
Software Measures for Business Processes

Alessio Antonini1, Alexandre Mello Ferreira1, Sandro Morasca2, and Giuseppe
Pozzi1

1 Politecnico di Milano, P.za L. da Vinci 32 I-20133 Milano -Italy-
2 Università degli Studi dell’Insubria, via Carloni 78 I-22100 Como -Italy-

antonini@elet.polimi.it, ferreira@elet.polimi.it

sandro.morasca@uninsubria.it, giuseppe.pozzi@polimi.it

Abstract. Designing a business process, which is executed by a Work-
flow Management System, recalls the activity of writing software source
code, which is executed by a computer. Different business processes may
have different qualities, e.g., size, structural complexity, some of which
can be measured based on the formal descriptions of the business pro-
cesses. This paper defines measures for quantifying business process qual-
ities by drawing on concepts that have been used for defining measures
for software code.
Specifically, the measures we propose and apply to business processes are
related to attributes of activities, control-flow, data-flow, and resources.
This allows the business process designer to have a comprehensive eval-
uation of business processes according to several different attributes.
Keywords: Business process, Metrics, Size, Complexity, Coupling

1 Introduction

A workflow schema, also known as graph or process model, is the formal de-
scription of a business process (BP), where single atomic work units (task) are
coordinated, scheduled and assigned to processing entities (agent) to achieve a
common goal. BPs are car rentals, insurance claims, bank loans etc. Workflow
schemata can be graphically described by several different formalisms: we use
here the business process modeling notation BPMN.

The activity of defining a BP is similar to the activity of writing source code
in a programming language: requirements are collected, analyzed, and imple-
mented. Some Software Engineering measures apply to the activity of defining a
BP and typically aim at quantifying the complexity, size, volume, of a software
product for predicting its number of bugs, robustness, safety, and development
and maintenance costs. For instance, there may be a significant correlation be-
tween the cyclomatic number of a software code, related to the control flow
complexity of the code itself, and its fault-proneness [1].

We propose here a novel approach to define several measures for quantifying
BP qualities, analyzing the formal description of a BP, and helping designers
obtain a broader view of the BP being modeled. The remainder of this paper is
organized as follows. Section 2 describes related work. Section 3 describes the
proposed approach. Section 4 illustrates an application example and shows the
results we obtained. Section 5 presents concluding remarks and future directions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55216177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Related Work

In Empirical Software Engineering, a number of measures are defined for quanti-
fying several software attributes for the coding phase and the other software life
cycle activities. We mainly consider here the measures related to the software
code. This section considers the related work, mainly focusing on the software
measures from a pure Software Engineering approach (Section 2.1) and on pro-
cess definition measures explicitly referred to BP (Section 2.2).

2.1 Software Measures

Many hundreds of software measures exist. It is typical in Empirical Software
Engineering to divide attributes (i.e., qualities) into internal and external ones.
Internal software attributes can be measured based only on the knowledge of
a software artifact, such as size, structural complexity, cohesion, coupling, and
length [2–4]. External software attributes (e.g.maintainability) can only be mea-
sured if additional knowledge is available about the environment of the software
artifact and of the interactions between the software artifact and the environ-
ment. Internal software attributes may be easy to measure, while external soft-
ware attributes may be much more difficult to measure [5].

The most relevant qualities for our approach are internal ones, namely, size,
structural complexity, and coupling. When defining a new measure for an at-
tribute, it is necessary to check that it complies with a few properties that may
be expected for the measures of that attribute. Morasca [3, 4] defines proper-
ties, called axioms, which are introduced via a graph-based representation of a
software artifact, called system. We now concisely summarize this approach, by
referring to the simple example in Figure 1, which shows a system S composed of
two modules M1 and M2. E1 and E2, E3 and E4 are the elements of M1 and M2,
respectively, and are connected by a relationship R. In general, an element is a
node of the graph, a relationship an arc of the graph, and a module a subgraph
of a given graph. The axioms introduced for an internal software attribute are
necessary properties. So, if a measure does not satisfy them, we exclude that
measure as an adequate one for that attribute. If, instead, the measure satisfies
them, then we have supporting evidence (though not necessarily sufficient) for
the measure to be an adequate measure for the attribute, so we say that the
measure is a candidate measure for that attribute, to be on the safe side.

We now provide an informal explanation [4] of the axioms of interest: size,
complexity, and coupling. A measure is a candidate measure if it complies with
all of the respective axioms.
Size. Considering Figure 1, the two axioms from Morasca [3, 4] for size measures
assert that: a) the overall size of S can never be greater than the sum of the sizes
of M1 and of M2, if every element Ei belong either to M1, or to M2, or to both
of them; b) the overall size of S equals the sum of the sizes of M1 and of M2, if
every element Ei belongs either to M1, or to M2, but not to both of them.
Complexity. Considering Figure 1, the two axioms for complexity measures
assert that: a) the overall complexity of S can never be smaller than the sum of



S

RM1 M2

E1 E2 E3 E4

Fig. 1. An example system

the complexity of M1 and of M2, where S is composed by M1 and M2; b) the
overall complexity of S equals the sum of the complexity of M1 and of M2, if
M1 and M2 are two disjoint modules, with no connections from elements of one
to elements of the other.
Coupling. Considering Figure 1, the four axioms for coupling measures relate to
the relationships between the elements from one module and the elements from
another module (coupling) in S: a) the coupling of a module with no external
relationship is null; b) if we add a new relationship R2 to an existing module
M1, the coupling of M1 does not decrease; c) if we join the two modules M1 and
M2, the coupling of the resulting module is never greater than the sum of the
coupling of M1 and of M2; d) if we join two disjoint modules M1 and M2, the
coupling of the resulting module is the sum of the coupling of M1 and of M2.

According to the above axioms, historical approaches of software measures
can be reviewed. One of the most well known source code measures is LOC -
lines of code, which simply counts how many lines there are within a source
code. This measure is a size measure, according to the above axioms of size.
The information flow metric from Kafura and Henry [6] was introduced as a
complexity measure of the flow of information among the modules. This is not
a measure for any of the above attributes.

Halstead’s Software Science [7] moves from the number of distinct operators
(n1) and the number of distinct variables (n2), as well as their total occurrences
(N1 and N2, respectively). Software Science defines a measure for the length

(N1+N2), length estimator (n1× log2(n1)+n2× log2(n2)), volume ((N1+N2)×
log2(n1 +n2)), and difficulty (n1/2×N2/n2) of the code. The first measure is a
size measure, as it fulfills all of the above axioms for size, but the others do not
satisfy any of the above axiom sets for internal software attributes.

McCabe’s cyclomatic complexity [8] counts how many linearly independent
execution paths can be identified within a source code. Despite its name, this
measure is not a complexity measure, according to the above axioms, though it
may be transformed into one by simply subtracting 1 from it.

2.2 Quality Measures Applied to Process Definitions

A comprehensive review of the existing qualities and their extensions to the
analysis of BPs comes from Cardoso et al. in [9, 10]. At first, LOC for a BP
is defined as the number of activities (NOA), or the number of activities and



of control flow elements (NOAC), or the number of activities, joins, and splits
(NOAJS). These are size measures, according to the above axioms.

The extension of the information flow metric of [6] is defined as length(M)×
(fan−in(M)×fan−out(M))2, where fan-in sums the local flows of information
terminating in M plus the data structures read by M ; fan-out sums the local
flows of information originating from M plus the data structures written by M ,
consequently. The resulting measure does not fulfill any of the above axioms sets.

The extension of Halstead’s length estimator (Halstead-based Process Com-
plexity - HPC) takes n1 as the number of activities, splits, joins, and control
structures, n2 as the number of variables or constants, N1 as the overall number
of occurrences of activities or of control structures, N2 as the overall number
of occurrences of variables or constants. Other measures, like volume and diffi-

culty are computed as defined by [7]. The resulting measures length estimator,
volume, and difficulty of HPC do not fulfill any of the above axiom sets.

By using McCabe’s cyclomatic complexity, Cardoso et al. compute the cyclo-
matic number for a graph G by Mills’ theorem as: V (G) = D+1, where D is the
number of control structures. If a control structure has n outgoing arcs, its D
value is n−1. It can be easily observed that this measure does not fulfill the above
axiom set for complexity. The authors then propose to compute the cyclomatic
complexity as D, and identify the contribution from every control structure a to
the overall measure (control flow complexity - CFC) as: CFCAND−split(a) = 1,
CFCOR−split(a) = 2fan−out(a)−1, CFCXOR−split(a) = fan−out(a). The over-
all CFC of a graph is the sum of CFCAND−split, CFCOR−split , CFCXOR−split

for any existing control structure of that graph. This measure fulfills all the
above axioms for complexity.

Rolon et al. [11] analyze and validate the CFC metric on processes designed
by the business process modelling notation (BPMN). They mainly focus on the
pure control flow dimension and just scratch the process data dimension, without
considering in detail the other dimensions of the process model.

Vanderfeesten et al. [12] focus on the control flow model, introducing cohe-
sion, coupling, and cross-connectivity metrics to estimate the understandability
and the error-proneness of the control flow. Mendling [13] proposes a milestone
formalism for Event-driven Process Chains (EPC) in designing the control flow
of a BP: the formalism is tailored to verify the soundness of the control flow and
to predict errors. While [12, 13] consider several new interesting metrics on the
control flow, the other dimensions (data, organization) are not considered.

Generally speaking, the above approaches do not move from the axioms on
size, complexity, and coupling, and mainly focus on the control flow of a BP.

3 Our Approach

The above measurements may not suffice to consider all the facets of a BP. We
here introduce measures for activity, control-flow, data-flow, and resource.

A BP is a formally defined oriented graph, including a finite set of nodes (N)
and the relationships which define the flow (F ) of the process, where F ⊆ N×N .



Thus the process p is defined as: p =< N,F >. A node can be a task (T ) or a
split/join (routing task - RT ): obviously, T ∩RT = ∅.

3.1 Activity Attributes

The activity attributes consider the activities in a BP. We define a size measure.
As a reference, we assume that the size of a task equals one, i.e. SizeA(task) = 1.
The graph of a BP may include some supertasks (aka subflows or subprocesses):
the SizeA(supertask) is the sum of the sizes of the n tasks in the supertask, i.e.
the number (n) of tasks in the supertask. Thus, if a process p has nT tasks - not
included into any supertask - and nST supertasks, the overall size is:

SizeA(p) =

nT∑

i=1

SizeA(taski) +

nST∑

i=1

SizeA(supertaski) (1)

Such a measure is a size, as all the axioms concerning size are fulfilled.

Proof. We consider the two axioms of Section 2.1 holding for a size measure.
For the first one, we consider the process p =< Ep, Rp > made by Ep elements
and Rp relationships (arcs). We split p in two subprocesses p1 and p2. We have
that p′ = p1 ∪ p2, where p1 = < Ep1

, Rp1
> and p2 = < Ep2

, Rp2
>.

If p1∩p2 6= ∅, then p1 is made of Rp1
elements, and p2 is made of Rp−Rp1

+1;
consequently, p′ is made of Rp + 1 elements, implying p ⊂ p′. The axiom holds.

With respect to the second axiom, we still consider the process p =< Ep, Rp >
made by Ep elements and Rp relationships (arcs). We split p in two subprocesses
p1 and p2. We have that p′ = p1 ∪ p2, where p1 = < Ep1

, Rp1
> and p2 =

< Ep2
, Rp2

>. If p1 ∩ p2 = ∅, then p1 is made of Rp1
elements, and p2 is made

of Rp −Rp1
; consequently, p′ is made of Rp elements, implying that p = p′. The

second axiom holds, too. ⊓⊔

3.2 Control-Flow Attributes

The control-flow attributes are defined based on the pure static structure of the
graph of a BP. We introduce a complexity measure and a size measure.

Our approach adheres to the previous work from Cardoso et al [9, 10]. As in
Section 2.2, we define a control flow complexity for any of the rt routing tasks
(and, or, xor split): CFCAND−split(rt) = 1; CFCOR−split(rt) = 2fan−out(rt)−
1; CFCXOR−split(rt) = fan−out(rt). The overall control flow complexity (CFC)
for a process p is the sum of the complexities originated by the splits as:

ComplexityCF (p) =
∑

rt∈AND−split

CFCAND−split(rt) +

∑

rt∈OR−split

CFCOR−split(rt) +
∑

rt∈XOR−split

CFCXOR−split(rt) (2)

This measure fulfills all of the axioms for complexity.
We also introduce the concept of size of the graph of a BP, defined as the

number of activities and control elements (NOAC) of a process. Thus, size is:
SizeCF (p) = NOAC (3)

All the axioms concerning size are fulfilled: thus, this is a size measure.



3.3 Data-Flow Attributes

The data-flow attributes address the flow of information among the several ac-
tivities involved in the graph of a BP. Intuitively, the more information flow
among the activities, the higher the resulting complexity.

We define the set (DataF low) of data managed by p as the set v1, v2 . . . vk
such that: a) ∀n ∈ N , Input(n) is the set of data received by the node n and it
is defined as V n

i ⊆ DataF low; b) ∀n ∈ N , Output(n) is the set of data produced
by the node n and it is defined as V n

o ⊆ DataF low. Since a routing task (RT )
can only read data, Output can be associated to normal tasks (T ), only.

We extend the taxonomy of workflow relevant data from the Workflow Man-

agement Coalition, and consider four kinds of data managed by a process p:

i. Reference: these data (DR) univocally identify a process instance (e.g., cus-
tomer Id, student Id, reservation Id). In general, the path followed by these
data is the control flow of the graph of a BP;

ii. Operational: these data (DO) are needed by an activity for its processing.
Operational data (DO) include the data internally managed by a task, com-
parable to local variables, and - generally - not visible outside the task itself;

iii. Decision: these data (DD) are a subset of the operational data (DD ⊆
DO) and are used by routing tasks (RT ) to selectively activate the out-
going/incoming arcs of the graph. Typically, conditions on arcs are de-
fined by decision data DD (e.g., car type=“Sedan”, student level=“M.Sc”,
meal type=“vegetarian”);

iv. Contextual: these data (DC) belong to a wider category of data, are rele-
vant for the BP, and can be used both as input and as output. Typically,
DC include all the data managed by all the tasks of the process (e.g., cus-
tomer credit card, examination mark, reserved flight number).

Thus, we define DataF low as: V n
i,o = {DRn

i,o∪DOn
i,o∪DCn

i,o}. We also define
an attribute considering the amount of data (number of data items) managed
by the process p, where nT is the number of the activities of the process.

SizeDF (p) =

nT∑

j=1

V j
i,o =

nT∑

j=1

DRj
i,o +

nT∑

j=1

DOj
i,o +

nT∑

j=1

DCj
i,o (4)

where SizeDF for a process p is a size, since it fulfills all the axioms for size.
We can also define another measure, which relates to complexity : such a mea-

sure, takes into consideration both a component deriving from the routing tasks
and a component deriving from the tasks which set up a BP. Since routing tasks
(RT ) have a lower complexity if compared with normal tasks (T ), we can assume
that the complexity of DataF low for a RT is: ComplexityDF (RT ) = 1. On the
other hand, the complexity of DataF low for a task T is: ComplexityDF (T ) =
V t
i,o. Thus, the resulting overall complexity for data flows is the sum of the

complexities of the two components:

ComplexityDF (p) =

nRT∑

j=1

ComplexityDF (RTj) +

nT∑

j=1

ComplexityDF (Tj) (5)

The measure (5) is a complexity, since it fulfills all the axioms for complexity.



3.4 Resource Attributes

The resource attributes consider the resources required and used by the graph
of a BP during process execution. If we assume to have R resources available for
the execution of the nT activities of a process p, we define a size measure as:

SizeR(p) =

nT∑

i=1

ri = R (6)

This measure is very similar to the parameter NOAC of Formula 3: again,
all the axioms concerning size are fulfilled and the measure is a size.

We can also define a coupling measure for resources. This measure is strictly
based on the BPMN notation used to graphically depict a BP. We consider the
number of arcs which cross two (or more) swim lanes: every crossing means that
the work item requires a new (different from the previous one) resource for its
execution. We thus define a coupling measure as:

CouplingR(p) = H (7)

where H is the number of arcs which cross at least two swim lanes. The measure
CouplingR for a process p is a coupling, since it fulfills all the axioms for coupling.

Proof. With respect to Figure 1, we consider the process S made by two mod-
ules M1 and M2, one module corresponding to one lane, only. The modules
are connected via r 6= 0 relationships (i.e., r arcs which cross the two swim
lanes), where r ∈ N . Let H be the sum of the relationships between M1 and
M2: hence, CouplingR(S) = H . The coupling of the two separate modules is:
CouplingR(M1) = H1; CouplingR(M2) = H2.

We have to consider the four axioms of Section 2.1 which hold for a coupling

measure. With respect to the first axiom, if M1 and M2 have no external rela-
tionship, then CouplingR(p) = 0. The coupling of a module with no external
relationship is zero; the axiom holds.

With respect to the second axiom, if we assume to add a new relationship to
M1, the new value for the coupling will become CouplingR(M1) = H1 + 1.

We define as OuterR(m) the set of the relationships (arcs) outgoing from a
module m. Thus, if M2 is a subset of M1 such that < E3, E4 >=< E1, E2 >,
where E are the elements of the two modules, and OuterR(m2) ⊇ OuterR(M1)∧
R2 ⊇ R1, then: CouplingR(M2) = H2+H1+1 ≥ H1+1 = CouplingR(M1) and
the axiom holds.

With respect to the third axiom, if M1 and M2 share r relationships, the
resulting coupling is CouplingR(M1 ∪M2) = H1 +H2 − r. Thus:

CouplingR(M1∪M2) = H1+H2−r ≤ H1+H2 = CoupligR(M1)+CouplingR(M2)

and the axiom holds.
With respect to the fourth axiom, if M1 and M2 do not share r relationships,

then M1 ∩M2 = ∅ ∧OuterR(M1) ∩OuterR(M2) = ∅. Thus, r = 0, and

CouplingR(M1 ∪M2) = H1 +H2 = CoupligR(M1) + CouplingR(M2)

and the fourth axiom holds, too. ⊓⊔



4 Application Example

We introduce a reference process, and evaluate for it all the measures of Section 3.

4.1 Business Process of Reference

As reference process we use the “Manage Order” BP of Figure 2 according to
the BPMN. The agent Sale Manager (topmost lane) receives the purchase or-
der (Receive Order) from the customer and checks with the Finance Department
(subprocess Check Finance) if the payment has been received. The order can
be declined (Decline Order) or processed (Quantity Check, Quality Check). If the
good is not in stock, the agent Production Planner (mid lane) plans the suit-
able production and waits for it (subprocess Produce). As soon as the supertask
Produce is completed, the Sale Manager is informed and he/she can inform the
customer (subprocess Notify Full Shipment). Finally, the agent Shipping Operator
completes the process (subprocess Ship and Report).

The four subprocesses are quite simple: Check Finance is made by one task
(Check Credit) and it is executed by the agent Finance Department; Notify Full
Shipment is made by one task (Notify Customer) and it is executed by the agent
Customer Support; Produce is made by one task (Assemble Good) and it is exe-
cuted by the agentManufacturing Department; Ship and Report includes two tasks
(Ship and Delivery Report) and it is executed by the agent Shipping Operator.

Next, if we consider the data managed by the process (workflow relevant
data), we find the following workflow variables: CustomerName, ProductName,
OrderedQuantity, NumberOfItemsInStock, StockQuantityStatus, StockQualitySta-
tus, NumberOfItemsToShip, NumberOfItemsToProduce, NumberOfProducedItems.

All in all, the process has 7+4+6 = 17 tasks: 7 simple tasks, 4 complex tasks
(aka subprocess: we do not count here how many tasks fit into one subprocess),
and 6 routing tasks. The process has 3 main swim lanes and 4 resources in the
subprocesses.

4.2 Quality Evaluation

We now apply the measures of Section 3 to the reference process of Section 4.1.
Activity Attributes. According to the Formula 1 and to the definitions from
Section 3.1, for the process of Figure 2 we obtain SizeA(ManageOrder) =
7 × 1 + 3 × 1 + 1 × 2 = 12. In fact, we have seven tasks, three supertasks
made of one task each, one supertask made of two tasks.
Control Flow Attributes. By the Formulae 2, 3 and the definitions of Sec-
tion 3.2, for the process of Figure 2 we obtain ComplexityCF (ManageOrder) =
2 + 0 + 4 = 6. In fact, we have two and splits, no or split, and four xor splits.
Next, we have NOAC = 17 (7 tasks, 4 complex tasks, 6 routing tasks). Thus,
SizeCF (ManageOrder) = 17.
Data Flow Attributes. By the Formulae 5, 4, the definitions of Section 3.3
and the complete process definition (omitted here), we obtain that the number of
workflow variables used as input or/and output of a task is 48, while 5 workflow



ReceiveOrder
CheckFinance

+
DeclineOrder

QualityCheck QuantityCheck

PlanPart
Production

PlanFull
Production

NotifyFull
Shipment

+

Produce
+

Notify
ProductionOK

ShipAnd
Report

+S
hi

pp
in

g
O

pe
ra

to
r

P
ro

du
ct

io
nP

la
nn

er
S

al
eM

an
ag

er +

+

Fig. 2. The Manage Order process, which manages the activities inside an organization
when selling goods. The process is graphically described according to the formalism
from BPMN, and its code is saved in X-PDL. Supertasks are denoted by the “+” sign.

vars are used as an input to split tasks. Thus, SizeDF (ManageOrder) = 48+5 =
53. On the other hand, for the complexity of the data flow we observe one
component coming from the normal tasks and one component coming from the
split tasks. In our example, we have ComplexityDF (ManageOrder) = 20+ 5 =
25.
Resource Attributes. According to the Formulae 6, 7 and to the definitions
from Section 3.4, for the process of Figure 2 we obtain SizeR(ManageOrder) = 3
since we have 3 resources involved in the execution of the process. In fact, we
have 3 swim lanes, and we do not consider the resources involved in the execution
of subprocesses. If we count how many lines (connecting arcs) cross the swim
lanes, we obtain CouplingR(ManageOrder) = 4.

4.3 Results

In order to test the approach, we consider a simplified version of the process of
Figure 2, where in the topmost lane the activity Quality Check and the routing
tasks labeled AND1 and AND2/XOR2 were removed - see Figure 3. We can now
evaluate the measures of Section 4.2 for the new process of Figure 3.



ReceiveOrder
CheckFinance

+
DeclineOrder

QuantityCheck

PlanPart
Production

PlanFull
Production

NotifyFull
Shipment

+

Produce
+

Notify
ProductionOK

ShipAnd
Report

+S
hi

pp
in

g
O

pe
ra

to
r

P
ro

du
ct

io
nP

la
nn

er
S

al
eM

an
ag

er

Fig. 3. The business process Manage Order2 is a simplified version of the business
process Manage Order. Supertasks are denoted by the “+” sign.

The new process has 6 + 4 + 4 = 14 tasks: 6 simple tasks, 4 complex tasks
(aka subprocess: we do not count here how many tasks fit into one subprocess)
and 4 routing tasks. The process has 3 main swim lanes and 4 resources in the
subprocesses.

Activity Attributes. As in Section 4.2, we compute SizeA(ManageOrder2) =
6× 1 + 3× 1 + 1× 2 = 11. In fact, we have six tasks, three supertasks made of
one task each, one supertask made of two tasks.

Control Flow Attributes. As in Section 4.2, ComplexityCF (ManageOrder2) =
0 + 0 + 4 = 4. In fact, we have no and split, no or split, and four xor splits.
Next, we have NOAC = 14 (6 tasks, 4 complex tasks, 4 routing tasks): thus,
SizeCF (ManageOrder2) = 14.

Data Flow Attributes. As in Section 4.2, we obtain that the number of work-
flow vars used as input or/and output of a task is 44, while 4 workflow vars are
used as an input to split tasks. Thus, SizeDF (ManageOrder2) = 44 + 4 = 48.
For the complexity of the data flow, we observe one component coming from the
normal tasks and one component coming from the split tasks. In our example,
we have ComplexityDF (ManageOrder2) = 18 + 4 = 22.

Resource Attributes. As in Section 4.2, as the changes from Figure 2 to
Figure 3 do not affect the swim lanes, we have SizeR(ManageOrder2) = 3
and CouplingR(ManageOrder2) = 4. As one could easily expect, there is no
difference in the resource qualities we evaluate on the two processes.



Observation. We now compare the measures of complexity and of size for the
two processes of Figure 2 (Manage Order) and Figure 3 (Manage Order2). Since
Manage Order is heavier thanManage Order2, which we derived from the previous
as a simplified version, we expect that the measures on the two BP confirm that
Manage Order has higher values than the corresponding values of Manage Order2.

We consider the tuples for complexity (ComplexityCF , and ComplexityDF ).
Next, we consider the tuples for size(SizeA, SizeCF , SizeDF , and SizeR):

Complexity(ManageOrder) =< 6, 25 >

Complexity(ManageOrder2) =< 4, 22 >

Size(ManageOrder) =< 12, 17, 53, 3 >

Size(ManageOrder2) =< 11, 14, 48, 3 > (8)

As we already outlined in Section 4.2, we do not consider here the coupling

measure, since both processes present an identical value.
As expected, the results confirm that the simplified version of the process

(Manage Order2) shows smaller values for any measure both of complexity (sec-
ond row of Formula 8) and of size (fourth row of Formula 8), if compared with
the respective values for Manage Order (first and third rows of Formula 8). This
enables us to assert that Manage Order is heavier than Manage Order2.

5 Conclusions and Future Research Directions

This paper evaluates some measures which are relevant when formally defining
a business process (BP). Moving from the software engineering approach and
from previous work, we define some axioms according to which we classify the
measures as complexity, size, and coupling. We do not limit our analysis to
the pure control flow (control flow attribute) of the BP, but we also consider
some other measures related to the activities (activity attribute), to the data
flow among the activities (data flow attribute), and to the resources involved
(resource attribute). For all of these facets, we define the corresponding measure,
being it a complexity, a size, or a cohesion.

We consider the BPMN notation and save the process models in the X-PDL
format recommended by the Workflow Management Coalition - WfMC. As a
first test of our approach, we consider a BP and a lighter version of the same
BP. Obtained results confirm that the measures evaluated on the lighter version
provide values which are smaller than the homologous values of the original BP.
We also developed a software tool, which automatically returns the values of the
qualities for that considered BP. Thus, we obtain a set of values for every BP.
Future Research Directions. Our approach has so far been applied to few
BPs, and we report here about one. We plan to consider a much greater number
of processes, to further test our approach. The obtained results will be used
to check whether there are correlations with other information related to the
process, such as costs in developing, running, maintaining the process itself.



Furthermore, the approach can also be used in estimating the additional load
(size, complexity, cohesion) to a BP when enriching it to add new functionalities,
such as exception management or transaction management.

Acknowledgements. This work has been partially supported and funded by the
GAMES project (http://www.green-datacenters.eu) of the European Com-
missions IST activity, 7th Framework Program under contract number ICT-
248514. This work expresses the opinions of the authors and not necessarily
those of the European Commission. We also thank the B.Sc. students Mirco
Caldera, Stefano Gorla, and the M. Sc. student Duc Xuan Quang VU, who con-
tributed in implementing the running prototype of the system described by the
paper.

References

1. Grady, R.B.: Successful applying software metrics. IEEE Computer 27 (1994)
18–25

2. Briand, L.C., Morasca, S., Basili, V.R.: Property-based software engineering mea-
surement. IEEE Trans. Software Eng. 22 (1996) 68–86

3. Morasca, S.: Measuring attributes of concurrent software specifications in petri
nets. In: IEEE METRICS, IEEE Computer Society (1999) 100–110

4. Morasca, S.: Refining the axiomatic definition of internal software attributes. In
Rombach, H.D., Elbaum, S.G., Münch, J., eds.: ESEM, ACM (2008) 188–197

5. Morasca, S.: A probability-based approach for measuring external attributes of
software artifacts. In: ESEM. (2009) 44–55

6. Henry, S.M., Kafura, D.G.: Software structure metrics based on information flow.
IEEE Trans. Software Eng. 7 (1981) 510–518

7. Halstead, M.H.: Elements of Software Science (Operating and programming sys-
tems series). Elsevier Science Inc., New York, NY, USA (1977)

8. McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. 2 (1976) 308–
320

9. Cardoso, J.: Evaluating the process control-flow complexity measure. In: ICWS,
IEEE Computer Society (2005) 803–804

10. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity
of process models. In Eder, J., Dustdar, S., eds.: Business Process Management
Workshops. Volume 4103 of Lecture Notes in Computer Science., Springer (2006)
117–128

11. Aguilar, E.R., Cardoso, J., Garćıa, F., Ruiz, F., Piattini, M.: Analysis and vali-
dation of control-flow complexity measures with bpmn process models. In Halpin,
T.A., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R., eds.:
BMMDS/EMMSAD. Volume 29 of Lecture Notes in Business Information Pro-
cessing., Springer (2009) 58–70

12. Vanderfeesten, I.T.P., Reijers, H.A., Mendling, J., van der Aalst, W.M.P., Cardoso,
J.: On a quest for good process models: The cross-connectivity metric. In Bellah-
sene, Z., Léonard, M., eds.: CAiSE. Volume 5074 of Lecture Notes in Computer
Science., Springer (2008) 480–494

13. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness. Volume 6 of Lecture Notes in
Business Information Processing. Springer (2008)


