n− k)

k(m+ n− k + 1)(m+ n− k + 2)
(42)

=

n∑

k=0

(
m+ 2n− k

n− k

)
(m+ k + 2)(n− k)

(m+ n+ 1)(m+ 2n− k)
Hk

n∑

k=1

(
2k − 1

k − 1

)(
m+ 2n− 2k

n− k

)
2(m+ 2)(m+ 1) + (3m+ 5)(n− k)

k(m+ n− k + 1)(m+ n− k + 2)
(43)

=

n∑

k=0

(
m+ 2n− k

n− k

)
2m2 + 3mn+mk + 3nk + 2m+ 2n− k2

(m+ n+ 1)(m+ 2n− k)
Hk .

In particular, for m = 0, we have the identities

n∑

k=1

(
2k − 1

k − 1

)(
2n− 2k

n− k

)
3(n− k)

k(n− k + 1)(n− k + 2)
(44)

=

n∑

k=0

(
2n− k

n− k

)
(k + 2)(n− k)

(n+ 1)(2n− k)
Hk

n∑

k=1

(
2k − 1

k − 1

)(
2n− 2k

n− k

)
5n− 5k + 4

k(n− k + 1)(n− k + 2)
(45)

=

n∑

k=0

(
2n− k

n− k

)
3nk + 2n− k2

(n+ 1)(2n− k)
Hk .

Proof. To obtain identities (42) and (43), it is sufficient to substitute m with m+1
in identity (39), and then to take the difference and the sum between this identity
and identity (39).

Proposition 12. For every m ∈ N, we have the identity

n∑

k=1

(
22k−1 −

(
2k − 1

k − 1

))(
m+ 2n− 2k

n− k

)
1

k
(46)

=
n∑

k=0

(
m+ 2n

n− k

)
m+ 2k + 1

m+ n+ k + 1
Hk .
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In particular, for m = 0, we have the identity

(47)

n∑

k=1

(
22k−1 −

(
2k − 1

k − 1

))(
2n− 2k

n− k

)
1

k
=

n∑

k=0

(
2n

n− k

)
2k + 1

n+ k + 1
Hk .

Proof. For the Riordan matrix

R =

[(
m+ 2n

n− k

)
m+ 2k + 1

m+ n+ k + 1

]

n,k>0

=
(
C(x)m+1, C(x)− 1

)

we have the series

r(x) =
1√

1− 4x

(
1−

√
1− 4x

2x

)m

Rs(x) =
1−

√
1− 4x

2x(1 − 4x)
=

1

2

(
R 1

1− 4x
+R 1√

1− 4x

)
,

and consequently the coefficients (for n > 1)

rn =

(
m+ 2n

n

)
, sn =

1

2

(
4n −

(
2n

n

))
=

(
22n−1 −

(
2n− 1

n− 1

))
.

Proposition 13. For every m ∈ N, we have the identity

n∑

k=1

(
22k−1 −

(
2k − 1

k − 1

))(
m+ 2n− 2k

n− k

)
n− k

k(m+ n− k + 1)
(48)

=

n∑

k=0

(
m+ 2n

n− k

)
(n− k)(m+ 2k + 3)

(m+ n+ k + 1)(m+ n+ k + 2)
Hk .

Proof. To obtain identity (48), it is sufficient to take the difference between iden-
tity (49) with m+ 1 substituted to m and identity (49) itself.

Proposition 14. We have the identity

(49)

n∑

k=1

(
2k − 1

k − 1

)(
2n− 2k

n− k

)
1

k
=

n∑

k=0

((
n

n− k

))
Hk .

Proof. For the Riordan matrix

R =

[((
n

n− k

))]

n,k>0

=

(
1 +

√
1− 4x

2
√
1− 4x

,
1−

√
1− 4x

2

)

we have the series

r(x) =
1√

1− 4x
and Rs(x) =

1

2
R 1√

1− 4x
.

So we have the coefficients

rn =

(
2n

n

)
and sn =

1

2

(
2n

n

)
=

(
2n− 1

n− 1

)
.
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Proposition 15. We have the identity

(50)

n∑

k=1

(3k − Tk)(3
n−k + Tn−k)

4k
=

n∑

k=0

(
n; 3

n− k

)
Hk .

Proof. For the Riordan matrix

R =

[(
n; 3

n− k

)]

n,k>0

=

[(
n; 3

n+ k

)]

n,k>0

= (T (x), xM(x))

generated by the trinomial coefficients, we have the series

r(x) =
1

2

(
1

1− 3x
+

1√
1− 2x− 3x2

)

s(x) =
1

2

(
3 +

3x

1− 3x
− 1√

1− 2x− 3x2

)
,

and the coefficients rn = (3n + Tn)/2 and sn = (3n − Tn)/2 (for n > 1).

Proposition 16. For every α, q ∈ C, we have the identity

(51)

n∑

k=1

1

k

n−k∑

i=0

(
α+ i

i

)
qi =

n∑

k=0

(
α+ n− k

n− k

)
qn−kHk .

In particular, for every m, r ∈ N, we have the identities

n∑

k=1

1

k

n−k∑

i=0

(
α+ i

i

)
Fmi+r =

n∑

k=0

(
α+ n− k

n− k

)
Fm(n−k)+rHk(52)

n∑

k=1

1

k

n−k∑

i=0

(
α+ i

i

)
Lmi+r =

n∑

k=0

(
α+ n− k

n− k

)
Lm(n−k)+rHk .(53)

Proof. For the Riordan matrix

R =

[(
α+ n− k

n− k

)]

n,k>0

=

(
1

(1− qx)α+1
, x

)
,

we have the series

r(x) =
1

(1− x)(1 − qx)α
and Rs(x) =

1

1− x

and consequently the coefficients

rn =

n∑

k=0

(
α+ k

k

)
qk and sn = 1 .

Finally, substitute q = ϕm in identity (51) and multiply both sides by ϕr ,
Repeat the same for q = ϕ̂m. To obtain identity (52), take the difference of these
two identities and divide by

√
5. To obtain identity (53), take the sum of these two

identities. In both cases, use Binet formulas.
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Proposition 17. For every α, q ∈ C, we have the identities

(54)

n∑

k=1

(1 + q)k − qk

k

n−k∑

i=0

(
α+ n− k

i

)
qi =

n∑

k=0

(
α+ n

n− k

)
qn−kHk .

(55)

n∑

k=1

(1 + q)k − qk

k

n−k∑

i=0

((α
i

))
(1 + q)n−k−i =

n∑

k=0

(
α+ n

n− k

)
qn−kHk .

Proof. For the Riordan matrix

R =

[(
α+ n

n− k

)
qn−k

]

n,k>0

=

(
1

(1− qx)α+1
,

x

1− qx

)
,

we have the series

r(x) =
1

(1− x)α(1− (1 + q)x)

Rs(x) =
1

(1− x)(1 − (1 + q)x)
=

1 + q

1− (1 + q)x
− q

1− qx

and consequently the coefficients

rn =

n∑

k=0

(
α+ n

k

)
qk =

n∑

k=0

((α
k

))
(1 + q)n−k and sn = (1 + q)n − qn . �

The following result generalizes Propositions 3, 4, 16 and 17.

Proposition 18. For every α, β, q ∈ C, we have the identity

n∑

k=1

[
k∑

i=1

((
iβ

k − i

))
qk−i

i

][
n−k∑

i=0

(
α+ (n− k − i)β + i

i

)
qi

]
(56)

=

n∑

k=0

(
α+ kβ + n− k

n− k

)
qn−kHk .

Proof. Consider the Riordan matrix

R =

[(
α+ kβ + n− k

n− k

)
qn−k

]

n,k>0

=

(
1

(1− qx)α+1
,

x

(1 − qx)β

)
.

In this case, we only have

rn =

n∑

k=0

rn,k =

n∑

k=0

(
α+ kβ + n− k

n− k

)
qn−k =

n∑

k=0

(
α+ (n− k)β + k

k

)
qk .
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Moreover, we have the series

Rs(x) =
1 + (β − 1)qx

(1 − qx)((1 − qx)β − x)

=
1

(1 − qx)β
1

1− x

(1− qx)β

+
1

(1 − qx)β+1

βqx

1− x
(1−qx)β

=
∑

k>0

xk

(1− qx)(k+1)β
+ qβ

∑

k>0

xk+1

(1− qx)(k+1)β+1

=
∑

k>0

∑

n>k

((
(k + 1)β

n− k

))
qn−kxn + qβ

∑

k>0

∑

n>k

((
(k + 1)β + 1

n− k − 1

))
qn−k−1xn

=
∑

n>0

(
n∑

k=0

[((
(k + 1)β

n− k

))
+ β

((
(k + 1)β + 1

n− k − 1

))]
qn−k

)
xn .

Now, using the properties of the multiset coefficients, we have

((
(k + 1)β

n− k

))
+ β

((
(k + 1)β + 1

n− k − 1

))

=

((
(k + 1)β

n− k

))
+ β

((
(k + 1)β

n− k

))
n− k

(k + 1)β
=

((
(k + 1)β

n− k

))
n+ 1

k + 1
.

So, we have

Rs(x) =
∑

n>0

(
n∑

k=0

((
(k + 1)β

n− k

))
n+ 1

k + 1
qn−k

)
xn

and consequently

sn =

n−1∑

k=0

((
(k + 1)β

n− k − 1

))
n

k + 1
qn−k−1 =

n∑

k=1

((
kβ

n− k

))
n

k
qn−k .

Proposition 19. For every m ∈ N, we have the identity

n∑

k=1

5k − 4k

k

(
2m+ 2n− 2k

m+ n− k

) n−k∑

i=0

(
m+ n− k

m− i

)(
2m+ 2i

m+ i

)−1

(57)

=

(
2m+ 2n

m+ n

) n∑

k=0

(
m+ n

m+ k

)(
2m+ 2k

m+ k

)−1

Hk .

Proof. For the Riordan matrix

R =

[(
m+ n

m+ k

)(
2m+ 2n

m+ n

)(
2m+ 2k

m+ k

)−1
]

n,k>0

=

(
1

(1− 4x)m
√
1− 4x

,
x

1− 4x

)
,
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we have the series

Rs(x) =
1

(1− 4x)(1− 5x)
=

5

1− 5x
− 4

1− 4x

and consequently the coefficients sn = 5n − 4n. For the row-sums we have no a
particular closed form, and so

rn =

(
2m+ 2n

m+ n

) n∑

k=0

(
m+ n

m+ k

)(
2m+ 2k

m+ k

)−1

.

Proposition 20. We have the identities

n∑

k=1

(
n

k

)
Ok−1On−k −

n

2
On−1 =

1

2

n∑

k=0

{
n

k

}
Hkk!(58)

n∑

k=1

(
n

k

)
Ok−1On−k −

n+ 1

2
On−1 +

1

4
δn,1 =

1

4

n∑

k=0

{
n+ 1

k + 1

}
Hkk! .(59)

Proof. For the Riordan matrix

R =

[{
n

k

}
k!

n!

]

n,k>0

= (1, ex − 1) ,

we have the series

r(x) =
1

2− ex
= O(x), Rs(x) =

ex

2− ex
=

2

2− ex
− 1 = 2O(x)− 1

and consequently the coefficients rn =
On

n!
and sn =

2On−1

(n− 1)!
− δn,1 (for n > 1). So,

identity (6) becomes

n∑

k=1

2Ok−1

k (k − 1)!

On−k

(n− k)!
− On−1

(n− 1)!
=

n∑

k=0

{
n

k

}
k!

n!
Hk .

Now, by multiplying both sides for n!/2, we obtain identity (58).

Finally, identity (59) can be obtained in a similar way, starting from the
Riordan matrix

R =

[{
n+ 1

k + 1

}
k!

n!

]

n,k>0

= (ex, ex − 1) .

Remark. The preferential arrangement numbers can be expressed in terms of harmonic
numbers as follows

(60) On =

n
∑

k=0

{

n+ 1

k + 1

}

Hk+1(k + 1)!− 1

2

n
∑

k=0

{

n+ 2

k + 2

}

Hk+1(k + 1)! +
1

2
δn,0 .

Indeed, it is sufficient to subtract identity (59) to identity (58), to substitute n with n+1,

and to divide by 2.
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Proposition 21. We have the identities

n∑

k=1

(
n

k

)
ak−1an−k =

n∑

k=0

[
n+ 1

k + 1

]
Hkk!(61)

n∑

k=1

(
n

k

)
ak−1bn−k =

n∑

k=0

[
n

k

]
Hkk!(62)

where

an =

n∑

k=0

[
n+ 1

k + 1

]
k! and bn =

n∑

k=0

[
n

k

]
k! .

Proof. The Riordan matrix

R =

[[
n+ 1

k + 1

]
k!

n!

]

n,k>0

=

(
1

1− x
, ln

1

1− x

)

belongs to the derivative subgroup. Moreover, we have

rn =

n∑

k=0

[
n+ 1

k + 1

]
k!

n!
=

an
n!

.

So, by substituting in identity (8) and by multiplying by n!, we obtain identity
(61). Similarly, for the Riordan matrix

R =

[[
n

k

]
k!

n!

]

n,k>0

=

(
1, ln

1

1− x

)

we have

rn =

n∑

k=0

[
n

k

]
k!

n!
=

bn
n!

and sn = an−1 as before. Again, by substituting in identity (8) and by multiplying
for n!, we obtain identity (62).

5. OTHER COMBINATORIAL IDENTITIES

From identity (20) we can obtain another general identity and several other
particular identities involving combinatorial sequences.

Theorem 22. For a Riordan matrix R = [rn,k]n,k>0 = (g(x), f(x)), the identity

(63)

n∑

k=0

(
n

k

)
rm,n−kHk = fm,nHn −

n∑

k=1

1

k
Fm,n,k
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holds for every m,n ∈ N, where

fm,n = [xm]g(x)(1 + f(x))n =

n∑

k=0

(
n

k

)
rm,k(64)

Fm,n,k = [xm]g(x)f(x)k(1 + f(x))n−k =
n−k∑

i=0

(
n− k

i

)
rm,i+k .(65)

Proof. By substituting q = f(x) in identity (20), and then by multiplying both
sides by g(x), we obtain the relation

n∑

k=0

(
n

k

)
g(x)f(x)n−k Hk = g(x)(1 + f(x))nHn −

n∑

k=1

g(x)f(x)k(1 + f(x))n−k

k
.

Now, by taking the coefficient of xm, we obtain identity (63).

Proposition 23. For every m ∈ N and α ∈ C, we have the identity

(66)
n∑

k=0

(
n

k

)(
m+ α

m− n+ k

)
Hk =

(
m+ n+ α

m

)
Hn −

m∑

k=1

(
m+ n− k + α

m− k

)
1

k
.

In particular, for m = n and α = 0, we have the identity

(67)

n∑

k=0

(
n

k

)2
Hk =

(
2n

n

)
Hn −

n∑

k=1

(
2n− k

n− k

)
1

k

and, for m = n = α, we have the identity

(68)

n∑

k=0

(
n

k

)(
2n

k

)
Hk =

(
3n

n

)
Hn −

n∑

k=1

(
3n− k

n− k

)
1

k
.

Proof. Consider the Riordan matrix

R =

[(
n+ α

n− k

)]

n,k>0

=

(
1

(1− x)α+1
,

x

1− x

)
.

Then, 1 + f(x) = 1/(1− x) and so we have

fm,n = [xm]
1

(1− x)n+α+1
=

(
m+ n+ α

m

)

Fm,n,k = [xm−k]
1

(1− x)n+α+1
=

(
m− k + n+ α

m− k

)
.

Proposition 24. For every α ∈ C, we have the identity

(69)
n∑

k=0

(
n

k

)(
α

n− k

)
Hk =

(
α+ n

n

)
Hn −

n∑

k=1

(
α+ n− k

n

)
1

k
.
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Proof. Immediate consequence of identity (66), where α = 0 and m is substituted
with a new symbol α (by applying the identity principle for polynomials).

Proposition 25. For every m, r ∈ N, we have the identity

n∑

k=0

(
n

k

)(
2m+ r

m− n+ k

)
Hk =

(
2m+ n+ r

m

)
Hn −

n∑

k=1

(
2m+ n− k + r

m− k

)
1

k
.

In particular, for m = n and r = 1, we have

(70)

n∑

k=0

(
n

k

)(
2n+ 1

2n− k + 1

)
Hk =

(
3n+ 1

2n+ 1

)
Hn −

n∑

k=1

(
3n− k + 1

2n+ 1

)
1

k

and, for m = n = r, we have

n∑

k=0

(
n

k

)(
3n

k

)
Hk =

(
4n

n

)
Hn −

n∑

k=1

(
4n− k

n− k

)
1

k
.(71)

Proof. Consider the Riordan matrix

R =

[(
2n+ r

n− k

)]

n,k>0

=

(
1√

1− 4x

(
1−

√
1− 4x

2x

)r
,
1− 2x−

√
1− 4x

2x

)
.

In this case, we have

(72) 1 + f(x) =
1−

√
1− 4x

2x
and f(x) = x(1 + f(x))2 .

So, we have

fm,n = [xm]
1√

1− 4x

(
1−

√
1− 4x

2x

)n+r

=

(
2m+ n+ r

m

)
.

Moreover, we have

(73) f(x)k(1 + f(x))n−k = xk(1 + f(x))n+k .

So, we have

Fm,n,k = [xm−k]
1√

1− 4x

(
1−

√
1− 4x

2x

)n+k+r

=

(
2m+ n− k + r

m− k

)
. �

Notice that the identity obtained in Proposition 25 can also be obtained from
identity (66) for α = m+ r.
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Proposition 26. For every m, r ∈ N, we have the identity

n∑

k=0

(
n

k

)(
2m+ r

m− n+ k

)
2n− 2k + r + 1

m+ n− k + r + 1
Hk

=

(
2m+ n+ r

m

)
n+ r + 1

m+ n+ r + 1
Hn −

m∑

k=1

1

k

(
2m+ n− k + r

m− k

)
n+ k + r + 1

m+ n+ r + 1
.

In particular, for m = n and r = 0, we have

n∑

k=0

(
n

k

)(
2n

k

)
2n− 2k + 1

2n− k + 1
Hk =

(
3n

n

)
n+ 1

2n+ 1
Hn −

n∑

k=1

1

k

(
3n− k

n− k

)
n+ k + 1

2n+ 1
.

and, for m = n = r, we have

n∑

k=0

(
n

k

)(
3n

k

)
3n− 2k + 1

3n− k + 1
Hk =

(
4n

n

)
2n+ 1

3n+ 1
Hn −

n∑

k=1

1

k

(
4n− k

n− k

)
2n+ k + 1

3n+ 1
.

Proof. Consider the Riordan matrix

[(
2n+ r

n− k

)
2k + r + 1

n+ k + r + 1

]

n,k>0

=

((
1−

√
1− 4x

2x

)r+1

,
1− 2x−

√
1− 4x

2x

)
.

Also in this case, we have (72) and (73). So, we obtain

fm,n = [xm]

(
1−

√
1− 4x

2x

)n+r+1

=

(
2m+ n+ r + 1

m

)
n+ r + 1

2m+ n+ r + 1

and

Fm,n,k = [xm−k]

(
1−

√
1− 4x

2x

)n+k+r+1

=

(
2m+ n− k + r + 1

m− k

)
n+ k + r + 1

2m+ n− k + r + 1
.

Proposition 27. For every m ∈ N and α ∈ C, we have the identity

n∑

k=0

(
n

k

)(
α+ n− k; s

m− n+ k

)
Hk(74)

= Hn

n∑

k=0

(
n

k

)(
α+ k; s

m− k

)
−

n∑

k=1

1

k

m−k∑

i=0

(
n− k

i

)(
α+ i+ k; s

m− i− k

)
.

In particular, for α = 0, we have

n∑

k=0

(
n

k

)(
n− k; s

m− n+ k

)
Hk =

(
n; s+ 1

m

)
Hn −

n∑

k=1

1

k

n−k∑

i=0

(
n− k

i

)(
i+ k; s

m− i− k

)



Riordan matrices and sums of harmonic numbers 197

and for α = 0 and m = n, we have

n∑

k=0

(
n

k

)(
n− k; s

k

)
Hk =

(
n; s+ 1

n

)
Hn −

n∑

k=1

1

k

n−k∑

i=0

(
n− k

i

)(
i+ k; s

n− i− k

)
.

Moreover, for α = m = n, we have

n∑

k=0

(
n

k

)(
2n− k; s

k

)
Hk

= Hn

n∑

k=0

(
n

k

)(
n+ k; s

n− k

)
−

n∑

k=1

1

k

n−k∑

i=0

(
n− k

i

)(
n+ i+ k; s

n− i− k

)
.

Proof. Consider the Riordan matrix

R =

[(
α+ k; s

n− k

)]

n,k>0

=
(
(1 + x+ x2 + · · ·+ xs−1)α, x+ x2 + · · ·+ xs

)
.

Then, for α = 0 we have

fm,n = [xm](1 + x+ x2 + · · ·+ xs)n =

(
n; s+ 1

m

)
.

More generally, for (64) and (65), we have

fm,n =
n∑

k=0

(
n

k

)(
α+ k; s

m− k

)
and Fm,n,k =

n−k∑

i=0

(
n− k

i

)(
α+ i+ k; s

m− i− k

)
.

Proposition 28. For every m ∈ N and α ∈ C, we have the identity

n∑

k=0

(
n

k

)
Hk

m−n+k∑

i=0

(
α

i

)(
n− k + i; s

m− n+ k − i

)
(75)

=

(
α+ n; s+ 1

m

)
Hn −

n∑

k=1

1

k

m−k∑

i=0

(
α+ n− k

i

)(
i+ k; s

m− i− k

)
.

In particular, for α = m = n, we have

n∑

k=0

(
n

k

)
Hk

k∑

i=0

(
n

i

)(
n− k + i; s

k − i

)
(76)

=

(
2n; s+ 1

n

)
Hn −

n∑

k=1

1

k

n−k∑

i=0

(
2n− k

i

)(
i+ k; s

n− i− k

)
.
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Proof. Consider the Riordan matrix

[
n−k∑

i=0

(
α

i

)(
i+ k; s

n− k − i

)]

n,k>0

=
(
(1 + x+ x2 + · · ·+ xs)α, x+ x2 + · · ·+ xs

)
.

Then, we have

fm,n = [xm](1 + x+ x2 + · · ·+ xs)α+n =

(
α+ n; s+ 1

m

)
.

Moreover, we have

Fm,n,k = [xm](1 + x+ x2 + · · ·+ xs)α+n−k(x+ x2 + · · ·+ xs)k

=

m−k∑

i=0

(
α+ n− k

i

)(
i+ k; s

m− k − i

)
.

Proposition 29. For every m ∈ N, we have the identities

n∑

k=0

(
n

k

){
m

n− k

}
(n− k)!Hk = nmHn −

n∑

k=1

1

k

k∑

i=0

(
k

i

)
(−1)k−i(n− k + i)m(77)

n∑

k=0

(
n

k

){
m+ 1

n− k + 1

}
(n− k)!Hk(78)

= (n+ 1)mHn −
n∑

k=1

1

k

k∑

i=0

(
k

i

)
(−1)k−i(n− k + i+ 1)m .

Proof. Consider the Riordan matrix

R =

[{
n

k

}
k!

n!

]

n,k>0

= (1, ex − 1) .

Then, we have fm,n = [xm]enx = nm/m! and

Fm,n,k = [xm](ex − 1)ke(n−k)x

= [xm]
k∑

i=0

(
k

i

)
(−1)k−ie(n−k+1)x =

k∑

i=0

(
k

i

)
(−1)k−i (n− k + i)m

m!
.

Multiplying by m!, we obtain identity (77). Finally, identity (78) can be obtained
in a similar way starting from the Riordan matrix

R =

[{
n+ 1

k + 1

}
k!

n!

]

n,k>0

= (ex, ex − 1) .
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Proposition 30. For every m ∈ N, we have the identity

n∑

k=0

(
n

k

)
(α + n− k)m−n+k

(m− n+ k)!
Hk(79)

= Hn

n∑

k=0

(
n

k

)
(α+ k)m−k

(m− k)!
−

n∑

k=1

1

k

n−k∑

i=0

(
n− k

i

)
(α+ i+ k)m−i−k

(m− i− k)!
.

In particular, for α = 0 and m = n, we have

n∑

k=0

(
n

k

)
(n− k)k

k!
Hk = Hn

n∑

k=0

(
n

k

)
kn−k

(n− k)!
−

n∑

k=1

1

k

n−k∑

i=0

(
n− k

i

)
(i + k)n−i−k

(n− i− k)!
.

Proof. Consider the Riordan matrix

R =

[
(α+ k)n−k

(n− k)!

]

n,k>0

= (eαx, xex) .

Then, for (64) and (65), we have

fm,n =

n∑

k=0

(
n

k

)
(α+ k)m−k

(m− k)!
and Fm,n,k =

n−k∑

i=0

(
n− k

i

)
(α + i+ k)m−i−k

(m− i− k)!
.
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