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Abstract. In this work we first focus on the Stochastic Galerkin approximation of the solution u of

an elliptic stochastic PDE. We rely on sharp estimates for the decay of the coefficients of the spectral

expansion of u on orthogonal polynomials to build a sequence of polynomial subspaces that features

better convergence properties compared to standard polynomial subspaces such as Total Degree or

Tensor Product.

We consider then the Stochastic Collocation method, and use the previous estimates to introduce a

new effective class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical

surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor

product grids.
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Introduction

Many works have been recently devoted to the analysis and the improvement of the Stochastic Galerkin and
Collocation techniques for Uncertainty Quantification for PDEs with random input data. These methods are
promising since they can exploit the possible regularity of the solution with respect to the stochastic parameters
to achieve much faster convergence than sampling methods like Monte Carlo.

Stochastic Galerkin and Collocation methods can be classified as parametric techniques, since both expand
u, the solution of the PDE of interest, as a summation over suitable deterministic basis functions in probability
space, typically polynomials or piecewise polynomials. Stochastic Galerkin is a projection technique over a
set of orthogonal polynomials with respect to the probability measure at hand (see e.g. [1, 12, 15, 20]), while
Stochastic Collocation is a sum of Lagrangian interpolants over the probability space (see e.g. [2, 10, 22]).
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The comparison between performances of these deterministic methods is a matter of study (see e.g. [3]).
However, both suffer the so-called “Curse of Dimensionality”: using naive projections/interpolations over tensor
product polynomials spaces/tensor grids leads to computational costs that grow exponentially fast with the
number of input random variables. In such a case, careful construction of approximation spaces/sparse grids is
needed in order to retain accuracy while keeping computational work acceptably low.

In a Stochastic Galerkin setting this requirement can be translated to the implementation of algorithms able
to compute what is known as “Best M -Terms approximation”. In other words, the method should be able to
establish a-priori the set of the M most fruitful multivariate polynomials in the spectral approximation of the
solution u, and to compute only those terms.

Important contributions in the study of the BestM -Terms approximation have been given by Cohen, DeVore
and Schwab: estimates on the decay of the coefficients of the spectral expansion of u have been proved e.g.
in [6, 8, 9]. In this work we will reformulate and slightly generalize the result given in [9, Corollary 6.1], and
show on few numerical examples that the sequence of polynomial subspaces built upon those estimates (“TD
with Factorial Correction” sets, TD-FC in the following) performs better than classical choices such as Total
Degree or Tensor Product in terms of error versus the dimension of the polynomial space.

In a Stochastic Collocation setting, the construction of an optimal grid can be recast into a classical knapsack
problem relying on the notion of profit of each hierarchical surplus composing the sparse grid, as introduced e.g.
in [7, 13] for approximation of Hr

mix functions. The “Best M -Terms” grid is then the one built with the set of
the M most profitable hierarchical surpluses. In this work we provide a heuristic a-priori estimate of the profit
of each hierarchical surplus, and use it to build a quasi optimal sparse grid. The estimates of the profit are in
turn based on the estimates of the decay of the spectral expansion of u. Numerical investigations show that
these new grids perform better than standard Smolyak grids as well as grids constructed with the dimension
adaptive approach developed in [11,14].

The paper is organized as follows. Section 1 defines the elliptic model problem of interest and gives general
regularity results of the solution u. In Section 2 we first address the general procedure that leads to the
Stochastic Galerkin approximation of u; next we state the estimate for the decay of the spectral approximation
of u and explain how to build practically the TD-FC polynomial subspaces that stem from it. In Section 2.2 we
consider some simple numerical tests where we can build explicitly the Best M -Terms approximation, and we
compare it with the TD-FC and with some standard choices of polynomial subspaces. Finally, the construction
of the approximated optimal sparse grids and their numerical testing are presented in Section 3.

1. Problem setting

Let D be a convex bounded polygonal domain in R
d and (Ω,F , P ) be a complete probability space. Here Ω is

the set of outcomes, F ⊂ 2Ω is the σ-algebra of events and P : F → [0, 1] is a probability measure. Consider the
stochastic linear elliptic boundary value problem: find a random function, u : D × Ω → R, such that P -almost
everywhere in Ω, or in other words almost surely (a.s.), the following equation holds:

{
− div(a(x, ω)∇u(x, ω)) = f(x) x ∈ D,

u(x, ω) = 0 x ∈ ∂D.
(1)

where the operators div and ∇ imply differentiation with respect to the physical coordinate x only. We make
the following assumptions on the random diffusion coefficient:

Assumption 1.1. a(x, ω) is strictly positive and bounded with probability 1, i.e. there exist amin > 0 and

amax <∞ such that P (amin ≤ a(x, ω) ≤ amax, ∀x ∈ D) = 1.

Assumption 1.2. a(x, ω) is parametrized by a set of N independent and identically distributed uniform random

variables in (−1, 1), y(ω) = [y1(ω), ..., yN (ω)]T : Ω → R
N .
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Observe that Assumption 1.2 is not that restrictive. Indeed one could assume that a is parametrized by a
non uniform random vector z and introduce a smooth non linear map y = Θ(z) that transforms the original
variables into i.i.d. uniform variables.

We denote by Γn = (−1, 1) the image set of the random variable yn, and Γ = Γ1 × . . . × ΓN . After
Assumption 1.2 the random vector y has a joint probability density function ρ : Γ → R+ that factorizes as

ρ(y) =
∏N

n=1 ρn(yn), ∀y ∈ Γ, with ρn = 1
2 . Moreover, the solution u of (1) depends on the single realization

ω ∈ Ω only through the value taken by the random vector y. We can therefore replace the probability space
(Ω,F , P ) with (Γ, B(Γ), ρ(y)dy), where B(Γ) denotes the Borel σ-algebra on Γ and ρ(y)dy is the distribution
measure of the vector y. We denote with L2

ρ(Γ) the space of square integrable functions on Γ with respect to

the measure 1
2N
dy.

The assumption of independence of the random variables is very convenient for the development of the
techniques proposed below, since they rely on tensor polynomial approximations. However, such assumption
is not essential and could be removed whenever the density ρ does not factorize, by introducing an auxiliary
density ρ̂ = 1

2N
as suggested in [2]. The price to pay in the convergence estimate is then a costant factor

proportional to ‖ρ/ρ̂‖L∞(Ω).

In the rest of the paper we will use the following notation: given a multi-index i ∈ N
N and a vector r ∈ R

N ,

we define |i| = ∑N
n=1 in, i! =

∏N
n=1(in!) and ri =

∏N
n=1 r

in
n . We can now state a regularity assumption on

a(x,y):

Assumption 1.3. a(x,y) is infinitely many times differentiable with respect to y and ∃ r ∈ R
N
+ , r = [r1, ..., rN ]

independent of y and i s.t. ∥∥∥∥
∂ia

a
(y)

∥∥∥∥
L∞(D)

≤ ri ∀y ∈ Γ,

where i is a multi-index in N
N , ∂ia =

∂i1+...+iNa

∂yi11 · · · ∂yiNN
.

Remark 1.4. A common situation of interest is when a(x, ω) is an infinitely dimensional random field, suitably
expanded in series (e.g. by a Karhùnen-Loève or Fourier expansion) either as a linear expansion of the form
a = a0+

∑∞
n=1 bn(x)yn or an exponential expansion of the form a = a0+exp (

∑∞
n=1 bn(x)yn), with bn ∈ L∞(D)

in both cases. Then the infinite series is truncated up to N terms, with N large enough to take into account
a sufficient amount of the total variability. Both expansions comply with the previous assumption with rn =
‖bn‖L∞(D)/amin and rn = ‖bn‖L∞(D), respectively.

Finally, we denote by V = H1
0(D), the space of square integrable functions in D with square integrable

distributional derivatives and with zero trace on the boundary, equipped with the gradient norm ‖v‖V =
‖∇v‖L2(D) , ∀v ∈ V. Its dual space will be denoted by V′. We are now in the position to write a weak

formulation of problem (1):

Weak Formulation. Find u ∈ V ⊗ L2
ρ(Γ) such that ∀ v ∈ V ⊗ L2

ρ(Γ)

∫

Γ

∫

D

a(x,y)∇u(x,y) · ∇v(x,y) ρ(y) dx dy =

∫

Γ

∫

D

f(x)v(x,y) ρ(y) dx dy. (2)

Under Assumption 1.1, a straightforward application of the Lax-Milgram lemma yields that there exists a
unique solution to problem (2) for any f ∈ V′. Moreover, the following estimate holds:

‖u‖V⊗L2
ρ(Γ)

≤ ‖f‖V′

amin
.

Concerning the regularity of the solution with respect to y, under Assumptions 1.1 - 1.3 the following result is
proved in [5].

Regularity result: ‖∂iu(y)‖V ≤ C0|i|! r̃i ∀y ∈ Γ
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which implies that u is analytic in every y ∈ Γ. Here C0 =
‖f‖

V′

amin
and r̃ = 3

2r, with r as in Assumption 1.3. A

similar result is given in [9] for the special case a = a0 +
∑N

n=1 bn(x)yn.

2. Stochastic Galerkin method

We now seek an approximation of the solution u with respect to y by global polynomials. As anticipated
in the introduction, we remark that the choice of the polynomial space is critical when the number N of input
random variables is large, since the number of stochastic degrees of freedom might grow very quickly with N ,
even exponentially when isotropic tensor product polynomial spaces are used (see Table 1). This effect is known
as the curse of dimensionality.

Several choices of polynomial spaces that mitigate this phenomenon have been proposed in the literature, see
e.g. [3]. In this work we consider a general multivariate space: let w ∈ N be an integer index denoting the level
of approximation and p = (p1, . . . , pN ) a multi-index. Let Λ(w) be a sequence of increasing index sets such that
Λ(0) = {(0, . . . , 0)} and Λ(w) ⊆ Λ(w+1) ⊂ N

N , for w ≥ 0. We introduce the multivariate ρ(y)dy-orthonormal

Legendre polynomials Lp(y) =
∏N

n=1 Lpn
(yn), where Lpn

(t) are the monodimensional Legendre polynomials of
degree pn, and consider the multivariate polynomial subspace of L2

ρ(Γ) built as

PΛ(w)(Γ) = span {Lp(y) with p ∈ Λ(w)} .

We then seek an approximation uw ∈ V ⊗ PΛ(w)(Γ). Table 1 shows common choices for Λ(w).

index set Λ(w) Dimension |Λ(w)|
Tensor product space (TP) {p ∈ N

N : maxn=1...,N pn ≤ w} (1 + w)N

Total degree space (TD) {p ∈ N
N :

∑N
n=1 pn ≤ w}

(
N+w
N

)

Hyperbolic cross space (HC) {p ∈ N
N :

∏N
n=1(pn + 1) ≤ w + 1} ≤ (w + 1) (log ( e(w + 1) ) )

N−1

Table 1. Common polynomial spaces. The result for HC is only an upper bound.

For further details on these spaces, see [3] and references therein. In [3] we have also considered anisotropic
versions of these spaces as in Table 2, where α = (α1, . . . , αN ) ∈ R

N
+ is a vector of positive weights and

αmin = minn αn.

Tensor product space (TP) Λ(w) = {p ∈ N
N : maxn=1...,N αnpn ≤ αminw}

Total degree space (TD) Λ(w) = {p ∈ N
N :

∑N
n=1 αnpn ≤ αminw}

Hyperbolic cross space (HC) Λ(w) = {p ∈ N
N :

∏N
n=1(pn + 1)

αn
αmin ≤ w + 1}

Table 2. Anisotropic version of polynomial spaces

We can interpret these weights as a measure of the importance of each random variable yn on the solution:
the smaller the weight, the higher degree we allow in the corresponding variable. The Stochastic Galerkin (SG)
approximation then consists in restricting the weak formulation (2) to the subspace V ⊗ PΛ(w)(Γ) and reads:

Galerkin Formulation. Find uw ∈ V ⊗ PΛ(w)(Γ) such that ∀ vw ∈ V ⊗ PΛ(w)(Γ)

∫

Γ

∫

D

a(x,y)∇uw(x,y) · ∇vw(x,y) ρ(y) dx dy =

∫

Γ

∫

D

f(x)vw(x,y) ρ(y) dx dy. (3)

We recall that the choice of the family of polynomials depends on the probability measure considered over Γ: for
instance we could use Hermite polynomials for Gaussian measures and Laguerre polynomials for Exponential
measures (see e.g. [23] for the general Askey scheme).
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Now let φ(x) be a basis function for the physical space V. Inserting vw = φ(x)Lq(y) with q ∈ Λ(w) as
test function in the weak formulation (3) will result in a set of equations in weak form for the coefficients
up(x) that will be generally coupled due to the presence in the equation (3) of the term a(x,y)Lp(y)Lq(y). See
e.g. [3,17,18] for further details on space discretization and on the numerical solution of the system of equations.

2.1. Optimal choice of polynomial spaces

The question that naturally arises in the context of Galerkin approximation concerns the best choice of
the polynomial space to be used, to get maximum accuracy for a given dimension M of the space (Best M -
Terms approximation). Let us assume the solution u(x,y) is known and consider its expansion on Legendre
polynomials,

u(x,y) =
∑

p∈NN

up(x)Lp(y), up(x) =

∫

Γ

u(x,y)Lp(y)ρ(y)dy.

We look for an index set S ⊂ N
N with cardinality M that minimizes the error

‖u−
∑

p∈S

upLp‖2V⊗L2
ρ(Γ)

=
∑

p/∈S

||up||2V

where the equivalence is a consequence of Parseval’s equality. The obvious solution to this problem is the set S
that contains theM coefficients up with largest norm. This solution of course is not constructive; what we need
are sharp estimates of the decay of the coefficients ‖up‖V, based only on computable quantities, to be used in
the approximation of the set S.

Seminal works in this direction are [6, 8, 9], where estimates of the decay of the Legendre coefficients are
provided. We consider here a slight generalization of the result in [9, Corollary 6.1] and show numerically that
the polynomial sets, hereafter called TD-FC (“TD with Factorial Correction”), built on these modified estimates
behave closely to the real Best M -Terms approximation.

Under Assumptions 1.1 - 1.3 it is possible to prove that the following estimate holds for the Legendre
coefficients:

‖up‖V ≤ C0e
−

∑
n
gnpn

|p|!
p!

(4)

with gn = − log
(
rn/

(√
3 log 2

))
and rn as in Assumption 1.3. For a proof of (4) see [5]. Again, a similar result

is given in [9] for the special case a = a0 +
∑N

n=1 bn(x)yn.
We define now the sequence of TD-FC sets, with increasing approximating accuracy, by selecting all multi-

indices p for which the estimated decay of the corresponding Legendre coefficient, given in (4), is above a fixed
threshold ǫ. This, in turn, corresponds to selecting those indices p such that

e−
∑N

n=1
gnpn

|p|!
p!

≥ ǫ ⇐⇒ −
N∑

n=1

gnpn + log
|p|!
p!

≥ log ǫ.

The TD-FC sets are then defined as

Λ(w) =

{
p ∈ N

N :

N∑

n=1

gnpn − log
|p|!
p!

≤ w

}
(5)

with w ∈ N
+ = ⌈− log ǫ⌉. The quantities gn = − log

(
rn/

(√
3 log 2

))
appearing in (5) can be estimated a-priori

(see Remark 1.4). Note however that none of the Assumptions 1.1-1.3 nor Remark 1.4 prescribe bounds on the
magnitude of rn, so that the rates gn are not guaranteed to have always the same sign. This in turn implies
that estimate (4) does not always predict that ‖up‖V → 0 when |p| → ∞. On the one hand this is clearly
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unsatisfactory; on the other hand it is found that bound (4) works particularly well if the rates gn are estimated
numerically rather than a-priori, as the following numerical results will show. To estimate numerically gn, one
increases the polynomial degree in one random variable at a time while keeping degree zero in all the others
variables and estimate numerically the exponential rate of convergence. Observe that in such monovariate
analyses the factorial term does not appear so the expected convergence rate is precisely ∼ e−gnpp .

Remark 2.1. Observe that Λ(w) actually depends on N but one can extend this also to the case where p is a
sequence of natural numbers (“infinite dimensions multi-indices”) with only a finite number of non zero terms,
provided gn → +∞ as n→ ∞. This is an alternative way to work with random fields, without truncating them
a priori to a certain level (see e.g. [8, 16]).

2.2. Numerical Tests

In this section we show the performance of the TD-FC sets (5) compared to the isotropic and anisotropic
versions of TD sets defined in Tables 1 and 2 as well as the Best M -Terms approximation. We consider the
following elliptic problem in one physical dimension

{
−(a(x,y)u(x,y)′)′ = 1 x ∈ D = (0, 1), y ∈ Γ

u(0,y) = u(1,y) = 0, y ∈ Γ
(6)

with different choices of diffusion coefficient a(x,y), for which Assumptions 1.1 - 1.3 hold. We focus on a linear
functional ψ : V → R, so that ψ(u) is a scalar random variable, function of y only. In our examples, ψ is defined
as ψ(v) = v( 12 ).

To obtain the Best M -Terms approximation we compute explicitly all the Legendre coefficients of ψ(u) in a
sufficiently large index set U, evaluating the integrals ψp =

∫
Γ
ψ(u)Lp(y)ρ(y)dy with a high-level sparse grid.

We order then the coefficients in decreasing order, according to their V norm and take the partial sums of the
reordered sequence as the Best M -Terms approximation. The rates g used to build the TD-FC space, as well
as the anisotropic TD space (with αn = gn), are computed numerically as explained in the previous Section.

Test 1: diffusion coefficient depending on 2 random variables

The first case we consider has two random variables (y1, y2) and a diffusion coefficient a(x,y) = 1+0.1xy1+
0.5x2y2; results are shown in Figure 1.

Figure 1(a) shows the Legendre coefficients ordered in lexicographic order, giving this peculiar sawtooth
shape. The first tooth corresponds to multi-indices of the form [0, k], the second one to [1, k] and so on. We
have also added to the plot the estimate (4) of the magnitude of the Legendre coefficients, which leads to the
TD-FC sets (5), as well as the estimate |ψp| ≤ C0e

−
∑

n
gnpn , where the factorial terms have been dropped,

which leads to the anisotropic TD spaces. The plot suggests that estimate (4) is quite sharp, whereas the
estimate corresponding to the TD space underestimates considerably the Legendre coefficients. This highlights
the importance of the factorial term in (4). We expect, therefore, that the TD-FC approximation performs
better than the aniso-TD one. Moreover, we point out the non intuitive fact that the Legendre coefficients ψp

are not strictly decreasing in absolute value in the lexicographic order. As an example, |ψ[5 0]| < |ψ[5 1]|, and the
same holds for all teeth but the first few.

Figure 1(b) shows convergence plots for the error in L2
ρ-norm squared for the various polynomial spaces

used versus the dimension of the polynomial space. As the TD-FC sequence is the only sequence that captures
correctly the non decreasing behaviour of the Legendre coefficients in lexicographic order, the convergence of the
TD-FC sequence in Figure 1(b) is the closest to the Best M -Terms approximation, even though the anisotropic
TD spaces give good results as well. We also point out the poor performance of the standard isotropic TD space
compared to both the anisotropic TD and the TD-FC spaces: this confirms the importance of using anisotropic
spaces to reduce computational cost.
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(a) Legendre coefficients in lexicographic order and their corre-
sponding estimates based on either TD-FC or TD approxima-
tions.
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(b) Convergence of different polynomial approximations, mea-
sured as ‖ψ(u)− ψ(uw)‖L2

ρ(Γ) versus dimension of polynomial
space

Figure 1. Results for a(x,y) = 1 + 0.1xy1 + 0.5x2y2. Here we have g ≃ (2.96, 1.57),
U =TP(12), Legendre coefficients computed with a standard Smolyak sparse grid of level 9,
with Gauss-Legendre abscissae.
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Figure 2. Results for a(x,y) = 4 + y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 + 0.008 sin(3πx)y4.
Here we have g ≃ (2.035, 4.11, 5.73, 7.05), U =TD(9). The convergence is measured by
‖ψ(u)− ψ(uw)‖L2

ρ(Γ)
versus the dimension of the polynomial space.

Test 2: diffusion coefficient depending on 4 random variables

We now consider a(x,y) = 4+y1+0.2 sin(πx)y2+0.04 sin(2πx)y3+0.008 sin(3πx)y4, and look at the functional
ψ(v) = v(0.7) (the functional ψ(v) = v(1/2) is not suited for analysis in this case as, by symmetry, many of the
Legendre coefficients are zero). Figure 2 shows the results, and again we see that the TD-FC approximation is
the best performing, with anisotropic TD closely following and isotropic TD far worse.
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3. Stochastic Collocation

The Stochastic Collocation (SC) Finite Element method consists in collocating problem (1) in a set of points
{yj ∈ Γ, j = 1, . . . ,Mw}, i.e. computing the corresponding solutions u(·,yj) and building a global polynomial

approximation uw, not necessarily interpolatory, upon those evaluations: uw(x,y) =
∑Mw

j=1 u(x,yj)ψ̃j(y) for

suitable multivariate polynomials {ψ̃j}Mw

j=1.

Building the set of evaluation points {yj} as a cartesian product of monodimensional grids becomes quickly
unfeasible since the computational cost grows exponentially fast with the number of stochastic dimensions
needed. We consider instead the so-called sparse grid procedure, originally introduced by Smolyak in [19] for
high dimensional quadrature purposes; see also [4, 7] for polynomial interpolation. In the following we briefly
review and generalize this construction.

For each direction yn we introduce a sequence of one dimensional polynomial interpolant operators of in-

creasing order: Um(i)
n : C0(Γn) → Pm(i)−1(Γn). Here i ≥ 1 denotes the level of approximation and m(i) the

number of collocation points used to build the interpolation at level i. As a consequence, Um(i)
n [q] = q if q is a

polynomial of degree up to m(i)−1. We require the function m to satisfy the following assumptions: m(0) = 0,
m(1) = 1 and m(i) < m(i+ 1) for i ≥ 1. In addition, let U0

n = 0, ∀q ∈ C0(Γn).

Next we introduce the difference operators ∆
m(i)
n = Um(i)

n −Um(i−1)
n , an integer value w ≥ 0 and a sequence of

index sets I(w) such that I(w) ⊂ I(w+1) and I(0) = {(1, 1, . . . , 1)}. We define the sparse grid approximation
of u(y) : Γ → V at level w as

uw(y) = Sm
I(w)[u](y) =

∑

i∈NN
+
:i∈I(w)

N⊗

n=1

∆m(in)
n [u](y). (7)

The set of all evaluation points needed is called sparse grid and denoted by Hm
I(w) ⊂ Γ. To fully characterize

the sparse approximation operator Sm
I(w) one has to provide the sequence of sets I(w), the relation between the

level i and the number of points m(i) in the corresponding one dimensional polynomial interpolation formula
Um(i), and the family of points to be used at each level, e.g. Clenshaw-Curtis or Gauss abscissae (see e.g. [21]).

Remark 3.1. As pointed out in [11], the sparse approximation is well defined only if the sum (7) is actually a
telescopic sum. This is not ensured by any arbitrary I, and we have to pose some additional constraints on I.
Following [11] we say that a set I is admissible if for all i ∈ I

i− ej ∈ I for 1 ≤ j ≤ N, ij > 1. (8)

We refer to this property as admissibility condition, or ADM in short. Given a set I we will denote by IADM

the smallest set such that I ⊂ IADM and IADM is admissible.

In what follows we will consider Clenshaw-Curtis abscissae and the “doubling” rule m(i) = db(i) = 2i−1 +1,
which leads to nested grids. The classical Smolyak sparse grid (SM) uses I(w) = {i ∈ N

N
+ : |i− 1| ≤ w}, which

clearly satisfies the admissibility condition (8). A quasi optimal choice of I(w) will be discussed in the next
Section.

3.1. Quasi-optimal sparse grids

We now aim at constructing the quasi-optimal sparse grid for Stochastic collocation method, i.e. at choosing
the best sequence of sets of indices. We will rely on the estimate (4) on the decay of the Legendre expansion of
u.

To this end, let us define the error associated to a sparse grid as E(S) =
∥∥∥u− Sm

h,w[u]
∥∥∥
V⊗L2

ρ(Γ)
, and the work

W (S) as the number of evaluations needed, i.e. W (S) = |Hm
I(w)|. Next we define the error and work contribution
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of a multi-index i. Let I be any set of indices such that i /∈ I and {I∪i} is admissible. Then the error contribution

of i is ∆E(i) =
∥∥∥Sm

{I∪i}[u]− Sm
I [u]

∥∥∥
V⊗L2

ρ(Γ)
and the work contribution is ∆W (i) = |W (Sm

{I∪i})−W (Sm
I )|.

Following [7, 11] we can define the profit of an index i as

P (i) =
∆E(i)

∆W (i)

and define the optimal sparse approximation operator S∗ as the one using the set of most profitable indices, i.e.
I∗(ǫ) = {i ∈ N

N
+ : P (i) ≥ ǫ}.

To build the set I we rely on estimates for both ∆E(i) and ∆W (i). Since using Clenshaw-Curtis abscissae
and doubling rule db(·) we get nested grids, we can compute exactly ∆W (i) as

∆W (i) =

N∏

n=1

(db(in)− db(in − 1)). (9)

On the other hand an estimate of the error contribution ∆E(i) requires some additional effort. We conjecture
that the decay of ∆E(i) is related to the decay of the Legendre coefficients, through the Lebesgue constant

L(m(i)) associated to
⊗N

n=1 U
m(in)
n :

∆E(i)[u] .
∥∥um(i−1)

∥∥
V
L(m(i)), (10)

where a . b means that there exists a constant c independent of i such that a ≤ cb, um(i−1) is the Legendre
coefficient associated to the multi-index m(i− 1), and for Clenshaw-Curtis abscissae with doubling relation the
Lebesgue constant is

L(db(i)) ≤
N∏

n=1

(
2

π
log(db(in) + 1) + 1

)
.

Figure 3 shows the decay of the error ∆E(i) and the corresponding m(i − 1)-th Legendre coefficients for the
quantity |ψ(u)|, where u(x,y) solves problem (6) with a(x,y) = 1+ 0.1xy1 + 0.5x2y2, as in Section 2.2, Test 1.
These results, as well as the ones presented in the next Section, confirm that estimate (10) is accurate enough
for our purposes.

Starting from (9) and (10), we can estimate the profit of each index, and estimate the sequence SI∗(ǫ) of
quasi-optimal grids with

I∗(ǫ) =





i ∈ N
N
+ :

C0 exp

(
−

N∑

n=1

db(in − 1)gn

)
|db(i− 1)|!
db(i− 1)!

L(db(i))

N∏

n=1

(db(in)− db(in − 1))

≥ ǫ





ADM

(11)

with ǫ > 0 ∈ R. Equivalently, for w = 0, 1, . . . we can define the sequence of sets

I∗(w) =

{
i ∈ N

N
+ :

N∑

i=n

db(in − 1)gn − log
|db(i− 1)|!
db(i− 1)!

−
N∑

n=1

log
2
π log(db(in) + 1) + 1

db(in)− db(in − 1)
≤ w

}ADM

(12)

that will be used in (7) to build the quasi optimal sparse grids. In analogy with the quasi optimal sets in Section
2.1 we will refer to these grids as “Error-Work”, EW in short.
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Figure 3. Numerical comparison between ∆E(i), |ψ(u)m(i−1)| and estimate (10) for ψ(u) as in
Section 2.2 Test 1. Both the ∆E(i) for i ∈ TP (4) and the corresponding Legendre coefficients
|ψ(u)m(i−1)| have been computed with a standard sparse grid SM(10).

Remark 3.2. Observe that in definitions (11) and (12) the set has to be made admissible, as the condition on
the multi-indices given inside the brackets might not satisfy ADM . This simply implies that if at level w an
index j is added, all indices

{
i ∈ N

N : i1 ≤ j1, i2 ≤ j2, . . . , iN ≤ jN
}
have to be added as well, if not already

present in the set.

3.2. Numerical tests on sparse grids

In this Section we consider again problem (6) with the diffusion coefficients a(x,y) as in Section 2.2 and use
it to test the performance of the EW grids derived above, comparing them with the classical SM grid and the
Best M -Terms approximation. The decay coefficients gn in (12) are estimated numerically as in Section 2.2.

To approximate the Best M -Terms we again consider a sufficiently large set U of multi-indices and for each
of them we compute ∆W (i), ∆E(i) and their profit P (i). Next, we sort the multi-indices according to P (i),
modify the sequence to fulfil the ADM condition (8) and compute the sparse grids according to this sequence.

We remark that the procedure just described only leads to an approximation of the Best M -Terms solution.
Indeed, on the one hand replacing the total error E(S) with the sum

∑
i ∆E(i) provides only an upper bound

that could be pessimistic because of possible cancellations, since the details ∆m(i)[u] are not mutually orthogonal,
in general. On the other hand the fact that the most profitable index may be not admissible suggests that the
solution cannot be found using a greedy algorithm.

We also compare our results with the dimension adaptive algorithm proposed in [11], in the implementation
of [14], available at http://www.ians.uni-stuttgart.de/spinterp. This is an adaptive algorithm that given
a sparse grid SI explores all neighbour multi-indices and adds to I the most profitable ones. The algorithm
implemented in [14] has a tunable parameter ω̃ that allows one to move continuously from the classical Smolyak
formula (ω̃ = 0) to the fully adaptive algorithm (ω̃ = 1). Following [14], in the present work we have set
ω̃ = 0.9, that numerically has been proved to be a good performing choice. The cost of this algorithm is the
total number of evaluations needed, including also those necessary to explore all neighbours, to find the most
profitable multi-index.

Figure 4 shows the convergence of the quantity ‖ψ(u)− ψ(uw)‖L2
ρ(Γ)

versus the number of grid points, for

the different sparse grids considered. The L2
ρ-norm has been computed with a high level isotropic Smolyak

grid. The EW grid is the best performing, even compared to the version of the a-posteriori dimension adaptive
algorithm implemented in [14], and the closest to the Best M -Terms grids sequence.



20 ESAIM: PROCEEDINGS

0 20 40 60 80 100 120 140

10
−9

10
−7

10
−5

10
−3

10
−1

 

 

iso SM
EW
adaptive
best M terms

(a) a(x,y) = 1 + 0.1xy1 + 0.5x2y2, U=TP(7)
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(b) a(x,y) = 4 + y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 +
0.008 sin(3πx)y4, U=TD-FC (22)

Figure 4. Results for EW sparse grids compared with Best M -Terms , isotropic Smolyak
and dimension adaptive algorithm. Convergence is measured in terms of ‖ψ(u)− ψ(uw)‖L2(Γ)

versus the number of evaluations (grid points).

4. Conclusions

In this work we have proposed a new sequence of polynomial subspaces (TD-FC spaces in short) to be used
in the solution of elliptic stochastic PDEs with Galerkin method, based on sharp estimates of the decay of the
Legendre coefficients.

The performances of TD-FC spaces have been assessed through some simple test cases. Here we have
compared TD-FC with some standard choices of polynomial spaces and with the Best M -Terms approximation
of the solution, that can be explicitly built for the examples considered. Results show that the TD-FC spaces
perform better than the anisotropic standard ones, and are close to the BestM -Terms approximation. However,
the standard spaces may still have reasonable performances, if used in an appropriate anisotropic framework.

Using the estimate for the decay of the Legendre coefficients we have also defined a new class of sparse grids
to be used in the context of Stochastic Collocation, relying on the concept of profit of each multi-index in
the sparse grid. Again numerical tests suggest that these new sparse grids outperform the classical Smolyak
construction, as well as the a-posteriori dimension adaptive algorithm as implemented in [14]. The reason for
this apparent success is that our algorithm picks up the hierarchical surpluses based purely on a priori estimates
and inexpensive y−one dimensional auxiliary problems. These estimates turn out to be quite sharp, and do not
have any extra cost to explore neighbor points as the algorithm in [14] does.

The new polynomial spaces and sparse grids proposed here are valid in the case of analytic dependence of
the solution on the random variables. We point out, however, that the general strategy outlined in Sections 2.1
and 3.1 on how to build optimal polynomial spaces / sparse grids is applicable to any problem and any kind of
underlying random variables. Of course, this strategy requires a sharp estimate of the decay of the coefficients
of the spectral expansion of the solution on a orthonormal hierarchical basis (not necessarily polynomial). This
step is highly problem dependent and should be analyzed carefully in each situation, as we did here for a linear
elliptic PDE with a stochastic coefficient dependent on uniformly distributed random variables.
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