
Tree-based Variable Selection
for Dimensionality Reduction

of Large-scale Control Systems
Andrea Castelletti, Stefano Galelli, Marcello Restelli and Rodolfo Soncini–Sessa

Department of Electronics and Information
Politecnico di Milano, Milano, Italy

Email: {castelle,galelli,restelli,soncini}@elet.polimi.it

Abstract—This paper is about dimensionality reduction by
variable selection in high–dimensional real–world control prob-
lems, where designing controllers by conventional means is either
impractical or results in poor performance.
In this paper we propose a novel model–free variable selection
approach that, starting from a dataset of one–step state transi-
tions and rewards, identifies which state, control, and disturbance
variables are most relevant for control purposes, and reduces the
problem dimensionality by removing the others. The core of the
procedure is the Recursive Variable Selection (RVS) algorithm,
which, starting from the subset of variables needed to explain the
reward, recursively repeats the variable–selection procedure on
the state variables that have been selected, but whose transition
model still needs to be explained. The set of selected variables is
incrementally built by adding the best variables provided by a
ranking algorithm based on a statistical measure of significance
that accounts for non-linear dependencies.
The effectiveness of the proposed methodology is tested on
two real–world control problems: balancing of a two–wheeled
inverted–pendulum robot and the operation of Tono Dam (JP)
modeled with a coupled 1D hydrodynamic-ecological model.
Preliminary results show that the proposed variable selection
approach significantly simplifies the learning of good control
policies and can highlight interesting properties of the system
to be controlled.

I. INTRODUCTION

Large–scale, real–world systems are usually described by
complex non–linear, stochastic models with many continuous
state and control variables whose actual relevance to the sys-
tem dynamics is often unknown. The control of such systems
is often formalized as a Markov Decision Process (MDP), for
which high–dimensional, continuous state and control spaces
do not allow to use exact algorithms to find optimal solutions.
To solve such problems, research in dynamic–programming
and reinforcement–learning has produced a variety of ap-
proximated algorithms which can be classified into two (not
disjoint) main categories: solution space reduction approaches,
which search the best solution (i.e., the optimal policy or the
optimal value function) to the original MDP within a pre-
defined (usually parameterized) subset of candidate solutions,
and model reduction ones, which compute the optimal solution
to a simplified version of the original MDP. In this paper, we

focus on the latter approach1 where the control problem is
simplified by relying on a simpler, computationally efficient,
reduced (order) model that mimics the dynamic behavior of
the underlying large-scale system.

In literature many reduction techniques based on the heuris-
tic simplification of the model structure have been pro-
posed [1]. Unfortunately, requiring a certain amount of user
interaction, the usage of these techniques is often limited to
domain experts. On the other hand, there is a great interest
in automatic model reduction techniques, where the model
dimensionality is reduced by projecting the original systems
of state transition equations into a lower-dimension sub-
space (e.g., using Singular Value Decomposition or moment
matching methods).

A common approach to model reduction is state aggrega-
tion, where “similar” states are grouped together and treated
as a single state [2]. In particular, model minimization [3], [4],
aims at finding the smallest aggregated state of a MDP that
preserves the same properties of the original MDP. This can be
obtained by aggregating states that are equivalent according to
the stochastic bisimulation homogeneity notion [5]. However,
the computational complexity of this approach and the fact
that it can be applied only to finite MDPs prevent its use to
reduce real–world MDP models. A particular form of state
aggregation is the one realized by variable selection, where a
reduced MDP model is built by considering only a subset of
the original state variables (in this way, the states that differ
only for the values of the removed variables are aggregated).
Following this approach, it is possible to formalize the problem
as a factored MDP [6], thus providing more information about
the structure of the problem. Factored MDPs represent a
complex state space using state variables and the transition
model using a dynamic Bayesian network. This representation
often allows an exponential reduction in the representation
size of structured MDPs, but the complexity of exact so-
lution algorithms for such MDPs can grow exponentially
in the representation size [7]. In [3], the authors propose

1Nonetheless, we will experimentally show that even algorithms in the first
category can benefit from model reduction.

!"#$%$&'&&$!###$#(%%()'*+,,-.',%%-/000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55218921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a model minimization algorithm for MDPs with factored
space, which has been extended to factored control spaces
in [8]. Most of these approaches assume to work with finite
MDPs with perfect knowledge of the factored models of the
state–transition and reward functions. Some approaches have
proposed online methods to estimate the factored model both
for finite MDPs [9], [10] and for continuous ones [11], [12].

In this paper, we propose a model–free offline variable
selection approach for reducing the complexity of solving
high–dimensional MDPs. The goal is to identify which state,
control, and disturbance variables are actually required for
solving the MDP through an accurate estimate of the optimal
value function. As we will show, this goal can be restated
as: 1) select the variables on which the reward function is
defined, 2) recursively add the variables needed to estimate
the transition model of the state variables previously selected.
Differently from most of the works on variable selection in
MDPs, we do not assume any prior knowledge about the
MDP or its factored representation. The recursive variable
selection (RVS) approach proposed in this paper works on a
dataset of experience tuples (each tuple is a sample of the state
transition model and the reward function) directly collected
from the system to be controlled or sampled from a generative
model. Variables selected by this algorithm derive from the
union of the variable subsets needed to accurately approximate
the reward function and those state–transition models that are
useful for value function estimation. For each function that
needs to be modeled, the variable subset is incrementally built
following the iterative variable selection (IVS) procedure:
at each iteration, the variable subset is enlarged with the
best variable according to a variable ranking (VR) algorithm.
Following [13], each variable is scored by estimating its
contribution (in terms of variance reduction) to the building
of an ensemble of regression trees that models the required
function. The procedure embodies some very important prop-
erties: it is fully automated, independent on domain experts
and system knowledge, and suitable for non-linear processes;
it has high potential in terms of complexity reduction, thus
allowing for the control of large-scale systems; finally, it
provides interpretation of the reduced model structure.

The rest of the paper is structured as follows. Next section
introduces basic notation and concepts about MDPs. In Sec-
tion III, after defining and providing conditions for lossless
dimensionality reduction in MDPs, we formally define the
lossless variable selection problem. Section IV describes the
sample–based recursive variable selection algorithm which
represents the main contribution of this paper. The proposed
approach is then demonstrated on two real–world case studies
whose results are shown and discussed in Section V. Finally,
Section VI draws conclusions and proposes future research
directions.

II. NOTATION

This section introduces the Markov Decision Process (MDP)
notation that will be used throughout the paper. We denote with
X ⊂ Rnx the feasible state set spanned by nx state variables

X = {X1, . . . , Xnx} and with U ⊂ Rnu the feasible control
set spanned by nu control variables U = {U1, . . . , Unu}.
Given the state vector xt ∈ X at time t, the next state vector at
time t + 1 is defined by the state–transition (vector) equation:

xt+1 = f(xt,ut,wt), (1)

where ut ∈ U is a control vector and wt ∈ W ⊂ Rnw is
a vector of nw random disturbances W = {W 1, . . . , Wnw}
sampled from some probability distribution P (dwt|xt,ut),
and f = [f1, . . . , fnx] is a vector of nx state transition
functions, one for each state variable. At each time step,
taking control ut in state xt produces a bounded reward value
rt+1 ∈ R ⊂ R which may depend on the disturbance wt:

rt+1 = g(xt,ut,wt). (2)

A stationary policy is a (time–independent) mapping π :
X #→ U from the state space to controls. In this paper, the
quality of a policy π is measured by the infinite horizon
discounted reward. In this context, we can defined a value
function V π : X #→ R that maps each state to its value under
policy π:

V π(x) = E
w

[∞∑

t=0

γtg(xt, π(xt),wt)|x0 = x

]
,∀x ∈ X,

where γ ∈ [0, 1) is a discount factor and the state sequence is
generated according to x0 = x and xt+1 = f(xt, π(xt),wt).
The optimal value function V ∗ is defined as:

V ∗(x) = max
π

V π(x),∀x ∈ X.

The optimal control problem can be formulated as a dynamic
program yielding the Bellman equation [14]:

V ∗(x) = max
u∈U

E
w

[g(x,u,w) + γV ∗(f(x,u,w))] ,∀x ∈ X.

(3)
Solving such recursive equation means to find the optimal
value function for the entire state space. Once the optimal
function has been computed, the optimal control policy can
be derived as follows:

π∗(x) = arg max
u∈U

E
w

[g(x,u,w) + γV ∗(f(x,u,w))] ,∀x ∈ X.

For any MDP there exists at least one deterministic stationary
policy π∗ that attains the optimal value function V ∗.

When the model of the MDP is known, several well–
known methods can be used to solve the system (e.g., dynamic
programming [14] and linear programming [15]). On the other
hand, when the model is unknown, reinforcement–learning
techniques [16] come into the picture. In any case, when
the system to be controlled is too complex, exact algorithms
become impractical and approximate algorithms or model
reduction techniques are usually employed.

III. LOSSLESS DIMENSIONALITY REDUCTION IN MDPS

When the number of state and control variables is large,
solving an (even finite) MDP gets intractable. This problem is
known as the Bellman’s curse of dimensionality [14]. Since
there is no unique set of state variables that describe any
given system, many different sets of variables may be selected
to yield a complete system description. One approach to
solve high–dimensional problems is to reduce the number of
state and control variables by projecting the original model
to a lower dimensional one. This solution is effective when
the MDP model is highly redundant and correlation between
variables can be considered to identify the most significant
dimensions.

For sake of brevity, in the following we will denote with
vi

t ∈ Vi = X×U×W ⊂ Rn the values of n input variables
Vi = {V i

1 , . . . , V i
n} = X ∪U ∪W (where n = nx +nu +nw)

of the state transition functions and of the reward function
at time t: vi

t = [xt,ut,wt]. Similarly, we denote with vo
t =

[xt+1, rt+1] ∈ Vo = X × R the values of output variables
(next state and reward values) at time t (Vo = X ∪ R).

We consider a vector projection (dimensionality reduction)
function ρ = [ρx, ρu, ρw], that, given an input vector vi

t,
returns a reduced input vector ṽi

t ∈ Ṽ = X̃ × Ũ × W̃ ⊂ Rñ

(where ñ = ñx + ñu + ñw) with much less components (i.e.,
ñx ≪ nx, ñu ≪ nu, ñw ≪ nw):

ṽi
t = ρ(vi

t) = [ρx(xt), ρu(ut), ρw(wt)] = [x̃t, ũt, w̃t].

The reduced model of the MDP is

x̃t+1 = f̃(ṽi
t) (4a)

r̃t+1 = g̃(ṽi
t). (4b)

The optimal value function for the reduced problem can be
defined similarly to Eq. 3:

Ṽ ∗(x̃) = max
ũ∈Ũ

Ẽ
w

[
g̃(ṽi) + γṼ ∗(f̃(ṽi))

]
, ∀x̃ ∈ X̃.

The dimensionality reduction is lossless when the solution
to the reduced problem is a control policy which is optimal
also when back–projected into the original system. It can be
easily shown that sufficient condition for lossless reduction is

V ∗(x) = Ṽ ∗(ρx(x)), ∀x ∈ X. (5)

In this paper, we restrict our attention to a special case
of dimensionality reduction: the variable selection problem
(VSP). In a VSP, the variables of the reduced problem are
a subset of the original variables, obtained by eliminating the
most irrelevant ones. In particular, a lossless variable selection
for an MDP will remove all the variables that do not affect
the computation of the optimal policy, or, according to the
sufficient condition in Eq. 5, the estimation of the optimal
value function. In order to better explain how the FSP can be
defined for an MDP, some simple examples are presented.

Example 1: Consider the continuous gridworld depicted in
Fig. 1(a). This problem can be modeled as an MDP with two
state variables x1, x2 ∈ [0, 1] that define the position of the

0 0.8 1
0

1

x1

x
2

G
oa

l

u1

u2

(a) Example 1

0 0.8 1
0

1

x1

x
2

G
oa

lu1

x3

u2

(b) Example 2

Fig. 1. Continuous gridworlds

agent and two action variables u1, u2 ∈ [−0.1, 0.1] that allow
the agent to move along the x1–axis and x2–axis, respectively.
The (deterministic) state transition equations are

x1
t+1 = max(0,min(1, x1

t + u1
t))

x2
t+1 = max(0,min(1, x2

t + u2
t)).

The task is episodic and it ends when the agent reaches the
gray area on the right. The reward function is defined as

rt+1 =
{

0 x1
t + u1

t > 0.8
−1 otherwise.

It is worth noting that the reward function is independent from
both x2 and u2. Actually, it is easy to show that such variables
can be ignored and the problem can be reduced to a one-
dimensional problem with only one control.

From this example, we might erroneously conclude that the
FSP in an MDP can be restated as an FSP for the reward
function. Actually, this is not always the case as it is shown
by the following example.

Example 2: Consider the continuous gridworld depicted in
Fig. 1(b). This problem differs from the one in Fig. 1(a) in that
a third state variable x3 representing the agent’s orientation
is introduced. In this problem, control variable u1 ∈ [0, 0.1]
determines how far the agent moves in the direction she is
facing, while u2 ∈ [−π/4, π/4] modifies her orientation. The
state transition equations are

x1
t+1 = max(0,min(1, x1

t + u1
t cos(x3

t)))
x2

t+1 = max(0,min(1, x2
t + u1

t sin(x3
t)))

x3
t+1 = x3

t + u2.

The reward function is similar to the one previously defined:

rt+1 =
{

0 x1
t + u1

t cos(x3
t) > 0.8

−1 otherwise.

Again, the reward does not depend on the values of variables
x2 and u2, but, in this case, the problem cannot be reduced
by eliminating these variables; in fact, even if control variable
u2 does not directly affect the reward, it determines the value
of state variable x3 on which the reward function is defined.
So, only x2 can be safely discarded.

X1

X2

X3

U1

U2

R

(a) Graph representation of the ad-
jacency matrix Σ.

X1

X2

X3

U1

U2

R

(b) Graph representation of the
transitive closure Σ+.

Fig. 2. Dependency graphs for the continuous gridworld in Fig. 1(b): one-
step and transitive closure.

From this second example, it emerges that we can eliminate
a (state, control, or disturbance) variable only when it does
not affect, either directly or indirectly through its effects on
other required state variables, the estimation of the reward
function. So, for each state variable that is directly needed to
compute the reward function, we need to add to the currently
selected variables the ones required to compute its transition
model. Such process is recursively repeated on newly selected
state variables until no further enlargement occurs. In the
following, we formalize the FSP for MDPs and we discuss
some properties.

To specify a subset of input variables, we introduce the
binary vector σ = [σX ,σU ,σW] = [σ1, . . . , σn] ∈ {0, 1}n:
σj assumes value 0 if the j–th variable is excluded from the
subset and 1 if it is present in the subset. Given a variable
vector v, the vector of the selected variables according to
σ is computed as their point–wise vector product: σ · v =
[σ1v1, . . . , σnvn].

Given the reward function g : Vi #→ R, we define FR as the
set of variable subsets of Vi that allow a lossless estimation
(in a function space F) of g:

FR = {σ ∈ {0, 1}n|∃g̃ ∈ F , g(v) = g̃(σ · v),∀v ∈ Vi}.

Similarly, we define FXj as the set of variable subsets for a
lossless estimation of state transition function f j : Vi #→ Xj :

FXj = {σ ∈ {0, 1}n|∃f̃ j ∈ F , f j(v) = f̃ j(σ ·v),∀v ∈ Vi}.

Finally, F is the set of (n + 1)–by–(n + 1) binary matrices Σ
whose last column is a vector of zeros, and the other columns
are filled as follows: the first nx rows are vectors representing
lossless variable subsets for the state variables, the following
nu + nw rows are zero vectors and the last row is the vector
of the lossless variable subset for the reward variable:

F =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σX1 0
...

...
σXnx 0
0 0
...

...
0 0
σR 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

|σR ∈ FR,σXi ∈ FXi , i = 1, . . . , nx

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Any matrix Σ ∈ F can be viewed as an adjacency matrix of
a directed graph whose nodes represent the n + 1 variables
[X ,U ,W, R], and an edge between node j and node i (Σi,j)
means that the j–th variable at time t is needed to compute
the value of the i–th variable at time t+1. Since the value of
controls and disturbances cannot be predicted, all the vectors
corresponding to these variables are set to zero. Since rewards
cannot be used to predict other variables, the last column is a
zero vector.

In order to identify the connected components of such
graph, we need to compute the transitive closure of the
adjacency matrix Σ:

Σ+ =
∨

k=1,...,n+1

Σk,

which is a Boolean matrix sum of the first n Boolean powers2

of the adjacency matrix Σ; the k–th power of the adjacency
matrix Σk is recursively defined as follows:

Σk
i,j =

∨

l=1,...,n+1

Σk−1
i,l ∧ Σl,j

and represents all paths of length k: the (i, j)–element of
Σk is equal to 1 if there is a k–step path from j to i
in the original graph defined by adjacency matrix Σ. The
transitive closure Σ+ is again an adjacency matrix which
directly connects each pair of nodes that is connected by at
least one path in the original graph. We denote with F+ the set
of transitive closures built from any adjacency matrix in the
set F: F+ = {Σ+|Σ ∈ F}. In the context of variable selection
for MDPs, the i–th row of any Σ+ in F+ (Σ+

i,·) represents a
variable subset that is sufficient for estimating the evolution of
the i–th variable over time. In particular, the first n elements
of the last row of the transitive closure matrix (Σ+

n+1,[1:n])
represents the set of variables whose values influence in
one or more steps the value of the reward. We denote with
F∗ = {Σ+

n+1,[1:n]|Σ
+ ∈ F+} the set of all these vectors.

To clarify these concepts, in Fig. 2 is shown the graph
corresponding to the adjacency matrix Σ (Fig. 2(a)) and its
transitive closure Σ+ (Fig. 2(b)) related to the gridworld
described in Example 2. As we can notice from Fig. 2(a), only
state variables X1, X3 and control variable U1 are needed to
predict the value of the reward function at each step. On the
other hand, as we have previously discussed, since the value
of control variable U2 influences the state variable (X3) that
determines the reward value, U2 has to be selected for a correct
value function estimation. Figure 2(b) shows the transitive
closure of the graph in Fig. 2(a), and in particular it puts in
evidence (using thick lines) the last row of the matrix which
selects state and control variables that (directly or through their
influence on other state variables) can determine the rewards.

Theorem 1: For any σ ∈ F∗ there exists a reduced MDP
defined by functions f̃ and g̃ such that

V ∗(x) = Ṽ ∗(σX · x), ∀x ∈ X.

2Since it can be easily shown that Σn+2 = Σn+1, this summation can
be limited to the first n + 1 powers.

Proof: (Sketch) the theorem can be proven by showing
that the condition in Eq. 5 holds for such reduced models. The
idea of the proof is to rewrite the two sides of Eq. 5 using
their recursive definition and showing that the terms have the
same value on both sides.

Finally, the model minimization problem can be formulated
as finding the smallest set of variables that allow a lossless
reduction of the original MDP:

σ∗ = arg min
σ∈F∗

∥σ∥,

where ∥σ∥ is the number of ones (selected variables) in σ.

IV. APPROXIMATE VARIABLE SELECTION IN MDPS

The approach described in the previous section can be
applied to MDPs for which the state–transition model is avail-
able. Unfortunately, in many large–scale real–world control
problems, the analytic dynamics model is often unknown
or roughly approximated. Furthermore, even when a model
is available, a lossless variable selection is not expected to
produce a significantly more compact model; in fact, all the
variables that are somehow involved in the estimation of the
optimal value function are selected independently from their
actual contribution. In this section we describe the recursive
variable selection (RVS) algorithm, that is an approximate ver-
sion of the variable selection algorithm previously described.

A. Recursive Variable Selection
Assuming that a model of the system to be controlled is not

available, the variable selection process is applied to a dataset
of observed one–step system transitions D = {⟨vi

k,vo
k⟩}N

k=1.
The RVS algorithm (summarized in Algorithm 1) takes as
input such dataset, the output variable V o that needs to be
predicted, and the set of previously selected variables Vi

sel.
The algorithm starts from the identification of the most suitable
subset of input variables to explain the reward variable (Vi

R);
this is achieved by invoking RVS with input parameters V o =
R and Vi

sel = ∅. Although any variable selection algorithm
can be used in this step, here we consider the iterative
variable selection (IVS) approach (described in Section IV-B)
which is based on the ranking of variables according to their
importance (in Section IV-C a method based on regression–
tree ensembles is detailed). Given the variable subset for
immediate reward, the algorithm is recursively repeated taking
each state variable in such subset as the output variable to be
explained V o

X ∈ Vi
R ∩ X . The process selects new variables

until no further state variable needing explanation is added and
it terminates by returning the set of selected variables.

B. Iterative Variable Selection algorithm
As described in the previous section, each invocation of the

RVS algorithm requires to select the most relevant variables
to explain the specified output variable. Variable selection
algorithms adopted for this task must account for both sig-
nificance and redundancy: this means, in other words, that it
is necessary to select only the most relevant variables, while
trying to avoid the inclusion of redundant variables, which are

Algorithm 1 RVS(D, V o, Vi
sel): Recursive Variable Selection

Input: A dataset D = {⟨vi
k,vo

k⟩}N
k=1, the variable to be

explained V o ∈ Vo, the set of previously selected variables
Vi

sel ⊂ Vi

Output: Vi
V o ⊂ Vi: the set of variables to estimate V o

Vi
V o ← FS(D,V o)

Vnew
X ←

(
Vi

V o \ Vi
sel

)
∩ X

for all V o
X ∈ Vnew

X do
Vi

V o ← Vi
V o ∪ RVS(D,V o

X ,Vi
sel ∪ Vi

V o)
end for
return Vi

V o

cause of unnecessary model complexity. Literature shows a
variety of different feature selection methods (for a review, see
Guyon and Elisseeff, 2003), whose characteristics change with
the feature selection problem being considered. This section
provides a description of the iterative variable selection (IVS)
algorithm, which, apart from providing good performances
from a significance and redundancy point of view, shows good
capabilities in dealing with high–dimensional datasets.

The ideal algorithm to be used in the selection of the most
relevant variables should account for non-linear dependencies
and redundancy between variables, as real–world control prob-
lems are usually characterized by non–linear dynamic models
with multiple coupled variables. Moreover, it must be com-
putationally efficient, since the number of candidate variables
is generally large. To fulfill these requirements, we developed
the IVS approach, a model-free, forward-selection algorithm
which is summarized in Algorithm 2. Given the output variable
to be explained V o and the set of candidate variables Vi, the
IVS algorithm first globally ranks the variables according to
a statistical measure of significance that accounts for non–
linear dependencies (details are provided in the next section).
To account for variable redundancy, only the most significant
variable V ∗ is then added to the set of selected variables Vsel,
which is used for building a model f̂ to explain V o. The
reason behind this choice is that, once a variable is selected,
all the variables that are highly correlated with that variable
may become useless and the ranking needs to be re–evaluated.
So, the algorithm proceeds by repeating the ranking process
using as new output variable the residuals of the model built at
the previous iteration (v̂o

k = vo
k− f̂(σVsel ·vi

k), k = 1, . . . , N).
The algorithm iterates these operations until the best variable
returned by the ranking algorithm is already in the set Vsel

or the accuracy of the model built upon the selected variables
does not significantly improve. The accuracy is computed as
the coefficient of determination R2 between the value of the
output variable V o and the value V̂ o predicted by the model:

R2(V o, V̂ o) = 1 −

N∑

k=1

(v̂o
k)2

N∑

k=1

(vo
k − vo)2

,

Algorithm 2 IVS(D, V o): Iterative Variable Selection
Input: A dataset D = {⟨vi

k,vo
k⟩}N

k=1, the variable to be
explained V o ∈ Vo

Output: Vsel ⊂ Vi: set of variables selected to estimate V o

Initialize: Vsel ← ∅, V̂ o ← V o, R2
old ← 0

repeat
V ∗ ← arg max

V ∈Vi
VR(D, V̂ o, V)

if V ∗ ∈ Vsel then
return Vsel

end if
Vsel ← Vsel ∪ V ∗

f̂ ← MB(D,V o,Vsel)
V̂ o ← V o − f̂(Vsel)
∆R2 ← R2(D,V o, V̂ o) − R2

old

R2
old ← R2(D,V o, V̂ o)

until ∆R2 < ϵ
return Vsel

where V
o

is the mean of the output values: V
o = 1

N

∑N
k=1 V o

k .
To complete the description of the algorithm, it remains to

specify the variable ranking (VR) algorithm and the model
building (MB) approach. Although the IVS approach could
be coupled with any VR and MB algorithm, in this paper we
propose to employ a class of tree–based regression methods,
named extremely randomized trees (Extra-Trees) [17], and an
Extra-Trees based ranking procedure [13]. Their characteristics
and advantages are shown in the next two sections.

C. Model Building: Extremely Randomized Trees

Tree-based methods are non-parametric supervised learn-
ing methods that can provide several desirable variables in
regression problems, as modeling flexibility, computational
efficiency, good accuracy and interpretability. They are all
based on the idea of decision tree models, which are tree-like
structures representing a cascade of rules leading to numerical
values [18]. These structures, composed of decision nodes,
branches and leaves, are obtained by partitioning, according
to a certain splitting criterion, the set of the input variables into
a series of sub-sets, until either the numerical values belonging
to each sub-set vary just slightly or only few elements remain.
When the splitting process is over, the branches represent the
hierarchical structure of the sub-set partitions, while the leaves
are the finest sub-sets associated to the terminal branches. Each
leaf is finally associated with a numerical value.

In this study we explore Extra-Trees [17], which randomize
(totally or partially) both the input variable and the cut-point
selection when splitting a node, and create an ensemble of
trees to compensate for the randomization, via averaging of
the constituent tree outcomes. The Extra-Trees building algo-
rithm grows ensemble of M trees. Nodes are split using the
following rule: K alternative cut-directions (input variables)
are randomly selected and, for each one, a random cut-point
is chosen; a score is then associated to each cut-direction and
the one maximizing the score is adopted to split the node. The

algorithm stops partitioning a node if its cardinality is smaller
than nmin, and the node is therefore a leaf. To each leaf a value
is assigned, obtained as the average of the outputs associated to
the inputs that fall in that leaf. The estimates produced by the
M trees are finally aggregated with arithmetic average. The
rationale behind the approach is that the combined used of
randomization and ensemble averaging provide more effective
variance reduction than other randomization methods, while
minimizing the bias of the final estimate. Extra-Trees are
thus characterized by three parameters (i.e. K, nmin and M),
whose value can be fixed on the basis of empirical evaluations.

The main advantage of Extra-Trees, apart from their com-
putational efficiency and prediction accuracy, is that their
building algorithm can be exploited to rank the importance
of the n input variables in explaining the output behavior and
then identify the most relevant variables among n candidate
inputs (variable ranking).

D. Variable Ranking
The built-in variable–ranking approach implemented in

Extra-Trees, as proposed in [13] and used in [19], is based
on the idea of scoring each input variable by estimating
the variance reduction produced anytime that such variable
is chosen during the tree building procedure. The score is
computed as the percentage of variance reduction achieved by
each variable over the M different tree structures composing
the ensemble. More precisely, let us consider a regression
problem with an output variable V o, n input variables Vi =
{V1,, Vn} and a training data-set D, composed of N
input–output observations. The score of each input variable
Vi ∈ V in explaining the output variable V o given a dataset
D can be evaluated as follows

V R(D,V o, Vi) =
∑M

m=1

∑Ωm

j=1 δ(νj,m, Vi) · ∆var(νj,m)
∑M

m=1

∑Ωm

νj,m=1 ∆var(νj,m)
(6)

where νj,m is the j-th non-terminal node in the m–th tree,
Ωm is the number of non–terminal nodes in the m–th tree,
δ(νj,m, Vi) is equal to 1 if Vi is used to split the node νj,m

(and 0 otherwise), ∆var(νj,m) is the variance reduction when
splitting the node νj,m, namely

∆var(νj,m) = |D|var{V o|D}−
|Di,l|var{V o|Di,l}− |Di,r|var{V o|Di,r},

where the terms Di,l and Di,r are the two subsets obtained
by splitting D along the input dimension Vi. Input variables
are finally sorted by decreasing values of their importance.

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed approach, we
describe its application to two real–world control problems
from robotics and environmental engineering: balancing of
TiltOne, a two-wheeled inverted–pendulum robot, and the
management of the Tono Dam. The variables selected by
the RVS algorithm are then considered to generate a low–
dimensional training dataset which feeds the fitted Q-iteration

(FQI) algorithm [20], a batch–mode model–free RL algorithm.
FQI translates the RL problem in a sequence of H supervised
learning problems, where H is the length of the optimization
horizon. Since the supervised learning problems can be solved
using any regression algorithm, we have resorted once again
to Extra-Trees (see Section IV-C).

A. TiltOne case study
TiltOne is a two-wheeled balancing robot that can stand in

vertical position by actively controlling the speed of its wheels.
The robot is 90cm tall and weights 20kg with batteries with a
maximum payload of about 50kg when moving at speeds up
to about 1.5m/s. The wheels are 50cm in diameter and are
actuated by two 150W DC motors with a 26 : 1 gear reduction.
A synchronous belt transmission adds a 4 : 1 reduction,
resulting in a total reduction of 104 : 1 and a maximum
continuous torque at the wheels of 18N/m. The robot is
equipped with sensors used to measure a set of variables
that can describe the state of the system. The state space of
inverted–pendulum balancing tasks is usually made up of three
state variables (angle, angular rate, and linear speed) [21]. In
these experiments, we have taken into considerations seven
state variables: the angle θ of the frame with respect to the
vertical position, the angular rate θ̇, the speed of the robot on
the horizontal plane ẋ, the raw accelerometer and gyroscope
data, the integral and the derivative of the error (last two
variables are the same used by PID controllers). The robot is
controlled by setting a single control variable u that determines
the wheel speed through the PWM (pulse width modulation)
output signal. In the balancing task, the goal of the robot is
to reach and keep the vertical position as soon as possible. To
define such task we have chosen the following reward function:

rt+1 = −|θt+1|.

The dataset used to select the variables is built on the basis of
real data collected by the robot at 50Hz. In order to provide
a good coverage of the domain of the measured variables,
acquisitions have been performed with the robot starting from
the vertical position and controlled by controls taken uniformly
at random. The value of the control is updated at a frequency
of 10Hz, so each control is maintained for 5 cycles to better
evaluate the effect of a specific control on the robot behavior.
When the robot falls (the absolute value of angle θ exceeds 8
degrees) the current acquisition is terminated and a new one is
started. Depending on the random controls performed, a single
acquisition can last from a fraction of second to about 2s.

Since delays in sensing and actuation can make the state
non–Markovian, we enlarge the set of state variables to include
also a history of five past control decisions (xt contains
ut−1, . . . , ut−5), thus resulting in a total of thirteen input
variables (twelve state variables and one control variable).
A dataset with a thousand tuples has been given to the
RVS algorithm to evaluate which input variables are most
relevant for this control problem. The result is the following:
the reward rt+1 can be accurately predicted by knowing the
angle θt and the control control ut. Then, the algorithm

-2

-1.5

-1

-0.5

 0

 0 200 400 600 800 1000

A
ve

ra
ge

 re
w

ar
d

Number of samples

All features
Manually selected

selected by RFS

Fig. 3. Comparison of average rewards (along with error bars for the 95%
confidence interval) earned from control policies learned by FQI using three
different sets of state variables. The performances are plotted as a function
of the number of samples in the training dataset.

evaluates which variables are required to approximate the
state–transition model for variable θ, finding that θt+1 depends
on its value at the previous time step (θt), on the control
control ut, and, interestingly, on the control decision taken
at time t − 1 (ut−1). Since the next state value of ut−1 is
equal to ut, no further variables need to be selected and the
algorithm terminates.

To evaluate the effectiveness of this reduced model, we
study the performances of the policies learned by the FQI
algorithm (where H = 10 and Extra-Trees parameters are:
M = 100 trees, K equal to the number of input variables and
nmin = 10) using three different sets of input variables: all
the 13 variables, the variables usually used to solve inverted
pendulum tasks (θt, θ̇t, ẋt, and ut), and the variables selected
by the RVS approach (θt, ut−1, and ut). For each policy, 5
testing episodes are performed and their results are averaged;
each episode starts with the robot leaning on a support which
determines an inclination ω = 2o and stops after 5s (250
cycles). If the robot falls (|ω| > 8o) before the end of the run
its reward is set to −8 for all the remaining cycles. The results
are compared in Fig. 3, where the performance is evaluated
as the average reward per step. As we can notice, when
enough samples are provided, FQI is able to learn pretty good
policies with any of the three sets of variables. Nonetheless,
when the number of samples is quite small the advantage
of using the reduced variable space identified by the RVS
algorithm becomes very apparent. In particular, when only
100 tuples are used, FQI is able to balance the robot only by
reducing the problem to the few variables selected by the RVS
algorithm, while in the other two cases the robot falls after a
few steps (so that average reward is close to −8). Considered
the robustness of Extra-Trees in presence of many irrelevant
variables, we may expect even stronger benefits when other
regression algorithms are employed.

B. Tono Dam

Tono Dam is a small reservoir (12.4 x 106 m3 of gross
capacity) being constructed these years at the confluence
of Kango and Fukuro rivers (JP). The management of the
reservoir, apart from satisfying some water quantity targets
(e.g., supply some downstream irrigation districts, feed a small
hydropower station and supply industrial and drinking water),
must concentrate on water quality, to protect the downstream
environment and the irrigated crops during the germination
phase. To this purpose, the Japanese legislation suggests
indeed to reduce the effect of artificially induced temperature
variations by keeping the outflow temperature as closest as
possible to the natural inflow temperature. For this reason
Tono Dam is being equipped with a Selective Withdrawal
Structure (SWS) that allows to exploit the natural temperature
stratification of the water body by releasing active storage
water at different levels.
As the management problem requires to account for the spatial
dynamics of the water quality variables, the system is mod-
eled with the 1D hydrodynamic-ecological model (DYRESM-
CAEDYM [22]), whose output is the reward rt+1 accounting
for the difference between the outflow and inflow water
temperature. Since the large model dimensionality does not
allow for the design of the reservoir release policy, whose
controls u−3

t and u−13
t are the daily release decisions at −3m

and −13m of the SWS, the variable selection process is
applied to a dataset of observed one-step system transitions
D. By combining 100 pseudo–randomly generated scenarios
of the control and disturbance variables ut and wt, the model
provides the dataset D of 71 variables: 19 state variables (nx),
50 disturbances (nw) and 2 controls (nu).
The RVS algorithm, which relies on the IVS algorithm, em-
ploys such dataset to identify the most suitable subset of input
variables to explain the reward variable rt+1. It results that the
reward depends on 7 variables: the 2 controls u−3

t and u−13
t , 3

state variables (T sed
t , T−7

t and t) and 2 disturbances (NH4F
t

and TK
t). Given this variable subset for immediate reward, the

algorithm is recursively repeated taking each state variable in
such subset as the output variable to be explained, thus leading
to a final subset of 6 state variables (ht, t,T−3

t , T−7
t , T−13

t ,
T sed

t), 2 controls (u−3
t and u−13

t), and 7 disturbances.
As in the previous experiment, we use FQI (with H = 40
and the same Extra-Trees parameters as in the previous exper-
iment) to evaluate the effectiveness of the selected variables
to solve the specified control problem. The training dataset
has been built with 100 simulations using 12 years of mete-
orological data (from 1995 to 2006), while the validation is
performed over the years from 1991 to 1994. As a term of
comparison, we have asked to a domain expert to choose the
most relevant state variables for this task. He selected 6 state
variables, and only two of these differ from those selected by
RVS. Nonetheless, the performance of the policy learned by
FQI using the variables from RVS (average reward −1.34)
is significantly better than the one obtained with the variable
suggested by the expert (average reward −1.75).

VI. CONCLUSION

In this paper we have proposed an offline model-free
variable selection procedure for dimensionality reduction in
Markov decision processes. The approach has been demon-
strated on two real–world control problems: in both cases, the
variables selected by the proposed algorithm allow to learn
good control policies even when the training dataset is quite
small.

Future research will be devoted to apply this approach for
building small, computationally efficient emulation models.

REFERENCES

[1] E. Van Nes and M. Scheffer, “A strategy to improve the contribution of
complex simulation models to ecological theory,” Ecological modelling,
vol. 185, no. 2-4, pp. 153–164, 2005.

[2] L. Li, T. Walsh, and M. Littman, “Towards a unified theory of state
abstraction for MDPs,” in Proceedings of the Ninth International Sym-
posium on Artificial Intelligence and Mathematics, 2006, pp. 531–539.

[3] T. Dean and R. Givan, “Model minimization in Markov decision
processes,” in Proceedings of AAAI, 1997, pp. 106–111.

[4] B. Ravindran and A. Barto, “Model minimization in hierarchical re-
inforcement learning,” Abstraction, Reformulation, and Approximation,
pp. 196–211, 2002.

[5] R. Givan, T. Dean, and M. Greig, “Equivalence notions and model
minimization in Markov decision processes,” Artificial Intelligence, vol.
147, no. 1-2, pp. 163–223, 2003.

[6] C. Boutilier, R. Dearden, and M. Goldszmidt, “Exploiting structure in
policy construction,” in Proceedings of IJCAI, vol. 14, 1995, pp. 1104–
1113.

[7] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman, “Efficient solu-
tion algorithms for factored MDPs,” Journal of Artificial Intelligence
Research, vol. 19, no. 1, pp. 399–468, 2003.

[8] T. Dean, R. Givan, and K. Kim, “Solving stochastic planning problems
with large state and action spaces,” in Proc. Fourth International
Conference on Artificial Intelligence Planning Systems, 1998.

[9] T. Degris, O. Sigaud, and P. Wuillemin, “Learning the structure of
factored markov decision processes in reinforcement learning problems,”
in Proceedings of ICML. ACM, 2006, pp. 257–264.

[10] A. Strehl, C. Diuk, and M. Littman, “Efficient structure learning in
factored-state MDPs,” in Proceedings of AAAI, vol. 22, no. 1, 2007,
p. 645.

[11] C. Vigorito and A. Barto, “Incremental structure learning in factored
mdps with continuous states and actions,” University of Massachusetts
Amherst-Department of Computer Science, Tech. Rep, 2009.

[12] B. Kveton, M. Hauskrecht, and C. Guestrin, “Solving factored MDPs
with hybrid state and action variables,” Journal of Artificial Intelligence
Research, vol. 27, no. 1, pp. 153–201, 2006.

[13] L. Wehenkel, Automatic learning techniques in power systems. Kluwer
Academic Publishers, 1998.

[14] R. E. Bellman, Dynamic Programming. Princeton, New Jersey, USA:
Princeton University Press, 1957.

[15] M. Puterman, Markov Decision Problems. New York: Wiley, 1994.
[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

B. Book, Ed. Cambridge, MA: MIT Press, 1998.
[17] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”

Machine Learning, vol. 63, no. 1, pp. 3–42, 2006.
[18] L. Breiman, Classification and regression trees. Chapman & Hall/CRC,

1984.
[19] R. Fonteneau, L. Wehenkel, and D. Ernst, “Variable selection for

dynamic treatment regimes: a reinforcement learning approach,” in
Proceedings of EWRL, 2008.

[20] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode reinforce-
ment learning,” Journal of Machine Learning Research, vol. 6, no. 1,
pp. 503–556, Apr. 2005.

[21] A. Bonarini, C. Caccia, A. Lazaric, and M. Restelli, “Batch reinforce-
ment learning for controlling a mobile wheeled pendulum robot,” in
Proceedings of IFIP AI, vol. 276. Springer Verlag, 2008, pp. 151–160.

[22] A. Imerito, “Dynamic REservoir Simulation Model: Dyresm Science
Manual,” Centre for water Research - University of Western Australia,
Crawley - Western Australia, CWR Tech. Report, 2007.

