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Abstract

This paper examines the role of information from the options market in forecasting
the equity premium. We provide empirical evidence that the equity premium is
predictable out-of-sample using a set of CBOE strategy benchmark indices as pre-
dictors. We use a range of econometric approaches to generate point, quantile and
density forecasts of the equity premium, and we find that models based on option
variables consistently outperform the historical average benchmark. In addition to
statistical gains, using option predictors results in substantial economic benefits for
a mean-variance investor, delivering up to a fivefold increase in certainty equivalent
returns over the benchmark during the 1996-2021 sample period.
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1 Introduction

The topic of equity premium predictability has long been of significant interest to aca-
demics and practitioners alike. However, the literature has yet to reach a consensus about
the optimal set of predictors, and even about the extent to which the equity premium
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can actually be predicted. In this paper, we contribute to this ongoing debate by examin-
ing the role of forward-looking information from the options market in forecasting excess
market returns.

A number of studies in the earlier literature had argued that the equity premium
is, to a large extent, predictable using a set of financial and economic variables such
as dividend yields, earning-price ratios, book-to-market ratios, term spreads, and default
spreads (Campbell and Shiller, 1988; Fama and French, 1988, 1989; Kothari and Shanken,
1997; Pontiff and Schall, 1998; Lettau and Ludvigson, 2001; Cochrane, 2008). However,
Goyal and Welch (2008) challenged that commonly held view and argued that these
variables fail to consistently provide accurate predictions over time, with the associated
models having an unstable and overall poor forecasting performance in-sample and out-of-
sample. The finding that standard economic variables produce forecasts with unstable and
short-lived accuracy, particularly when compared to the historical average benchmark, is
further supported by Lettau and Van Nieuwerburgh (2008), Timmermann (2008), and
Baetje and Menkhoff (2016), among others.

Subsequent studies explored whether alternative predictors can provide consistently
more accurate forecasts of the equity premium. For instance, Neely et al. (2014) and
Baetje and Menkhoff (2016) examine a set of technical indicators and find that they
result in more efficient and stable forecasts compared to standard economic indicators.
Other studies have documented the forecasting power of investor sentiment (Huang et al.,
2015), cross-sectional return dispersion (Maio, 2016), manager sentiment (Jiang et al.,
2019), oil price increases (Wang et al., 2019), news extracted from newspaper articles
(Adämmer and Schüssler, 2020), and cross-sectional higher moments (Stöckl and Kaiser,
2020).

Another stream of the literature has focused on whether equity premium predictabil-
ity can be improved by adopting alternative econometric approaches to generate forecasts
from a given set of variables. In particular, Rapach et al. (2010) examine a standard set of
macroeconomic variables and show that forecast combinations result in statistically and
economically significant gains in forecastability, in contrast to the poor performance of
individual forecasts (see also Meligkotsidou et al., 2014; Adämmer and Schüssler, 2020).
Moreover, Meligkotsidou et al. (2014, 2021) and Pedersen (2015) adopt a quantile re-
gression approach and find that point forecasts that have been generated by aggregating
across a set of quantiles significantly improve forecast accuracy. Following a different
approach, Pettenuzzo et al. (2014), Li and Tsiakas (2017) and Tsiakas et al. (2020) show
that forecast accuracy can be significantly improved by imposing economic and statistical
constraints on equity premium forecasts.

Our paper contributes to the literature on equity premium predictability by exploring
the predictive ability of a set of variables extracted from the options market. Given that
option contracts are forward-looking by construction, it would be reasonable to expect
that they contain important information about the future returns distribution of the un-
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derlying asset, in addition to information that is already contained in the historical record
of returns or other contemporaneously observed variables. To this end, we focus on twelve
strategy benchmark indices quoted by the Chicago Board Options Exchange (CBOE) as
potential predictors of the equity premium. These indices reflect the performance of trad-
ing strategies that have been constructed using options written on the S&P500, and they
are designed to serve as benchmarks for investors trading index options. More impor-
tantly, the CBOE indices reflect investors’ aggregate expectations about the distribution
of future market returns. Considering that each CBOE strategy is based on a different
mix of option contracts, the full set of strategy benchmarks is likely to contain rich in-
formation about several aspects of the distribution of market returns, such as tail risk,
volatility risk, expected skewness, etc. Overall, we argue that the forward-looking nature
and the increasing liquidity of index options make the CBOE benchmark indices natural
candidates for the set of equity premium predictors.

Our paper also contributes to the literature by evaluating equity premium predictabil-
ity at a daily frequency. Previous studies have tended to examine financial and economic
predictors that are observed weekly, monthly or even at a lower frequency. However,
the daily dynamics of predictors are likely to contain incremental information about the
future evolution of the equity premium. Our dataset consists of the daily time-series of
the CBOE benchmark indices and the empirical analysis focuses on forecasting the daily
equity premium.

Despite the extensive search for optimal predictors of the equity premium in the liter-
ature, there has been surprisingly little interest in exploiting the forward-looking informa-
tion embedded in options. In this sense, our paper is directly related to a small number of
recent studies that have explored option-related information in the context of forecasting
market returns. More specifically, Buss et al. (2017, 2019) show that implied correlation is
a robust predictor of aggregate market returns at long horizons. Furthermore, Andersen
et al. (2020) find that the tail risk premium extracted from index options can predict
future market returns, while Cao et al. (2020) report that the implied volatility spread
outperforms several well-established predictors at horizons of up to six months. Our re-
search question is in a similar vein but, in contrast to focusing on a specific option-implied
variable, we seek to exploit a richer information set about several features of the market
returns distribution by using a large set of variables based on trading index options.

Our empirical analysis examines the daily time-series of the equity premium for the
sample period ranging from January 1996 to April 2021. We focus on the twelve CBOE
strategy benchmark indices as our main predictors of interest, and we also consider some
of the standard economic variables of Goyal and Welch (2008) as well as the VIX and the
variance risk premium as commonly used predictors. We employ an empirical methodol-
ogy that is consistent with recent developments in the literature, allowing us to generate
point forecasts, quantile forecasts and density forecasts of the equity premium. The per-
formance of alternative forecast models is evaluated out-of-sample, in order to reflect
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investors’ real-time decisions, with the emphasis on identifying models which provide
statistical as well as economic gains in forecastability.

The empirical findings provide strong support for the hypothesis that information
from the options market can significantly improve the predictability of the equity pre-
mium. First, we find that almost all option variables outperform the historical average
benchmark when used in univariate linear models, as evidenced by positive and highly
significant out-of-sample R2. This finding is particularly important considering the rel-
atively poor performance of the Goyal and Welch (2008) economic fundamentals and
the fact that the historical average is notoriously hard to beat (Campbell and Thomp-
son, 2008). The highest improvement in forecasting power is offered by the risk reversal
strategy benchmark, highlighting the importance of skewness premia for predicting fu-
ture market returns. Interestingly, using the mean forecast across all univariate models
outperforms the historical average benchmark, but to a lesser extent compared to most
univariate models, while a Kitchen Sink model with all potential predictors actually un-
derperforms.

Exploiting the entire distributional information of each predictor from quantile re-
gressions and employing variable selection/shrinkage techniques lead to additional im-
provements in forecasting power. For instance, the results are even stronger when we
examine point forecasts that have been obtained by aggregating quantile forecasts, with
universally positive out-of-sample R-squares and even lower p-values for all option vari-
ables. Moreover, the Least Absolute Shrinkage and Selection Operator (LASSO) scheme
offers one of the highest improvements over the historical average benchmark, with an
out-of-sample R2 of 1.37%. Applying the Lima and Meng (2017) Post LASSO Quantile
Combinations (PLQC) scheme further improves forecasting performance, with the three-
quantile PLQC3 scheme offering an R2

OS of 1.48%, which is the highest across all models.
In contrast to the findings in Meligkotsidou et al. (2021), we find that fixed-weight PLQC
schemes deliver more significant gains compared to schemes with time-varying weights.

The quantile regression results provide further support for the role of option variables
in forecasting the equity premium, as all option predictors consistently outperform the
historical average benchmark across all the quantiles that we consider. However, we find
that the alternative quantile constant benchmark is relatively harder to beat compared to
that of the historical average, with univariate models using option variables failing to offer
statistically significant improvements in the left part of the distribution. Nevertheless, the
forecasting power of the CBOE indices gradually increases from low to high quantiles, and
the majority of univariate option-based models are found to significantly outperform both
benchmarks in the right part of the distribution. Importantly, when used in a multivariate
setting, option predictors result in highly significant forecasting gains in both parts of the
distribution.

The results are qualitatively similar when forecasting the entire density, although per-
formance varies depending on the weighting scheme used to aggregate across quantiles.
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In brief, every option predictor outperforms the historical average benchmark, with the
highest improvements offered by the mean forecast model. The quantile constant bench-
mark is again found to be more difficult to beat, but 9 out of 12 option variables are still
found to offer significant gains under weighting schemes that place greater emphasis on
the right part or the middle of the distribution, while skewness premia and multivariate
models are the only cases of outperformance when we place greater emphasis on the left
part of the distribution.

Finally, we find that forecasts generated by option variables are not only statistically
significant, but also economically valuable. For instance, a standard mean-variance in-
vestor generating forecasts using the BXMD buy-write index in a univariate setting would
earn a Certainty Equivalent Return (CER) of 5.6% per annum, representing an almost
fourfold improvement over and above the CER of 1.27% offered by the historical mean
benchmark. Applying variable selection via PLQC would offer a more than fivefold in-
crease in the investor’s Sharpe Ratio, reaching 0.60 when using time-varying weights,
compared to a Sharpe Ratio of 0.12 offered by the benchmark. Generally, ssing option
predictors delivers important economic gains in terms of returns per unit of risk, as evi-
denced by Sharpe Ratios that are between 3 and 5 times higher than that of the historical
average benchmark across all models.

The remainder of the paper is organized as follows. Section 2 discusses the econometric
methodology that is applied to generate and evaluate forecasts of the equity premium
under competing models. Section 3 describes the data used in the empirical analysis,
while Section 4 presents the empirical results. Finally, Section 5 concludes.

2 Methodology

This section describes the methodological approaches that we use to produce and eval-
uate forecasts of the equity premium. We begin by discussing a number of alternative
forecasting approaches, ranging from the simple linear model to several types of quantile
forecast combinations. We then present the criteria that we use to evaluate the accuracy
of these forecasts.

2.1 Forecasting Approaches

2.1.1 Univariate linear model

We begin with the traditional predictive linear regression model, where the equity pre-
mium is regressed against a lagged predictor as follows

rt+1 = α + βxt + εt+1 (1)
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where rt+1 denotes the equity premium at t+ 1, xt is the value of the predictive variable
at t, and εt+1 is a random error term.

We generate out-of-sample forecasts of the equity premium by estimating equation
(1) recursively (see also Rapach et al., 2010; Goyal and Welch, 2008). More specifically,
we start by estimating the linear model using an intitial window consisting of the first
m observations, regressing {rt}mt=2 against a constant and {xt}m−1

t=1 . Using the estimated
parameters and the predictive variable’s realized value xm, we produce the first out-of-
sample forecast of the equity premium at time m+ 1, given by

r̂m+1 = α̂ + β̂xm (2)

We obtain the time-series of out-of-sample equity premium forecasts by repeating
these steps using a sequence of expanding windows. Finally, we generate one time-series
of equity premium forecasts separately for each variable xt in our set of predictors.

2.1.2 Kitchen Sink

In addition to the univariate linear model in (1), we combine the information contained in
all the predictive variables by estimating Kitchen Sink forecasts. We start by estimating
multivariate regressions of the equity premium against all k lagged predictors as follows

rt+1 = α +
k∑
i=1

βixi,t + εt+1 (3)

where xi,t denotes the value of the ith predictor at time t. The Kitchen Sink forecast of
the equity premium is given by

r̂t+1 = α̂ +
k∑
i=1

β̂ixi,t (4)

Similarly to the univariate case in section 2.1.1, we estimate Kitchen Sink forecasts in
a recursive fashion.

2.1.3 LASSO regression

The multivariate predictive regressions in 2.1.2 are likely to suffer from overfitting, espe-
cially when the number of predictive variables is relatively large (see Rapach and Zhou,
2021).1 To address this concern, we adopt the Tibshirani (1996) LASSO approach. The

1As a first, simple way of addressing overfitting, we consider the mean of all univariate forecasts
generated in 2.1.1 (Mean), as well as the cross-sectional mean of individual predictors (PredAvg).
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LASSO is a shrinkage technique that can be used for variable selection. More specifically,
this approach applies a penalty to the estimated slope coefficients by forcing the sum
of the absolute values of these coefficients to be below a predetermined threshold. In
the process, one or more coefficients could be shrinked to zero, effectively excluding the
associated variables from the set of predictors. The LASSO regression coefficients can be
obtained by solving the following optimization problem2

min
α,β1,...,βk

[
T−1∑
t=1

(rt+1 − α−
k∑
i=1

βixi,t)
2 + λ

k∑
i=1

|βi|] (5)

where λ denotes a penalty parameter that determines the degree of shrinkage. If λ = 0,
then the LASSO coefficients are identical to those obtained by the standard Kitchen Sink
estimation in (3). As λ increases, β̂ shrinks to zero. While selecting an appropriate value
for the shrinkage parameter is not straightforward, the main objective is to optimize
the trade-off between reducing overfitting and discarding potentially useful information.
When estimating LASSO regressions we set λ = 1

n
, where n is the number of in-sample

observations in a particular step.3

2.1.4 Elastic net

We use the Zou and Hastie (2005) elastic net (ENet) aproach as an alternative shrinkage
technique. Similarly to the LASSO forecast, the ENet forecast is based on a penalized
regression that addresses potential overfitting. However, the ENet penalty term consists
of two components, namely a LASSO component λ1 and a ridge component λ2 (Hoerl and
Kennard, 1970). We follow Dong et al. (2022) to select the value of the parameter that
determines the degree of shrinkage, with the ENet coefficients being obtained by solving
the following system

min
α,β1,...,βk

1

2

T−1∑
t=1

(rt+1 − α−
k∑
i=1

βixi,t)
2 subject to

k∑
i=1

|βi| ≤ λ1 and
k∑
i=1

(βi)
2 ≤ λ2 (6)

2The LASSO optimization problem in (5) is equivalent to

min
α,β1,...,βk

T−1∑
t=1

(rt+1 − α−
k∑
i=1

βixi,t)
2 subject to

k∑
i=1

|βi| ≤ c

3We have also considered selecting the optimal value for λ by running a 10-fold cross-validation and
then choosing the value for λ that minimizes the respective Mean Squared Error. The results are relatively
similar to, albeit weaker than, those obtained when simply setting λ equal to 1

n . Therefore, we omit these
latter results for brevity, but they are available upon request.
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2.1.5 Principal Component Analysis

We consider forecasts based on Principal Component Analysis (PCA), which has been
often adopted in equity premium prediction as a way to extract a common source of
variation among a large set of predictors (see, for instance, Neely et al., 2014; Li and
Tsiakas, 2017). We also apply the more recent scaled PCA (sPCA) approach developed
by Huang et al. (2021). In contrast to the equal weighting of predictors in the PCA,
the sPCA scales each predictor according to its predictive power over a particular target
that is being forecasted. In other words, instead of maximizing the extent to which a
principal component can explain the variation among the predictors, the sPCA attempts
to maximize a principal component’s forecasting accuracy on a specific target. As a result
of using the target variable information to guide dimension reduction, the sPCA has been
found to generate more efficient forecasts of market returns (Huang et al., 2021; Chen
et al., 2022). We follow Dong et al. (2022) and extract the first principal component from
the full set of predictors in our sample, for both the PCA and the sPCA forecasts.

2.1.6 Partial Least Squares

We use the Partial Least Squares (PLS) approach to construct a single forecasting variable
from our large set of predictors. Following Kelly and Pruit (2013, 2015), we apply a three-
pass regression filter to construct a factor as a linear combination of individual predictors.
In a similar spirit to the sPCA, the PLS technique uses information from the forecasting
target to create an optimal predictor. More specifically, the weight of each individual
predictor in the PLS combination is determined by its covariance with the forecast target
(i.e., the equity premium), resulting in a univariate predictor that is expected to maximize
the correlation with the target variable (see also Dong et al., 2022).

2.1.7 Quantile regression

The linear models discussed in the previous sections can generate forecasts about the mean
of the returns distribution. However, a number of studies have documented significant
non-linear predictability patterns in stock returns (see, for instance, Guidolin et al., 2009;
Henkel et al., 2011). To capture the potentially non-linear relationship between the equity
premium and the set of predictors, we adopt a quantile regression approach that allows
us to explore the equity premium’s predictability across different parts of its distribution,
including the center as well as the tails (see Meligkotsidou et al., 2014, 2019; Pedersen,
2015).

The quantile regression model is given by

rt+1 = α(τ) + β(τ)xt + εt+1 (7)
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where τ ∈ (0, 1), while α(τ) and β(τ) are quantile-varying parameters. The errors εt+1

are assumed to be independent and drawn from an error distribution gτ (ε) with the τ th

quantile equal to 0 (i.e.,
∫ 0

−∞ gτ (ε)dε = τ).
These quantile regressions are estimated separately for each predictive variable in

our set. The estimated parameters α̂(τ) and β̂(τ) are obtained by minimizing the sum∑T−1
t=0 ρτ

(
rt+1 − α(τ) − β(τ)xt

)
, where ρτ (u) is an asymmetric linear loss function given by

ρτ (u) = u (τ − I(u < 0)) =
1

2
[|u|+ (2τ − 1)u] . (8)

Once the parameters in (7) have been estimated, the forecast of the τ th quantile of the

equity premium distribution at t+1 can be obtained as r̂
(τ)
t+1 = α̂(τ) + β̂(τ)xt. For example,

in the symmetric case of τ = 1
2

we obtain the median of the forecasted distribution.
Moreover, we follow Meligkotsidou et al. (2014) and Lima and Meng (2017) and forecast
the mean of the equity premium distribution as the weighted average of a set of quantiles.
The weights used can be interpreted as the probabilities associated with different quantile
forecasts, indicating how likely a particular regression quantile is to predict the equity
premium over the next period. More specifically, we compute the point forecast of the
equity premium as

r̂t+1 =
∑
τ∈S

pτ r̂
(τ)
t+1,

∑
τ∈S

pτ = 1 (9)

where pτ denotes the weight associated with quantile τ , and S denotes the full set of
quantiles that are being aggregated. Regarding the specific choice of weights pτ , we follow
Gastwirth (1966) and use the three-quantile (Q3) and the five-quantile (Q5) estimators
given by

Q3 : r̂t+1 =
1

3
r̂

(0.3)
t+1 +

1

3
r̂

(0.5)
t+1 +

1

3
r̂

(0.7)
t+1 (10)

Q5 : r̂t+1 =
1

5
r̂

(0.3)
t+1 +

1

5
r̂

(0.4)
t+1 +

1

5
r̂

(0.5)
t+1 +

1

5
r̂

(0.6)
t+1 +

1

5
r̂

(0.7)
t+1 (11)

2.1.8 Post LASSO Quantile Combinations

Including predictors with very small effects on the equity premium in the forecasting
equation is likely to have a significant negative impact on forecast accuracy. We address
the issue of potentially weak predictors by applying the Post LASSO Quantile Combina-
tion (PLQC) approach that was first proposed by Lima and Meng (2017). The PQLC
is a methodology that attempts to minimize the negative impact of weak predictors and
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estimation errors by applying an averaging scheme to quantiles that are based on LASSO-
selected predictors.

We begin by applying the `1-penalized LASSO Chernozhukov et al. (2010). We then
select only the predictors whose coefficients have not been shrunk to zero (i.e., excluding
any weak predictors).4 The selected predictors are used in a quantile regression, with the
post-LASSO forecast for quantile τ being given by

r̂
(τ)
t+1 = α̂(τ) +

k∗∑
i=1

β̂
(τ)
i x∗i,t (12)

where α̂(τ) denotes the estimated interecept and β̂
(τ)
i the estimated slope for the ith pre-

dictor in the quantile regression. Furthermore, x∗i,t is the value of the ith predictor that
has been selected at time t, while k∗ is the total number of selected predictors. We use
this approach to obtain one forecast for each quantile at time t, and finally we combine
all these quantile forecasts to construct the PLQC forecast of the mean of the equity
premium distribution as

r̂t+1 =
J∑
j=1

ωt,τj r̂
(τj)
t+1,t (13)

where ω denotes the averaging scheme used to combine quantile forecasts and J is the total
number of quantiles used to aggregate forecasts. In our empirical analysis, we use both
fixed and time-varying schemes. With respect to fixed weights, we consider a discrete set
of quantiles τ ∈ (τ1, τ2, . . . , τJ) and compute the PLQC forecast as the simple arithmetic
average with equal weighing ωτ = ω. Consistent with the quantile models presented in
section 2.1.7, these equal-weighted PLQC forecasts are computed as

PLQC3 : r̂t+1 =
1

3
r̂

(0.3)
t+1,t +

1

3
r̂

(0.5)
t+1,t +

1

3
r̂

(0.7)
t+1,t (14)

PLQC5 : r̂t+1 =
1

5
r̂

(0.3)
t+1,t +

1

5
r̂

(0.4)
t+1,t +

1

5
r̂

(0.5)
t+1,t +

1

5
r̂

(0.6)
t+1,t +

1

5
r̂

(0.7)
t+1,t (15)

In addition, we apply time-varying weights in order to account for the possibility that
the contribution of specific quantiles in the optimal forecast varies across time. Simi-
larly to Lima and Meng (2017), we determine the weighting scheme ωt,j by estimating

4The `1-penalized LASSO method can be used to classify predictors into three groups. Strong predic-
tors are those that are selected in all quantiles, weak predictors are those that are selected in a subset of
all quantiles, while fully weak predictors are those that are not selected in any quantile. When obtaining
post-LASSO forecasts for a given quantile, we exclude all weak predictors, without trying to distinguish
between weak and fully weak ones across the entire set of quantiles.
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a constrained OLS regression of rt+1 on r̂
(τ)
t+1,t, τ ∈ (τ1, τ2, . . . , τJ). The resulting PLQC

forecasts with time-varying (TW) weights are given by

TW3 : r̂t+1 = ωt,τ1 r̂
(0.3)
t+1,t + ωt,τ2 r̂

(0.5)
t+1,t + ωt,τ3 r̂

(0.7)
t+1,t (16)

s.t. ωt,τ1 + ωt,τ2 + ωt,τ3 = 1

TW5 : r̂t+1 = ωt,τ1 r̂
(0.3)
t+1,t + ωt,τ2 r̂

(0.4)
t+1,t + ωt,τ3 r̂

(0.5)
t+1,t + ωt,τ4 r̂

(0.6)
t+1,t + ωt,τ5 r̂

(0.7)
t+1,t (17)

s.t. ωt,τ1 + ωt,τ2 + ωt,τ3 + +ωt,τ4 + ωt,τ5 = 1

2.2 Forecast Evaluation Criteria

The methodologies discussed in section 2.1 allow us to generate a set of point, quantile and
density forecasts of the equity premium. These time-series of equity premium forecasts
are obtained using a recursive (expanding) window. In particular, we begin by using the
model parameters that have been obtained in the initial estimation period that consists of
the first 5 years, as well as the predictors’ values on the last day of the estimation period,
in order to forecast the equity premium one day ahead. We continue to generate out-of-
sample forecasts by continuously updating the estimation period, adding one observation
at a time. This approach allows us to generate a time-series of one-day-ahead out-of-
sample forecasts of the equity premium, under a set of competing models. We evaluate
the forecast accuracy of each model based on the following criteria.

2.2.1 Point forecast accuracy

We evaluate the accuracy of point forecasts using the standard out-of-sample R2, com-
puted as

R2
OS = 1− MSFEi

MSFE0

(18)

where MSFEi and MSFE0 denote the Mean Squared Forecast Errors of the ith model
and the benchmark model, respectively. Positive values of the R2

OS are indicative of
the proposed model outperforming the benchmark, while negative values indicate the
opposite. We evaluate the statistical significance of a model’s R2

OS by performing the
Clark and West (2007) test.

2.2.2 Quantile forecast accuracy

Gneiting and Raftery (2007) and Gneiting and Ranjan (2011) suggest that forecast eval-
uation should be based on the same loss function as the one used in model estimation
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(i.e., equation (8) used in the quantile regressions in this study). In order to evaluate
the accuracy of quantile forecasts, we follow Manzan (2015) and compute the forecasts’
Quantile Score (QS). More specifically, the QS of the τ th quantile forecast generated by
the ith model is computed as

QSit+1|t(τ) =
[
rt+1 − r̂(τ)

i,t+1

] [
τ − I(rt+1 − r̂(τ)

i,t+1 < 0)
]

(19)

where r̂
(τ)
i,t+1 denotes the ith model’s forecast of quantile τ , and I is an indicator function

that takes the value of 1 if the argument is true and the value of 0 otherwise. A lower QS
indicates superior forecast accuracy.

We evaluate the statistical significance of quantile forecast accuracy by following Gi-
acomini and White (2006) and Amisano and Giacomini (2007). To this end, we compute
the quantile score’s test statistic as

tQSi (τ) =
QSi(τ)−QS0(τ)

σ̂
(20)

where QSi(τ) and QS0(τ) denote the mean QS for quantile τ generated by the ith model
and the benchmark model, respectively, while σ̂ is the standard error of the quantile score
difference. The null hypothesis is that both models’ quantile scores are equal, with model
i outperforming the benchmark if the null is rejected with a negative tQSi (τ) and the
benchmark outperforming model i if the null is rejected with a positive tQSi (τ).

2.2.3 Density forecast accuracy

We interpolate across the set of quantile forecasts in order to approximate the entire
density of the equity premium, without the contraint of assuming a particular distribution.
The forecast accuracy of these density forecasts is evaluated via the Weighted Quantile
Score (WQS) by integrating the QS across the set of quantiles τ , with a function ω
assigning different weights to different parts of the distribution. The WQS of model i can
be computed as

WQSit+1|t =

∫ 1

0

QSit+1|t(τ)ω(τ)dτ (21)

Given that our empirical analysis is based on a discrete set of quantiles, the continuous
version of WQS in equation (21) is replaced with a discrete version that aggregates across
the obtained quantiles. More specifically, we employ four different weighting functions ω,
namely

1. WQS1: ω(τ) = 1, assigning uniform weights across the entire distribution
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2. WQS2: ω(τ) = τ(1− τ), assigning greater weights to the middle of the distribution

3. WQS3: ω(τ) = (1− τ)2, assigning greater weights to the left tail of the distribution

4. WQS4: ω(τ) = τ 2, assigning greater weights to the right tail of the distribution

Finally, we statistically evaluate the Weighted Quantile Score by replacing QS with
WQS in equation (20).

3 Data and Main Variables

The empirical analysis focuses on the period spanning from 4th January 1996 to 15th

April 2021, for a total of 6,312 daily observations. The main variable of interest is the
equity premium rt, defined as the log return of the market index over the risk-free rate.
In particular, the equity premium at time t is given by rt = ln(1 + rmkt,t)/ln(1 + rf,t),
where rmkt,t and rf,t denote the return of the S&P500 index and the 1-month Treasury bill
rate, respectively, at t. We use the first 5 years (1,248 daily observations) as our initial
estimation period in the forecasting exercise, with the out-of-sample period starting on
3rd January 2001.

The set of predictors consists of the daily returns of 12 strategy benchmark indices
trading S&P500 options, the VIX, the Variance Risk Premium (VRP), and 3 economic
variables. Data on the strategy benchmark indices were obtained directly from the CBOE,
which reports the daily returns of a number of passive strategies involving options written
on the S&P500. These indices are designed to serve as benchmarks for investors trading
options on the exchange, and they can be split into seven categories according to the
type of information that they are expected to reflect. Each category contains several
strategies that are designed to pursue broadly the same objective by adopting variations
of the same construction methodology. Given the significant degree of correlation among
same-category strategies, we select from each group only a subset of strategy indices that
can capture the main properties of that category. More specifically, our set of option pre-
dictors consists of the Buy-Write (BXM, BXMC, BXMD and BXY), Put-Write (PUT and
PUTY), Combo (CMBO), Butterfly (BFLY), Condor (CNDR), Collar (CLL), Put Pro-
tection (PPUT), and Risk Reversal (RXM) strategies. Table A1 in the Online Appendix
provides more information about the specific construction of each strategy benchmark
index.

While a theoretical framework that links these option variables to subsequent eq-
uity returns has yet to be developed, our choice of option-based strategies as potential
predictors is motivated primarily by the substantial literature that has emerged on the
informational content of the options market. For instance, Vanden (2008) shows that
option prices subsume market expectations about future investment opportunities, while
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several studies find that information extracted from options has significant forecasting
power over stock price dynamics (see, for example, Shackleton et al., 2010; Christoffersen
et al., 2012; Buss et al., 2017, 2019).

The forward-looking nature of option contracts suggests that they are, in theory, ex-
pected to contain information about investors’ expectations of the future state of the
underlying market index. Moreover, each benchmark strategy reflects aggregate expec-
tations about different parts and/or moments of the index’s distribution, determined by
the specific types of option contracts that it trades. Buy-Write strategies, for instance,
provide long equity and short volatility exposure (Israelov and Nielsen, 2014). By going
long in the underlying market index and short in a covered call, these strategies will per-
form well when the market fluctuates little in the short-term and rises in the longer-term.
As such, these option variables reflect investors’ beliefs about the future short-term and
longer-term movements of the underlying index, regarding the market’s level and volatil-
ity. Importantly, each of the four Buy-Write strategies (BXM, BXMC, BXMD and BXY)
has different exposure to short volatility, determined by the moneyness of the options used
in its construction, so that using all four variables captures a large part of the forecasting
power embedded in the options’ implied volatility smile (see also Whaley, 2002; Israelov
and Nielsen, 2014, 2015).

Put-Write strategies, on the other hand, reflect the performance of providing crash
insurance on the market index, a practice that has traditionally offered very high returns
in the past (Bondarenko, 2014; Kelly et al., 2016). In this sense, PUT and PUTY capture
investors’ expectations about the likelihood of a market crash, as well as their associated
aversion to crash risk. This variable is expected to correlate significantly with the sub-
sequent equity premium, with higher returns of put-writing strategies being indicative of
investors attaching a higher probability to a subsequent market crash.

Butterfly (BFLY) and Condor (CNDR) are standard volatility trading strategies that
reflect investors’ appetite for insurance against volatility risk. Previous studies have shown
that volatility expectations embedded in the VIX and the VRP have significant forecasting
power over the equity premium, documenting a positive relationship between volatility
expectations and subsequent market returns (Bollerslev et al., 2009, 2014; Buss et al.,
2017). The volatility strategies that we explore can be similarly seen as complimentary
measures of aggregate uncertainty and risk aversion extracted from option prices. In fact,
BFLY and CNDR represent direct ways of trading on the variance risk premium using
options, as opposed to going short in VIX futures. Therefore, we expect these volatility
strategies to contain incremental information about future market returns, in line with
the findings of Bollerslev et al. (2009) of high volatility premia being associated with
high future returns. The Combo strategy (CMBO) is essentially a 50/50 combination of
the PUT and BFLY strategies, reflecting jointly investors’ beliefs about crash risk and
volatility risk.

Collar (CLL) and Put Protection (PUTY) strategies are typically considered as a cost-
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efficient way of hedging the underlying market index. By going long in an index put and
short in an index call, CLL is designed to protect a long position in the underlying index at
a relatively low cost, at the expense of capping upside potential. Given its construction,
CLL is expected to perform well when investors have bearish short-term forecasts but
bullish long-term ones about the market index. PUTY offers an alternative, and relatively
more expensive, way of hedging the market index. Put Protection strategies tend to
somewhat underperform during good states of the market but substantially outperform
during crashes, thereby reflecting investors’ expectations of large drops of the market
index.

Finally, Risk Reversals (RXM) are designed to reverse the risk stemming from the well-
documented negative skewness of index returns. As such, RXM returns directly reflect
the implied skewness premium and, by extension, capture investors’ expectations about
future market skewness. Although skewness should, in theory, be negatively related to
future stock returns, empirical results have been somewhat mixed. For instance, Bali and
Murray (2013), Chang et al. (2013), Conrad et al. (2013) and Kim and Park (2018) confirm
a negative relationship between implied skewness and subsequent stock returns, while a
positive relationship is reported by Bali and Hovakimian (2009), Xing et al. (2010) and
Chordia and Lin (2021). We expect RXM to reflect investors’ beliefs about the likelihood
of a market crash (Doran et al., 2007) and to act as a proxy for investor sentiment (Han,
2008; Cao et al., 2020).5

Following the literature on the predictive power of the VIX and the VRP over market
returns, we include both of these variables in our set of predictors. Daily data on the VIX
were obtained directly from the CBOE, while data on the VRP were obtained from the
personal webpage of Grigory Vilkov.6 In addition to the above option predictors, we use
a set of variables that have often been found to contain information about future market
returns. In particular, Goyal and Welch (2008) show that a set of economic variables can
have a significant predictive power over the equity premium. Given that the forecasting
exercise in this study is based on daily data, we include in our set of predictors only the
Goyal and Welch (2008) variables that are available at a daily frequency. More specifically,
we include the Term Spread (TMS) defined as the difference between the yield of long-
term government bonds and the yield of T-bills, the TED Spread (TED) defined as the
difference between the 3-month T-bill rate and 3-month LIBOR, and the Default Yield

5Cao et al. (2020) find that an alternative measure of implied skewness (the implied volatility spread) is
significantly positively related to several measures of market expectations and investor sentiment, namely
the Gallup investor survey, American Association of Individual Investors survey, Crash Confidence Index
from the Yale School of Management, and the Baker and Wurgler (2006) sentiment index. Implied
skewness was also found to be significantly negatively related to eight measures of market uncertainty,
including macroeconomic, political and financial uncertainty.

6The VRP data can be found at https://www.vilkov.net/codedata.html. This dataset does not
cover our entire sample period, as it ends in December 2017. Therefore, we include the analysis of the
VRP in the paper’s robustness section.
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Spread (DFY) given as the difference between the yields of BAA and AAA corporate
bonds. Data on these economic variables were obtained from Bloomberg.

Figure 1 plots the time evolution of the equity premium and the option predictors
during the sample period while Table 1 reports a set of descriptives statistics. The equity
premium has a mean of 0.02% on a daily basis, with a standard deviation of 1.22%.
Consistent with earlier findings in the literature, the equity premium is characterized by
negative skewness and excess kurtosis. All the option-related predictors are also negatively
skewed (with PPUT and VIX being the only exceptions) and substantially leptokurtic,
while the economic predictors have positive skewness. As can be seen from Table 2, the
strategy benchmark indices generally tend to be strongly correlated with one another.
Interestingly, option predictors are negatively and weakly correlated with the VIX, and
almost completely uncorrelated with the three macroeconomic predictors. These relatively
weak correlations with variables that have traditionally been used to forecast the equity
premium suggests that the strategy benchmark indices are likely to contain incremental
information about future market returns.

[Figure 1 about here.]

[Table 1 about here.]

[Table 2 about here.]

4 Empirical Results

4.1 In-sample Predictability

We begin the empirical analysis by exploring the in-sample predictability of the equity
premium. To this end, Table 3 reports the estimated coefficients from univariate predictive
regressions of the equity premium against each predictor in turn. The table reports the
results from simple OLS estimations as well as those from quantile regressions.

[Table 3 about here.]

The univariate regression results provide initial support for the hypothesis that the
options market contains significant information about the future evolution of the underly-
ing equity index. Estimating a simple linear predictive model produces slope coefficients
that are statistically significant at the 1% level across all option-related variables (with
the only exception of BFLY). For context, the coefficient of the VIX is insignificant while
TED is the only macroeconomic variable with a statistically significant coefficient in this
setting.

The quantile regression results confirm the non-linear impact of the predictors on the
equity premium distribution. For instance, looking at the results for τ = 0.10, it appears
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that, even though some option predictors have statistically insignificant coefficients, the
left tail of the equity premium distribution is affected by at least one option strategy index
from each category group, as well as by the Goyal and Welch (2008) economic variables. As
we move further to the right of the equity premium distribution, the importance of option
predictors increases substantially, as evidenced by the fact that almost all variables have
statistically significant coefficients across all quantiles. In contrast to previous studies, we
find that the VIX is largely insignificant as a univariate predictor, both in an OLS and in
a quantile setting.

Interestingly, we find that BFLY and CNDR are significant in-sample predictors
mainly for quantiles ranging from τ = 0.10 to τ = 0.50, potentially suggesting that volatil-
ity premia embedded in option prices are driven by investors’ concerns about downside
risk. The opposite pattern can be seen in the coefficients of Buy-Write strategies (BXM,
BXMC, BXMD and BXY), indicating that these option variables can more accurately pre-
dict the right part of the equity premium distribution compared to the left part. Overall,
the results indicate that option variables have a significant non-linear impact on in-sample
equity premium predictability.

4.2 Point Forecasts

We proceed by examining the out-of-sample predictability of the equity premium. While
in-sample forecasts are generally associated with higher statistical power, out-of-sample
performance is typically considered a more appropriate evaluation measure as it avoids
issues of overfitting and, importantly, it is based on information that would have been
available to investors at the time when the forecast was generated. Table 4 reports the
out-of-sample R-square (R2

OS) of point forecasts under a set of competing forecasting
models. In particular, the table reports the performance of forecasts based on univariate
and multivariate linear models, as well as those generated by quantile forecast combination
schemes. The statistical significance of the R2

OS is evaluated against a benchmark model
using the Clark and West (2007) test. We adopt the natural benchmark of the historical
average (HA), which Campbell and Thompson (2008) and Goyal and Welch (2008) argue
is hard to beat, as the HA is generally found to outperform an extensive set of commonly
used predictors out-of-sample.

[Table 4 about here.]

The first thing to notice is that all option strategy indices outperform the benchmark
of the historical average, as evidenced by positive out-of-sample R-squares (BFLY is the
only exception with an R2

OS of -0.03). Importantly, this outperformance relative to the HA
benchmark is highly significant in most cases, with the majority of Clark and West (2007)
p-values being lower than 1%. The greatest improvement in forecasting power is offered
by the risk reversal strategy RXM, which has the highest R2

OS at 1.91 (p-value = 0.1%).
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Given that risk reversals reflect the level of implied skewness embedded in index options,
it seems that investors’ demand for downside protection contains substantial information
about subsequent market returns, in excess of the information contained in the historical
returns record.

To put these results into context, it is worth highlighting that the three Goyal and
Welch (2008) economic variables have a negative R2, suggesting that they are inferior
predictors of the equity premium relative to the HA benchmark. Therefore, our out-
of-sample results provide strong support for the hypothesis that information from the
options market can markedly improve the predictability of the equity premium, relative
to the historical average benchmark and commonly used economic predictors.

Furtheremore, we find that taking the mean of the set of forecasts produced by the
univariate linear models also improves the forecastability of the equity premium, relative
to the HA benchmark (see also Rapach et al., 2010). As can be seen from Table 4, the
R2
OS of this forecast mean is positive (0.72) and highly significant (p-value=0.3%). With

an R2
OS of 0.36, using the mean of all predictors as a single forecasting variable (PredAvg)

also outperforms the historical average, but to a lesser extent compared to averaging
across forecasts. In contrast, including all variables in a single Kitchen Sink model results
in a markedly lower forecasting power, with a negative R2

OS of -0.59.
Figure 2 plots the time-series of the differences between the cumulative mean squared

forecast error of the HA benchmark minus that of each univariate linear model. To
conserve space, we present the plots of the six best-performing predictors (RXM, PUTY,
PUT, CMBO, BXM and BXMD). In general, the subplots show that forecasts based
on the option strategy indices consistently outperform the historical average benchmark.
The forecasting performance of option predictors is somewhat modest, and some even
underperform slightly, in the beginning of the evaluation period. However, all predictors
exhinbit substantially increasing predictive ability post-2008, and they experience another
noticeable improvement towards the end of the sample period.

[Figure 2 about here.]

The role of option variables in forecasting the equity premium is further supported by
the results of aggregating forecasts across quantiles. More specifically, the three-quantile
(Q3) and the five-quantile (Q5) estimators produce forecasts that significantly outperform
the HA benchmark across all option variables (including the BFLY which underperformed
in the linear settting). The option variables’ positive R2s are generally highly significant,
with p-values that are universally lower than those produced by the respective linear
models. Interestingly, the choice between aggregating across three or five quantiles does
not appear to be particularly important, as both estimators produce comparable R2s, in
terms of magnitude as well as statistical significance.

Finally, the results from variable selection schemes are equally strong (Panel B of Ta-
ble 4). All the schemes that we examine produce forecasts with an R2 that is positive
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and significant at the 5% level (with the only exception of PredAvg which is significantly
positive at 10%). The greatest improvement relative to the HA benchmark is offered by
the equal-weighted PLQC3 scheme (R2

OS = 1.48, with a p-value of 1.7%), followed by the
sPCA and PLQC5 schemes (R2

OS of 1.41 and 1.38, respectively). LASSO forecasts also
substantially outperform the benchmark (R2

OS = 1.37), while ENet results in a relatively
low, albeit still significantly positive, out-of-sample R-square. Consistent with Huang
et al. (2021) and Chen et al. (2022), we find that using information from the equity pre-
mium to guide dimension reduction leads to more accurate forecasts, as evidenced by the
sPCA outperforming the standard PCA. Finally, it seems that the equal-weighted PLQC
forecasts (PLQC3 and PLQC5) are associated with a greater improvement in forecast
accuracy compared to the PLQC schemes with time-varying weights (TW3 and TW5).

4.3 Quantile Forecasts

In this subsection, we move from point forecasts to evaluating the accuracy of quantile
forecasts. Table 5 reports the t-statistics of the Quantile Scores (QS) produced by the set
of competing models, using equations (19) and (20). We examine the forecast accuracy of
the competing models across the equally spaced quantiles τ = {0.05, 0.10, ..., 0.95}, with
the table reporting the results for the respective deciles, for brevity. We evaluate the
predictive ability of each model against two different benchmarks. The first benchmark
(Panel A of Table 5) refers to quantile forecasts generated by the Historical Average (HA)
model. The second benchmark (Panel B of Table 5) refers to a simple Quantile Constant
(QC) model, obtained by setting β(τ)xt = 0 in equation (7).

[Table 5 about here.]

As can be seen from Panel A of Table 5, all the predictors outperform the HA bench-
mark across all the quantiles of the equity premium distribution, as evidenced by univer-
sally negative and highly significant QS t-statistics. The most significant improvement
across the quantiles is offered by the mean forecast model, while the Kitchen Sink model is
also found to generally outperform the historical average in constrast to the earlier results
from point forecasts. Generating PLQ forecasts via equation (12) significantly improves
forecasting performance as well, with the respective quantile scores being more significant
than those associated with the majority of univariate models.

The results reported in Panel B of Table 5 show that the Quantile Constant benchmark
is harder to beat. When we consider the left tail of the equity premium distribution
(τ ≤ 0.3), almost all option stratergy predictors underperform relative to the benchmark,
with quantile scores that are either positive or negative but statistically insignificant. In
constrast, the VIX performs very well across almost all quantiles. Nevertheless, combining
information across the entire set of predictors is still found to improve forecast accuracy,
with significantly negative QS t-statistics associated with the mean forecast, the Kitchen
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Sink, and the PLQ forecasts in the lower quantiles. Interestingly, as we move towards
the right part of the distribution, the majority of option predictors begin to outperform
the QC benchmark. More specifically, all strategy benchmark indices have significantly
negative QS t-statistics for quantiles τ ≥ 0.5, with the exception of BXMC, BFLY and
CNDR.

Overall, these results confirm the role of option predictors in forecasting the equity
premium. Single-predictor models seem to significantly improve forecast accuracy in the
right tail of the distribution, while aggregation schemes result in significantly improved
forecasts across the entire distribution of the equity premium.

4.4 Density Forecasts

Having established that option predictors can significantly improve equity premium pre-
dictability in terms of point forecasts and quantile forecasts, we now turn our attention
to forecasting the entire distribution. To this end, Table 6 reports the t-statistics of
the Weighted Quantile Scores (WQS) associated with each candidate model, under four
different weighting schemes that are intended to place different emphasis on specific re-
gions of the distribution. Similarly to the previous subsection, we focus on the quantiles
τ = {0.05, 0.10, ..., 0.95}, and we evaluate forecast accuracy relative to the Historical
Average and the Quantile Constant benchmarks.

[Table 6 about here.]

When performance is evaluated against the HA benchmark, we find that all option
predictors significantly improve the accuracy of density forecasts under all four weighting
schemes. While the relative importance of specific variables to some extent varies across
weighting schemes, VIX, CNDR, CLL, and PPUT are generally associated with the most
significant WQS values. Interestingly, the mean forecast results in consistently greater
improvements compared to that offered by univariate models, while the Kitchen Sink
model offers a less significant improvement.

Consistent with the quantile forecast results presented in Table 5, improving forecast
accuracy is more difficult when evaluated against the QC benchmark. Nevertheless, the
last four columns of Table 6 demonstrate that the majority of option predictors still result
in more accurate density forecasts, while the VIX is still found to result in the highest
improvement. For instance, when we place uniform emphasis across the distribution
under the equal-weighted scheme WQS1, we find that 9 out of 12 strategy benchmark
indices significantly outperform the QC benchmark, with CCL and PPUT being the most
significant. The results are very similar when we place greater emphasis on the middle or
the right tail of the distribution, under WQS2 and WQS4, respectively.

The results under WQS3 are the only notable exception, with RXM the only strat-
egy benchmark predictor with a significantly negative weighted quantile score under this
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weighting scheme. This finding seems to suggest that using option variables in a univari-
ate setting is less likely to improve the accuracy of forecasts of the left tail of the equity
premium distribution. However, forecasts obtained by using information from the full set
of option predictors still outperform the QC benchmark under all four weighting schemes,
including WQS3. In fact, the mean forecast model offers its most significant improvement
in forecast accuracy under WQS3, suggesting that combinations of individual forecasts
are especially useful when forecasting the left tail of the distribution. Finally, it is worth
noting that the performance of PLQ forecasts is consistently somewhere between that of
the mean forecast and the Kitchen Sink model.

4.5 Economic Evaluation

The previous subsections have documented how the use of option predictors results in an
improvement of forecast accuracy that is highly statistically significant. We now shift our
focus to the economic evaluation of competing forecast models. On this issue, Campbell
and Thompson (2008) argue that even small predictability gains, in a statistical sense,
could translate to an economically meaningful increase in predictability, resulting in an
increase in portfolio returns for a mean-variance investor who maximizes expected utility.
We follow this utility-based approach within a standard asset allocation framework in
order to evaluate the economic performance of competing models in a way that captures
an investor’s risk-return trade-off.

More specifically, we consider a mean-variance investor who optimally allocates their
wealth between equities and the risk-free asset based on forecasts of the equity premium.
In the standard mean-variance framework, the solution to this maximization problem
yields the following weight wt for the investor’s wealth to be invested in the risky asset
at time t

wt =
r̂t+1

γσ̂2
t+1

(22)

where r̂t+1 is the equity premium forecast generated at time t for t+ 1, γ is the Relative
Risk Aversion (RRA) coefficient that determines the investor’s appetite for risk, and σ̂2

t+1

is the forecasted volatility of the equity premium at t + 1. The volatility forecast at
each point in time is generated as the conditional standard deviation between symmetric

quantiles, given by
r̂
(0.95)
t+1 −r̂

(0.05)
t+1

3.25
(see also Meligkotsidou et al., 2021). Following the extant

literature, we set the risk aversion coefficient γ equal to 3. At each point in time, the
investor allocates wt of their wealth in the equity index and the remaining (1 − wt) in
risk-free T-bills. The portfolio’s return at t+ 1 is given by

rp,t+1 = wtrt+1 + (1− wt)rf,t+1 (23)
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Table 7 presents the economic performance of the mean-variance investor who trades
based on equity premium forecasts that have been generated by a set of competing models.
The table reports each portfolio’s annualized mean daily return, Certainy Equivalent
Return (CER), and Sharpe Ratio (SR). The portfolio’s CER and SR are computed as

CER = r̄p −
1

2
γσ2

p (24)

SR =
r̄p − rf
σp

(25)

where r̄p and σp denote the portfolio’s mean and standard deviation of returns, respec-
tively, during the forecast evaluation period.

[Table 7 about here.]

As can be seen from Panel A, all option strategy indices result in portfolios with pos-
itive mean returns in the univariate linear setting. Importantly, the associated portfolios
consistently outperform the one based on the historical average benchmark, which of-
fers a mean return of 2.16% per annum. The highest performing portfolios are based on
forecasts computed using the buy-write strategy BXMD (11.27%) and the risk reversal
strategy RXM (11.26%). Interestingly, exactly half the option predictors outperform the
mean forecast model (8.63%), while the portfolio based on the Kitchen Sink forecasts
offers a somewhat lower mean return (7.01%).

The ranking among competing models is fairly similar when we account for the portfo-
lios’ risk and investors’ risk aversion. More specifically, forecasts based on BXMD result in
the highest CER (5.59% per annum), followed by RXM with 5.16%. These two predictors
also result in portfolios with the highest Sharpe Ratios (0.58 and 0.56, respectively). In
other words, a mean-variance investor would maximize their returns (non-adjusted and
adjusted for risk) by exploiting the informational content of strategies based on hedging
the index and selling insurance against index skewness. For comparison, a portfolio based
on forecasts produced by the historical average benchmark offers a CER of 1.27% and
a Sharpe Ratio of 0.12. As such, the benchmark’s risk-adjusted performance seems to
be inferior to that of the majority of univariate linear models, given that 8 out of 12
predictors offer higher CERs and 11 out of 12 offer higher SRs.

The results are even stronger when point forecasts are generated by aggregating across
quantiles. More specifically, both the Q3 and Q5 estimators result in portfolios that
outperform the ones based on linear models in terms of CER and SR for every option
predictor. Similarly, portfolios that have been constructed based on variable selection,
dimensionality reduction and combination schemes (Panel B of Table 7) often outperform
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those based on linear univariate models. For instance, the time-varying-weighted PLQC
schemes TW3 and TW5 offer the highest mean returns (11.48% and 11.56%, respectively),
Sharpe Ratios (0.58 and 0.60, respectively), and CERs (5.54% and 5.84%, respectively)

To explore the stability, or otherwise, of these portfolios, Figures 3 and 4 plot the
time evolution of the mean-variance investor’s cumulative returns under a set of compet-
ing models. Figure 3 refers to portfolios using univariate linear models, while Figure 4
refers to portfolios based on variable selection/shrinkage approaches. For comparison pur-
poses, each subplot also shows the cumulative returns of the portfolio based on forecasts
generated by the historical average benchmark.

[Figure 3 about here.]

[Figure 4 about here.]

The figures show that the economic performance of option predictors is relatively stable
and, importantly, it does not reflect an empirical relationship that prevailed in the distant
past. In fact, forecasts based on the CBOE indices performed rather modestly in the first
few years of the evaluation period, followed by a period of noticeable outperformance that
starts in around 2010. Consistent with the performance measures reported in Table 7,
the highest performance is offered by variable selection models with time-varying weights
(TW3 and TW5), followed by the BXMD and RXM univariate models.

4.6 Robustness

We perform a set of additional empirical estimations in order to determine the robustness
of our main findings regarding the forecasting ability of option variables over the equity
premium. This section briefly summarizes the results of these robustness checks, with the
full results being reported in Tables A1-A8 in the Online Appendix.

1. Risk aversion: We re-examine the economic significance of option-based forecasts
using alternative risk aversion coefficients. The main results that were presented
in Table 7 are based on the risk aversion coefficient γ taking the value of 3, in
line with the most common choice in the literature. We re-evaluate the economic
performance of competing forecast models using the alternative value of γ = 5,
with the results reported in Table A2 in the Online Appendix. We also use the
recently proposed Risk Aversion Index of Bekaert et al. (2021) as an alternative
proxy for investors’ risk aversion (Table A3 in the Online Appendix). The results
confirm the notion that option variables can deliver significant economic gains, with
most option variables outperforming the historical average benchmark in quantile
aggregation schemes, and PLQC quantile combination schemes offering the highest
economic performance overall.
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2. Volatility forecasts : The economic evaluation results are potentially sensitive to
the way in which volatility forecasts σ̂2

t+1 are generated. We further explore the
robustness of our economic evaluation results by generating alternative volatility
forecasts via the simplest and arguably most commonly adopted approach in the
literature. More specifically, at each point in time we construct volatility forecasts
as the standard deviation of portfolio returns over the previous five years. The
results are reported in Table A4 in the Online Appendix, and they are qualitatively
similar to the ones reported in the main analysis.

3. Business cycle: Table 8 and Tables A5-A9 in the Online Appendix evaluate the
statistical gains of competing forecast models, separately for recession and expan-
sion periods, as defined by NBER. Consistent with Rapach et al. (2010), Neely
et al. (2014) and Li and Tsiakas (2017), among others, we find that equity pre-
mium predictability is generally stronger during recessions. For instance, point
forecasts tend to have a higher R2

OS which is more likely to be statistically signifi-
cant in recessions compared to expansions (Table 8 and Tables A5-A6 in the Online
Appendix). Furthermore, during recessions quantile forecasts tend to have higher
and more significant quantile scores QS when compared against the tougher-to-beat
Quantile Constant benchmark (Tables A7-A8 in the Online Appendix). Somewhat
surprisingly, though, during expansions option variables are found to have a more
significant QS relative to the historical average benchmark, which is nonetheless
easier to beat compared to the Quantile Constant benchmark. A similar picture
emerges from the WQS under the density forecast evaluation (Table A9 in the On-
line Appendix), with option variables being more likely to outperform the Quantile
Constant benchmark during recessions, but more likely to outperform the historical
average benchmark during expansions. Interestingly, PPUT and RXM perform sig-
nificantly better in recessionary periods compared to expansions, as evidenced by
the substantially higher out-of-sample R-squares. These results are consistent with
the intuition that predictors which capture investors’ beliefs about crash risk play
a more important role during market downturns.

4. Variance risk premium: Previous studies have shown that the VRP is an efficient
predictor of the equity premium (see Bollerslev et al., 2014; Buss et al., 2017, 2019).
To explore whether the option strategy indices contain information that is incre-
mental to that of the VRP, we add the latter to our set of option predictors (for the
period 03/01/1996-29/12/2017). As can be seen from Tables A10-A12 in the Online
Appendix, several option variables have a higher forecasting performance compared
to the VRP. For example, 6 out of 12 strategy indices produce out-of-sample R-
squares that are higher than that of the VRP in the univariate linear setting, with
a similar pattern in the Q3 and Q5 combination models (Table A10). Moreover,
the VRP tends to have a higher QS t-statistic in the left part of the equity pre-
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mium distribution, but the CBOE indices generally outperform in the right part
of the distribution (Table A11). Finally, virtually all option strategies outperform
the VRP in terms of density forecasting, as evidenced by larger WQS t-statistics
reported in Table A12.

[Table 8 about here.]

5 Conclusion

The predictability of the equity premium has received a substantial amount of attention
in the literature. Despite an original consensus that the equity premium can be forecasted
using a set of standard economic variables, Goyal and Welch (2008) demonstrate that these
predictors have performed rather poorly after the 1970s. In this study, we contribute
to the ongoing debate on equity premium predictability by examining the forecasting
performance of variables from the options market.

Given that option contracts are forward looking by construction, option variables seem
to be natural candidates when considering potential predictors of the equity premium.
Our empirical results provide strong support for this intuitive hypothesis. In contrast
to the limited, or at least time-varying, predictive ability of standard economic variables
(Goyal and Welch, 2008; Baetje and Menkhoff, 2016), we find that using a set of CBOE
strategy benchmark indices based on S&P500 options consistently results in significant
improvements in forecasting performance.

More specifically, we apply a range of approaches to generate point, quantile and
density forecasts. These forecasts are constructed based on univariate and multivariate
linear models, variable selection schemes, and quantile forecast combination schemes. The
empirical results show that forecasts generated by option variables significantly outper-
form the historical average benchmark, across all the different frameworks examined. In
addtion to a highly significant improvement in statistical accuracy, we find that option-
based forecasts result in substantial economic gains for a standard mean-variance investor,
markedly higher than those associated with the historical average benchmark. Consider-
ing how notoriously hard it is to consistently beat the historical average (Campbell and
Thompson, 2008), our results strongly support the use of information from the options
market to significantly improve equity premium predictability.
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Table 1: Descriptive statistics

Mean Median St.Dev Min Max Skew Kurt LBQ JB
EP 0.00020 0.00060 0.0122 -0.1277 0.1024 -0.53 12.72 0.00 0.00
BXM 0.00027 0.00060 0.0087 -0.1296 0.0898 -1.53 28.44 0.00 0.00
BXMC 0.00032 0.00070 0.0092 -0.1283 0.1097 -1.11 26.29 0.00 0.00
BXMD 0.00033 0.00080 0.0105 -0.1272 0.0930 -0.88 17.60 0.00 0.00
BXY 0.00035 0.00080 0.0112 -0.2954 0.2969 -0.75 169.24 0.00 0.00
PUT 0.00032 0.00050 0.0083 -0.1218 0.0903 -1.62 32.70 0.00 0.00
PUTY 0.00021 0.00030 0.0071 -0.1228 0.0908 -2.35 52.96 0.00 0.00
CMBO 0.00028 0.00070 0.0090 -0.1240 0.0892 -1.41 24.65 0.00 0.00
BFLY 0.00008 0.00060 0.0070 -0.0501 0.0628 -0.48 9.90 0.09 0.00
CNDR 0.00014 0.00050 0.0048 -0.0462 0.0431 -1.40 23.02 0.00 0.00
CLL 0.00024 0.00030 0.0081 -0.2208 0.1165 -3.10 100.39 0.02 0.00
PPUT 0.00028 0.00030 0.0089 -0.0799 0.0679 0.02 7.11 0.00 0.00
RXM 0.00023 0.00030 0.0074 -0.1189 0.0892 -2.01 42.03 0.00 0.00
VIX 0.20327 0.08479 0.8269 0.1868 0.0914 2.09 10.54 0.00 0.00
TMS 0.01575 0.01550 0.0112 -0.0095 0.0385 0.05 2.04 0.00 0.00
TED 0.00461 0.00350 0.0039 0.0009 0.0458 3.35 21.71 0.00 0.00
DFY 0.00990 0.00900 0.0041 0.0050 0.0350 3.07 15.81 0.00 0.00

Notes: This Table reports a set of descriptive statistics for the Equity Premium (EP) and the predictive variables.
The set of predictors includes the returns of twelve strategy benchmark indices based on index options, the VIX, and
three macroeconomic variables. The option strategy predictors consist of the Buy-Write Index (BXM), Conditional
Buy-Write Index (BXMC), 30-Delta Buy-Write Index (BXMD), 2% OTM Buy-Write Index (BXY), Put-Write Index
(PUT), 2% OTM Put-Write Index (PUTY), Covered Combo Index (CMBO), Iron Butterfly Index (BFLY), Iron
Condor Index (CNDR), 95-110 Collar Index, 5% Put Protection Index (PPUT), and the Risk Reversal Index (RXM).
The macroeconomic variables cosist of the Term Spread (TMS), TED Spread (TED), and the Default Yield Spread
(DFY). The descriptive statistics reported include the mean, median, standard deviation, minimum, maximum,
skewness, and kurtosis of the daily time-series. The last two columns report the p-values of the Ljung and Box (1978)
test for serial correlation and the Jarque and Bera (1987) test for normality. The sample period runs from 03/01/1996
to 15/04/2021.
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Table 4: Point forecasts: Out-of-sample R2

Panel A: Individual predictors

Linear Q3 Q5

R2
OS p-value R2

OS p-value R2
OS p-value

BXM 1.26 0.0032 1.20 0.0012 1.24 0.0011
BXMC 0.39 0.0557 0.29 0.0335 0.25 0.0420
BXMD 1.24 0.0012 1.13 0.0006 1.16 0.0005
BXY 0.72 0.0029 0.73 0.0015 0.75 0.0012
PUT 1.37 0.0035 1.26 0.0016 1.28 0.0015
PUTY 1.80 0.0033 1.70 0.0018 1.70 0.0017
CMBO 1.32 0.0022 1.21 0.0011 1.24 0.0010
BFLY -0.03 0.2510 0.03 0.0817 0.04 0.0831
CNDR 0.04 0.1683 0.04 0.1176 0.06 0.1011
CLL 0.06 0.1229 0.22 0.0065 0.24 0.0049
PPUT 0.18 0.0142 0.29 0.0033 0.29 0.0031
RXM 1.91 0.0014 1.75 0.0008 1.78 0.0007
VIX -0.31 0.9488 -0.12 0.4388 -0.10 0.3630
TMS -0.06 0.8602 -0.03 0.2543 -0.03 0.2539
TED -0.14 0.4216 -0.13 0.4285 -0.19 0.5784
DFY -0.33 0.5558 -0.19 0.4177 -0.14 0.4157
Mean 0.72 0.0027 0.68 0.0009 0.69 0.0009
Kitchen Sink -0.59 0.0181 0.23 0.0073 0.14 0.0079

Panel B: Variable selection and combination schemes

R2
OS p-value

PredAvg 0.36 0.0671
LASSO 1.37 0.0151
ENet 0.13 0.0188
PCA 1.17 0.0018
sPCA 1.41 0.0031
PLS 1.11 0.0044
PLQC3 1.48 0.0166
PLQC5 1.38 0.0137
TW3 0.98 0.0191
TW5 0.89 0.0245

Notes: This Table reports the out-of-sample performance for a number of forecasting models that use a set of
option-related and economic predictors. Panel A reports the results for forecasts produced by linear regression
models (including univariate models, taking the mean of univariate models’ forecasts, and a Kitchen Sink estimation),
as well as quantile combination models (Q3 and Q5). Panel B reports the results produced by variable selection
and combination schemes, namely Predictor Average (PredAvg), LASSO, Elastic Net (ENet), Principal Component
Analysis (PCA), scaled PCA (sPCA), Partial Least Squares (PLS), and Post Lasso Quantile Combination (PLQC)
models with equal-weighted schemes (PLQC3 and PLQC5) and schemes with time-varying weights (TW3 and TW5).
The Table reports the models’ out-of-sample R-square (R2

OS) and the respective p-value based on the Clark and West
(2007) test. The Clark and West (2007) test evaulates each model’s forecast accuracy against the benchmark of the
historical average. Model outperformance against the benchmark (i.e., R2

OS > 0) is indicated in bold. Statistical
significance at the 10% level (i.e., p-value < 0.10) is indicated in bold. The sample period runs from 03/01/1996 to
15/04/2021, with the out-of-sample period starting in 03/01/2001.
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Table 5: Quantile forecasts: QS t-statistics

Panel A: HA quantile benchmark
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BXM -4.58 -10.87 -13.11 -11.11 -4.03 -4.09 -8.22 -10.11 -8.27
BXMC -4.50 -11.05 -13.15 -11.18 -2.36 -2.70 -7.47 -9.24 -7.05
BXMD -4.86 -10.95 -13.09 -11.14 -4.26 -4.69 -9.00 -10.46 -8.86
BXY -4.57 -10.65 -12.74 -10.69 -3.15 -3.93 -8.62 -10.30 -8.89
PUT -5.18 -11.17 -13.31 -11.08 -3.51 -3.43 -7.99 -9.44 -7.79
PUTY -5.85 -11.12 -13.03 -10.65 -3.05 -3.55 -7.73 -8.89 -7.44
CMBO -4.91 -11.07 -12.94 -10.86 -3.99 -4.33 -8.62 -9.90 -8.14
BFLY -5.34 -10.82 -13.06 -11.16 -2.87 -2.92 -8.01 -9.37 -7.77
CNDR -5.51 -10.82 -12.92 -11.01 -3.05 -2.76 -7.80 -9.02 -8.10
CLL -4.81 -10.96 -12.98 -11.12 -4.85 -5.94 -10.10 -10.81 -9.08
PPUT -4.43 -10.75 -12.90 -11.09 -4.39 -5.47 -9.98 -11.13 -9.35
RXM -5.11 -11.26 -13.26 -10.97 -3.92 -4.61 -8.70 -9.24 -7.35
VIX -11.31 -13.26 -13.44 -11.06 -2.09 -5.38 -10.28 -13.20 -14.08
TMS -4.70 -11.60 -13.04 -11.28 -2.79 -2.98 -7.91 -9.51 -8.33
TED -8.27 -12.42 -13.31 -10.96 -2.02 -1.77 -6.89 -8.74 -8.90
DFY -6.29 -11.08 -12.01 -10.37 -1.49 -3.98 -10.34 -12.23 -10.64
Mean -14.68 -15.60 -15.11 -12.14 -4.75 -6.62 -11.55 -14.55 -16.97
Kitchen Sink -9.59 -11.08 -9.62 -5.22 0.07 -3.12 -8.41 -12.19 -13.39
PLQ -9.50 -10.81 -10.91 -10.37 -2.67 -5.44 -9.95 -12.60 -13.51

Panel B: Constant quantile benchmark
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BXM 1.89 1.21 -1.21 -2.33 -2.66 -2.57 -3.07 -2.58 -2.39
BXMC -0.01 -0.17 0.02 0.25 0.15 -0.56 -1.22 -1.61 -1.22
BXMD 1.53 1.24 -0.91 -2.53 -2.90 -3.23 -4.10 -3.13 -2.81
BXY 1.59 1.45 1.55 -0.23 -1.51 -2.25 -3.34 -2.74 -2.66
PUT 1.53 0.53 -2.32 -2.25 -2.06 -1.87 -2.75 -1.94 -2.06
PUTY 0.16 -0.78 -1.91 -2.05 -1.85 -2.23 -2.78 -1.91 -2.16
CMBO 1.94 0.92 -0.11 -2.07 -2.65 -2.90 -3.68 -2.56 -2.41
BFLY -0.81 -1.44 -0.65 -0.32 0.47 0.38 -0.38 -1.11 1.31
CNDR -0.02 -0.16 -0.46 0.00 0.46 0.84 1.21 1.75 -0.17
CLL 0.00 0.02 0.86 -0.53 -3.61 -4.64 -5.76 -4.82 -2.96
PPUT 1.16 0.91 1.15 -0.98 -2.95 -3.96 -5.41 -4.66 -3.11
RXM 1.26 -0.05 -1.69 -2.39 -2.89 -3.43 -4.21 -3.10 -2.54
VIX -9.37 -7.49 -5.17 -1.99 0.47 -4.20 -6.77 -8.56 -10.24
TMS 0.85 0.89 1.65 1.32 1.37 0.36 1.28 1.12 -0.28
TED -6.17 -6.26 -5.19 -3.06 1.00 0.39 -1.32 -3.06 -4.47
DFY -4.27 -3.27 -1.41 -0.16 1.20 -1.32 -2.97 -3.72 -5.04
Mean -9.99 -9.78 -6.90 -4.16 -3.34 -5.55 -8.46 -9.20 -9.53
Kitchen Sink -8.04 -5.86 -2.83 0.26 0.72 -2.39 -5.52 -7.96 -9.71
PLQ -7.96 -5.94 -3.69 -1.35 -1.41 -4.48 -6.85 -8.38 -9.91

Notes: This Table reports the Quantile Score t-statistics for a number of forecasting models that use a set of option-
related and economic predictors. The QS t-statistics are computed following Giacomini and White (2006) and Amisano
and Giacomini (2007). The null hypothesis is that the QS of the candidate model is equal to that of the bechmark
(equal forecast accuracy). A negative t-statistic indicates that the candidate model outperforms the benchmark, while
a positive t-statistic indicates the opposite. Panel A reports the results when the performance of candidate models is
evaluated against the benchmark of the Historical Average (HA). Panel B reports the results when the performance
of candidate models is evaluated against the Quantile Constant (QC) model. Statistical significance at the 5% level
is indicated in bold. The sample period runs from 03/01/1996 to 15/04/2021, with the out-of-sample period starting
in 03/01/2001.
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Table 6: Density forecasts: WQS t-statistics

Benchmark: HA Benchmark: QC
WQS1 WQS2 WQS3 WQS4 WQS1 WQS2 WQS3 WQS4

BXM -15.79 -16.07 -12.45 -10.68 -2.65 -2.75 -0.86 -2.81
BXMC -16.15 -17.05 -11.87 -9.57 -1.25 -1.19 -0.08 -1.27
BXMD -16.33 -16.66 -12.60 -11.12 -3.28 -3.40 -1.34 -3.34
BXY -16.42 -16.58 -12.05 -11.32 -2.20 -2.11 0.48 -2.76
PUT -14.97 -15.25 -12.60 -9.94 -2.35 -2.37 -1.42 -2.41
PUTY -13.06 -13.23 -12.07 -8.94 -2.32 -2.32 -1.63 -2.36
CMBO -15.39 -15.65 -12.58 -10.37 -2.81 -2.90 -1.30 -2.91
BFLY -17.05 -17.74 -11.82 -11.60 -0.70 -0.76 -0.90 0.33
CNDR -17.07 -17.66 -11.93 -11.53 0.21 0.24 -0.09 0.57
CLL -18.87 -19.58 -12.24 -13.48 -4.44 -4.94 -0.64 -4.74
PPUT -18.47 -18.84 -12.14 -13.28 -4.19 -4.39 -0.31 -4.50
RXM -13.92 -14.27 -12.90 -9.27 -3.39 -3.53 -2.52 -3.27
VIX -23.60 -23.91 -14.61 -14.76 -16.02 -15.40 -9.51 -10.13
TMS -18.12 -18.67 -12.43 -12.08 1.71 1.96 1.23 0.86
TED -18.19 -18.16 -13.12 -11.27 -8.24 -6.89 -6.53 -4.55
DFY -17.44 -18.39 -9.88 -14.26 -6.25 -5.04 -3.73 -5.31
Mean -25.66 -23.95 -19.42 -19.16 -13.23 -11.67 -11.29 -9.35
Kitchen Sink -14.70 -12.18 -11.03 -12.66 -9.61 -7.04 -6.98 -8.71
PLQ -19.77 -19.65 -12.04 -13.89 -13.40 -12.32 -7.77 -9.76

Notes: This Table reports the Weighted Quantile Score t-statistics for a number of forecasting models that use a set
of option-related and economic predictors. Each model’s WQS is computed under four different weighting schemes,
namely (1) WQS1 : ω(τ) = 1, (2) WQS2 : ω(τ) = τ(1 − τ), (3) WQS3 : ω(τ) = (1 − τ)2, and WQS4 : ω(τ) = τ2.
The WQS t-statistics are computed following Giacomini and White (2006) and Amisano and Giacomini (2007). The
null hypothesis is that the WQS of the candidate model is equal to that of the bechmark (equal forecast accuracy). A
negative t-statistic indicates that the candidate model outperforms the benchmark, while a positive t-statistic indicates
the opposite. The first four columns report the results when the performance of candidate models is evaluated against
the benchmark of the Historical Average (HA), while the last four columns report the results when the performance
of candidate models is evaluated against the Quantile Constant (QC) model. Statistical significance at the 5% level
is indicated in bold. The sample period runs from 03/01/1996 to 15/04/2021, with the out-of-sample period starting
in 03/01/2001.
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Table 7: Economic evaluation

Panel A: Individual predictors
Linear Q3 Q5

r̄p CER SR r̄p CER SR r̄p CER SR
BXM 9.55 4.08 0.50 12.55 5.59 0.58 12.66 5.59 0.58
BXMC 6.14 0.55 0.29 11.19 3.56 0.49 11.48 3.71 0.50
BXMD 11.27 5.59 0.58 14.12 6.92 0.64 14.44 7.16 0.66
BXY 9.43 4.03 0.49 11.32 4.42 0.53 11.66 4.55 0.53
PUT 7.89 2.24 0.39 11.65 4.43 0.53 11.76 4.58 0.53
PUTY 9.22 3.38 0.46 12.78 5.26 0.57 12.85 5.25 0.57
CMBO 10.81 4.96 0.55 12.94 5.50 0.58 12.99 5.68 0.59
BFLY 3.60 -0.71 0.17 6.56 -0.35 0.30 6.65 -0.33 0.30
CNDR 4.57 -0.11 0.22 7.79 0.64 0.35 7.88 0.62 0.34
CLL 2.32 -1.21 0.09 6.20 0.43 0.32 6.58 0.35 0.33
PPUT 8.03 2.83 0.42 10.36 3.33 0.48 10.59 3.33 0.48
RXM 11.26 5.16 0.56 14.17 5.89 0.60 14.35 6.00 0.60
VIX -0.34 -7.82 -0.08 5.67 -0.91 0.23 5.62 -1.26 0.22
TMS 2.46 -0.69 0.11 5.54 0.18 0.29 5.12 -0.21 0.27
TED 5.42 0.40 0.26 4.70 0.32 0.33 4.59 -0.36 0.30
DFY 2.51 0.46 0.17 7.36 2.03 0.36 7.74 2.25 0.38
Mean 8.20 3.43 0.45 13.36 6.58 0.63 13.23 6.13 0.61
Kitchen Sink 8.60 2.05 0.39 9.40 2.39 0.42 9.37 2.14 0.41

Panel B: Variable selection and combination schemes
r̄p CER SR

PredAvg 4.67 0.93 0.26
LASSO 8.44 1.86 0.36
Enet 9.32 2.33 0.41
PCA 11.00 4.54 0.52
sPCA 10.65 4.03 0.49
PLS 9.30 3.16 0.44
PLQC3 10.77 4.80 0.54
PLQC5 10.36 4.24 0.50
TW3 11.48 5.54 0.58
TW5 11.56 5.84 0.60

Notes: This Table reports the economic performance of a mean-variance investor who allocates their wealth between
equities and the risk-free asset based on forecasts of the equity premium that have been generated by a set of competing
models. Panel A reports the results for forecasts produced by linear regression models, including univariate models,
taking the mean of univariate models’ forecasts, and a Kitchen Sink estimation. Panel B reports the results produced
by variable selection and combination schemes, namely Predictor Average (PredAvg), LASSO, Elastic Net (ENet),
Principal Component Analysis (PCA), scaled PCA (sPCA), Partial Least Squares (PLS), and Post Lasso Quantile
Combination (PLQC) models with equal-weighted schemes (PLQC3 and PLQC5) and schemes with time-varying
weights (TW3 and TW5). The Table reports the mean daily return r̄p earned by the investor’s portfolio (annualized,
in percentages), the associated Certainty Equivalent Return (CER, annualized in percentages), and the portfolio’s
Sharpe Ratio (SR, annualized). The CER has been computed using a risk aversion parameter γ = 3. For comparison,
the CER and the SR of the historical average benchmark are equal to 1.27 and 0.12, respectively. The sample period
runs from 03/01/1996 to 15/04/2021, with the out-of-sample period starting in 03/01/2001.
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Table 8: Business cycle

Panel A: Individual predictors
Recessions Expansions

R2
OS WQS1 WQS2 WQS3 WQS4 R2

OS WQS1 WQS2 WQS3 WQS4
BXM 2.73 1.68 0.99 4.87 -0.02 0.07 -20.97 -20.38 -16.31 -14.30

BXMC 1.30 5.06 4.86 5.41 1.83 -0.33 -22.20 -22.01 -17.28 -13.73
BXMD 2.61 1.79 1.15 5.15 -0.06 0.12 -20.93 -20.62 -16.44 -13.64
BXY 1.75 3.3 2.51 5.9 0.65 -0.11 -20.91 -20.17 -16.00 -14.63
PUT 3.08 1.26 0.67 4.29 -0.17 0.00 -19.95 -19.55 -15.93 -13.09

PUTY 3.95 0.35 -0.05 2.67 -0.57 0.10 -19.10 -18.42 -15.98 -12.95
CMBO 2.81 1.52 0.91 4.79 -0.09 0.12 -20.73 -20.07 -16.57 -14.08
BFLY 0.32 7.93 6.86 4.53 5.76 -0.29 -21.88 -21.72 -15.40 -15.79
CNDR 0.15 8.47 7.61 5.3 5.59 -0.05 -22.59 -22.32 -16.21 -15.88
CLL 0.23 7.6 6.2 6.01 3.69 -0.08 -23.54 -23.46 -16.22 -17.02

PPUT 0.53 6.06 4.56 6.11 2.58 -0.10 -23.60 -22.89 -16.70 -17.27
RXM 4.12 -0.11 -0.59 3.54 -1.07 0.16 -19.58 -18.77 -16.40 -13.37
VIX -0.64 -6.64 -6.01 -4.25 -3.82 -0.07 -27.25 -25.82 -18.23 -19.85
TMS 0.01 9.79 9.39 5.54 5.42 -0.11 -21.83 -21.92 -14.98 -15.26
TED -0.26 -3.86 -1.67 -3.13 -2.41 0.00 -17.91 -18.38 -13.15 -11.19
DFY -0.58 -3.90 -2.85 -2.52 -3.28 -0.11 -24.84 -24.09 -16.67 -20.84
Mean 1.58 -2.10 -1.11 -1.34 -2.39 0.10 -27.50 -25.78 -19.81 -21.45

Kitchen Sink 4.43 -5.09 -4.08 -3.86 -3.92 -4.27 -16.52 -12.88 -14.09 -16.15
Panel B: Variable selection and combination schemes

Recessions Expansions
R2

OS p-value R2
OS p-value

PredAvg 1.12 0.0503 -0.21 0.6776
LASSO 3.26 0.0228 -0.01 0.1363
ENet 4.26 0.0226 -2.88 0.2525
PCA 2.68 0.0046 0.07 0.0753
sPCA 3.36 0.0580 -0.02 0.1183
PLS 3.33 0.0041 -0.52 0.3310

PLQC3 3.52 0.0211 -0.02 0.0696
PLQC5 3.24 0.0255 0.02 0.0677
TW3 2.85 0.0318 -0.39 0.1453
TW5 2.67 0.0368 -0.41 0.1798

Notes: This Table reports the out-of-sample performance for a number of forecasting models that use a set of
option-related and economic predictors. The results are reported separately for Recession and Expansion periods, as
defined by NBER. Panel A reports the results for forecasts produced by linear regression models (including univariate
models, taking the mean of univariate models’ forecasts, and a Kitchen Sink estimation). Panel A reports the models’
out-of-sample R-square (R2

OS) and the Weighted Quantile Score t-statistics under four different weighting schemes.
Statistical outperformance of a model’s R2

OS relative to that of the historical average benchmark at the 10% level
(based on the Clark and West (2007) test) is indicated in bold. Statistical outperformance of a model’s WSQ relative
to that of the historical average benchmark at the 10% level (based on the Giacomini and White (2006) and Amisano
and Giacomini (2007) test) is indicated in bold. Panel B reports the R2

OS and the respective p-values produced
by variable selection and combination schemes, namely Predictor Average (PredAvg), LASSO, Elastic Net (ENet),
Principal Component Analysis (PCA), scaled PCA (sPCA), Partial Least Squares (PLS), and Post Lasso Quantile
Combination (PLQC) models with equal-weighted schemes (PLQC3 and PLQC5) and schemes with time-varying
weights (TW3 and TW5). Statistical outperformance relative to the historical average benchmark at the 10% level
(i.e., R2

OS > 0 and p-value < 0.10) is indicated in bold. The sample period runs from 03/01/1996 to 15/04/2021,
with the out-of-sample period starting in 03/01/2001.
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Figure 1: Time-evolution of main variables
Notes: This Figure plots the time evolution of the Equity Premium (EP) and the option predictors.

Each subplot shows the cumulative daily return of the respective variable. The sample period runs from

03/01/1996 to 15/04/2021.
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Figure 2: Cumulative MSFE - Benchmark minus univariate linear models
Notes: This Figure plots the cumulative mean squared forecast error of the historical average benchmark

minus that of a selection of univariate linear models. The sample period runs from 03/01/1996 to

15/04/2021, with the out-of-sample period starting in 03/01/2001.
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Figure 3: Cumulative portfolio returns - Univariate linear
Notes: This Figure plots the cumulative returns of a mean-variance investor who allocates their wealth

between stocks and the risk-free asset based on equity premium forecasts that have been generated

under a set of univariate linear models. Each subplot shows the performance of a specific forecasting

model against that of the Historical Average benchmark. The sample period runs from 03/01/1996 to

15/04/2021. The forecasts are generated using recursive windows, with an intitial in-sample estimation

period of 5 years.
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Figure 4: Cumulative portfolio returns - Variable selection
Notes: This Figure plots the cumulative returns of a mean-variance investor who allocates their wealth

between stocks and the risk-free asset based on equity premium forecasts that have been generated

under a set of approaches using variable selection/shrinkage. Each subplot shows the performance of a

specific forecasting model against that of the Historical Average benchmark. The sample period runs

from 03/01/1996 to 15/04/2021. The forecasts are generated using recursive windows, with an intitial

in-sample estimation period of 5 years.
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