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ABSTRACT 7 

A significant increase in the rate of composite manufacture is needed to meet demand for short-range 8 

commercial aircraft. The enabling automated manufacturing processes can, however, induce undesirable process 9 

features such as wrinkles. Additionally, the potential for Barely Visible Impact Damage has resulted in 10 

widespread use of overly-conservative strain allowables which has led to overweight aircraft structures. 11 

Two new constraints are presented which enable formability and damage tolerance to be incorporated into a 12 

two-stage minimum-mass optimisation framework for performance and manufacturability. An efficient, 13 

approximate method is presented for determining a conservative lower bound on the strain required to propagate 14 

a single, circular delamination, given a general through-thickness position and an upper bound on delamination 15 

size. A Compatibility Index is used to predict the propensity for wrinkles to occur during a forming 16 

manufacturing process.  17 

Optimised stacking sequences for two benchmark design problems; a flat plate and blade-stiffened panel, 18 

are obtained subject to minimum formability, damage tolerance and buckling constraints alongside common 19 

industry design rules. The damage tolerance and formability constraints are met for a diverse set of design 20 

requirements, without increasing mass or reducing buckling load, thereby demonstrating that components may 21 

be optimised for manufacture using high-rate processes without detriment to performance. 22 

KEYWORDS: Optimisation; Forming; Damage Tolerance; Buckling; Composite Materials; Design for 23 

Manufacture 24 
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1. INTRODUCTION 1 

Significant increases in the deposition rates of composites manufacturing technologies are required to meet 2 

demand for the next generation of short-range commercial aircraft. This increased production rate cannot 3 

compromise safety by introducing defects or process features, or sacrifice the capabilities of cured structures 4 

through added weight-penalty. Design processes must therefore be adapted to account for both 5 

manufacturability and performance to facilitate rollout of high-rate manufacturing technologies. Towards this 6 

end, this paper presents two new constraints for application during numerical optimisation: the first is an 7 

approximate figure of the relative merits of different stacking sequences in terms of tolerance to delaminations 8 

arising from Barely Visible Impact Damage (BVID), the second is a measure of the formability of preform 9 

stacks. In both instances, emphasis is placed upon simplified models which may be evaluated rapidly.  10 

The potential for BVID to arise during service poses a significant risk of reducing the strength of laminated 11 

composites through formation of cracks and delaminations, which can propagate under subsequent loading. 12 

Current aircraft certification requirements dictate that BVID should not grow under ultimate load conditions 13 

(once in a lifetime with a factor of safety). Industrial strength limits are imposed using strain allowables, 14 

currently determined by coupon testing of laminates containing BVID. Due to the number of potential stack 15 

configurations it is, however, impractical to account for new design concepts such as non-standard ply angles or 16 

variations in stacking sequences using such coupon tests to derive these allowables. Recent efforts to model  17 

failure of impacted laminates have typically focussed on high-fidelity Finite Element (FE) simulations [1–3]. 18 

Such methods are capable of capturing precise damage morphologies and failure modes, however, require 19 

prohibitively high computation time. Reducing computation time when modelling damage embedded within 20 

larger structures is therefore important. Approaches such as the global-local method used to model delamination 21 

growth in stiffened panels in [4] can, for example, enable use of fine three-dimensional meshes for simulating 22 

delamination growth alongside more computationally efficient, coarsely-meshed shell models for predicting the 23 

global response. 24 

Alternatively, simplified analytical approximations may be used to ensure computation times commensurate 25 

with design and optimisation applications. One potential mechanism for damage propagation, which is often 26 

critical for near back-face delaminations, is opening of delaminations arising from buckling of the thin sub-27 

laminate created by the delamination under compressive loading. Following work by Chai and Babcock [5,6] 28 
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and other early work reviewed in [7], the authors recently updated their previous work [8,9] to create a  simple 1 

two-dimensional analytical model for this failure mechanism by approximating delaminations as ellipses [10]. 2 

This method uses VICONOPT [11], an efficient software using finite strip theory for design and analysis of 3 

prismatic assemblies of laminated plates, to model sub-laminate buckling above an elliptical delamination 4 

alongside analytical Mode I fracture expressions. This approach was shown to achieve good agreement with 5 

experimental tests using artificially induced delaminations. A similar method was recently developed by Köllner 6 

et al using a Rayleigh Ritz formulation for sub-laminate buckling around an elliptical boundary combined with a 7 

mixed-mode criterion [12]. These two approaches were recently compared alongside nonlinear finite element 8 

analysis and experimental tests in [13], to verify the suitability of the simplifying assumptions associated with 9 

the Mode I-based criterion of [10] for design, and to ensure these assumptions are conservative in comparison to 10 

a mixed-mode criterion. A key consideration when modelling panels containing delaminations is the 11 

dependence of compressive behaviour upon delamination size and through-thickness location, as investigated in 12 

[14]. As neither quantity is known during the design phase, it is important to identify critical, limiting values for 13 

use in design. 14 

An increased rate of manufacture of composite components may be achieved by forming stacks of multiple 15 

plies simultaneously, into the required geometries, using automated processes. If both intra-ply shear and inter-16 

ply slip are constrained during this forming, compressive forces can arise in fibres leading to undesirable 17 

wrinkling [15,16]. For a given geometry, stack formability, here defined as the capacity to undergo large in-18 

plane forming strains without wrinkling, can be affected by process parameters such as temperature and pressure 19 

[17]. Ply interfaces can also be manipulated to selectively promote or inhibit inter-ply slip to prevent wrinkling 20 

[18]. Notably, stacking sequence has been shown to strongly influence formability [19–21], as interactions 21 

between fibres in adjacent plies can restrict shear and cause wrinkling if slip is impeded by friction at ply 22 

interfaces [15,16]. 23 

The dependence of forming deformations upon individual ply orientations may be efficiently modelled 24 

using kinematic techniques such as the pin-jointed net method [22], however, such techniques cannot capture 25 

interactions between multiple plies, which are crucial for wrinkle formation. More accurate simulation of 26 

multiple-ply stacks may be achieved using finite element software such as commercial forming packages 27 

AniForm [15,16,23] and PAMFORM [24,25], or user-defined properties in general purpose software such as 28 

ABAQUS or LS-DYNA [26]. These methods are, however, computationally expensive due to the number of 29 
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elements required to simulate wrinkle-scale deformations [16]. Recently, Johnson et al. [27] proposed a 1 

Compatibility Index, a rapid analytical metric for laminate formability based upon the scalar products of 2 

eigenvectors representing low-energy deformation modes of adjacent plies, achieving excellent correlation with 3 

experimental forming trials. This method provides a suitable means of accounting for wrinkle formation within 4 

stacking sequence optimisation, which is not currently achievable using less efficient methods. 5 

Stacking sequence optimisation of composite structures can be challenging as laminate stiffness is a highly 6 

nonlinear function of the ply orientations, which can cause gradient-based solvers to converge to local 7 

optima [28]. Global search methods such as genetic algorithms (GAs) are consequently often used to optimise 8 

ply orientations [29–33], however, such methods typically require a large number of model evaluations before 9 

converging and do not guarantee a global optimum. These difficulties may be overcome by instead optimising 10 

lamination parameters, an alternative representation of laminate stiffness originally proposed by Tsai et al. 11 

[34,35]. This approach, initially developed by Miki et al. [36,37] and Fukunaga et al. [38,39], is advantageous as 12 

laminate stiffness may be represented using a maximum of twelve lamination parameters regardless of the 13 

number of plies. Additionally, laminate stiffness is a linear function of these parameters, thus simplifying the 14 

relationship between objectives and constraints, and the design variables.. Mapping optimised lamination 15 

parameters onto a practical stacking sequence requires solution of a nonlinear inverse problem. It is therefore 16 

common to employ a two-stage design framework [40–42] using efficient gradient-based solvers to optimise 17 

lamination parameters according to structural requirements, and genetic algorithms to solve the relatively 18 

inexpensive problem of finding a stacking sequence which closely matches these parameters. Note that this 19 

review is not intended to be exhaustive. The interested reader is referred to [43] for a comprehensive review of 20 

recent developments in optimisation using lamination parameters and related methods. 21 

 Also noteworthy is the polar method presented by Vannucci and Verchery [44,45], wherein true invariants 22 

of a general planar tensor are used as an alternative compact representation of the laminate stiffness and 23 

anisotropy at the macroscopic scale. For instance, a fourth-order elasticity-like tensor may be defined using five 24 

independent polar parameters. A multi-scale, two-level optimisation strategy, building upon the polar method, 25 

has recently been developed by Montemurro et al. [46–49]. In the first stage, geometric features and polar 26 

parameters are optimised for structural considerations such as mass, buckling load, strength, and manufacturing 27 

requirements. The aim of the second stage is to find at least one stacking sequence to meet the optimised 28 

geometric and polar parameters for each laminate within the structure, without restriction upon the stacking 29 
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sequence. This method has been applied to a wide range practical design problems considering both constant 1 

[47–49] and variable stiffness [46] laminates. 2 

In this paper, the compression after impact model from [10,13] and Compatibility Index from [27] are 3 

expanded upon to develop two novel optimisation constraints for damage tolerance and formability respectively. 4 

An efficient search method is proposed for determining critical values of delamination size and through-5 

thickness location, to estimate a lower bound on the strain required to cause delamination propagation, which is 6 

in turn used as a damage tolerance constraint. An integer linear programming method is proposed for efficiently 7 

evaluating the Compatibility Index, enabling its use as a formability constraint. These new constraints are 8 

presented in sections 2 and 3 respectively. Expressions for the lamination parameters are introduced in Section 9 

4. The new damage tolerance and formability constraints are subsequently embedded within the commonly-used 10 

two-stage lamination parameter-based optimisation framework [40,42]. The primary purpose of this exercise is 11 

to demonstrate simultaneous consideration of manufacturing and performance-based design criteria, as 12 

evaluated using the new constraints, within an existing optimisation framework. Lamination parameters and 13 

thicknesses of finite element models are initially minimised subject to buckling and strain constraints. In the 14 

second stage, a stacking sequence is found to match the optimum lamination parameters while satisfying the 15 

new formability and damage tolerance constraints, thereby incorporating these figures of merit into laminate 16 

design. This framework is applied to example plate and blade stiffened panel models in Section 5 to demonstrate 17 

how aerospace structures may be designed for manufacture using high-rate processes, without detriment to 18 

performance, with results discussed in Section 6.  19 

2. DAMAGE TOLERANCE METRIC 20 

2.1. Overview 21 

A significant risk of strength reduction in laminated composites may arise when in-service damage leads to 22 

cracking and delamination, and subsequent loading results in modes which force the stiff carbon fibres apart, 23 

propagating as cracks in the matrix.  For instance, compressive failure modes of plates containing a 24 

delamination include symmetric closing, antisymmetric shearing, or symmetric opening, as shown in Figure 1.  25 

In the case of the latter, residual strength can be limited by growth in this opening mode due to buckling of the 26 

thin sub-laminate .  Such opening can dominate, particularly when impact damage to flat panels results in larger 27 

delaminations near the back face [50], noting that the back face corresponds to the upper surface in Figure 1. 28 
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A two-dimensional analytical model was previously derived [10] for determining strains required to 1 

propagate elliptical delaminations with known dimensions, arising at a specified ply interface, via the opening 2 

mode shown in Figure 1c). This methodology was compared against a more-comprehensive model comprising 3 

other modes of delamination propagation in [13], alongside nonlinear finite element analysis and experimental 4 

tests. Although the simplified model [10] was found to be conservative, it adequately predicted relative trends in 5 

the damage tolerance of different stacking sequences, and as such, its use in design applications was considered 6 

justified by its relatively low computational cost. In this Section, this method is extended to eliminate the 7 

dependency on delamination size and position by defining a lower bound on the propagation strain, through 8 

bounding the delamination size, and finding the worst-case delamination depth within the laminate. This 9 

updated method provides a conservative, rapidly computable figure of merit suitable for preliminary stacking 10 

sequence optimisation, when exact delamination dimensions are unknown. 11 

It should be noted that this paper does not provide a comprehensive method for damage tolerant laminate 12 

design in a full statistical sense. Instead, analysis is limited to individual circular delaminations. This 13 

approximation is not intended to mimic real damage morphology, which is much more complex, nor is it 14 

intended to capture every failure mode. This method does, however, promote designs in which the outer layers 15 

are selected to protect inner, more highly stressed layers, using a mechanics-based approach which captures 16 

sufficient features of the opening of back face delaminations in the symmetric mode illustrated in Figure 1c). It 17 

is emphasised that such a method does not constitute a safe methodology for certification, and in practice 18 

resulting designs would require verification using high-fidelity modelling of more realistic damage 19 

morphologies, and experimental testing at a damaged sub-component level. 20 

2.2. Delamination Propagation Strain 21 

Following [10], suppose a circular delamination with diameter ϕ and area A arises at a given ply interface 22 

as shown in Figure 2. The choice of a circular delamination is an idealisation aimed at providing a conservative 23 

bounding case when the exact delamination geometry is unknown. Delaminations are in practice much more 24 

irregular, but are often idealised as elliptical, as in [10]. The orientation of the delamination relative to the 25 

applied load will not  be known a priori. A circular geometry is therefore taken as an outer boundary containing 26 

all randomly-oriented elliptical delaminations with major dimension, ϕ. The delamination creates a sub-27 

laminate, which will buckle and blister under compressive strains, as shown in Figure 2b). A general two-28 
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dimensional deformation state is assumed to exist with applied strain vector, 𝜺 = {𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦}
𝑇
, with tensile 1 

strains defined as positive. Identical strains are applied to both the laminate and sub-laminate to maintain 2 

compatible strains at the laminate/sub-laminate boundary. The delamination is assumed to grow by area d𝐴, 3 

highlighted by the shaded regions in Figure 2.  4 

The sub-laminate buckling strain is calculated using a thin-film assumption [5–7], such that the effects of 5 

sub-laminate buckling upon buckling of the full laminate are neglected. The critical sub-laminate buckling strain 6 

vector, 𝜺𝐶, is expressed as a factor of applied strain vector, as 7 

𝜺𝐶 = 𝐹𝐶𝜺 (1) 8 

where 𝐹𝐶 is the critical sub-laminate buckling factor. This factor must be determined numerically as no 9 

closed-form solution exists for buckling of fully-coupled laminated plates with circular boundaries. In this 10 

paper, finite strip program VICONOPT [11] is used for the sake of computational efficiency. The circular 11 

delamination in Figure 2 is divided into a series of connected strips across its width, with compatibility and 12 

equilibrium conditions satisfied along strip boundaries. VICONOPT uses the Wittrick-Williams algorithm [51] 13 

to calculate the eigenvalues of the transcendental stiffness matrix derived from the exact solution of the 14 

governing equations of the constituent strips, to give the buckling load factor of the minimum-energy mode. 15 

Non-symmetric sub-laminates are allowed for in calculation of these eigenvalues, which are determined using a 16 

fully populated ABD matrix. A clamped delamination boundary, with zero displacement in all degrees of 17 

freedom, is modelled using VICONOPT point supports [52] at the intersection of each strip edge with the 18 

delamination circumference. The continuous boundary is thereby discretised into point-wise constraints. 19 

Periodic displacement functions are assumed which satisfy boundary conditions at these points.  Point supports 20 

are separated by 10-degree intervals around the circumference resulting in 18 strips and 36 supports, based upon 21 

a previous convergence study [10].  22 

Under further application of compressive strain, the delamination below the post-buckled sub-laminate will 23 

propagate. This threshold propagation strain, 𝜺𝑡ℎ, is also expressed as a function of the applied strain, as 24 

𝜺𝑡ℎ = 𝐹𝑡ℎ𝜺 (2) 25 

It should be noted that an alternative threshold strain factor was employed in [10], which instead defined the 26 

threshold strain as a factor of 𝜺𝐶, however, 𝐹𝑡ℎ is instead here expressed as a factor upon the applied strain, 𝜺, 27 
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for notational convenience. Assuming delamination growth is symmetric, as shown in Figure 2, a condition for 1 

delamination growth was previously derived as [10]  2 

𝐺𝐶 = (𝐹𝑡ℎ − 𝐹𝐶)(𝐹𝑡ℎ + 3𝐹𝐶)𝜺
𝑇𝐴𝑆𝐿𝜺 (3) 3 

where ASL is the sub-laminate in-plane stiffness matrix, and Gc is the critical Strain Energy Release Rate 4 

(SERR) associated with delamination growth. Rearranging Eq. (3) yields the threshold strain factor as  5 

𝐹𝑡ℎ = 𝐹𝑐 (√4 +
𝐺𝐶

𝐹𝐶
2𝜺𝑇𝐴𝑆𝐿𝜺

− 1) (4) 6 

2.3. Threshold Strain Lower Bound 7 

The expression in Eq. (4) is dependent upon the delamination geometry via its dependency upon the sub-8 

laminate buckling factor FC. It is, however, impossible to know the exact delamination dimensions during 9 

design, as the damage has not occurred during this stage. A pragmatic, conservative bounding case is therefore 10 

required for design purposes. An expression for the lowest possible strain factor 𝐹𝑡ℎ,𝑚𝑖𝑛 , independent of 11 

delamination dimensions, may be obtained by minimising Eq. (4) with respect to FC. By setting  𝜕𝐹𝑡ℎ 𝜕𝐹𝐶⁄ = 0, 12 

this minimum can be shown to be  13 

𝐹𝑡ℎ,𝑚𝑖𝑛 = √
3𝐺𝐶

4𝜺𝑇𝐴𝑆𝐿𝜺
 (5) 14 

This minimum can likewise be shown to arise at a buckling factor of 15 

𝐹𝐶 = 𝐹𝑡ℎ,𝑚𝑖𝑛 3⁄  (6) 16 

This expression is independent of the delamination dimensions, however, remains dependent upon the 17 

delamination depth via the sub-laminate in-plane stiffness matrix, 𝐴𝑆𝐿, which has linear dependency upon sub-18 

laminate thickness. Eq. (5) is consequently inversely proportional to the sub-laminate thickness, and therefore 19 

predicts lower threshold strains for delaminations further from the laminate surface. The actual threshold strain 20 

factor, given by Eq. (4), tends asymptotically towards the sub-laminate buckling factor 𝐹𝐶 with increasing 𝐴𝑆𝐿. 21 

As this buckling factor broadly increases with delamination depth, the lower bound provided by Eq. (5) is overly 22 

conservative for some cases. 23 
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A less conservative worst-case threshold strain may be obtained by bounding the range of feasible 1 

delamination sizes, by placing an upper bound on the assumed delamination diameter. Based upon previous 2 

experimental observations of Barely Visible Impact Damage [9,53], the largest feasible delamination diameter, 3 

𝜙𝑚𝑎𝑥, likely to arise from this damage is expected to be 4 

𝜙𝑚𝑎𝑥 =  9𝑡 (7) 5 

where t is the laminate thickness. Note that it is unlikely that BVID will occur in particularly thick laminates. In 6 

such cases a maximum damage size may instead be applied. Whilst the presented method relies upon the 7 

damage size being bounded, the precise definition of this bound may be subject to engineering judgement. In 8 

reality, damage can be characterised by multiple delaminations, typically increasing in size away from the 9 

impact site. It is important that the upper bound, 𝜙𝑚𝑎𝑥 , encompasses the largest value in this range.  10 

2.4. Experimental Justification of Analytical Propagation Strain 11 

The two-dimensional propagation model outlined in Section 2, derived in [10], and subjected to a detailed 12 

comparative study in [13] has previously been validated against experimentally-obtained propagation strains in a 13 

range of laminates with artificial circular Polytetrafluoroethylene (PTFE) delaminations [10,13].  Readers are 14 

referred to [8,10,13] for full details of these experimental results. Here, in order to justify the use of the plate 15 

model for laminate optimisation considering Compression After Impact (CAI), the results of Eq. (4) are 16 

compared with experimental failure strains obtained from CAI tests on laminates containing impact damage 17 

[53].   18 

In [53] laminates with three different quasi-isotropic stacking sequences were manufactured from AS4/8552 19 

material, these are referred to as the: (i) Control laminate [45/0/-45/90]4S, (ii) ±45° Outer laminate 20 

[(±45)4/(90/0)4]S, and (iii) 90° Outer laminate [903/45/90/-453/0/453/02/-45/0]S.Lamina properties are taken as 21 

E11 = 128 GPa, E22 = 10.3 GPa, G12 = 6.0 GPa, ν12 = 0.3, with a ply thickness of 0.125mm [53]. All three 22 

laminates were subject to 8J impacts whilst clamped over a 125×75mm ASTM D7136 window [54]. The extent 23 

and depth of delamination damage was measured using an Ultrasonic Sciences C-scan system. From these data 24 

it was possible to determine the maximum length of delaminations at the first eight interfaces (i = 1, 2, 3, …8) 25 

from the back (non-impact) surface, as these interfaces contain the largest delaminations caused by the 26 

impact.  Axial compressive load was applied under displacement control, with each coupon restrained using a 27 
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circular anti-buckling guide centred on the damage region with an un-restrained window (on the back face) of 1 

diameter 85mm. See [53] for details. 2 

Analytical propagation strains are calculated for each of the three laminates described above by applying 3 

Eq. (4) at each of the outer eight interfaces and obtaining the critical (minimum) value. Results of this analytical 4 

study are compared against experimental propagation strains in Table 1.  For each laminate, two damage 5 

morphologies are modelled. Firstly, damage is modelled as a single circular delamination of diameter equal to 6 

the maximum delamination dimension from the C-scan data at each interface. Each delamination is modelled in 7 

isolation from the others, i.e. for each model run only a single delamination is assumed to exist. Secondly, 8 

damage is modelled as a single circular delamination of diameter 𝜙𝑚𝑎𝑥= 36mm, again in isolation, determined 9 

using Eq. (7) with t = 4mm. Results from these two cases are shown in columns a) and b) of Table 1 10 

respectively.  Analytical  propagation strains are determined for each assumed morphology for two limiting 11 

cases of the Strain Energy Release Rate, specifically, GC = G1C and GC = G1IC, as used in [13]. The 12 

experimental propagation strains in Table 1 are taken from the strain data in Figure 6 of [53], which shows that 13 

failure of the Control and 90° outer laminates occurred suddenly at the propagation strain. In the case of the 14 

±45° Outer laminate, stable propagation initiated at 5900 µε, before failure at 7400 µε, and as such, both values 15 

are included in Table 1. 16 

Where C-scan damage size data are used directly in the plate model (column a) of Table 1), the assumption 17 

of pure Mode I or Mode II can be seen to provide reasonable lower and upper bounds upon the experimentally 18 

observed strains. When the extent of damage is not known a priori, supplying constant diameter delaminations 19 

given by Eq. (7) does not accurately predict the actual morphology, but does give a conservative lower bound 20 

upon the experimental compression after impact results when GC = GIC is assumed, (as shown in column b) of 21 

Table 1). As such, throughout the remainder of this paper, Eq. (7) coupled with the assumption of GC = GIC is 22 

applied to produce a conservative figure of merit for CAI strength with low computational cost.  23 

2.5 Algorithm for Prediction of Threshold Strain Lower-bound 24 

An expression for the bounded minimum threshold propagation strain factor, 𝐹𝑡ℎ,𝑙𝑏 , can be stated as 25 

𝐹𝑡ℎ,𝑙𝑏 = min    𝐹𝑡ℎ(𝐴𝑆𝐿,𝑖 , 𝜙) 26 

subject to     𝑖 ∈ 1, … , ⌈𝑁 2⁄ ⌉, 0 ≤ 𝜙 ≤ 𝜙𝑚𝑎𝑥 (8) 27 
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where N is the number of plies, and 𝐹𝑡ℎ(𝐴𝑆𝐿,𝑖 , 𝜙) is the strain factor for propagation of a delamination with 1 

diameter 𝜙, located at the ith ply interface inducing a sub-laminate with in-plane stiffness 𝐴𝑆𝐿, as given by 2 

Eq. (4). This expression searches across all ply interfaces and delamination sizes to find the lowest strain factor, 3 

arising at some critical depth. Rather than accurately modelling delamination size at each depth, which typically 4 

increases away from the impact site, it is assumed that the largest feasible delamination could arise at any depth. 5 

The purpose of Eq. (8) is to determine a conservative bounding case, rather than a realistic description of 6 

damage morphology.  Noting that ⌈ ⌉ denotes the ceiling operator which rounds up its argument to the nearest 7 

integer, Eq. (8) exploits symmetry by only searching over half of the laminate for the sake of computational 8 

efficiency. It is emphasised that the presented method is focused upon large, near back face delaminations, and 9 

in practice a minimum is typically found at 10-20% thickness. 10 

An efficient method for finding this minimum is illustrated in Figure 3. As this method is to be applied in 11 

designing damage tolerance laminates, it is only instances in which the applied strain exceeds the delamination 12 

propagation strain (i.e. 𝐹𝑡ℎ,𝑙𝑏  < 1) which are critical to guiding subsequent optimisation. A focus is therefore 13 

placed upon ascertaining if this is the case with the fewest possible sub-laminate buckling analyses to minimise 14 

the required computational expense, and a precise lower bound using Eq. (4) is only returned if 𝐹𝑡ℎ,𝑙𝑏  < 1.  15 

The outer loop (Figure 3a)) searches over delamination depth by assuming a delamination is located at each 16 

interface in turn starting from the laminate surface. At each interface the sub-laminate stacking sequence is 17 

updated, and a minimum strain factor within the range of feasible delamination diameters, 𝐹𝑡ℎ,𝑖, is returned. If 18 

this factor is lower than those calculated from previous interfaces, the value of 𝐹𝑡ℎ,𝑙𝑏 is updated. The process is 19 

repeated until one of three stopping criteria is met: 20 

• FC ≥ 1.25: The search has reached a depth at which sub-laminate buckling does not occur at the applied 21 

strain. A 25% margin is applied to prevent the through-thickness search stopping prematurely in 22 

instances in which the buckling factor reduces due to changes in the sub-laminate stacking sequence, 23 

thereby reducing the possibility of minima being missed by the search. Such situations may arise when, 24 

for instance, an additional 0° ply attracts more load to the sub-laminate. 25 

• 𝐹𝑡ℎ,𝑙𝑏 ≤ 𝐹𝑡ℎ,𝑖: The worst-case strain factor has been found and the critical depth passed, beyond which 26 

the factor typically increases. 27 
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• 𝑖 = ⌈𝑁 2⁄ ⌉: The mid-plane has been reached. It should be noted that in practice this stopping criterion is 1 

rarely active, with one of the other criteria terminating the search within 10-20% of the laminate depth. 2 

Although optimisation in this paper is limited to symmetric stacking sequences, the method could be 3 

applied to non-symmetric stacking sequences by searching over the entire stack, replacing ⌈𝑁 2⁄ ⌉ with 4 

N in Eq. (8). In such applications the search should start from the ply on the back face of the laminate. 5 

At each interface, an efficient subroutine is used to find the minimum strain factor, 𝐹𝑡ℎ,𝑖. (Figure 3b)). 6 

Unbounded minimum 𝐹𝑡ℎ,𝑚𝑖𝑛  is first calculated using Eq. (5) assuming GC = G1C. If 𝐹𝑡ℎ,𝑚𝑖𝑛 ≥ 1, sub-laminate 7 

buckling analysis is unnecessary, as the applied strain does not exceed the lowest possible threshold strain at this 8 

interface. Otherwise, it is necessary to determine whether this minimum corresponds to a delamination with 9 

diameter within the feasible range. This check is performed by comparing the outputs of a single VICONOPT 10 

buckling analysis, assuming the largest feasible delamination diameter 𝜙𝑚𝑎𝑥, against the minimum given in 11 

Eqs. (5-6). Two possible outcomes are illustrated in Figure 4. Noting that 𝐹𝐶 is inversely proportional to 𝜙2, a 12 

fixed point on the horizontal axis of Figure 4 corresponds to a fixed delamination diameter, and all points to the 13 

right to smaller diameter delaminations. If the 𝐹𝐶 calculated assuming diameter 𝜙𝑚𝑎𝑥 is lower than 𝐹𝑡ℎ,𝑚𝑖𝑛 3⁄ , 14 

(example a)), the unbounded minimum 𝐹𝑡ℎ,𝑚𝑖𝑛  must belong to a delamination within the feasible range. This 15 

value is consequently retained as 𝐹𝑡ℎ,𝑖. If the calculated 𝐹𝐶 is higher than 𝐹𝑡ℎ,𝑚𝑖𝑛 3⁄ , (example b)), a 16 

delamination with diameter 𝜙𝑚𝑎𝑥 has the lowest threshold strain in the feasible range. In this case, 𝐹𝑡ℎ,𝑖 is 17 

updated by applying Eq. (4) to the corresponding 𝐹𝐶.   18 

An illustrative example of strain factor trends with respect to delamination depth is shown in Figure 5, 19 

assuming an applied strain of 𝜺 = {−4500,3500,0}𝑇𝜇𝜀, and sub-laminates taken from sequence 20 

[45/−452/02/90/±45/…], arising on the back face of some larger stack. Each ply is divided into smaller intervals 21 

to illustrate notional continuous variations in delamination depth. Trends are illustrated for unbounded minimum 22 

𝐹𝑡ℎ,𝑚𝑖𝑛 , and sub-laminate buckling and threshold propagation factors for a delamination with diameter 𝜙𝑚𝑎𝑥 =23 

 50mm.  24 

Unbounded minimum threshold strain factor, 𝐹𝑡ℎ,𝑚𝑖𝑛 , decreases monotonically with delamination depth. 25 

The threshold strain factor associated with the maximum delamination size, 𝐹𝑡ℎ(𝜙𝑚𝑎𝑥), follows a similar 26 

decreasing trend up to a depth of 0.625mm where these plots coincide, after which 𝐹𝑡ℎ(𝜙𝑚𝑎𝑥) more closely 27 

follows the trend of the underlying buckling factor, 𝐹𝐶(𝜙𝑚𝑎𝑥). Strain factor lower bound, 𝐹𝑡ℎ,𝑖, is given by 28 
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𝐹𝑡ℎ,𝑚𝑖𝑛  for delamination depths lower than 0.625mm, and 𝐹𝑡ℎ(𝜙𝑚𝑎𝑥) otherwise. This strain factor falls below 1 

unity at the fourth interface to a value of 0.94, indicating that the applied strain exceeds the threshold strain. The 2 

algorithm in Figure 3 determines this factor by iterating through each ply interface from the outer surface. As 3 

𝐹𝑡ℎ,𝑚𝑖𝑛 > 1 for the first three interfaces, no buckling analysis is undertaken until the fourth interface. Here, a 4 

single sub-laminate buckling analysis is used to determine 𝐹𝐶(𝜙𝑚𝑎𝑥) and its corresponding 𝐹𝑡ℎ(𝜙𝑚𝑎𝑥), and 5 

ascertain: i) if this lies to the right of the minimum in Figure 4 and may therefore be used as the lower bound, 6 

and ii) if this less conservative lower bound is also lower than one. An additional buckling analysis is 7 

undertaken at the fifth interface to verify that the threshold strain factor increases for delaminations at greater 8 

depths. This additional analysis indicates that the threshold strain factor increases to 0.95 at the fifth interface, 9 

and as such the lower value of 0.94 calculated at the fourth interface is taken as critical. In this instance, two 10 

buckling analyses are required to search the entire laminate depth and feasible range of delamination diameters. 11 

3. COMPATIBILITY INDEX FOR LAMINATE FORMABILITY 12 

The tendency for wrinkles to arise during high-rate forming has been shown to depend upon the stacking 13 

sequence of the flat preform [19–21]. In previous work [27], a Compatibility Index was proposed for rapid 14 

prediction of the tendency of such defects to arise in different stacks. This index is based upon the concept that 15 

facilitating compatible, low-energy deformation modes across multiple plies, prevents wrinkles from occurring.  16 

Each ply is assumed able to deform in one of three in-plane deformation modes, given by the eigenvectors 17 

of the lamina stiffness matrix of a rotated, uncured ply, 𝑄∗. This matrix is expressed in Kelvin notation [55,56] 18 

to ensure stress and strain share the same basis. Using this notation, the constitutive relationship of a rotated ply 19 

is stated as 20 

𝛔 = (

𝜎11

𝜎22

√2𝜎12

) = [

𝑄11
∗ 𝑄12

∗ √2𝑄16
∗

𝑄12
∗ 𝑄22

∗ √2𝑄26
∗

√2𝑄16
∗ √2𝑄26

∗ 2𝑄66
∗

] (

𝜀11

𝜀22

√2𝜀12

) =  𝑄∗𝜺 (9) 21 

where ply stiffnesses 𝑄𝑖𝑗
∗  are expressed in the Voight notation commonly used in Classical Lamination Theory 22 

[35], and 𝜀12 denotes tensor shear strain. Example eigenvectors of the 𝑄∗ matrix of a 0° ply are illustrated in 23 

Figure 6, where 𝒗𝑖 denotes the ith eigenvector. It should be noted that the exact eigenvectors for modes 1 and 3 24 
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contain very small Poisson deformations, however, these are often negligible if the resin-dominated transverse 1 

modulus E22 is small relative to fibre direction modulus E11. 2 

The scalar product of the eigenvectors of two adjacent plies may be used as a measure of the compatibility 3 

of the potential resin-dominated deformation modes in these plies, defined as  4 

𝑐𝑖,𝑗(𝜃1, 𝜃2) = 𝒗𝑖(𝜃1)
𝑇𝒗𝑗(𝜃2) (10) 5 

where subscripts i and j refer to resin-dominated deformation modes, and 1 and 2 to ply indices. A 6 

compatibility of 1 indicates that two modes are identical, whereas 0 indicates complete incompatibility.  7 

Laminate compatibility may be defined by assuming that a stack with a large number of adjacent plies with 8 

high compatibility between modes 1 or 2 will be more formable. In such stacks, deformation is facilitated in 9 

large zones of plies with compatible modes, and slip-planes arise between these zones. Stacks with poor 10 

formability have many adjacent plies with low compatibility between resin modes, causing high-energy fibre 11 

modes to restrict deformation and wrinkles to arise. A sign convention is prescribed upon positive shear 12 

(Mode 2) to preserve the right-handed sign convention of a rotated 0° ply. It is also necessary to account for 13 

shear in the opposite direction, which is henceforth referred to as Mode 2*, with eigenvector given by 14 

𝒗2∗ = −𝒗2 as depicted in Figure 6. It is assumed that a stack will tend to deform via the combination of ply 15 

modes which result in the highest possible laminate compatibility. This maximum compatibility, 𝐶𝑚𝑎𝑥, is 16 

defined as [27] 17 

𝐶𝑚𝑎𝑥 =   max 
𝑖1,…,𝑖𝑁

   
1

(𝑁 − 1)
∑ 𝑐𝑖𝑗,𝑖𝑗+1

(𝜃𝑗 , 𝜃𝑗+1)

𝑁−1

𝑗=1

 where i𝑗 ∈ {1,2, 2∗} ∀ 𝑗 = 1,… , 𝑁 − 1 (11) 18 

where 𝑐𝑖𝑗,𝑖𝑗+1
(𝜃𝑗 , 𝜃𝑗+1) is the compatibility of modes with index prescribed by ij and ij+1 in the jth and (j+1)th 19 

ply respectively, as calculated using Eq. (10), and N is the number of plies. Eq. (11) is an optimisation problem 20 

for finding the set of indices, i1,…,iN, which give the highest laminate compatibility from a potential 3N 21 

combinations. An enumeration method was previously employed [27], wherein the maximum compatibility was 22 

found by calculating compatibility for every possible mode combination. This method is impractical for stacks 23 

with a large number of plies, rendering it unsuitable for use within optimisation. A more efficient method for 24 

calculating 𝐶𝑚𝑎𝑥 may be achieved by re-expression as a linear integer programming problem, stated as 25 
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𝐶𝑚𝑎𝑥 =   max
𝒙

  𝒇𝑇𝒙 =
1

(𝑁 − 1)
∑ ∑ 𝑐𝑗,𝑘(𝜃𝑖 , 𝜃𝑖+1)𝑥𝑖𝑗𝑘

𝑗,𝑘∈{1,2,2∗}

𝑁−1

𝑖=1

,   where  𝑥𝑖𝑗𝑘 ∈ {0,1} (12) 1 

Instead of summing over plies, this revised formulation sums over ply interfaces via index i. One of nine 2 

possible compatibility values, 𝑐𝑗,𝑘(𝜃𝑖 , 𝜃𝑖+1), is allocated to each interface using binary variables 𝑥𝑖𝑗𝑘 . Indices j 3 

and k allocate one of three deformation modes to plies either side of the interface, yielding these nine possible 4 

values. For instance, if 𝑥122∗ = 1, ply 1 is taken to deform in mode 2 and ply 2 this taken to deform in mode 2*, 5 

contributing 𝑐2,2∗(𝜃1, 𝜃2), to the sum in Eq. (12). The maximum possible stack compatibility is determined by 6 

finding the set of 9(𝑁 − 1) 𝑥𝑖𝑗𝑘  values which maximise the overall sum. 7 

Exactly one compatibility value must be assigned to every interface. This condition is enforced by 8 

optimising Eq. (12) subject to a set of 𝑁 − 1 equality constraints, which are defined as 9 

∑ 𝑥𝑖𝑗𝑘

𝑗,𝑘∈{1,2,2∗}

= 1  ∀   𝑖 ∈ 1,… , 𝑁 − 1 (13) 10 

Because deformation modes are assigned to interfaces rather than plies, it is also necessary to ensure that no 11 

individual ply is assumed to deform in more than one mode within a given sum. For instance, 𝑥122∗ and 𝑥211 12 

cannot simultaneously equal 1, as this would require ply 2 to simultaneously deform in Modes 2* and 1. These 13 

conditions are enforced via a set of 54(𝑁 − 2) inequality constraints, which are defined as 14 

x𝑖𝑗𝑘 + 𝑥(𝑖+1)𝑙𝑚 ≤ 1  ∀  𝑖 ∈ {1,… , 𝑁 − 2}, 𝑗, 𝑘, 𝑙, 𝑚 ∈ {1,2, 2∗} with 𝑘 ≠ 𝑙 (14) 15 

In this paper, Eqs. (12-14) are solved using MATLAB [57] linear integer programming solver ‘intlinprog’, 16 

which uses a branch-and-bound method. This implementation enables calculation of the compatibility index for 17 

a 100-ply stack in less than 1 second on a standard desktop computer. 18 

This compatibility index has been validated by forming a number of flat 24-ply stacks with differing 19 

stacking sequence over a male tool featuring regions of double curvature using a Double Diaphragm Former. 20 

[27]. The tool geometry was that of a C-spar with a central recessed, ‘joggle’ region, bounded by 1:20 ramps in 21 

both the flanges and web (see for [27] details).  Flat rectangular laminates were initially manufactured from 22 

AS4/8552 UD prepreg. These laminates were sandwiched between two layers of vacuum bagging material, 23 

supported above the forming tool, which was placed upon the bed of the former. Following a full debulking 24 

cycle, the stacks were heated to a temperature of 60°C, and a vacuum applied from the forming bed at a rate of 25 
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0.7 bar/minute until full vacuum was reached. The vacuum bags were consequently drawn into the cavity 1 

between the tooling and forming bed, causing the laminate to conform to the tool geometry. The formed spars 2 

were subsequently cured in an autoclave following the manufacturer’s recommended curing cycle. 3 

 Three of the C-spars manufactured using the described process are illustrated in Figure 7, which shows the 4 

outer (non-tool) surface of the web of these spars; the region in which wrinkling, when it occurred, was most 5 

severe. Stacks with low 𝐶𝑚𝑎𝑥, in the range, 0.5-0.65, such as the example in Figure 7c), were found to be 6 

severely wrinkled. Stacks with higher compatibility values, with 𝐶𝑚𝑎𝑥 ≥ 0.85, such as the example in Figure 7 

7a), resulted in wrinkle-free parts. Stacks with intermediate  𝐶𝑚𝑎𝑥 values, such as the example in Figure 7b), 8 

exhibited an intermediate level of wrinkling. The interested reader is referred to [27] for further details of both 9 

these experimental trials and the underlying theoretical framework, including results for other stacking 10 

sequences. 11 

4. OPTIMISATION FRAMEWORK 12 

4.1. Stage I: Lamination Parameter Optimisation 13 

4.1.1. Overview 14 

The first stage of the optimisation procedure is to tailor homogenised component stiffnesses by optimising 15 

lamination parameters, in order to minimise structural mass subject to constraints which ensure structures 16 

perform within prescribed limits under loading. This optimisation problem is defined as: 17 

min 𝑀(𝒙) (15) 18 

Subject to 19 

 𝑔𝑖(𝒙) ≤ 0            𝑖 = 1, … , 𝑛𝑔 (16) 20 

 𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑥𝑗        𝑗 = 1, … , 𝑑 (17) 21 

where 𝑀(𝒙) is the overall mass, 𝒙 = {𝑥1, … , 𝑥𝑑} is a vector of 𝑑 design variables constrained between 22 

lower and upper bounds 𝑥𝑗 and 𝑥𝑗 respectively, and each 𝑔𝑖(𝒙) is one of ng constraints to which the optimisation 23 

is subjected.  Details of each of these terms are outlined in the sections below, with design variables defined in 24 

Section 4.1.2, and constraints in Sections 4.1.3-4.1.4. Throughout, it is assumed that laminates are symmetric 25 
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such that there is no in-plane and out-of-plane coupling, and plies are restricted to standard orientations of 0°, 1 

90°, 45° and -45°. These assumptions are made for consistency with current industrial practices, to demonstrate 2 

applicability of the new formability and damage tolerance constraints alongside such design requirements. It 3 

should be noted that the use of symmetric stacking sequences is not a necessary condition for eliminating 4 

membrane-bending coupling, and there is no manufacturing-based reason for restricting ply orientations to this 5 

set of standard angles. These assumptions therefore restrict the set of feasible stacking sequences to a smaller set 6 

than is strictly necessary for achieving the desired behaviour. Improved designs may be achieved by relaxing 7 

these constraints on stacking sequence. 8 

4.1.2. Design Variables 9 

In-plane and out-of-plane lamination parameters may be defined as [35] 10 

𝜉[1,2,3,4]
𝐴 =

1

2
∫ [cos 2𝜃 (𝑧)̅ , cos 4𝜃 (𝑧̅), sin 2𝜃(𝑧̅) , sin 4𝜃(𝑧)̅]𝑑𝑧̅

1

−1

 (18) 11 

𝜉[1,2,3,4]
𝐷 =

3

2
∫ [cos 2𝜃 (𝑧)̅ , cos 4𝜃 (𝑧)̅, sin 2𝜃(𝑧̅) , sin 4𝜃(𝑧)̅]𝑧̅2𝑑𝑧̅

1

−1

 (19) 12 

where 𝜉[1,2,3,4]
𝐴  and 𝜉[1,2,3,4]

𝐷  denote the in-plane and out-of-plane lamination parameters respectively, 𝑧̅ is the 13 

normalised through-laminate thickness coordinate 𝑧̅ =
2𝑧

𝑡
, and 𝜃(𝑧̅) is the layup function which denotes 14 

variations in ply orientation over the thickness. Lamination parameters are related to laminate stiffnesses by the 15 

expressions 16 

(

 
 
 

𝐴11

𝐴22

𝐴12

𝐴66

𝐴16

𝐴26)

 
 
 

= 𝑡

[
 
 
 
 
 
 
1 𝜉1

𝐴 𝜉2
𝐴 0 0

1 −𝜉1
𝐴 𝜉2

𝐴 0 0

0 0 −𝜉2
𝐴 1 0

0 0 −𝜉2
𝐴 0 1

0 𝜉3
𝐴 2⁄ 𝜉4

𝐴 0 0

0 𝜉3
𝐴 2⁄ −𝜉4

𝐴 0 0]
 
 
 
 
 
 

(

 
 

𝑈1

𝑈2

𝑈3

𝑈4

𝑈5)

 
 

 (20) 17 

(

 
 
 

𝐷11

𝐷22

𝐷12

𝐷66

𝐷16

𝐷26)

 
 
 

=
𝑡3

12

[
 
 
 
 
 
 
1 𝜉1

𝐷 𝜉2
𝐷 0 0

1 −𝜉1
𝐷 𝜉2

𝐷 0 0

0 0 −𝜉2
𝐷 1 0

0 0 −𝜉2
𝐷 0 1

0 𝜉3
𝐷 2⁄ 𝜉4

𝐷 0 0

0 𝜉3
𝐷 2⁄ −𝜉4

𝐷 0 0]
 
 
 
 
 
 

(

 
 

𝑈1

𝑈2

𝑈3

𝑈4

𝑈5)

 
 

 (21) 18 
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where t is the laminate thickness and 𝑈1−5 are material invariants [35]. Suppose a structure is partitioned 1 

into multiple regions, the properties of which are to be optimised independently. These properties are optimised 2 

by varying each of the in-plane and out-of-plane lamination parameters, and the laminate thickness. Due to the 3 

restriction of plies to standard orientations of 0°, 90°, 45° and -45°, 𝜉4
𝐴,𝐷

 are automatically zero [58] and, as 4 

such, are not varied in the optimisation. Additionally, extension-shear and bend-twist coupling parameters, 𝜉3
𝐴,𝐷

, 5 

are constrained to zero, resulting in five design variables per region. Lamination parameters are bounded within 6 

the interval [-1, 1] in the general case, whereas thicknesses may adopt any positive, real value. In practice, 7 

problem-specific bounds are placed upon the thickness to improve convergence. Given these pre-defined 8 

bounds, all design variables are non-dimensionalised through transformation onto the unit interval, [0, 1], to 9 

further improve performance. 10 

4.1.3. Lamination Parameters Feasibility Constraints 11 

Lamination parameters are not independent and must be bounded within feasible regions defined by 12 

inequality constraints, which describe the convex hull of feasible lamination parameter values. A full set of 13 

expressions for these feasible regions, given the assumed restrictions on ply angle, were derived in [58]. 14 

Following substitution of 𝜉3
𝐴,𝐷 = 0 into these expressions, and elimination of non-active constraints, the feasible 15 

region may be using: 16 

2|𝜉1
𝐴,𝐷| − 𝜉2

𝐴,𝐷 − 1 ≤ 0 (22) 17 

1

4
(𝜉𝑖

𝐴 + 1)3 − 1 ≤ 𝜉𝑖
𝐷 ≤

1

4
(𝜉𝑖

𝐴 − 1)3 + 1      𝑖 = 1,2 (23) 18 

(2𝜉1
𝐴 − 𝜉2

𝐴 − 1)4 − 16(2𝜉1
𝐷 − 𝜉2

𝐷 − 1)(2𝜉1
𝐴 − 𝜉2

𝐴 − 1) ≤ 0 (24) 19 

(2𝜉1
𝐴 + 𝜉2

𝐴 + 1)4 − 16(2𝜉1
𝐷 + 𝜉2

𝐷 + 1)(2𝜉1
𝐴 + 𝜉2

𝐴 + 1) ≤ 0 (25) 20 

(2𝜉1
𝐴 − 𝜉2

𝐴 + 3)4 − 16(2𝜉1
𝐷 − 𝜉2

𝐷 + 3)(2𝜉1
𝐴 − 𝜉1

𝐴 + 3) ≤ 0 (26) 21 

(2𝜉1
𝐴 + 𝜉2

𝐴 − 3)4 − 16(2𝜉1
𝐷 + 𝜉2

𝐷 − 3)(2𝜉1
𝐴 + 𝜉2

𝐴 − 3) ≤ 0 (27) 22 

In line with current industrial practices, lamination parameters are further constrained to ensure at least 10% 23 

of plies are taken from each permissible orientation. Lamination parameter feasible regions are reduced in size 24 

by assuming a maximum proportion of 70% of plies in each orientation. Resulting vertices of the outer 25 
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boundary of these regions are given by three points in the 𝜉1
𝐴-𝜉2

𝐴 plane [59], and six points in the 𝜉1
𝐷-𝜉2

𝐷 plane 1 

[60], as illustrated in [61]. The interested reader is referred to [59] for a detailed discussion on these outer 2 

boundaries. These constraints are enforced by updating the bounds on the lamination parameters to −0.6 ≤3 

𝜉1,2
𝐴 ≤ 0.6, −0.972 ≤ 𝜉1

𝐷 ≤ 0.972, and −0.984 ≤ 𝜉2
𝐷 ≤ 0.984, using the method described in [61]. When 4 

lamination parameters are transformed onto the unit interval using these updated bounds, as described in Section 5 

4.1.2, the feasible region expressions in Eqs. (22-27) are automatically scaled to enforce the 10% rule. For 6 

example, substituting the updated bounds on Eq. (22) into 𝜉1,2
𝐴  leads to 7 

2|𝜉1
𝐴| − 𝜉2

𝐴 − 0.6 ≤ 0 (28)  8 

𝜉2
𝐴 − 0.6 ≤ 0 (29)   9 

Note that this method results in approximating the outer boundary on the 𝜉1
𝐷-𝜉2

𝐷 plane as triangular. 10 

4.1.4. Structural Constraints 11 

Buckling constraints are applied to ensure structures do not buckle under applied loads, stated as 12 

1

𝐹𝑖

− 1 ≤ 0 (30) 13 

where 𝐹𝑖 is the eigenvalue corresponding to the ith buckling mode. Each eigenvalue represents the reserve factor 14 

of the critical vector of stress resultants, 𝑵𝐶,𝑖, relative to applied resultants, 𝑵, via the relationship 15 

𝑵𝐶,𝑖 = 𝐹𝑖𝑵 (31) 16 

These eigenvalues may be determined using an eigenvalue buckling solver, and are here calculated using 17 

finite element analysis. Strain constraints are applied to ensure the magnitude of components of the strain vector 18 

do not exceed a target value, 𝜀𝑡,𝑖, known in the aerospace industry as a strain allowable, stated as 19 

max{|𝜀𝑖|}

𝜀𝑡,𝑖

− 1 ≤ 0 (32) 20 

where 𝜀𝑖 is a component of the strain vector, with 𝑖 = 𝑥, 𝑦, 𝑥𝑦. A maximum absolute value is taken across 21 

all elements of the finite element model.  This constraint ensures strains are within the correct vicinity such that 22 

damage tolerant designs are achievable during the second stage of the optimisation.  23 
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4.1.5. Sensitivity Analysis 1 

An accurate measure of the partial derivatives of objectives and constraints with respect to the design 2 

variables is required for use of gradient-based solvers. It is trivial to obtain closed-form solutions for the 3 

sensitivities of the mass, and lamination parameter feasibility constraints. Sensitivities of the strain and buckling 4 

constraints are approximated using forward finite differences by applying a small perturbation, Δ𝑥, to each non-5 

dimensionalised design variable, and calculating the resulting rate of change. After a convergence study, a value 6 

of Δ𝑥 = 10−4 was used. 7 

As finite element software outputs buckling factors in ascending order rather than by mode, it is important 8 

to ensure that each perturbed buckling factor is paired to the unperturbed factor with the same mode shape. 9 

Here, each factor is paired with that which yields the highest Modal Assurance Criterion (MAC) value, given as  10 

MAC =
(𝝋𝑖

𝑇𝝋𝑗)
2

(𝝋𝑖
𝑇𝝋𝑖)(𝝋𝑗

𝑇𝝋𝑗)
 (33) 11 

where 𝝋𝑖 is the eigenvector of the ith buckling mode, and a MAC of 1 indicates identical eigenvectors and 0 12 

completely dissimilar eigenvectors. A similar sorting algorithm was applied in [62]. 13 

4.2. Stage II: Stacking Sequence Optimisation 14 

The aim of the second stage of the optimisation is to find a practical stacking sequence which closely 15 

matches the optimum lamination parameters values determined in Stage I, while conforming to industrial design 16 

rules and achieving the desired laminate formability and damage tolerance. The new formability and damage 17 

tolerance constraints are applied during this stage as they primarily depend upon stacking sequence rather than 18 

homogenised laminate-level properties. These constraints are relatively inexpensive to compute, and therefore 19 

suitable for optimisation using genetic algorithms, which typically require a large number of model evaluations.  20 

The optimum lamination parameters are targeted by minimising the square difference between the target 21 

parameters, and those corresponding to a candidate stacking sequence, expressed as 22 

min
𝜃1,…,𝜃

⌈
𝑁
2

⌉

  𝑃 (∑(𝜉𝑖
𝐴(𝜃1, … , 𝜃𝑁) − 𝜉𝑖,𝑜𝑝𝑡

𝐴 )
2

3

𝑖=1

+ ∑(𝜉𝑖
𝐷(𝜃1, … , 𝜃𝑁) − 𝜉𝑖,𝑜𝑝𝑡

𝐷 )
2

2

𝑖=1

) (34) 23 

where design variables 𝜃1, … , 𝜃
⌈
𝑁

2
⌉
 denote a candidate stacking sequence with lamination parameters 𝜉1−3

𝐴  24 

𝜉1−2
𝐷 , and 𝜉𝑖,𝑜𝑝𝑡

𝐴,𝐷
 are the optimum lamination parameters from Stage I, and 𝑃 is a multiplicative penalty function 25 
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used to enforce constraints. Symmetry is automatically enforced by only optimising half of the plies, rounded to 1 

the nearest integer when the total number of plies is odd. Balanced stacking sequences are not explicitly 2 

enforced. Instead, a target value of 𝜉3,𝑜𝑝𝑡
𝐴 = 0 is used such extension-shear coupling is minimised, permitting a 3 

small amount of imbalance should this enable a better match for the other lamination parameters. Each ply 4 

orientation may take permissible values from the set {-45°, 0°, 45°, 90°}, encoded as integers {1,2,3,4} 5 

respectively. Each of the ⌈𝑁 2⁄ ⌉ design varibles may take one of these four integer values. An additional 6 

constraint ensures that no more than four plies of the same orientation are stacked contiguously following the 7 

method of [63], the penalty value used enforce this constraint is expressed as 8 

𝑃𝑐𝑜𝑛𝑡 = ∑Θ𝑖

4

𝑖=1

 (35) 9 

The value of Θ𝑖 is 1 if four or more plies of the ith permissible orientation are stacked contiguously anywhere in 10 

the laminate and is zero otherwise. Due to the assumed restrictions upon ply orientation, there are four Θ𝑖 terms. 11 

To ensure that the condition that 10% of plies must belong to each of the permissible orientations, initially 12 

enforced during Stage I as described in Section 4.1.3, is not subsequently violated in Stage II, this constraint is 13 

reapplied using a penalty term defined as 14 

𝑃10% = ∑Π𝑖

4

𝑖=1

,    where Π𝑖 = {
0.1𝑁 − 𝑁𝜃𝑖

when 𝑁𝜃𝑖
< 0.1𝑁 

0 otherwise
(36) 15 

where 𝑁𝜃𝑖
 is the total number of plies with orientation 𝜃𝑖, and there are total of four penalty terms, Π𝑖, each 16 

corresponding to one of the permissible orientations. 17 

A formability constraint is applied, defined as 18 

𝐶𝑚𝑎𝑥 ≥ 0.85 (37) 19 

where 𝐶𝑚𝑎𝑥 is the compatibility index, as defined in Section 3. A target compatibility of 0.85 is chosen, as 20 

this value was found to be a lower bound for stacks less prone to wrinkling during forming in previous Double 21 

Diaphragm Forming trials [27]. This formability constraint is applied via a penalty term, defined as 22 

𝑃𝐶𝑚𝑎𝑥
= {

(0.85 − 𝐶𝑚𝑎𝑥) 0.85⁄ when 𝐶𝑚𝑎𝑥 < 0.85 
0 otherwise

 (38) 23 

The damage tolerance constraint is expressed as  24 

𝐹𝑡ℎ,𝑙𝑏 ≥ 1 (39) 25 
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where 𝐹𝑡ℎ,𝑙𝑏  is the lower bound on the factor of the applied strain at which a delamination arising from 1 

BVID would be expected to propagate, calculated using Eq. (8). 𝐹𝑡ℎ,𝑙𝑏  is defined as a factor of an applied strain 2 

vector, 𝜺, which is required as input to the algorithm in Figure 3. This strain vector is taken directly from the 3 

finite element model output, assuming the optimum parameters arising from Stage I. Note that this assumption 4 

introduces a discrepancy between the strain vector used in the damage tolerance model, and that achieved by a 5 

given candidate stacking sequence. Depending upon the distance between the target lamination parameters and 6 

those of a given design, this discrepancy could be large, although it will be smaller for designs with lamination 7 

parameters closer to the target. The damage tolerance constraint is applied using a penalty term, expressed as 8 

𝑃𝐷𝑇 = {
1 − 𝐹𝑡ℎ,𝑙𝑏 when 𝐹𝑡ℎ,𝑙𝑏 < 1 

0 otherwise
 (40) 9 

A memory capability is embedded into the genetic algorithm to improve efficiency, such that threshold 10 

strain factors are stored each time a new sub-laminate combination is encountered. These factors are looked up 11 

whenever this sub-laminate recurs during the optimisation process.  The overall number of sub-laminate 12 

buckling calculations is thereby reduced, exploiting the fact that a given sub-laminate may belong to a much 13 

larger number of potential overall stacking sequences. 14 

The overall penalty term, 𝑃, in Eq. (34), is calculated by compiling the penalty terms associated with the 15 

stacking sequence, formability and damage tolerance constraints, as 16 

𝑃 = (1 + 𝑃10% + 𝑃𝑐𝑜𝑛𝑡)
𝑝(1 + 𝑃𝐶𝑚𝑎𝑥

)
𝑞
(1 + 𝑃𝐷𝑇)𝑟 , (41) 17 

where exponents p, q and r govern the strength with which the different penalties are applied. 18 

Note that this well-established [40,42], two-stage method does not guarantee an exact match between the 19 

target lamination parameters and those achieved by the optimised stacking sequence. Such a match is unlikely to 20 

exist given a fixed number of plies, the imposed restrictions upon ply orientation and stacking sequence, and 21 

other practical design constraints. It is considered pragmatic to instead aim to find as close a match as is 22 

possible, given the range of competing design requirements often imposed in industry. 23 
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5. NUMERICAL EXAMPLES 1 

5.1. Overview 2 

The proposed framework is demonstrated upon two example optimisation problems, namely, a flat plate 3 

and a blade-stiffened wing panel, both modelled in finite element software ABAQUS [64]. Cured material 4 

properties of Hexcel T700GC/M21 prepreg are assumed as E11 = 136 GPa, E22 = 8.9 GPa, G12 = 4.5 GPa, 5 

ν12 = 0.35, GIC = 550 J/m2, and a ply thickness of 0.25mm. The damage tolerance model has previously been 6 

validated against experiments using this material [10]. Eigenvectors used in the formability constraint are taken 7 

directly from [27]. Stage I of the optimisation is undertaken using the MATLAB gradient-based solver 8 

‘fmincon’ [57] using the interior-point method, and stage II using the MATLAB genetic algorithm function ‘ga’ 9 

[57]. Design variables are restricted to the integer values outlined in Section 4.2 using integer constraints. A 10 

population size of 20, with 2 elite children retained at each generation, and crossover probability of 0.8, , are 11 

used alongside stochastic uniform selection, Laplace crossover, and power mutation functions, as are 12 

recommended when using integer constraints [65]. The genetic algorithm is run for 100 generations. Exponents 13 

of the penalty terms in Eq. (41) were set to values of: p = 1, q = 2, and r = 2. The above parameters for tuning 14 

the genetic algorithm were selected based upon a trial-and-error experience, with the aim of achieving a 15 

consistently good match to target lamination parameters within a reasonable number of model evaluations. It is 16 

noted that a larger population size or number of generations may achieve better results, at the expense of more 17 

model evaluations. Genetic algorithms are stochastic in nature, and therefore are not guaranteed to return the 18 

same solution when repeatedly applied to the same problem. In the following examples, the genetic algorithm is 19 

evaluated five times and results are presented for the best run. The collective outcomes of both examples are 20 

discussed in Section 6. 21 

5.2. Flat Plate 22 

The first numerical example is a flat plate of length, a, and width, b, under design compressive load Px 23 

applied as uniform end-shortening, as shown in Figure 8. Plate dimensions, loading and boundary conditions are 24 

taken from [66]. Longitudinal edges are assumed to be stress-free, with all edges modelled as simply-supported 25 

in the z direction. The plate is modelled using 4800 S4R quadrilateral shell elements, based upon convergence of 26 

the first five buckling modes to three significant figures, while ensuring a minimum of five nodes per half-27 
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wavelength for each mode shape [42]. Laminate properties are inputted as “General Shell Stiffnesses” (see 1 

Section 29.6.6 of [67]), to enable their definition using lamination parameters. Using this method, laminate A 2 

and D matrices, as calculated using Eqs. (20-21), may be inputted directly to Abaqus. Transverse shear 3 

stiffnesses were taken as their default values for a general shell section, an approximation defined using in-plane 4 

stiffnesses A11, A22 as well as A66, as defined in Section 29.6.4 of [67]. Whilst it is emphasised that these values 5 

do not accurately account for the resin-dominated through-thickness shear deformation, and will result in a 6 

small over-prediction of buckling loads, such a compromise was considered acceptable for this exercise in 7 

demonstrating the new formability and damage tolerance constraints. Minimum-mass optimisation is achieved 8 

by minimising the plate thickness. 9 

While a plate does not itself constitute a challenging forming problem, the purpose of this example is to 10 

generate a range of target stiffnesses over which to demonstrate the applicability of the damage tolerance and 11 

formability constraints. These stiffnesses are generated in a parametric study, in which the strain allowable in 12 

Eq. (32) is varied between 1000µε and 6000µε to alter the relative importance of strain and buckling to design. 13 

The stacking sequences resulting from each optimisation run are shown in Table 2. The corresponding 14 

lamination parameters and thicknesses are shown in Table 3, which details the optimum parameters from Stage I 15 

alongside the approximate match achieved in the discrete stacking sequence optimisation of Stage II. Note that 16 

𝜉4
𝐴,𝐷 = 0  after both Stages I and II in all examples, as this condition is automatically met by restricting plies to 17 

orientations of 0°, 90°, 45° and -45°, and as such, these values are omitted from Table 3. Values of laminate 18 

buckling and strain constraints from both optimisation stages are shown in Table 4 alongside parameters relating 19 

to damage tolerance and formability. For damage tolerance, the lower bound on delamination propagation strain 20 

and the corresponding reserve factors are shown, with 𝐹𝑡ℎ,𝑙𝑏  expressed as a factor of the longitudinal strain 21 

arising from Stage II. The total number of sub-laminate buckling analyses required throughout the optimisation, 22 

Nruns, are shown in order to demonstrate the efficiency of the method. Additionally, ply interface level plots of 23 

the lower bound on delamination propagation strain are shown in Figure 9. Formability is indicated by 𝐶𝑚𝑎𝑥.  24 

Designs driven by lower target strains are pushed towards 𝜉1,2
𝐴  = 0.6, corresponding to the maximum 25 

proportion of 0° plies permitted by the 10% rule. The 1000 µε strain allowable is so stringent that the buckling 26 

constraint is not active in this example. Designs with higher target strains are buckling driven and are pushed 27 

towards 𝜉1
𝐷 = 0, 𝜉2

𝐷 = -0.98, corresponding to the maximum proportion of ±45° plies permitted by the 10% rule. 28 
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The 6000 µε example is entirely buckling driven as the strain constraint is no longer active. All intermediate 1 

designs form a line between these two points, with in-plane parameters limited by the strain constraint, and out-2 

of-plane parameters by buckling. This parametric study thereby provides a variety of target lamination 3 

parameters against which to test the damage tolerance and formability constraints, the outcomes of which are 4 

discussed in Section 6.  5 

The lamination parameters achieved in Stage II of the optimisation agree with their target values to 6 

differing extents. The best agreement across all parameters is achieved by stack a), which may be due to the 7 

large number of plies in this laminate giving rise to a larger number of feasible stacking sequences and therefore 8 

greater flexibility. A good agreement is achieved in the out-of-plane lamination parameters 𝜉1,2
𝐷  for all examples. 9 

Larger discrepancies can, however, be noted in 𝜉1
𝐴 of stack b), and in 𝜉2

𝐴 of stacks d) and e). In each case, Stage 10 

II of the optimisation was limited by the 10% rule. For stacks d) and e), given a total of 26 plies, there must be a 11 

minimum of four plies of each of 0, 90, 45, and -45° to satisfy both the 10% and symmetry constraints. The 12 

value of 𝜉2
𝐴= -0.385 corresponds to stacks with the maximum feasible number of 45° and -45° plies, and is the 13 

closest achievable value to the Stage I target of 𝜉2
𝐴= -0.6. Similarly, the value of 𝜉1

𝐴 = 0.429 in stack b) 14 

corresponds to the maximum feasible number of 0° plies in a symmetric 28-ply laminate.  15 

Examples a), b) and c) all meet the target of 𝜉3
𝐴 = 0, thereby eliminating extension-shear coupling as 16 

desired. Conversely, examples d) and e) have small, non-zero values of 𝜉3
𝐴. In these cases it is impossible to 17 

generate a symmetric 26-ply stack which is sufficiently 45-dominated to meet the target values of 𝜉1,2
𝐴 , while 18 

being both balanced and satisfying the 10% rule, and so the optimisation prioritises the latter criterion. Noting 19 

by inspection that example c) satisfies both the buckling and strain constraints for both examples d) and e), and 20 

is the same thickness, this layup better meets all design criteria. Bend-twist coupling parameter 𝜉3
𝐷 is low, but 21 

non-zero in each example, with the largest discrepancy corresponding to a value of 𝜉3
𝐷 = -0.125 in stack b). Such 22 

an outcome is common, as bend-twist coupling is strongly dependent on the ordering of plies and, as such, is 23 

more difficult to eliminate than extension-shear coupling (if symmetry is enforced). It is therefore typical to aim 24 

to minimise bend-twist coupling, rather than eliminate it entirely. 25 

The buckling constraint is satisfied following Stage II in all examples, however, the 1500 and 3000 µε 26 

examples violate strain constraints due to discrepancies between the target lamination parameters and those 27 

achieved in the optimisation. These violations are not critical in this instance, as the purpose of the strain 28 
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allowables in this study is to generate a range of target lamination parameters. Converting from the continuous 1 

lamination parameter optimisation problem to the discrete stacking sequence optimisation problem, results in 2 

the strain constraint no longer being active in both examples d) and e). It is theoretically possible to decrease 3 

thickness to violate the 4500 µε constraint while satisfying the buckling constraint, as is achieved in the Stage I 4 

result for example e) in Table 4, however, such a stack would have a non-integer number of plies. Examples d) 5 

and e) are therefore interchangeable, as both satisfy constraints and have identical thickness. Such an outcome is 6 

typical of stacking sequence design, wherein finding the “best” stack requires searching a multimodal design 7 

space containing many possible solutions to the same design problem. It is emphasised that the results in Table 8 

2 correspond to the best solution found by the genetic algorithm in this study, however, due to the stochastic 9 

nature of this search method and the multimodal nature of the design space, these solutions are neither definitive 10 

nor unique.. 11 

5.3. Blade-stiffened Panel 12 

The second numerical example is a blade-stiffened wing panel, a more typical aerospace structure which is 13 

commonly used as a benchmark problem for demonstrating optimisation methods [31,33,63,68]. Forming the 14 

stiffeners from flat ply stacks could accelerate manufacture of such components, and is a potentially challenging 15 

manufacturing problem. Rapid manufacture of wing skins, which are curved in practice, is also non-trivial. As 16 

this paper contributes constraints on stacking sequence design, this example focusses upon optimising a panel 17 

with fixed geometry. The model geometry and associated boundary conditions are illustrated in Figure 10.  18 

For simplicity, the skin is assumed flat, and a single repeating unit of a wider panel is modelled by 19 

exploiting symmetry planes located at the centre lines of two adjacent skin regions. Skin thickness tsk, stiffener 20 

thickness tst, and the lamination parameters 𝜉1,2
𝐴,𝐷

 of both regions are varied in the optimisation. The stiffener is 21 

assumed to be manufactured from two back-to-back L-sections with identical stacking sequence, resulting in a 22 

stiffener blade with thickness 2tst. A longitudinal compressive force of Px = 1200kN is applied as uniform edge 23 

shortening, based upon a running load of 4kN/mm, consistent with a highly-stressed wing region. The panel is 24 

clamped at the transverse edges. Symmetry is enforced by preventing rotation about the x axis at the 25 

longitudinal edges of the repeating unit, which are constrained to be straight but free to expand, such that 26 

transverse compression is not induced in the model. The latter condition assumes that, in the absence of shear 27 

loading and significant bend-twist coupling, the skin modes are not skewed. Symmetry-enforcing boundary 28 
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conditions are taken from [42]. The skin and stiffener are meshed separately, and a tie constraint used to 1 

simulate bonding of the stiffener to this skin. The resulting mesh is composed of 6720 S4R quadrilateral shell 2 

elements, comprising 120 elements in the longitudinal direction, 38 elements across the skin width, and 6 3 

elements across the stiffener flange and web widths, with an approximate element size of 8mm x 8mm 4 

throughout the model. This mesh was selected to achieve convergence of the first five buckling modes to three 5 

significant figures, while ensuring a minimum of five nodes per half-wavelength for each mode shape [63], as in 6 

the previous example. Note that doubling the number of elements across the stiffener web did not lead to a 7 

reduction in the first five buckling load factors at two significant figures. 8 

In this optimisation, the cross-sectional area of the repeating unit is minimised, given by 9 

𝐴 = 𝑏𝑡𝑠𝑘 + (𝑏𝑠𝑡 + 2ℎ𝑠𝑡)𝑡𝑠𝑡  (42) 10 

This objective is minimised subject to buckling and strain constraints as in the previous example, using a 11 

longitudinal strain allowable of 4500 µε. An additional constraint is applied in Stage I to ensure the skin to 12 

stiffener Poisson’s ratio mismatch does not exceed 0.1, expressed as 13 

|
𝐴12,𝑠𝑡

𝐴22.𝑠𝑡

−
𝐴12,𝑠𝑘

𝐴22,𝑠𝑘

| − 0.1 ≤ 0 (43) 14 

where A12 and A22 are in-plane laminate stiffness as calculated using Eq. (20), and subscripts st and sk refer to 15 

properties of the stiffener and skin respectively. 16 

Optimum lamination parameters and thicknesses in the stiffener and skin regions after both stages of the 17 

optimisation are shown in Table 5. Values of 𝜉4
𝐴,𝐷

 are omitted as these are automatically zero as previously 18 

stated. Resulting values of the first three buckling load factors, and limiting longitudinal strains are shown in 19 

Table 6, with the corresponding buckling modes illustrated in Figure 11. The damage tolerance constraint is 20 

only applied in the skin, as stiffeners are typically limited by edge-driven failure at the tip, to which the 21 

proposed method is not applicable. This constraint is evaluated by assuming a delamination arises in centre of 22 

the skin region, as illustrated in Figure 10. An applied strain of 𝜺 = {−4234,1822,0}𝑇 is used in this constraint, 23 

taken from finite element model output of an element at this location. This strain is also shown in Table 6. The 24 

stacking sequences which result from Stage II of the optimisation are shown in Table 7 alongside key 25 

parameters of the formability and damage tolerance constraints. 26 
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Optimisation of the stiffeners in this example is driven primarily by strain, resulting in in-plane lamination 1 

parameters corresponding to the largest proportion of 0° plies permitted by the 10% rule, similar to the 1000 µε 2 

plate example. Design of the skin is driven primarily by buckling, with out-of-plane lamination parameter values 3 

corresponding to a large proportion of ± 45° plies on the outside of the laminate, with in-plane parameters 4 

ensuring there is sufficient stiffness to meet the strain constraint. A reasonable agreement is achieved in 5 

lamination parameter values between Stages I and II, in both the skin and stiffener, with the largest 6 

discrepancies arising in 𝜉2
𝐴 and 𝜉3

𝐷 of the skin. Balanced stacking sequences are achieved in both regions to 7 

match the target value of 𝜉3
𝐴 = 0, unlike in the plate example. 8 

All buckling constraints are met with significant margin following Stage II, due to the requirement of 9 

rounding the skin thickness to a discrete number of plies. The strain constraint is, however, not met following 10 

Stage II. This result occurs due to the small discrepancies in the achieved values of in-plane lamination 11 

parameters 𝜉1,2
𝐴  following Stage II, and the target values assumed due to the implementation of the 10% rule in 12 

Stage I, similar to those experienced in the plate examples.  Specifically, the maximum proportion of 0° plies 13 

permitted in a 32-ply stack  which satisfies the 10% rule is 62.5%, which is lower than the 70% proportion 14 

assumed during Stage I. As such, the stiffener is insufficiently stiff to meet the strain constraint, and in practice, 15 

additional 0° plies may be required . This result highlights a potential limitation of using a two-stage 16 

methodology alongside industrial design rules, in that the number of plies used in Stage II is determined based 17 

upon lamination parameter values which may not be feasible given this number of plies, and strict constraints 18 

imposed upon the stacking sequence.  It is, however, emphasised that this result is not a direct consequence of 19 

the damage tolerance or 𝐶𝑚𝑎𝑥 constraints. 20 

6. DISCUSSION 21 

In the above case studies, the damage tolerance and formability constraints are met, with a margin, for each 22 

of the optimised stacks. These designs were achieved while targeting a wide range of optimum lamination 23 

parameters corresponding to a variety of design criteria.  24 

The minimum formability imposed by the 𝐶𝑚𝑎𝑥 constraint is primarily achieved by limiting the number of 25 

45° interfaces in the stack, within the restrictions of the contiguity and 10% rule constraints, as deformation 26 

mode compatibility is typically lower across these interfaces. By reducing the number of 45° interfaces, the 27 
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potential for in-plane shear to induce compressive forces in the fibres of adjacent plies during forming is 1 

minimised, and consequentially so is the likelihood of wrinkles occurring. The buckling-driven, ±45°-dominated 2 

stacks tend towards having two zones of orthogonal plies, with a zone of ±45° plies on the outside of stacks and 3 

a zone of 0°/90° plies in the centre. This zoned strategy reflects that used in the wrinkle-free specimens from the 4 

trials undertaken in [27], such as the example shown in Figure 7a). Examples of this zoned configuration include 5 

results of the plate optimisation with 3000-6000 µε strain allowable, and the skin of the stiffened panel. During 6 

forming, plies in each zone are free to deform in shear without restriction from interaction with stiff fibres in 7 

adjacent plies. Deformation between these zones would arise via slip at the 45/0 or -45/90 interface, as observed 8 

in the wrinkle-free examples of [27]. The ±45° zone in the skin of the stiffened panel is broken up with a single 9 

0° ply, however, this exception is not sufficient to violate the formability constraint. It should be noted that there 10 

may be a set of more formable stacks which also achieve a good lamination parameter match. If necessary, these 11 

layups may be found by using a higher 𝐶𝑚𝑎𝑥 target, which would likely result in more distinct zoning in this 12 

example.  13 

A zoned formation does not arise in the more strain-driven designs, such as plate example a), and the 14 

stiffener laminate in the stiffened panel example. As there are a much larger number of 0° plies than 90° plies in 15 

these stacks, a single zone of 0° and 90° plies would violate the contiguity constraint. Instead, stacks are 16 

comprised of multiple 0/90° zones, and blocks of zeros interspersed with ±45° plies. The genetic algorithm 17 

orders these plies in such a way as to minimise the required number of slip planes without violating the 18 

contiguity constraint, thereby reducing the detrimental effect of the 45° interfaces upon forming.  19 

There are two means by which damage tolerance is achieved in the case studies. When a low strain 20 

allowable is used in Stage I, applied strains are reduced such that damage tolerance is less critical to design. In 21 

plate example a), it is necessary to locate 0° plies on the outside of the laminate to match the target lamination 22 

parameters. While it is evident from Figure 9 that this configuration leads to low delamination propagation 23 

strains, the strain required to propagate the worst-case delamination, located at the 5th interface, is a factor of 24 

1.87 higher than applied strains. When a higher strain allowable is used, ±45° plies are placed towards the 25 

outside of the stack, thereby increasing delamination propagation strains by redirecting stress away from these 26 

plies, increasing sub-laminate buckling strains, and reducing the strain energy stored in the sub-laminate by 27 

aligning fibres away from applied load. This configurations arises in the plate examples d) and e), in which a 28 

reserve factor of 1.45 is achieved relative to the strain required to propagate the worst-case delamination, 29 
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located at the 3rd interface (see Figure 9), and in the skin of the stiffened panel, in which a reserve factor of 1.02 1 

is achieved. While these results conform to the common design practice of adding ±45° plies to the outside of 2 

laminates for damage tolerance, the proposed approach is advantageous in that it is mechanics-based rather than 3 

design rule-based, thereby ensuring the method is equally applicable to ply orientations other than 0, 90, and 4 

±45°. Moreover, it may be noted that by increasing allowable strains in Table 3, reductions in thickness are 5 

achieved without violating the damage tolerance constraint. This observation highlights the limitations of 6 

current industrial practices employing fixed strain allowables, which do not account for the ability to impart 7 

greater damage tolerance by optimising the stacking sequence. It should be emphasised, however, that although 8 

rapid analytical models are necessary for their feasible inclusion in optimisation, the use of such simplified 9 

models should always be followed by detailed, high-fidelity modelling of more realistic damage morphologies 10 

and failure mechanisms, and testing at a damaged sub-component level or above, to verify the safety of resulting 11 

designs. 12 

The number of sub-laminate buckling analyses required to evaluate the damage tolerance constraint, across 13 

the entire optimisation is typically in the orders of hundreds. Noting that a maximum of one analysis is required 14 

per ply (up to the laminate mid-plane), per candidate design, this result constitutes an order of two magnitudes 15 

reduction compared with a potential 30,000 sub-laminates, based upon a population size of 20 candidate designs 16 

with approximately 30 plies, run for 100 generations, thereby demonstrating the efficiency of the method. 17 

Various strategies may be pursued to improve upon results by reducing the discrepancy between the target 18 

lamination parameters of the continuous Stage I optimum, and those which may be achieved by feasible 19 

stacking sequences in Stage II. Increasing the size of the feasible design space by extending the set of 20 

permissible ply orientations to include non-standard ply angles, or by relaxing the constraint upon symmetry, 21 

would increase the number of feasible designs in proximity to the target lamination parameters. The ply 22 

thickness of 0.25mm assumed in the numerical studies is particularly high, and use of thinner plies could also 23 

ensure a greater degree of flexibility for matching the target parameters.  24 

The largest discrepancies arose due to the implementation of the 10% rule during Stage I, via the bounds 25 

defined in Section 4.1.3, which do not account for the fact that a larger proportion than 10% of each permissible 26 

ply orientation may be required to achieve an integer number of plies of each orientation. A more accurate set of 27 

bounds for this rule could be defined in lamination parameter space by directly accounting for the dependency 28 

upon both the laminate and ply thickness, to ensure that the bounding ply percentages correspond to an integer 29 
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number of plies. Definition of equivalent, potentially conservative expressions in lamination parameter space for 1 

the other constraints applied during Stage II may further reduce discrepancies, as was undertaken for 2 

manufacturing constraints associated with Variable Angle Tow laminates in [46] within the polar method. Such 3 

expressions may exist linking the sub-laminate in-plane lamination parameters to the lamination parameters of 4 

the parent laminate for the purpose of damage tolerance calculations. Due to its strong dependency upon 5 

stacking sequence [27], it is not anticipated that such expressions exist for the Compatibility Index.  6 

7. CONCLUSIONS 7 

In this paper, two new optimisation constraints have been proposed which enable simultaneous design for 8 

performance and manufacturability of composite aerospace structures. These constraints have been 9 

demonstrated within a two-stage optimisation framework to achieve minimum-mass designs, subject to buckling 10 

and strain constraints, as well as minimum targets on damage tolerance and formability. A new damage 11 

tolerance constraint ensures applied strains do not exceed a predicted lower bound on the strain required to 12 

propagate a delamination, given any through-thickness delamination position and an upper bound on 13 

delamination size. A new manufacturing constraint enforces a minimum stack formability, using a compatibility 14 

index to predict the tendency of wrinkles to arise during forming of ply stacks using high-rate processes, 15 

calculated using an efficient linear integer programming method. 16 

Across case studies considering a range of design criteria, buckling constraints were met in all examples, 17 

however, limitations imposed by existing composite design rules led to some violations of strain constraints 18 

after practical stacking sequence design. Both new constraints were met, with a margin, in all examples. The 19 

damage tolerance constraint was typically met by locating ±45° on the outside of stacks. This result corresponds 20 

with current design practice but also provides a figure of merit which may be applied to non-standard ply angles 21 

in future work. The formability constraint was met by grouping plies into mutually orthogonal 0/90° or ±45° 22 

zones, minimising 45° interfaces where possible, to promote shear during forming while reducing the potential 23 

for compressive stresses to arise in fibres, leading to wrinkling.  24 

Noting that the formability constraint was met without increasing mass or reducing buckling loads, these 25 

case studies have demonstrated that design for manufacturability may potentially be achieved without detriment 26 

to performance. The fact that these qualities need not be mutually exclusive is an encouraging outcome which 27 
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highlights the possibility for manufacture of high-performance, lightweight composite aircraft components using 1 

high-rate processes. 2 
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Figure 1. Post-buckling modes of delaminated plates: a) symmetric closing, b) antisymmetric closing (and 

shearing) and c) symmetric opening. 

   

Figure 2. Idealised post-buckled geometry and propagation of delamination. a) Plan view of circular 

delamination area b) section B-B of geometry.   
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Figure 3. Algorithm for finding delamination propagation strain lower bound. a) outer loop searching over ply 

interfaces b) inner subroutine determining propagation strain for a delamination at a given interface.  

   

Figure 4.Threshold strain factor trends with respect to sub-laminate buckling factor. 
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Figure 5. Strain factor trends with increasing delamination depth for outer stacking sequence 

[45 /-452/02/90/±45/…], applied strain 𝜺 = {−4500,3500,0}𝑇𝜇𝜀, and 𝜙𝑚𝑎𝑥 = 50mm. 

Transverse Mode 1 Shear Mode 2/2* Fibre Mode 3 

 

𝒗1 = [0, 1, 0] 𝒗2 = [0, 0, 1] 𝒗2∗ = [0, 0, −1] 𝒗3 = [1, 0, 0] 

Figure 6. Independent ply deformation modes for single 0° uncured ply [27].  

  1 
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Cured part Cmax 

a) [(±45)/(0/90)3]S 

0.91 

 

b) [(45/0)3/(-45/90)3]S 

0.70 

 

c) [(45/0/-45/90)3]S 

0.56 

 
Figure 7. Web outer (non-tool) surface view of cured C-spars manufactured in the Double Diaphragm 1 

Forming trials from [27], demonstrating correlation of the severity of wrinkles with lower values of Cmax. 2 

 

Figure 8. Model definition for flat plate example. 
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Figure 9. Lower bound delamination propagation strain at each ply interface, for a range of target strains. 

 

Figure 10. Stiffened panel geometry and boundary conditions: a) illustration of model context within wider 

panel, b) panel cross sectional geometry, c) finite element model highlighting boundary conditions. 
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Figure 11. First three buckling modes of optimised panel. 
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Table 1. Experimental and analytical delamination propagation strains (in microstrain). Analytical strains are 

obtained at various ply interfaces, i, from the back (non-impact) face using: a) C-scan data and b) constant 

circular delamination of diameter 𝜙𝑚𝑎𝑥 = 36mm, with GIC = 300 J/m2 and GIIC = 870 J/m2 [69]. 

Laminate 

Experimental 

propagation 

strain [53] 

a) 𝜙𝑚𝑎𝑥 taken from C-scan data b) 𝜙𝑚𝑎𝑥 = 36 mm 

Analytical 

buckling strain 

(at interface i) 

Analytical propagation strain 

(at interface i) 

Analytical propagation 

strain (at interface i) 

GC = G1C GC = GIIC GC = G1C GC = G1IC 

Control 5700 

1796 (2) 

3446 (3) 

3709 (4) 

3523 (2) 

4335 (3) 

4463 (4) 

5788 (2) 

5791 (3) 

5732 (4) 

2971 (4) 4762 (6) 

±45° 

Outer 
5900 – 7400 

1904 (2) 

5874 (3) 

5670 (2) 

7033 (3) 

9878 (2) 

8987 (3) 
4063 (4) 6258 (5) 

90° Outer 
6400 (Test1) 

6200 (Test2) 

807 (3) 

3014 (4) 

5515 (3) 

4959 (4) 

9727 (3) 

7725 (4) 
5689 (4) 8029 (4) 

 

Table 2. Optimised stacking sequence for a range of target strain values. 

 Target Strain (µε) Stacking sequence 

a) 1000 [02/90/02/-45/03/45/0/45/02/-45/02/90/02]S 

b) 1500 [-45/0/-45/452/04/90/0/90/02]S 

c) 3000 [-45/453/-45/45/-452/90/02/90/0]S 

d) 4500 [(±45)4/-45/(90/0)2]S 

e) 6000 [45/-452/±45/452/-452/(0/90)2]S 

 

Table 3. Optimised lamination parameters and laminate thickness achieved during Stages I and II of the 

optimisation for a range of target strain values.  

 

Stage I Stage II 

ξ1
A ξ2

A ξ3
A ξ1

D ξ2
D ξ3

D 
t 

(mm) 
ξ1

A ξ2
A ξ3

A ξ1
D ξ2

D ξ3
D 

t 

(mm) 

a) 0.6 0.6 0.0 0.556 0.697 0.0 9.77 0.6 0.6 0.0 0.607 0.683 -0.022 10.00 

b) 0.554 0.509 0.0 0.337 -0.140 0.0 6.85 0.429 0.429 0.0 0.378 -0.127 -0.125 7.00 

c) 0.156 -0.288 0.0 0.037 -0.910 0.0 6.47 0.077 -0.231 0.0 -0.005 -0.886 0.120 6.50 

d) 0.012 -0.577 0.0 0.001 -0.981 0.0 6.44 0.0 -0.385 -0.077 -0.011 -0.942 0.071 6.50 

e) 0.0 -0.6 0.0 0.0 -0.983 0.0 6.44 0.0 -0.385 -0.077 0.011 -0.942 -0.028 6.50 
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Table 4. Constraint values following optimisation Stages I and II for a range of target strain values. 

 

Stage I Stage II 

Laminate 

buckling 

load factor 

Longitudinal 

strain (µε) 

Laminate 

buckling 

load factor 

Longitudinal 

strain (µε) 

Damage Tolerance 

𝐶𝑚𝑎𝑥 𝜀𝑥,𝑡ℎ,𝑙𝑏 

(µε) 
𝐹𝑡ℎ,𝑙𝑏  Nruns 

a) 2.09 1000 2.17 976.6 1825 1.87 314 0.86 

b) 1.00 1500 1.03 1624 2872 1.76 650 0.88 

c) 1.00 3000 1.00 3106 4921 1.58 487 0.92 

d) 1.00 4500 1.02 3789 5524 1.45 362 0.92 

e) 1.00 4686 1.02 3789 5492 1.45 253 0.92 

 

Table 5. Optimised lamination parameters and laminate thickness in skin and stiffener regions, achieved during 

Stages I and II of the stiffened panel optimisation. 

Stage 

Skin Stiffener 

ξ1
A ξ2

A ξ3
A ξ1

D ξ2
D ξ3

D 
tsk 

(mm) 
ξ1

A ξ2
A ξ3

A ξ1
D ξ2

D ξ3
D 

tst 

(mm) 

I 0.226 -0.015 0.0 0.047 -0.761 0.0 7.01 0.588 0.579 0.0 0.310 -0.006 0.0 7.99 

II 0.172 -0.103 0.0 0.066 -0.765 0.171 7.25 0.500 0.500 0.0 0.380 0.137 -0.070 8.00 

Table 6. Buckling load factor of the first three buckling modes, limiting longitudinal strains, achieved during 

Stages I and II of the stiffened panel optimisation. 

 F1 F2 F3 
Maximum 

strain (µε) 

Delamination 

location strain (µε) 

Stage I 1.00 1.00 1.07 4500 4234 

Stage II 1.07 1.07 1.15 4815 4517 

 

Table 7. Optimised stacking sequences and associated formability and damage tolerance constraint values (MS 

denotes a symmetric laminate with odd number of plies, with mid-plane in the central 0° ply). 

 Stacking Sequence 𝐶𝑚𝑎𝑥 
Damage Tolerance 

𝜀𝑥,𝑡ℎ,𝑙𝑏 (µε) 𝐹𝑡ℎ,𝑙𝑏   

Skin [452/-45/45/-452/0/±45/90/03/90/0]MS 0.89 4624 1.02 

Stiffener [±45/02/-45/02/902/04/45/02]S 0.86 N/A N/A 

 1 


