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Pediatric acute myeloid leukemia (AML) remains a fatal disease for at least 30% of patients, stressing the need for improved 
therapies and better risk stratification. As proteins are the unifying feature of (epi)genetic and environmental alterations, 
and are often targeted by novel chemotherapeutic agents, we studied the proteomic landscape of pediatric AML. Protein 
expression and activation levels were measured in 500 bulk leukemic patients’ samples and 30 control CD34+ cell samples, 
using reverse phase protein arrays with 296 strictly validated antibodies. The multistep MetaGalaxy analysis methodology 
was applied and identified nine protein expression signatures (PrSIG), based on strong recurrent protein expression pat-
terns. PrSIG were associated with cytogenetics and mutational state, and with favorable or unfavorable prognosis. Analysis 
based on treatment (i.e., ADE vs. ADE plus bortezomib) identified three PrSIG that did better with ADE plus bortezomib 
than with ADE alone. When PrSIG were studied in the context of cytogenetic risk groups, PrSIG were independently prog-
nostic after multivariate analysis, suggesting a potential value for proteomics in combination with current classification 
systems. Proteins with universally increased (n=7) or decreased (n=17) expression were observed across PrSIG. Certain 
proteins significantly differentially expressed from normal could be identified, forming a hypothetical platform for per-
sonalized medicine.   
 

Abstract 

Introduction 

Pediatric acute myeloid leukemia (AML) is a heterogene-
ous disease resulting from clonal expansion of myeloid 
precursors that have lost the ability to differentiate nor-
mally.1 Despite improvements in outcome, the 5-year over-
all survival of affected patients approximates 70% and 
serious long-term complications are common among sur-
vivors.2 With the exception of acute promyelocytic leuke-

mia, leukemia with FLT3-internal tandem duplication (ITD) 
mutations, and mixed phenotype acute leukemia, pedi-
atric AML has been treated as a homogeneous disease, as 
therapy does not differ based on the underlying muta-
tions. 
Many genetic “drivers” have been implicated in pediatric 
AML disease pathology and risk stratification. However, 
only a minority of these drivers have been exploited by 
targeted therapeutic interventions.3 Current risk-stratifi-
cation considers genetic abnormalities (e.g., inv (16), 
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monosomy 7), but otherwise relies on early response to 
therapy (minimal residual disease status). However, risk-
stratification is imperfect and outcome within risk groups 
is heterogeneous. Since many drivers may prove to be di-
rectly “undruggable”, targeting downstream proteins may 
be efficacious. This requires knowledge of the proteomic 
landscape that emerges from the combined “net” con-
sequences of genetic and epigenetic events. However, 
little is known about the proteomic landscape in pediatric 
AML. Improved understanding of this might enhance pre-
treatment risk stratification and guide the selection of 
therapies against targetable molecular lesions, especially 
agents targeting protein function. 
Genomic mutations influence cellular physiology via al-
tered protein abundance or activity, but several factors 
diminish the correlation between genetic alterations and 
protein effects, including the general lack of correlation 
between cellular messenger RNA (mRNA) abundance and 
protein expression,4,5 and the inability to assess post-
translational modifications of proteins with genomic tech-
niques. In other tumor types, protein quantification 
commonly influences diagnosis, classification and therapy 
(e.g., estrogen and progestin receptors, programmed cell 
death ligand 1).6,7 Despite these advantages, proteomics 
has not been used to guide AML therapy.  
We previously performed a pilot study of the proteomic 
landscape examining 194 proteins in 95 de novo pediatric 
AML patients using an approach that recognized protein 
expression patterns within protein functional groups 
(PFG).8 After determining the characterization of each pa-
tient’s PFG, we built higher order structures based on 
strong correlations between PFG patterns, recognizing 
eight protein expression signatures (PrSIG) that were prog-
nostic. Here, we used this same approach to prospectively 
examine 500 pediatric AML patients treated on a 
Children’s Oncology Group (COG) randomized phase III 
clinical trial (AAML1031). The hypothesis tested in this trial 
was that the addition of the proteasome inhibitor borte-
zomib could improve therapy based on Ara-C (cytarabine), 
daunorubicin, and etoposide (ADE). This trial closed early 
when it was determined that adding bortezomib to ADE 
(ADEB) did not improve either event-free or overall survival 
at 3 years across the entire group of patents. We aimed 
to: (i) validate the ability to classify pediatric AML patients 
based on proteomics in a larger cohort, with significantly 
more protein targets; (ii) determine whether protein class -
ification could enhance risk stratification; (iii) identify pa-
tients who could benefit from ADEB; and (iv) identify 
additional targets for potential combination therapy. 

Methods 

Patients’ samples 
Peripheral blood samples were collected from 500 pedi-
atric patients with de novo AML participating in the COG 
AAML1031 (#NCT01371981) phase III clinical trial (n=483)9 
or in older clinical trials (n=17), and 30 control CD34+ bone 
marrow samples from healthy donors (20 children and 10 
adults) between July 2011 and February 2017.9 Samples 
with <80% blasts were enriched for leukemic cells by 
CD3/CD19 depletion. Samples were collected before the 
start of chemotherapy (n=500), and 10 hours (h) (n=463) 
and 24 h (n=466) after the start of induction chemother-
apy. At both 10 h and 24 h, one dose of each chemothera-
peutic agent had been administered.10 Written informed 
consent was obtained in accordance with the Declaration 
of Helsinki and local institutional review boards. 
Outcome data were restricted to 410 of the 483 patients 
enrolled on the AAML1031 trial. Outcome was not deter-
mined for 69 patients treated with ADE after trial closure 
by the Data and Safety Monitoring Board, and for four pa-
tients who did not meet eligibility criteria. Two-hundred 
patients received standard ADE induction therapy, includ-
ing 36 who also received sorafenib (ADES), while 210 pa-
tients received ADEB. Induction therapy produced 
complete remission by the end of induction II in 348 (85%) 
patients, 31 (8%) were either refractory or died early. Re-
lapse occurred in 156 (45%) patients, and 286 (70%) were 
still alive with a median follow-up of 4.4 years (range, 0.3-
7.5 years). Outcome data were calculated as published 
previously.9 Mutation data were available for CEBPA, NPM1, 
KIT (exons 8 and 17) and FLT3-ITD.11 

Reverse phase protein microarray methodology 
The methodology and validation of the reverse phase pro-
tein microarray (RPPA) technique, including antibody vali-
dation, are described elsewhere.12-14 Briefly, slides were 
probed with 301 validated antibodies (Online Supplemen-
tary Table S1). Stained slides were analyzed using Microvi-
gene® software version 3.0 (VigeneTech, Inc., Carlisle, MA, 
USA) to produce quantified data. Samples were printed in 
five serial dilutions and SuperCurve algorithms were used 
to generate a single protein concentration value in log2 
format.15 Loading control16 and topographical normaliza-
tion17 were performed to account for protein concentra-
tion and background staining variations. Replicate-based 
normalization18 was used to align samples from two dif-
ferent slides. Five antibodies were excluded for different 
reasons yielding a final set of 296 antibodies used for 
analysis.9 Median expression levels of the normal bone 
marrow CD34+ samples were subtracted from the ex-
pression in the patients’ samples to equalize the median 
of the control samples to zero. 

Haematologica | 107 October 2022 

2330

ARTICLE - Proteomic landscape in pediatric AML F.W. Hoff et al.



Computational analysis 
The MetaGalaxy computational analysis was done as pub-
lished previously (Figure 1).8,21,22 It takes a multistep ap-
proach that starts with separating proteins into 31 PFG 
based on prior knowledge from the literature or strong 
correlations within this dataset (Online Supplementary 
Table S1). K-means23 coupled with the progeny clustering 
algorithm24 was applied to identify an optimal number of 
protein clusters (PrCL), i.e., patient subgroups with a simi-
lar correlated protein expression profile within each PFG. 
Collective PrCL-memberships for each patient were com-
bined into a binary matrix. Block-clustering25 was used to 
search for correlations between PrCL (protein expression 
constellation [PrCON]), and to cluster patients with similar 
PrCON-membership into a PrSIG. Statistical analyses were 
performed in R version 1.3.959 2009-2020 (RStudio, Inc., 
Boston, MA, USA) or SAS version 9.4 (SAS Institute, Inc., 
Cary, NC, USA).  
The remaining parts of the methods are described in the 
Online Supplementary Material. Online Supplementary 
Table S2 summarizes the Cox analyses for outcome re-
ported in Figures 3D, 5, and Online Supplementary Figures 
S3, S7 and S8.  

Results 

Correlation of protein expression identifies functional 
protein patterns within a protein functional group 
The 296 proteins that were analyzed in this study were al-
located into 31 PFG (autophagy, cell cycle, metabolism, 
etc.).8,20,21 Clustering analysis identified an optimal number 
of patterns (i.e., PrCL) of similar correlated protein ex-

pression (negatively or positively) between patients within 
each PFG. PrCL numbers ranged from three to five per PFG 
(Figure 2A) and the total number of PrCL was 116.  
Principal component analysis was applied to graphically 
compare patients’ PrCL expression patterns to those of 
non-malignant CD34+ cells. Although the overall proteomic 
profiles of the pediatric AML patients were distinct from 
those of normal CD34+ cells (Online Supplementary Figure 
S1), we found overlapping “normal-like” expression pat-
terns for 31 (27%) of the PrCL (Figure 2A). In four PFG, 
more than one cluster was defined as “normal-like”, and 
in five PFG no “normal-like” pattern was found. PrCL with-
out dominant co-localization to CD34+ samples on the 
principal component plot were defined as “leukemia-spe-
cific”.  
To visually map how proteins interact with other PFG 
core-members and RPPA dataset proteins, networks were 
generated for each PrCL. Proteins were connected if they 
were known to interact with other proteins based on the 
STRING database or correlation in our dataset. The median 
protein expression was calculated for each PrCL and over-
laid onto the networks to visualize relative expression. 
Networks can be viewed online at: http://leukemiaprotei-
natlas.org/pediatric-aml/. 
As an example, the PFG “Heat shock” comprises five anti-
bodies recognizing total proteins and two recognizing 
phosphorylated proteins. We discerned four “Heat shock” 
PrCL (Figure 3A). Expression levels in PrCL-1 were ident-
ified as most “normal-like” (Figure 3B). Protein networks 
were generated for the seven heat shock protein 
members. For PrCL-2 to PrCL-4, expression of HSPA1A_L 
and HSBP1-pSer82 changed between the four PrCL, as did 
AKT1S1 (connected to HSF1 and HSF1-pSer326) and CAV1 

Figure 1. Computational MetaGalaxy work flow. Multistep analysis that starts with relative expression of 296 protein targets. 
Proteins were allocated into 31 protein functional groups (PFG) based on their known functionality or strong correlation from the 
dataset. The progeny clustering algorithm identified an optimal number of protein clusters (PrCL) in each PFG. Block clustering 
was applied to a binary matrix indicating PrCL-membership for all patients, and identified the existence of protein constellations 
(PrCON) (i.e., strongly correlated PrCL from various PFG). Patients who expressed similar combinations of PrCON were defined 
as having a given protein expression signature (PrSIG).
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(connected to HSP90AA1_B1 and HSPA1_L1), showing that 
associated nodes correlate with core-protein PFG-
members. Simplified versions of the networks are shown 
for PrCL-1 and PrCL-4 (Figure 3C). It is important to note 
that heatmaps presented in other analyses have typically 
been median normalized to 0 with the variance set from 
-1 to +1, so that all variables are shown as ranging from 
the minimum to the maximum of the scale (color range). 
In contrast, our expression levels are shown relative to 
normal, and therefore may only use a portion of the scale 
(color) range. 

Protein clusters correlate with clinical outcome  
To evaluate the effect of protein expression alone on 
prognosis, PrCL were correlated to outcome. Seven (23%) 
PFG were found to be significantly associated with out-
come (Online Supplementary Figure S2). For instance, 
heat shock PrCL were prognostic, in the whole group of 
patients, for overall survival (P=0.004), event-free survival 
(P=0.0009), and relapse risk (P=0.0016), as well as in pa-
tients treated with either ADE or ADEB (ADE: overall sur-
vival, P=0.0035; event-free survival, P=0.0097; relapse 
risk, P=0.0207; ADEB: overall survival, P=0.0002; event-

Figure 2. Protein functional group classification and similarity to that of normal CD34+ cells. (A) The progeny clustering 
algorithm was applied to the 31 protein functional groups (PFG) and identified an optimal number of protein clusters (PrCL). PrCL 
were compared with those of normal CD34+ cells using principal component analysis, (PCA) and classified as either “normal-
like” or “leukemia-like”. “Normal-like” patterns are represented by hatched boxes, “leukemia-specific” patterns by full boxes. (B, 
C) PCA with each PrCL being assigned to a color within the PFG to illustrate its similarity to, or difference from, normal CD34+ 
cells. Two examples of PCA mapping include (B) cell cycle and (C) mTOR-signaling Normal CD34+ samples are represented by 
small black squares and large black circles. There was no co-localization with CD34+ cells for cell cycle. 
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free survival, P<0.0001; relapse risk, P=0.0009) (Figure 
3D). When we compared outcome after ADE to that after 
ADEB, patients with PrCL-2 significantly benefited from 
ADEB (n=131, 5-year overall survival, 54% vs. 81%, 
P=0.00087), whereas patients with PrCL-4 did worse 
(n=35, 5-year overall survival, 100% vs. 67%, P=0.019). 
Bortezomib had no effect on patients with PrCL-1 (n=91) 
(P=0.190), which was an unfavorable prognostic indicator 
after both ADE and ADEB; this cluster was characterized 
by high-HSF1-pSer326 and HSB1-pSer82. Event-free sur-
vival and relapse risk curves are shown in Online Supple-
mentary Figure S3. Online Supplementary Table S3 shows 
the distribution across the PrCL and the different treat-
ment arms.  
We previously published that low HSF1-pSer326 was as-
sociated with a better outcome after ADEB.10 In the cur-
rent analysis, this effect was true for PrCL-2 and PrCL-3 
(characterized by low HSF1-pSer326), but was absent for 
PrCL-4, which also had concomitant increased ex-
pression of HSPA1A_L, emphasizing that a simultaneous 
integrated analysis of multiple proteins, rather than a 
single protein, could identify more detailed protein ex-
pression patterns and better characterize subpopulations 
that could benefit from the addition of novel agents. 

Recurrences in protein patterns classify patients into 
nine protein expression signatures 
To obtain a more systemic understanding of the 116 
identified PrCL, pattern recognition of the relations be-
tween PrCL from various PFG was done using co-clus-
tering. PrCL-memberships for the 31 PFG were assigned 
to all 500 pediatric AML patients and compiled in a binary 
matrix (MetaGalaxy) (Figure 4). Optimization calcula-
tions8,22 identified 12 patterns of recurrent (i.e., cor-
related) PrCL, defined as PrCON. From this, nine PrSIG 
were defined as clusters of patients who expressed simi-
lar combinations of PrCON. Robustness of the PrCON and 
PrSIG was tested on a training set (n=355) and test set 
(n=145) and showed high reproducibility (P<0.0001) (On-
line Supplementary Figure S4). Sets were created by 
using random sampling.26 None of the PrCON was pre-
dominantly associated with the “normal-like” clusters 
(P=0.200). The PrCL in each PrCON are listed in Online 
Supplementary Table S4. 

Protein expression partially correlates with cytogenetics 
and mutational state, but not with gene expression 
Correlation between mRNA expression from RNA-se-
quencing and RPPA protein abundance was determined for 
205 total-proteins in 390 samples, with a mean correla-
tion of 0.17. Thirty-four (17%) proteins were negatively cor-
related, while 83% were positively correlated (Online 
Supplementary Figure S5).  
We found associations between PrSIG and cytogenetics 
and mutation states. Data were available for CEBPA, NPMI, 
FLT3-ITD, KIT (exons 8 and 17), KRAS, NRAS, GATA2, PTPN11, 
MYH11 and IDH1/2. Mutations present in ≤10 of the patients 
were not analyzed (Table 1). Translocation t(8;21) was more 
frequently detected in PrSIG-4 (35% vs. 6% overall) 
(P=0.001). Inversion (16) was associated with PrSIG-1, -6 
and -8 (25%, 25%, 30% vs. 14%, overall), but scarcely seen 
in PrSIG-2, -3, -5 and -7 (2%, 5%, 0% and 3%) (P<0.001). 
Normal karyotype (diploid) was enriched in PrSIG-3, -5 
and -6 (59%, 42%, 38% vs. 28% overall) that shared 
PrCON-3. Those three also had the highest frequencies of 
CEBPA mutation (PrSIG-3) and FLT3-ITD (PrSIG-3, -5 and 
-6). While the MLL-rearrangement (11q23) was not exclus-
ive to the PrSIG-7 protein expression pattern, 85% of pa-
tients with this signature harbored the MLL- 
rearrangement (vs. 18% overall). KIT mutations were 
mostly in patients with PrSIG-4 and -6 (P=0.004), and 
NRAS and MYH11 in those with PrSIG-1 (P=0.024, P=0.037, 
respectively). Although only 3% (n=12) of the patients had 
mutated GATA2, 19% of those with PrSIG-3 had this muta-
tion. Patients with the fusion gene NUP98-KDM5A (n=4) 
were all present in PrSIG-4 (P=0.007). NPM1, KRAS, PTPN11 
and IDH were not associated with specific PrSIG. 

Correlation with patients’ characteristics and clinical 
variables 
Patients aged ≤1 year at the time of diagnosis were most 
frequently clustered in PrSIG-7 to -9, which are associated 
with PrCON-5. Low white blood cell count (≤100,000 
cells/μL) strongly correlated with PrCON-7, with 81-89% 
of the patients in PrSIG-1 to -4 and -9 having a low white 
blood cell count versus 76% overall (P=0.001). Gender, eth-
nicity, race and central nervous system status at the time 
of diagnosis were not associated with any PrSIG or PrCON 
(Online Supplementary Figure S6). 

Figure 3. Analysis of the heat shock protein functional group.  (A) Optimal number of four protein clusters (PrCL) was identified 
as shown by the heatmap (annotation bar: PrCL-1 [red], PrCL-2 [pink], PrCL-3 [yellow] and PrCL-4 [light green]). (B) Principal 
component analysis shows relative expression of the four clusters in relation to normal CD34+ cells (black squares). (C) 
Simplified version of the protein networks for PrCL-1 and PrCL-4. Networks illustrate the median expression of protein functional 
group (PFG) core-protein members (large nodes) in relation to associated proteins (small nodes). Interactions between nodes 
are based on the literature (…), reverse phase protein microarray data (- - -) or both (—). Associated nodes with most differences 
between PrCL-1 and PrCL-4 are selected. As an example, AKT1S1 and CAV1 both have relatively normal expression in PrCL-1, while 
their expression is relatively high in PrCL-4. (D) Outcome data stratified by PrCL. Outcomes for all patients (upper left panel), 
patients treated with ADE (upper middle  panel) and those treated with ADEB (upper right panel). Lower panels show outcome 
data in cluster 2 (left) and cluster 4 (right) for patients treated with ADE (dark blue) or ADEB (red).
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Protein expression signatures provide prognostic 
information  
PrSIG were associated with response to therapy (Figure 5A) 
with greater spread in 5-year overall survival in ADEB-
treated cases compared to ADE-treated cases (Online Sup-
plementary Figure S7). Similar to what was previously done 
with cytogenetics prognostication, we identified PrSIG as-
sociated with favorable (PrSIG-3), intermediate (PrSIG-1, -
4, -6, -8, -9) and unfavorable (PrSIG-2, -5, -7) prognosis 
(overall survival, P=0.007; event-free survival, P=0.046; re-
lapse risk, P=0.045) (Figure 5B). PrSIG-risk groups did not 
correlate with AAML1031 risk group stratification or con-
ventional risk group stratification (Online Supplementary 
Table S5). Unfavorable PrSIG remained an independent 
prognostic factor using multivariate Cox regression analysis 
in overall and event-free survival and relapse risk (Table 

2A). PrSIG with poorest prognosis in ADE-treated patients  
were PrSIG-5 to -8, all characterized by PrCON-4-mem-
bership. Addition of bortezomib was beneficial for 5-year 
overall survival in PrSIG-6 (62% vs. 84%, n=41, P=0.07, ha-
zard ratio [HR]=0.32) and PrSIG-8 (56% to 79%, n=72, 
P=0.06, HR=0.43) (Figure 5C), and a similar trend was ob-
served in PrSIG-7. As PrSIG-6 to -8 were most strongly as-
sociated with PrCON-11, we compared ADE versus ADEB in 
the PrCON-11 PrSIG. Overall survival at 5 years increased 
from 58% to 78% (P=0.011, HR=0.46). Across the nine PrSIG, 
relapse risk showed a significant dispersion, ranging from 
24% to 63% at 5-year complete remission (P=0.03). In 
PrSIG-3, relapse risk decreased from 45% to 11% with ADEB 
(n=21, P=0.09, HR=0.18), while PrSIG-6 patients did worse 
with ADEB (36% vs. 12%, n=34, P=0.10, HR=3.54) (Figure 5C). 
While analysis of CEBPA-mutated patients as a group did 

Figure 4. MetaGalaxy analysis identified the existence of 12 protein constellations and nine protein expression signatures.  
Block clustering was applied to a binary matrix constructed from 116 protein clusters (PrCL) from 31 protein functional groups 
(PFG). Each column indicates one patient (n=500) and his or her PrCL-membership. This identified the existence of 12 protein 
constellations (PrCON; horizontally); i.e., PrCL that strongly correlated with each other. Patients with a similar pattern of PrCON 
were defined as having a given a protein expression signature (PrSIG; vertically). The annotation bar shows nine PrSIG, 
cytogenetics (t(8;21) [red], inv(16) [yellow], normal karyotype [green]), MLL (11q23) rearrangement [black], -5, -7, +8 abnormalities 
[light blue], and other [gray]), and mutational status for CEBPA, FLT3-ITD, FLT3-ITD high allelic ratio (≥0.1), NPM1 and KIT (exons 
8 and 17) (wildtype [blue], mutated [yellow]). Those with unknown mutational status are represented in gray.  
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Variable Total 
(N=500)

S1 
(N=48)

S2 
(N=55)

S3 
(N=39)

S4 
(N=53)

S5 
(N=85)

S6 
(N=54)

S7 
(N=40)

S8 
(N=83)

S9 
(N=43) P

Treatment 
arm 
(N=410)

ADE 
ADEB 
ADES

40% 
51% 
9%

36% 
48% 
16%

43% 
50% 
7%

44% 
44% 
11%

38% 
57% 
5%

27% 
55% 
18%

34% 
49% 
17% 

48% 
52% 
0%

44% 
54% 
1%

56% 
44% 
0%

0.793

Gender 
(N=498)

Female 49% 56% 48% 46% 49% 56% 37% 48% 52% 47% 0.620

Age (years)
0-1 
2-10 
11+

12% 
55% 
33%

8% 
54% 
38%

11% 
56% 
33%

3% 
72% 
26%

11% 
60% 
28%

4% 
56% 
40%

7% 
69% 
24%

18% 
45% 
38%

23% 
43% 
34%

21% 
49% 
30%

0.007

Ethnicity 
(N=497)

Hispanic 20% 17% 26% 21% 30% 21% 20% 15% 14% 17% 0.479

Race  
(N=488)

American 
Black

12% 8% 13% 10% 11% 13% 15% 8% 13% 16% 0.950

CNS status 
(at Dx) 
(N=497)

Positive 40% 42% 28% 21% 42% 47% 47% 33% 47% 36% 0.050

WBC (at 
study entry)

>100,000 24% 19% 15% 13% 11% 33% 30% 43% 31% 16% 0.001

FAB  
classifica-
tion 
(N=339)

M0 
M1 
M2 
M4 
M5 
M6 
M7

2% 
22% 
19% 
24% 
27% 
1% 
4%

0% 
29% 
14% 
26% 
17% 
3% 
11%

3% 
31% 
23% 
17% 
23% 
0% 
3%

4% 
44% 
41% 
7% 
0% 
4% 
0%

7% 
36% 
25% 
18% 
11% 
0% 
4%

5% 
40% 
25% 
16% 
11% 
0% 
4%

0% 
14% 
17% 
40% 
26% 
0% 
3%

0% 
3% 
3% 
24% 
69% 
0% 
0%

0% 
3% 
8% 
38% 
48% 
0% 
3% 

3% 
6% 
28% 
16% 
31% 
3% 
13%

<0.001

AAML1031 
risk group† 

(N=485)
High risk 28% 29% 31% 28% 22% 41% 40% 10% 16% 26% 0.002

Cyto- 
genetics 
(N=492)

t(8;21) 
inv16 

 
Normal 

karyotype 
 

t(9;11)(p2
2;q23)/11

q23 
 

-5, -7, or 
+8 

 
Other 

16% 
13% 

 
28% 

 
 

18% 
 
 
 

9% 
 
 

15% 

19% 
25% 

 
27% 

 
 

4% 
 
 
 

4% 
 
 

21% 

21% 
2% 

 
23% 

 
 

23% 
 
 
 

15% 
 
 

17%

13% 
5% 

 
59% 

 
 

3% 
 
 
 

3% 
 
 

18%

35% 
12% 

 
21% 

 
 

10% 
 
 
 

10% 
 
 

13%

16% 
0% 

 
42% 

 
 

8% 
 
 
 

11% 
 
 

22%

8% 
25% 

 
38% 

 
 

6% 
 
 
 

12% 
 
 

12% 

3% 
3% 

 
5% 

 
 

85% 
 
 
 

3% 
 
 

3% 

10% 
30% 

 
16% 

 
 

28% 
 
 
 

9% 
 
 

7% 

21% 
16% 

 
16% 

 
 

12% 
 
 
 

12% 
 
 

23% 

<0.001

FLT3-ITD 
(N=489)

Mutated 21% 25% 15% 31% 16% 39% 32% 5% 12% 10% <0.001

NPM1 
(N=483)

Mutated 10% 13% 10% 11% 4% 16% 14% 0% 11% 7% 0.192

CEBPA 
(N=483)

Mutated 9% 4% 4% 33% 6% 21% 4% 0% 4% 2% <0.001

c-KIT 
(exon 8) 
(N=399)

Mutated 4% 7% 4% 0% 5% 2% 13% 0% 3% 3% 0.125

c-KIT 
(exon 17) 
(N=399)

Mutated 8% 13% 9% 4% 20% 6% 10% 3% 3% 6% 0.068

c-KIT 
(combined) 
(N=399)

Mutated 12% 20% 11% 4% 25% 8% 23% 3% 6% 9% 0.004

Table 1. Patients’ characteristics stratified by protein expression signatures.

Continued on following page.
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not show benefit from bortezomib,12 none of the patients 
in PrSIG-3 relapsed or died after ADEB versus a 60% event 
and relapse-rate (n=3/5, P=0.039, P=0.037, respectively) 
with ADE (Figure 5D). Survival analysis stratified by PrSIG-
risk restricted to patients with a normal karyotype again 
identified low- versus high-risk AML patients (P=0.044) 
(Online Supplementary Figure S8). Of note, while heat 
shock proteins were strongly associated with outcome in 
the above analysis, they were not among the main drivers 
of PrCON and PrSIG clustering.  

Proteomics augment cytogenetic risk stratification  
We analyzed AAML1031 low-risk patients (defined by 
inv(16)/t(16;16), t(8;21), NPM1 or CEBPA mutations) separately 
to determine whether proteomics were informative for out-
come. We found stratification for event-free survival and 
relapse risk by PrSIG with favorable prognosis in PrSIG-1, -
3, -6 and -9 and unfavorable prognosis in PrSIG-5 and -7 
(overall survival, P=0.071; event-free survival, P=0.027; re-
lapse risk, P=0.014) (Online Supplementary Figure S9). Cox 
proportional hazards regression models identified unfavor-
able proteomic signatures as a significant independent 
prognostic factor in multivariate analysis (Table 2B). Within 
the AAML1031 high-risk patients (i.e., those with FLT3-ITD+ 
high allelic ratio, monosomy 5 or 7 or del(5q), or minimal 
residual disease >0.1% at end of induction 1) PrSIG were also 
significantly prognostic. While prognosis of PrSIG-1, -3 and 
-6 was consistent between AAML1031 risk groups, prognosis 
of PrSIG-9 was favorable among the low-risk, but highly un-
favorable among the high-risk patients. 

Proteins significantly different from normal can be 
identified for each protein expression signature and 
protein constellation 
The majority of targeted drugs in development act on pro-
tein function. Recognition of proteins with an abnormal 
expression could identify targets for therapy across AML 
subgroups. We identified proteins significantly different 
from normal for each PrSIG/PrCON (Figure 6) (available 
online at: http://leukemiaproteinatlas.org/pediatric-aml/). 
As an example, two proteins, VEGFR and PARP1, are shown 
in particular, as they may also function as potential thera-
peutic targets for inhibitory drugs. Twenty-four proteins 
were identified as having universally higher (n=7) or lower 
(n=17) expression across all PrSIG with vimentin (VIM) 
most strongly expressed.  

Proteins involved in cell cycle regulation and DNA 
damage change following exposure to chemotherapy 
To assess whether cells would adapt their PrSIG differ-
entially following chemotherapy, unsupervised hierarchi-
cal clustering of pre-treatment and post-treatment 
samples was performed. None of the expression patterns 
was specific to a given time-point or treatment arm. 
Comparison of individual protein expression levels ident-
ified 87 (29%) proteins that had changed by 10 h after 
treatment and 173 (58%) by 24 h after treatment. Sixty-
seven (77%) proteins were changed at both time-points, 
and were predominantly involved in the TP53 pathway 
(TP53, MDM4), DNA damage response (ATM, Chek2) and 
cell cycle regulation (Wee1, CCND3, RB1-pSer) (Online 
Supplementary Table S6).  

KRAS 
(N=390)

Mutated 7% 2% 7% 0% 3% 8% 8% 13% 13% 9% 0.291

NRAS 
(N=390)

Mutated 25% 42% 23% 12% 16% 16% 23% 32% 33% 27% 0.024

KRAS 
and/or 
NRAS 
(N=390)

Mutated 31% 44% 27% 12% 18% 22% 28% 42% 41% 30% 0.012

PTPN11 
(N=390)

Mutated 7% 2% 16% 0% 5% 5% 10% 10% 11% 0% 0.063

MYH11 
(N=390)

Mutated 4% 16% 5% 4% 0% 3% 3% 3% 3% 3% 0.037

GATA2 
(N=390)

Mutated 3% 0% 2% 19% 3% 5% 0% 0% 1% 3% 0.001

IDH1/2 
(combined) 
(N=390)

Mutated 4% 2% 0% 8% 5% 5% 0% 0% 6% 6% 0.455

NUP98-
KDM5A  
(N=352)

Positive 1% 0% 0% 0% 11% 0% 0% 0% 0% 0% 0.007

†AML1031 protocol risk group definition: low risk: inv(16)/t(16;16) or t(8;21), or NPM or CEBPA mutation; high risk: FLT3-ITD+ with high allelic 
ratio ≥ 0.4, or monosomy 5/del5q or 7, without low-risk features. Unknown or unavailable values were not considered in P-value calculations 
and are excluded from the results. ADE: Ara-C, daunorubicin, and etoposide); ADEB; ADE plus bortezomib; ADES: ADE plus sorafenib;  Dx: 
diagnosis; WBC: white blood cell count; FAB. French-American-British.
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Figure 5. Kaplan-Meier curves for overall survival, event-free survival and relapse risk. Left upper three panels: overall survival 
curves (log-rank), right panels: relapse risk (Gray statistics). (A) Overall survival and relapse risk stratified by the nine protein 
expression signatures (PrSIG). (B) Proteomic risk groups defined as “favorable”, “intermediate”, “unfavorable”. (C) Comparison of 
outcomes in patients treated with ADE or. ADEB in PrSIG-8 (left) and PrSIG-3 (right). (D) Event-free survival and relapse risk for 
CEBPA-mutated patients in PrSIG-3 treated with ADE (blue) or ADEB (red). 
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Multivariate analysis, all patients (n=400)†

OS from study entry EFS from study entry RR from end of induction II

N HR 95% CI P HR 95% CI P N HR 95% CI P
Intermediate 226 1 1 200 1

Favorable 27 0.31 0.08-1.27 0.102 0.78 0.40-1.55 0.484 21 0.82 0.35-1.90 0.643

Unfavorable 147 1.55 1.07-2.25 0.022 1.40 1.04-1.87 0.026 127 1.59 1.12-2.25 0.010
AAML1031 risk 
group

Low 281 1 1 265 1

High 119 2.56 1.75-3.73 <0.001 1.76 1.30-2.39 <0.001 83 1.10 0.73-1.66 0.658

Age (years old)

≥2 354 1 1 311 1
0-1 46 2.33 1.43-3.77 0.001 2.60 1.77-3.82 <0.001 37 2.29 1.42-3.71 0.001

NPM1

Negative 355 1 1 305 1

Positive 45 0.36 0.15-0.88 0.026 0.52 0.30-0.92 0.026 43 0.62 0.33-1.15 0.129

Multivariate analysis, AAML1931 low risk patients (n=281)

OS from study entry EFS from study entry RR from end of induction II

N HR 95% CI P HR 95% CI P N HR 95% CI P

Proteomic-SIG

Intermediate 117 1 1 110 1

Favorable 98 0.58 0.30-1.13 0.112 0.72 0.46-1.11 0.137 90 0.57 0.35-0.95 0.029

Unfavorable 66 1.88 1.08-3.26 0.025 1.77 1.18-2.67 0.006 65 1.66 1.07-2.58 0.025

Age (years old)

≥2 245 1 1 233 1

0-1 36 1.82 0.99-3.34 0.055 2.25 1.44-3.52 <0.001 32 2.36 1.42-3.92 0.001

When survival analysis was performed for each individual 
protein (stratified by median, thirds or quartiles), a similar 
number of proteins was prognostic within each group re-
gardless of whether the pre-treatment or the post-treat-
ment expression was assessed. Approximately 20% of the 
proteins that were significantly prognostic before treat-
ment, remained prognostic after treatment. Seven pro-
teins were significantly prognostic at all three time-points 
when considering all patients together; BCL2A1, CCND3, 
CD74, EIF2S1, GSK3A_B, HSPB1.pSer82, and MKNK1. Nine 
other proteins, mostly involved in protein translation or 
signal transduction, were prognostic at both 10 h and 24 
h after treatment, but not before treatment. These pro-
teins were: ATF3, EIF2S1.pS51, EIF4EBP1, EIF4G1, HSF1, 
MET.pY1230_1234_1235, PTEN, RPS6KB1, and YAP1. 

Discussion 

In this study, to our knowledge the largest proteomic 
study in pediatric AML, we validated our central hypoth-
esis that the genetic heterogeneity of pediatric AML co-
alesces into a finite number of recurrent protein 
expression patterns. Unique to this study is the use of a 
multistep protein analysis, which moves beyond individual 
protein expression and activation, to a combined analysis 
in functionally related protein groups, and then into a sys-
tem spanning structure based on strongly correlated PrCL. 
We believe that this is a more complete approach, utilizing 
known functional interactions, and is superior to conven-
tional unsupervised clustering which weights all proteins 
equally and ignores known relationships. Furthermore, this 

Table 2. Multivariable analysis for overall survival, event-free survival and relapse risk, including proteomic-based 
signatures.

†Ten patients have unknown classification for protocol risk group and are excluded from analyses because all patients must have complete 
data for a multivariable analysis. OS: overall survival; EFS: event-free survival; RR_ relapse risk; HR: hazard ratio; 95% CI: 95% confidence 
interval: SIG: signatures.
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study uses proteomics for the first time in samples col-
lected from a phase III randomized clinical trial, and ident-
ified patients who responded well to a specific therapy.  
Traditional risk stratification in pediatric AML considers se-
lected cytogenetics and molecular features, and early re-
sponse to induction chemotherapy, but predicts outcome 
for only 40% of patients.32 When prognostically similar PrSIG 
were grouped as “favorable”, “intermediate”, or “unfavor-
able”, we demonstrated increased prognostic significance 
when added to traditional risk stratifying factors in multi-
variate analysis. PrSIG were more strongly predictive when 
combined with AAML1031 risk groups, demonstrating that 
adding proteomics to genetic risk-stratification can direct 
therapy leading to improved outcome. Proteins were also 
individually significantly prognostic, including several that 
had previously been published as being so in adult AML.  
We identified three PrSIG (PrSIG-3, -6, and -8; 34% of all 
patients) that benefited from proteasome inhibitor ther-

apy, a finding not appreciated by analysis of the entire co-
hort. This finding suggests that proteomic analysis is able 
to predict a-priori those who would benefit from a spe-
cific therapy. PrSIG-6 and -8 both contained PrCON-11 and 
were characterized by upregulation of autophagy proteins 
(ATG3, ATG7, BECN1).33 We hypothesize that these auto-
phagy effectors are required for bortezomib-induced 
autophagy, given that the ubiquitin-proteasome system 
has active crosstalk with autophagy, and bortezomib 
stimulates this compensatory autophagy mechanism re-
sulting in cell death.34 PrCON-11 was associated with a 
prevalence of M4/M5 (monocytic) patients and least 
M0/M1/M2 cases (P<0.001) as well as a high frequency of 
high white blood cell counts (P<0.001). In PrSIG-7, which 
shares PrCON-11, a similar but less strong beneficial effect 
of bortezomib was observed. Unlike PrSIG-6 and -8, 
PrSIG-7 had higher phosphorylation levels of heat shock 
binding protein 1 (HSPB1-pSer82), a strongly unfavorable 

Figure 6. Protein expression significantly different from normal.  (A) Protein expression deviated significantly from normal in 
protein expression signature (PrSIG)-3 (P<0.05, and log2 change ≥0.50 log2). Proteins indicated by red circles are potentially 
targetable. (B) Relative VEGFR (KDR) (left, potential target for PrSIG-2 to 4, and PrSIG-6 to -9) and PARP1 (right, target for patients 
in PrSIG-3 to -5) protein expression levels across the nine PrSIG. (C) Twenty-four proteins with universally higher (n=7) or lower 
(n=17) expression (P<0.05, and log2 change ≥0.50) compared to that in normal CD34+ cells. VIM (indicated by the red box) was 
most strongly upregulated across the nine PrSIG. 
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prognostic factor in our dataset, but without a benefit 
from proteasome inhibitor therapy. This protein could 
possibly work by preventing the toxic build-up of mis-
folded proteins due to bortezomib.35 PrSIG-7 had a protein 
expression profile suggesting high cell cycle turnover (high 
CCND3, CDKN1B-pThr198, and RB1-phospho), high white cell 
count, and a high frequency of MLL-rearrangements. This 
highlights the need to apply a holistic system approach to 
be able to predict response to drugs.  
The importance of studying protein expression and activa-
tion is stressed by the low correlation (r=0.17) between pro-
tein and mRNA expression and the inability of mRNA data 
to replicate protein-determined PrSIG. The lack of correla-
tion was expected, as the presence of mRNA does not 
imply that translation is occurring (non-coding RNA could 
impede it); nor does it dictate the rate of translation or pro-
tein longevity after translation. Moreover, environmental ef-
fects from mesenchymal stromal cells, including 
chemokine and cytokine production, affect how emerging 
leukemia cells develop and behave. Nonetheless, PrSIG 
were partially correlated with cytogenetics and mutational 
state. “Driver” mutations would be expected to have a de-
fining effect on biology/protein expression even though the 
combination of other events might further alter these sig-
nals. For instance, the majority of PrSIG-7 (85%) had MLL-
rearrangements and, similar to the recognition of Ph+-like 
acute lymphoblastic leukemia, this may point toward the 
existence of MLL-like cases based on protein expression.  
This study demonstrates that the “hallmarks of cancer”36,37 
are achieved via different patterns of protein utilization 
within the defined PrCON. As an example of the five apop-
tosis PFG used in this study, PrCON-6 demonstrated high 
BH3 pro-apoptotic member activation (BAX, BBC3, and 
BCL2L11) and simultaneously high expression of the anti-
apoptotic BH3-member MCL1, a protein associated with 
resistance to chemotherapy.38 PrCON-11 demonstrated a 
different pathway with high expression of autophagy pro-
teins, but no associations with the other apoptotic PFG. 
PrCON-9 had modest upregulation of autophagy proteins 
and evidence of increased spontaneous apoptosis pro-
teins (high PARP1-cleavage, apoptosis-occurring PrCL-2, 
and PrCL-3).  
Targeted therapies offer the promise of improved out-
come, often with less toxicity, compared to current 
chemotherapy, but an effective means of matching the 
appropriate patient to the correct agent hampers imple-
mentation. To select drugs rationally for specific sub-
groups of patients, we identified proteins that were 
expressed significantly differently between cases of AML 
and normal subjects, raising the hypothesis that those 
could be targeted by inhibitory/replacement or (re)activa-
tion agents, potentially even combined with targeting gen-
etic molecular events (e.g., midostaurin [FLT3] enasidenib 
[IDH2], or ivosidenib [IDH1]). Online Supplementary Table 

S7 lists matched proteins and drugs used in the clinical 
setting. If validated, rapid real-time classification, based 
on measuring expression of a restricted number of proteins 
with the highest discriminative value between PrSIG (a 
“classifier set”), could enable PrSIG determination and fa-
cilitate initial therapy selection as well as classification.  
We identified 24 universally altered proteins, identifying 
novel potential targets for all patients. The most highly 
overexpressed protein was VIM, a protein involved in 
epithelial-to-mesenchymal transition. The role for VIM in 
AML is uncertain, but there is evidence that epithelial-to-
mesenchymal transition occurs in hematologic malig-
nancies.39,40 Fluvastatin targets VIM via caspase-3-mediated 
proteolysis,41,42 and prior trials in AML demonstrated that 
the addition of pravastatin to idarubicin and high-dose cy-
tarabine counteracted the chemoresistance associated 
with the defensive adaptation of increasing cellular cho-
lesterol.43,44 MCL1, previously found to be upregulated in six 
of the eight PrSIG in another study,8 was also universally 
highly expressed, most prominently in PrSIG-7 to -9, which 
had the highest frequency of infants, a historically chemo-
resistant population.8,45 MCL1 is also strongly associated 
with chemoresistance to venetoclax. Although clinical trials 
have evaluated the benefit of (combinational) treatment 
with venetoclax in adults and relapsed pediatric AML, no 
studies evaluating the effect of venetoclax in de novo pedi-
atric AML have yet been published. Our finding predicts for 
lower efficacy in pediatric de novo AML, and suggests that 
venetoclax could be combined with MCL1 inhibitors.  
A final feature of this RPPA study was the measurement of 
therapy effects on protein expression over time. We ex-
pected to find specific treatment-induced changes in pro-
tein expression, and different adaptation of proteins across 
the PrSIG; however, changes were limited to DNA damage, 
cell cycle regulation, protein translation and histone modi-
fication pathways. This likely reflects the presence of many 
pre-apoptotic cells trying to repair DNA damage. Single-cell 
proteomics might better profile post-treatment AML het-
erogeneity and predict which changes are associated with 
resistance or relapse by identifying “survivor cells”, which 
cannot be identified in studies of bulk cells.46 Proteomics 
may also enable identification and analysis of stem cell pro-
teomics, which differ from bulk cells.47-49 Moreover, unbiased 
approaches such as mass spectrometry, which allow evalu-
ation of global proteomics, might also be of use.50  
In summary, we confirmed the existence of recurrent pro-
tein patterns in pediatric AML which enabled separation 
of AML patients into recurrent PrSIG that were prognostic, 
particularly when combined with known pediatric AML risk 
factors. We identified PrSIG that benefited from ADEB, and 
postulate that recognition of abnormal proteins can aid in 
risk stratification and therapy selection in pediatric, and 
perhaps adult AML.  
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