
On the Cooling-Aware Workload Placement Problem

Paolo Cremonesi, Andrea Sansottera
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Via Ponzio 34/5

20133 Milano, Italy
paolo.cremonesi@polimi.it, sansottera@elet.polimi.it

Stefano Gualandi
Dipartimento di Matematica

Università degli Studi di Pavia
via Ferrata, 1, 27100 Pavia, Italy

stefano.gualandi@unipv.it

Abstract

This paper proposes a new challenging optimiza-
tion problem, called COOLING-AWARE WORKLOAD
PLACEMENT PROBLEM, that looks for a workload
placement that optimizes the overall data center power
consumption given by the sum of the server power con-
sumption and of the computer room air conditioner
power consumption. We formulate CWPP as a Mixed
Integer Non Linear Problem using a cross-interference
matrix that links the workload placement to the cold air
temperature. Since state-of-the-art Mixed Integer Non
Linear solvers can solve to optimality only the small-
est instances, we devised two heuristics to obtain good
feasible solutions: (i) a heuristic algorithm based on an
integer linear relaxation of the problem, and (ii) a Vari-
able Neighborhood Search algorithm. Both heuristic al-
gorithms are evaluated against the best lower bounds
obtained with a Mixed Integer Non Linear solver. Pre-
liminary computational results show that both heuristics
provide solutions that have a small percentage gap from
the optimal solutions.

1 Introduction
In a heterogeneous data center, power-aware workload
placement, that is the problem of assigning workloads to
servers, can reduce power consumption by prioritizing the
most efficient servers. Unfortunately, this strategy can lead
to hot spots, which require to lower the temperature of the
the Computer Room Air Conditioner (CRAC) in order to
meet the thermal specifications of the servers, hence increas-
ing the power spent for cooling (Banerjee et al. 2010).

This paper proposes a new challenging optimization prob-
lem, herein called COOLING-AWARE WORKLOAD PLACE-
MENT PROBLEM (CWPP), that looks for a workload place-
ment that optimizes the overall data center power consump-
tion given by both the power consumption of the servers
and of the CRAC. That is, in addition to the power server
consumption, we consider the heat distribution in the server
room and the efficiency of the CRAC at different tempera-
tures of the air supplied. As in previous work, we character-
ize the workloads to be allocated by their performance char-
acteristics (i.e., service demands and arrival rates) and in-
clude constraints on the maximum tolerated mean response
times, as defined in service level agreements.

In order to obtain the heat distribution for a given server
power distribution, an expensive Computational Fluid Dy-
namic (CFD) simulation can be performed. This approach,
however, is clearly unfit to finding the optimal workload
placement, since a CFD simulation would be required to
evaluate the objective function. In order to make the prob-
lem tractable, we adopt the linear heat flow model proposed
in (Tang et al. 2006). The general idea of this approach is
to compute a cross-interference matrix, which characterizes
the heat exchanged between each pair of servers through a
small number of CFD simulations. This matrix can be used
for the fast evaluation of the temperatures at the server inlets
for a given workload placement and cold air temperature.

We formulate CWPP as a Mixed Integer Non Linear Prob-
lem (MINLP), with a non convex objective function and lin-
ear constraints over both integer and continuous variables.
The cross-interference matrix is used to define a set of lin-
ear constraints that links the workload placement to the cold
air temperature. Since state-of-the-art MINLP solvers can
solve to optimality only the smallest instances, we devised
two heuristics to obtain good feasible solutions: (i) a heuris-
tic algorithm based on an integer linear relaxation of the
problem, and (ii) a Variable Neighborhood Search (VNS)
algorithm. Both heuristic algorithms are evaluated against
the best lower bounds obtained by solving CWPP with a
MINLP solver. The solution obtained with the two heuris-
tics are within a small percentage gap from the optimal so-
lutions.

In literature, many works have dealt with consolidation,
i.e. the process of combining the workloads of several differ-
ent servers on a set of target servers. Rolia et al. (Gmach et
al. 2009) suggest an integer program for allocation problems
in a data center. Linear and non-linear integer programming
models for consolidation are presented in (Anselmi, Amaldi,
and Cremonesi 2008). These models aim at minimizing the
number of servers used while satisfying constraints on end-
to-end response times. A similar minimization problem is
formulated in (Dhyani, Gualandi, and Cremonesi 2010),
where response time constraints are dropped, but rules re-
lated to availability and compatibility requirements are in-
troduced. In (Moore et al. 2005), the authors tackle thermal-
aware placement compute-intensive batch jobs, characteriz-
ing heat recirculation among servers. This idea is further de-
veloped in (Tang et al. 2006), where the cross-interference

2

AI for Data Center Management and Cloud Computing: Papers from the 2011 AAAI Workshop (WS-11-08)
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55216024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

approach is proposed. Most of the work exploiting heat re-
circulation models for cooling-aware workload placement
do not consider servers with heterogeneous power and per-
formance characteristics (Tang, Gupta, and Varsamopoulos
2007; Pakbaznia and Pedram 2009). Hence, they minimize
heat recirculation or maximize the temperature of the cold
air and do not deal with the trade-off between server power
consumption and cooling power consumption, which intro-
duces the non convexity in our mixed integer formulation.
Moreover, performance requirements are often expressed in
very simple terms, e.g. the number of servers needed to op-
erate at certain frequency (Pakbaznia and Pedram 2009) or
the number of CPU cores needed (Moore et al. 2005). On
the other hand, we integrate capacity and response time con-
straints within our model, based on the arrival rates and ser-
vice demands of the different workloads.

The outline of the paper is as follows. Section 2 de-
scribes the workload placement problem. Section 3 presents
the MINLP formulation and present a simple Integer Lin-
ear Programming relaxation. Section 4 introduces the VNS
algorithm and the greedy algorithm used to find a feasible
solution. Finally, Section 5 presents preliminary computa-
tional results on a set of realistic instances, and Section 6
concludes the paper.

2 Problem statement
In the following, we describe the three main aspects that are
considered in our optimization problem: data center power
consumption, heat recirculation and the performance model
of the servers and workloads.

Data center power consumption
The power consumption of a data center can be seen as the
sum of two main components, the power consumed by the
servers and by the CRAC. For the sake of simplicity and
without loss of generality, we do not consider the power
consumption of other devices, such as the power distribu-
tion units.

The power drawn by a set of servers S is given by the sum
of the power consumption ps of each server s ∈ S, that is,
PS =

∑
s∈S ps. Similarly to Mantis (Economou, Rivoire,

and Kozyrakis 2006), we adopt a power model based on re-
source utilization and consider the most power hungry com-
ponent of the computer system, the CPU:

ps = Pidle,s + Pbusy,sus , (1)

where us ∈ [0, 1] is the CPU utilization. Least squares re-
gression can be applied to the data from standard power
benchmarks (e.g., SPECpower1) to estimate the two param-
eters Pidle,s and Pbusy,s.

The amount of heat the CRAC removes from the com-
puter room is equal to PS, since we assume that steady state
conditions hold, and all the power drawn by the servers is
dissipated as heat. The ratio between the heat removed and
the power drawn by a heat pump is called the Coefficient of
Performance (COP). This coefficient depends directly on the
temperature of the cold air supplied by the CRAC. We adopt

1http://www.spec.org/power ssj2008/

Figure 1: This figure, obtained by a CFD simulation, shows
how the air exiting a server recirculates into the inlets of the
other servers.

the COP curve estimated for the CRAC units at the HP Labs
Utility Data Center (Moore et al. 2005) and we write the
power consumption of the CRAC as follows:

PCRAC =
PS

b1z2 + b2z + b3
, (2)

with z = Tsup − 273.15 K, where Tsup is the temperature
of the air supplied by the CRAC and the three coefficients
b1, b2, b3 minimize the mean square error of the COP curve
(i.e., they carry no physical meaning). The coefficients in
equation (2) are such that PCRAC monotonically decreases
with Tsup.

Heat recirculation
Data center layouts are designed with alternating hot and
cold aisles, with the goal of maximizing the amount of cold
air drawn by the server and the hot air exhaust drawn by the
CRAC units. However, some of the air inevitably recircu-
lates among servers, as shown in Figure 1. The figure, ob-
tained using a CFD simulation, shows the air flow exiting
one of the server. The layout comprise two rows of racks,
separated by a hot isle, and two CRAC units. Only one of the
CRAC units is active and draws a significant amount of air
exiting from the server. However, some of the hot air exhaust
recirculates to the intake of the other servers, hence impact-
ing the inlet temperatures. The abstract heat flow model, pre-
sented in (Tang et al. 2006), enables the characterization of
heat recirculation among servers for a given data center lay-
out.

For a given server s, let Tin,s be the inlet temperature and
Tout,s the outlet temperature of the air. According to the ab-
stract heat flow model, given a set of servers S, the tem-
perature Tin,i at the inlet of a server i ∈ S can be written
as a weighted sum of the temperatures at the servers out-
lets Tout,j for all j ∈ S and the temperature of the cold air
supplied by the CRAC Tsup:

Tin,i =
∑
j∈S

AjiTout,j + (1−
∑
j∈S

Aji)Tsup (3)

where the coefficients Aji represent the fraction of heat ex-
hausted by server j that recirculates to the inlet of server

3

i. Although, the inlet temperatures of the servers Tin,s must
not exceed a critical threshold Tcrit,s, specified by the server
manufacturer, that is Tin,s ≤ Tcrit,s.

Assuming that all the power drawn by a server is dissi-
pated as heat and that the thermal exchange between a server
and the computer room happens mostly through convection,
due to the law of energy conservation,

ps = φsρCp(Tout,s − Tin,s) , (4)

where ρ and Cp are the density and specific heat of the air,
while φs is the volumetric air flow rate of the server. For
simplicity of notation we let Ks = φsρCp. Hence, we can
rewrite (3) as

Tin,i =
∑
j∈S

Aji

(
Tin,j +

pj
Kj

)
+ (1−

∑
j∈S

Aji)Tsup . (5)

Performance model
Let C be the set of workloads that must be allocated and let
S be the set of available servers. We adopt an open queueing
model and for each workload c, the arrival rate is denoted by
λc. For each workload and server pair, we know the service
demand dcs on a single CPU core. The number of CPU cores
installed on each server is denoted by ns.

According to the utilization law (Lazowska et al. 1984),
for each server s ∈ S, the CPU utilization is defined as

us =
∑
c∈Cs

λcdcs
ns

, (6)

where Cs ⊆ C is the set of workloads allocated on s. In
order to not exceed server capacity, we require that us ≤ 1.

To estimate the response time rc for a workload c allo-
cated on s, we use the approximation for multi-server queues
with exponentially distributed service times and inter-arrival
times described in (Menasce and Almeida 2001):

rc = dcs
ns − 1

ns
+

dcs/ns

1− us
. (7)

In order to meet service level agreements, we require that
rc ≤ R

(max)
c , where R(max)

c is the maximum tolerated mean
response time.

3 Mathematical Programming Formulation
We present in this section a Mixed Integer Nonlinear Pro-
gramming formulation of the COOLING-AWARE WORK-
LOAD PLACEMENT PROBLEM. The MINLP formulation is
used to compute exact solutions of small instances and to ob-
tain lower bounds of the bigger instances. In the following
paragraph we review the notation used to stated the MINLP
model.

CWPP is the problem of assigning each workload to ex-
actly one of the server available, in such a way to satisfy the
thermal constraints of the servers and the computational re-
quirements of each workload, while minimizing the overall
power consumption. The power consumption is a non linear
function of the overall power consumed by the servers and
the power consumed by the CRAC, as given in equations (1)
and (2).

Let xcs be a 0–1 decision variable equals to 1 whenever
the workload c is assigned to the server s. Let ys be a posi-
tive variable representing the temperature at the inlet of the
server s and let z be the variable representing the tempera-
ture given by the air conditioning system.

For the sake of simplicity, we define two auxiliary vari-
ables that depends only on the assignment variables xcs:
the utilization variable us and the server power variable ps.
These two auxiliary variables are defined as follows:

us =
∑
c∈C

λc dcs
ns

xcs (8)

ps = Pidle,s + Pbusy,s us (9)

In addition, we define the following parameters. Let Bcs =
nsR

(max)
c

dcs
− ns + 1 and let b1, b2, and b3 three coefficients

that depend on the CRAC. The temperature exiting from the
CRAC is bounded by zlb and zub.

Using this notation, the CWPP problem is formulated as
the following MINLP:

min

(
1 +

1

b1z2 + b2z + b3

)∑
s∈S

ps (10)

s.t.
∑
s∈S

xcs = 1, ∀c ∈ C, (11)

1

Bcs
xcs + us ≤ 1, ∀c ∈ C, ∀s ∈ S, (12)

z =
ys −

∑
s′∈S Ass′(ys′ +

ps′
Ks′

)

1−∑
s′∈S Ass′

, ∀s ∈ S, (13)

xcs ∈ {0, 1}, ∀c ∈ C, ∀s ∈ S, (14)
0 ≤ ys ≤ Tcrit,s, ∀s ∈ S, (15)

zlb ≤ z ≤ zub. (16)

The objective function is (10) is clearly nonlinear and non
convex; the auxiliary variables ps depends only on the as-
signment variables xcs, as defined in (9). Constraints (11)
are the assignment constraints and guarantee that each work-
load is assigned to a single server. Constraints (12) are the
response time constraints that force each workload to be as-
signed to a server that can execute the workload within its
maximum response time. Note that the term us depends only
by the assignment variables xcs. Constraints (13) couple the
air conditioning (controlled) temperature z to the tempera-
tures ys of each server, and the workload assignment via the
auxiliary variable ps′ .

A naive linear lower bound to problem (10)–(16) is ob-
tained by considering only the linear term in the objective
function (10), that is to consider only the power consump-
tion given by the servers:

min
∑
s∈S

ps (17)

This lower bound is in general very weak, and the optimality
gap can be very big.

However, it is useful to solve the problem of finding the
highest possible value of z such that a feasible workload

4

placement exists. In order to find such value of temperature,
it is sufficient to solve the following Integer Linear Program-
ming problem:

z∗ = max z, s.t. (11)–(16) (18)

The optimal value z∗ can be used in at least two ways.
First, if we fix the value of z to z∗, then problem (10)–

(16) becomes an Integer Linear Program, and its solution
will give an upper bound.

Second, the upper bound on z can be restricted to z∗ by
setting zub = z∗. Such restriction is in practice very impor-
tant in order to obtain a tight lower bound using a MINLP
solver such Couenne, that is based on bound tighten tech-
niques (Belotti et al. 2009).

4 Variable Neighborhood Search
In this section we introduce a Variable Neighborhood Search
(VNS) algorithm for CWPP. The VNS algorithm is based
on the observation that given any workload placement X ∈
{0, 1}|C|×|S|, the server utilization us, the server power con-
sumption ps, and the optimal cold air temperature z can be
computed as described in Section 2. Hence, the feasible so-
lution space explored by the heuristics is Q ⊆ {0, 1}|C|×|S|.

The initial feasible solution is computed with a greedy
algorithm. First, the workloads are sorted according to the
ratio between the maximum allowed response time and the
standardized service demand. A low value of this ratio in-
dicates that the workload requires more headroom on the
server in order to meet its performance requirements and
hence we try to allocate it early. Then, the algorithm selects a
workload c at a time, and assigns c to the server which yields
the least increase in the objective function without violating
constraints (12).

In order to improve the initial feasible solution, we apply
a local search procedure that explores with a best improve-
ment strategy the neighborhood obtained by considering all
the possible moves of a workload c to any another server s.
In practice, we select the best move by exploring all solu-
tions X′ ∈ Q such that

|{c ∈ C : xc,· �= x′
c,·}| = 1 . (19)

The pseudo-code of our basic Local Search procedure is
shown in Algorithm 1.

Once the Local Search procedure is trapped in a local op-
timum, that is, no improvement move exists in the neigh-
borhood of X given by (19), we consider a different neigh-
borhood, following the basic idea of the Variable Neigh-
borhood Search approach. We consider a series of neigh-
borhood structures Nk(X) for k ∈ {1, . . . , kmax}, with
kmax =

⌊
|C|
10

⌋
. The neighborhood Nk(X) is defined as the

set of solutions X′ ∈ Q such that

|{c ∈ C : xc,· �= x′
c,·}| ≤ k . (20)

In practice, we select randomly k workloads and we try to
randomly relocated these workloads to different servers. Our
VNS randomly explore the neighborhood Nk(X) until ei-
ther a new feasible assignment is found or until a time limit

is expired. In the first case, we continue we the basic local
search procedure by exploring the neighborhood (19) with a
best improvement strategy. In the latter case, i.e. the time out
is expired, we increase the value of k. Algorithm 2 shows the
pseudo-code of our VNS algorithm.

Algorithm 1 The local search procedure
procedure LOCALSEARCH

currentObj ← computeObjective()
continue ← true
while continue do

improvement ← false
bestObj ← currentObj
for c ∈ C do

for s ∈ S do
if xcs = 0 and xcs = 1 is feasible then

s̃ ← j ∈ S : xcj = 1
xcj ← 0 for all j ∈ S, j �= s
xcs ← 1
obj ← computeObjective()
if obj < bestObj then

improvement ← true
bestObj ← obj
c∗ ← c
s∗ ← s

end if
xcs ← 0
xcs̃ ← 1

end if
end for

end for
if improvement then

xc∗s∗ = 1
xc∗j = 0 for all j ∈ S, j �= s∗

else
continue ← false

end if
end while

end procedure

5 Computational Results
The MINLP model and the VNS algorithm were tested on
a set of realistic random instances. All the computational
tests were executed on the same computer, characterized by
a Core i7 920 CPU and 12 GB of DDR3 memory.

Test cases with either 10 servers or 40 servers were con-
sidered. Hence, two different cross-interference matrices
were obtained, spending thousands of CPU hours for the
CFD simulations. Test cases are further differentiated by
the number of workloads (2, 4 or 10 times the number of
servers) and the overall data center utilization (0.3, 0.5 or
0.7). For each test case, 10 different instances of the opti-
mization problem were generated and tested. The other pa-
rameters vary across different problem instances. In particu-
lar, the number of CPUs, the idle power, and the busy power
were generated according to uniform discrete and contin-
uous distributions. Let Ud{h1, . . . , hn} denote the uniform

5

Algorithm 2 The Variable Neighborhood Search heuristic
procedure VNS

x∗
cs ← xcs for all (c, s) ∈ C × S

bestObj ← computeObjective()
k ← 0
while below time limit do

LocalSearch()
obj ← computeObjective()
if obj < bestObj then

x∗
cs ← xcs for all (c, s) ∈ C × S

bestObj ← obj
k ← 0

end if
xcs ← x∗

cs for all (c, s) ∈ C × S
k ← min(k + 1, kmax)
successful ← false
while below time limit and not successful do

successful ← perturbate(k)
if not successful then

xcs ← x∗
cs for all (c, s) ∈ C × S

end if
end while

end while
end procedure

discrete distribution over the set of values h1, . . . , hn and
U(a, b) denote the uniform continuous distribution over the
interval [a, b]. The parameters of the distributions were cho-
sen as follows:

ns ∼ Ud{60, 80, 120, 128, 160, 192} ∀s ∈ S

Pidle,s ∼ U(200, 400)W ∀s ∈ S

Pbusy,s ∼ U(15, 25) · nsW ∀s ∈ S .

In order to generate the service demands, we considered a
reference server s̃ with speedup factor fs̃ = 1 and one CPU
core, i.e. ns̃ = 1. We generated the service demands of the
workloads on this reference server as follows:

dc,s̃ ∼ U(0.05, 0.1) ∀c ∈ C .

In order to appropriately scale the service demands on the
different servers and to obtain the service demands for every
workload-server pair, we define the speedup factor fs of a
server s with respect to the reference server s̃ as

fs =
dc,s
dc,s̃

ns ,

which we assume to be constant for all workloads c ∈ C.
The speedup factors were generated according to a uniform
distribution

fs ∼ U(0.8, 1.6) · ns ∀s ∈ S.

The constraints on the mean response times were set to

R(max)
c = 0.15 ∀c ∈ C .

If U (total) represents the overall utilization of the data cen-
ter, the total standard CPU capacity consumed is G(total) =

Table 1: Bounds and VNS results for the 10 random in-
stances with 10 servers, 20 applications and 0.3 data center
utilization.

Instance Upper Lower VNS Gap
1 10553.9 10551.8 10553.9 0.02%
2 9445.1 9445.1 9445.6 0.00%
3 9298.0 9298.0 9298.8 0.01%
4 9134.1 9133.5 9135.9 0.03%
5 8964.5 8964.5 8965.1 0.01%
6 9044.9 9044.9 9045.1 0.00%
7 9661.3 9657.9 9662.2 0.04%
8 10922.6 10917.1 10922.5 0.05%
9 8272.1 8272.1 8272.3 0.00%

10 8884.7 8883.3 8893.1 0.11%

U (total)
∑

s∈S fs. This capacity was partitioned across
workloads according to randomly generated weights gc ∼
U(0, 1), setting the arrival rates as follows:

λc =

gc∑
j∈C gj

G(total)

dc,s̃
∀c ∈ C .

Optimal Solutions and Lower Bounds
The first set of experiments used the MINLP model (10)–
(16) to compute optimal solutions of the smaller instances
and lower bounds on the bigger instances. In order to assess
the quality of the heuristics, we compute the gap of the so-
lution from the optimal solution when it is available; other-
wise we compute the gap from the best known lower bound.
Therefore, the gaps reported in Tables 1,2,3,4 are estimated
(pessimistic) gaps.

All the problem instances were solved using the Couenne
MINLP solver (Belotti et al. 2009) with a time limit of 600
seconds. Before solving the MINLP model, we solved prob-
lem (18) in order to get the tightest upper bound on z. Prob-
lem (18) was solved using CPLEX with a timeout of 100
seconds; if the timeout was expired, we used the best upper
bound on z found at the time limit to set the value of zub.
Adopting this strategy, Couenne was able to find or get very
close to the optimal solution value in the least challenging
test case, as shown in Table 1. Instances in which the opti-
mum was found are marked in bold.

MILP-based Heuristic
A simple method to compute upper bounds consists in first
to optimize over z solving the ILP (18), then to bound z
between z∗ − ε and z∗, and then to solve the ILP given by
the objective function (17) along with the constraints (11)–
(16). A second strategy consists in iteratively enlarging the
bound on z, by considering, for instance, z∗ − 2ε, z∗ − 3ε,
and so on. In practice, we used five successive intervals with
ε = 0.15. Despite being simple, these two simple strategies
yield good upper bounds, as shown in Table 2. The execution
time, however, is 120 seconds, twelve times larger than the
time limit set for the VNS procedure and results quickly get
worse as the number of servers is increased.

6

Table 2: Mean results of the MILP heuristics (10 servers).
|C| U(total) MILP-1 Gap 1 MILP-2 Gap 2
20 0.3 9968.3 5.97% 9462.0 0.51%
20 0.5 13809.0 5.03% 13313.9 1.18%
20 0.7 20677.5 1.28% 20464.5 0.24%
40 0.3 9890.4 6.42% 9325.2 0.21%
40 0.5 15189.3 5.55% 14527.1 0.87%
40 0.7 19447.8 1.00% 19289.5 0.22%

100 0.3 10161.7 5.77% 9716.6 1.13%
100 0.5 14811.6 6.13% 14267.4 2.20%
100 0.7 19145.8 3.02% 18834.0 1.34%

Table 3: Mean results of the VNS heuristic (10 servers).
|C| U(total) VNS Avg Gap Min Gap Max Gap
20 0.3 9419.4 0.03% 0.00% 0.11%
20 0.5 13170.3 0.14% 0.03% 0.37%
20 0.7 20519.8 0.51% 0.15% 0.94%
40 0.3 9320.7 0.15% 0.01% 1.22%
40 0.5 14498.8 0.66% 0.03% 3.68%
40 0.7 19269.9 0.12% 0.07% 0.14%
100 0.3 9671.7 0.71% 0.01% 1.74%
100 0.5 14201.8 1.77% 0.19% 3.69%
100 0.7 18811.3 1.22% 0.09% 2.87%

VNS
The VNS heuristic was implemented in C++ and run with
a time limit of 10 seconds. The results obtained on the test
cases with 10 servers are summarized in Table 3. Using the
lower bound provided by the MINLP approach, we show
that the solutions found by VNS are, on average, within
1.77% of the optimum. Maximum gaps never exceed 3.69%
across all the 90 problem instances.

The VNS heuristic was also run on the more challenging
test cases, in which 40 servers and up to 400 workloads are
present. Results are shown in Table 4. These instances turn
out to be very challenging, even for getting a lower bound.
As part of the future work, we plan to improve the MINLP
approach in order to get lower bounds also on the 40 servers
instances.

6 Conclusions
In this paper, we presented a non-linear mixed integer pro-
gram which aims at minimizing the overall power consump-
tion of a data center. Constraints related to thermal specifi-

Table 4: Mean results of the VNS heuristic (40 servers).
|C| U(total) VNS Gap
80 0.3 41076.5 2.33%
80 0.5 63540.1 -
80 0.7 98771.8 -

160 0.3 40895.2 -
160 0.5 64510.3 -
160 0.7 101918.3 -
400 0.3 40483.1 -
400 0.5 64530.7 -
400 0.7 97556.1 -

cations of the servers, capacity and response time require-
ments were considered. To tackle the problem, we proposed
two MILP-based heuristics and a VNS heuristic. A strategy
to effectively compute good lower bounds was also devised.
Extensive computational results show that the VNS heuristic
achieves average optimality gaps below 2%.

References
Anselmi, J.; Amaldi, E.; and Cremonesi, P. 2008. Service
consolidation with end-to-end response time constraints. In
Software Engineering and Advanced Applications, 2008.
SEAA ’08. 34th Euromicro Conference, 345 –352.
Banerjee, A.; Mukherjee, T.; Varsamopoulos, G.; and Gupta,
S. 2010. Cooling-aware and thermal-aware workload place-
ment for green hpc data centers. In Green Computing Con-
ference, 2010 International, 245 –256.
Belotti, P.; Lee, J.; Liberti, L.; Margot, F.; and Wachter, A.
2009. Branching and bounds tightening techniques for non-
convex minlp. Optimization Methods Software 24:597–634.
Dhyani, K.; Gualandi, S.; and Cremonesi, P. 2010. A con-
straint programming approach for the service consolidation
problem. In Proc CPAIOR, volume 6140 of LNCS. Springer
Berlin / Heidelberg. 97–101.
Economou, D.; Rivoire, S.; and Kozyrakis, C. 2006. Full-
system power analysis and modeling for server environ-
ments. In In Workshop on Modeling Benchmarking and Sim-
ulation (MOBS.
Gmach, D.; Rolia, J.; Cherkasova, L.; and Kemper, A. 2009.
Resource pool management: Reactive versus proactive or
let’s be friends. Comput. Netw. 53:2905–2922.
Lazowska, E. D.; Zahorjan, J.; Graham, G. S.; and Sevcik,
K. C. 1984. Quantitative system performance: computer
system analysis using queueing network models. Upper Sad-
dle River, NJ, USA: Prentice-Hall, Inc.
Menasce, D. A., and Almeida, V. 2001. Capacity Planning
for Web Services: metrics, models, and methods. Upper Sad-
dle River, NJ, USA: Prentice Hall PTR, 1st edition.
Moore, J.; Chase, J.; Ranganathan, P.; and Sharma, R.
2005. Making scheduling ”cool”: temperature-aware work-
load placement in data centers. In Proceedings of the an-
nual conference on USENIX Annual Technical Conference,
ATEC ’05, 5–5. Berkeley, CA, USA: USENIX Association.
Pakbaznia, E., and Pedram, M. 2009. Minimizing data cen-
ter cooling and server power costs. In Proceedings of the
14th ACM/IEEE international symp. on Low power elec-
tronics and design, ISLPED ’09, 145–150. New York, NY,
USA: ACM.
Tang, Q.; Mukherjee, T.; Gupta, S.; and Cayton, P. 2006.
Sensor-based fast thermal evaluation model for energy effi-
cient high-performance datacenters. In Intelligent Sensing
and Information Processing, 2006. ICISIP 2006. Fourth In-
ternational Conference on, 203 –208.
Tang, Q.; Gupta, S.; and Varsamopoulos, G. 2007. Thermal-
aware task scheduling for data centers through minimizing
heat recirculation. In Cluster Computing, 2007 IEEE Inter-
national Conference on, 129 –138.

7

