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Abstract: Solid-state NMR is a nondestructive and noninvasive technique used to study the chemical
structure and dynamics of starch-based materials and to bridge the gap between structure–function
relationships and industrial applications. The study of crystallinity, chemical modification, product
blending, molecular packing, amylose–amylopectin ratio, end chain motion, and solvent–matrix
interactions is essential for tailoring starch product properties to various applications. This article
aims to provide a comprehensive and critical review of research characterizing starch-based materials
using solid-state NMR, and to briefly introduce the most advanced and promising NMR strategies
and hardware designs used to overcome the sensitivity and resolution issues involved in structure–
function relationships.

Keywords: solid-state NMR spectroscopy; starch; food science; sustainable polymers; solvent–matrix
interactions; sensitivity boosting; polarization enhancement

1. Introduction

The world population is expected to increase to 10 billion by 2050 [1], resulting in
growing concerns over global food security. Food production is one of the largest industries
globally [2]. Estimates by the United Nations Food and Agriculture Organization (FAO)
suggest that a 50% production increase may be needed to meet future demands [1]. A key
concern is whether the high demand for food may lead to instability in value-chains, and
furthermore, if production targets can be met considering increased water and land scarcity.
The future of sustainable food systems may include a shift towards a plant-based diet, as
well as significant reductions in food waste [1]. To achieve this, the efficiency of production
for existing plant-based foods may need to be improved. Thus, it is critical to understand
the connection between the form, function, and properties of our food constituents [3].

Starch is a highly abundant, biodegradable, and hydrophilic carbohydrate typically
found in staple crops such as corn, potatoes, wheat, rice, and green fruits [4–7]. It is an
important raw material within a wide range of industries from packaging (e.g., coatings,
films adhesives) to biomedical and pharmaceuticals (e.g., tissue and drug carriers) [8]. It is
used most frequently in the food industry, where it is estimated that up to 60% [3] of the
starch produced is used either as a food product, or a food-based additive for preservative,
thickening, texturizing, emulsion stabilization, aroma and flavor encapsulation, or quality
enhancement [8,9]. Starch can be used to produce biodegradable packaging films, used
to extend the shelf life of foods [10,11], or for encapsulation of food compounds which
can improve food quality via protecting bioactive food ingredients from oxidation, or
degradation due to UV or acidic conditions [12].
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Starch consists of long chains of glucose units connected via glycosidic bonds [7], with
a chemical formula of (C6H10O5)n. A granule of starch typically contains up to 98-99% (dry
weight) of two types of polysaccharide components: amylose and amylopectin [7,8,13,14].
Amylose is a water-soluble, relatively linear [15] polymer made up of glucose units with
an α-(1→ 4) glycosidic linkage [8,14,16]. Amylopectin (ca. 60–90% of starch) is a water-
insoluble branched polymer of glucose units with multiple short chains linked at α-(1→
6) to the macromolecule [3]. Amylopectin chains (10 or more glucose units) form double
helical structures with either an A-, B- or C- type crystallite. These differ based on unit cell
type and packing density. A-type crystallites have a monoclinic unit cell and more compact
structure. B-type crystallites have a hexagonal unit cell, an open structure, and a hydrated
core [3,17]. The remainder of dry weight of starch consists of a mixture of lipids, minerals,
and phosphorus-containing species [3,18].

Starch can be used in a ‘raw’ or ‘modified’ form [5]. The physicochemical and func-
tional properties of raw starch vary for different botanical species [3]. In general, these prop-
erties include poor solubility, low shear resistance, low cohesiveness, syneresis, swelling,
gelatinization and retrogradation [7,19]. Gelatinization occurs when starch adsorbs water at
high temperatures. Under these conditions, starch expands leading to crystalline swelling
and an eventual disruption of hydrophobic colloid formation [20]. Retrogradation is a
process where upon cooling, starch molecules reorganize and form a viscous, gel-like struc-
ture [15,21]. Starch with a high amylose content has a higher tendency to retrograde, due to
a low degree of branching which promotes the formation of semi-crystalline structures [3].

Many of the key properties of starch (insolubility, shear resistance, water retention,
gelatinization, retrogradation, hydrophilicity) can be either desirable or unfavorable, de-
pending on the application. Figure 1 shows a selection of food-based applications for
starch, noting important properties of starch related to each. In this figure, characteristics
unfavorable to the application are shown in red. Swelling and gelatinization, which leads
to the formation of a viscous starch paste, is a desirable property for thickeners [3,22] (see
Figure 1). However, increased viscosity due to gelatinization and low shear resistance
can limit industrial processability. Encapsulation is promoted by starch’s water retention,
tailorable viscosity (due to gelatinization), and retrogradation (which slows down release
of encapsulated compounds [12,23]). The formation of biodegradable films can also be
tailored using retrogradation which can lead to the formation of stronger films [21]. On
the other hand, retrogradation can be detrimental for the storage and sensory quality [24]
of both fresh and frozen starch-based foods. Other properties like hydrophilicity can be
disadvantageous for biodegradable films, which need to have strong barrier properties to
prevent migration of film components into food.
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To improve raw starch properties, and to tailor these for specific applications, modifi-
cation is often necessary [7,8,21,25]. Modification can be used to improve processability,
physicochemical characteristics but also nutritional quality, texture, and functionaliza-
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tion [4]. Modification can be conducted via chemical, physical, enzymatic, or genetic
methods [8].

Chemical modification involves changing the functionalization of the starch either
via esterification, etherification, cationization, oxidation or cross-linking [4,7,8]. Physical
modification involves the use of heat, moisture, or decomposition. This is typically done to
improve water solubility or to reduce particle size [8,21]. Enzymatic modification involves
the use of enzymes under mild reaction conditions to change the functionalization of starch
with a lower activation energy [4]. This is particularly attractive due to the specificity and
selectivity of these treatments, minimizing the formation of unfavorable by-products [4].
Genetic modification involves changing the properties and functionalization of starch by
changing the genotype of the crop itself [26]. Biotechnology can improve the starch yield,
structure, and functionality (typically termed “molecular farming” [26]).

Due to starch’s important role within food-based industries, its accurate charac-
terization is critical [27]. The techniques used to characterize starch can be segmented
broadly into: rheological [28], X-ray techniques [2,17,29–31], thermal analysis [32], mi-
croscopy [25,33–35] and spectroscopic methods including nuclear magnetic resonance
(NMR) [36–40], infra-red (IR) spectroscopy [34,41] and Raman spectroscopy [14,31,42,43].
Table 1 shows examples of each of these methods.

Table 1. Characterization methods for native and modified starch and starch-based biodegrad-
able materials.

Broad Technique Analytical Method Property Analyzed Description Reference

Rheology Rheometer Viscosity Continuous shear tests performed on starch
nanoparticles to measure apparent viscosity [28]

Microscopy

Scanning electron
microscope(SEM) Granule morphology

SEM morphology comparison between potato,
corn, wheat, and rice as well as enzymatically

modified starches
[25,33]

Transmission electron
microscopy (TEM)

Granule shape and
surface features

Ultrasonically treated (modified) starch
analyzed in thin cross-sections of granules

obtained by ultramicrotome
[35]

Atomic force
microscopy (AFM) Morphology of films Starch-based biodegradable film surfaces

analyzed by AFM in tapping model [33]

X-ray technique

Small angle neutron
scattering (SANS) Lamellar structure Lamellar architecture and crystalline structures

of starch during hydrolysis [2]

Small angle X-ray
scattering (SANS) Nanostructure Nanostructure of the freeze-dried wheat starch

pastes after repeated heating and cooling [29]

X-ray diffraction Crystallite morphology
X-ray diffraction patterns of sweet potato

amylose before and after retrogradation using
copper, nickel foil-filtered and Ka radiation

[30]

Thermal analysis Differential scanning
calorimetry (DSC)

Glass transition
temperature and

melting point

Starch-TiO2 nanocomposite films glass
transition temperature and melting point

analysis by DSC
[32]

Spectroscopic

Nuclear magnetic
resonance (NMR) Structural features Characterization of native and modified starch

and starch gelatinization procedure [39,40]

Infra-red (IR) spectroscopy Structural features Analysis of the structure of retrograded
maize starch [41]

Raman spectroscopy Amylose content
Determination of amylose content in starch

FT-Raman spectroscopy with
germanium detector

[42]

Dong et al. [28] (see Table 1) studied the rheological properties of starch nanopar-
ticles. This study showed how starch nanoparticles behave like a viscous liquid at low
concentrations and have a gel-like viscosity (with excellent flow behavior) at higher concen-
trations. This analysis facilitated the optimization of process conditions to achieve desirable
processing functionality.
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Morphological properties of starch can be analyzed by means of microscopy (see
Table 1). In one study [26], scanning electron microscopy (SEM) was used to show how
starch’s granule shape can be significantly influenced by plant type. Potato starch was
shown to have an oval shape while corn and rice starch was polyhedral in nature. Wheat
starch appeared lenticular. Characterization of the shape and size of starch granules is
important as these factors influence the gelatinization of starch and its performance as a
thickener, texturizer or for encapsulation used (see Figure 1 [19]). Other morphological
studies (see Table 1) have shown that SEM can be used to characterize the porous nature of
modified starch [25], while TEM can be used to characterize the smoothness of starch after
ultrasonication-based modification [35].

X-ray techniques can be used to characterize the structure of starch before and after
retrogradation (see Table 1) [2,28,29]. As retrogradation occurs, the amorphous nature of
starch changes to a more crystalline state. This can be detrimental or useful, depending
on the application, as shown in Figure 1. Retrogradation can be analyzed and quantified
using X-ray diffraction (XRD) [30] or via IR and iodine-binding UV [41]. In the former
study [30], 2θ angles of a retrograded starch sample from sweet potato were found at 14.7◦,
20.7◦, 24.3◦, 26.5◦, and 29.9◦. XRD can also be used to distinguish between A- and B-type
starch, where strong diffraction patterns can be found either at 15◦ and 23◦ 2θ (A-type) or
5.6◦ and 17◦ 2θ (B-type) [44].

Thermal techniques such as differential scanning calorimetry (DSC) and thermogravi-
metric analysis (TGA) are commonly used to determine the glass transition temperature,
gelatinization temperature, melting temperature and moisture content of starch and starch
composites [32,45–47]. One example of this, shown in Table 1, was an analysis of the glass
transition temperature (Tg) and melting point (Tm) of starch-TiO2 nanocomposite films
using DSC [32]. In this case, TiO2 was shown to increase both Tg and Tm, a beneficial
property for packaging systems.

Spectroscopic techniques such as infrared (IR) and Raman spectroscopy (see Table 1)
have been used to characterize starch structure and amylose content, respectively [41,42].
These characteristics are important for identifying and predicting retrogradation, which
is favored at high amylose–amylopectin ratios and can limit applications of starch (see
Figure 1). Solution state nuclear magnetic resonance (NMR) is another spectroscopic
technique that can be used to characterize structural features including branching and the
degree of substitution for modified starch [39].

In all cases in Table 1, the characterization of starch was needed to explain the connec-
tion between form, functionality, and performance of starch for various applications. Recent
reviews have focused on the characterization of starch from the perspective of traditionally
used methods. Here, the focus is on the characterization of starch using the strong, yet
not commonly used technique of solid-state NMR (ssNMR) [48]. As eloquently noted by
Blazek et al. [2] “attempts to apply techniques traditionally not widely used in food science
provide fascinating challenges and opportunities for modern food materials science”.

ssNMR is a powerful technique, well known for its use in studying the structure
and dynamics of carbohydrate polymers [48,49]. This includes, but is not limited to,
starch [18,50], cellulose [51] and alginate [49]. While limited in terms of resolution and sen-
sitivity, ssNMR enjoys several advantages over different analytical techniques. ssNMR is a
quantitative, non-destructive, and non-invasive experiment. It can be used to obtain infor-
mation on samples in all different physical states, for both amorphous and heterogeneous
compounds [52,53] as well as to measure different nuclei within the same sample.

Highly valuable information can be aggregated when experiments are performed with
a combination of different ssNMR techniques—such as magic angle spinning (MAS) and
cross polarization (CP) [50]. The CP MAS NMR technique is well known for enhancing
the sensitivity of low gyromagnetic ratio nuclei (e.g., 13C, 15N and 31P), via the cross-
polarization effect, starting from high gyromagnetic ratio nuclei (e.g., proton) relying on
the strong heteronuclear dipolar coupling in the system. However, the technique is not
considered quantitative due to its low efficiency when heteronuclear dipolar coupling
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is weak, as in the case of mobile and highly mobile systems. Single pulse experiments
provide quantitative results when set with sufficient recycle delays (five time the spin-
lattice relaxation time T1), granting complete relaxation of the targeted nuclei. CP can be
considered a useful sensitivity enhancement technique to discriminate rigid molecules
while an improved modified version for rigid and mobile molecules exists: the CPSP. CPSP
provides its greatest benefits over the standard CP for the 13C nuclei with short relaxation
values and cross-polarize inefficiently [54]. Different NMR pulse sequences have shown
capabilities for detecting mobile regions (regions with weak heteronuclear dipolar coupling)
including NOE (Nuclear Overhauser Effect) and INEPT (insensitive nuclei enhanced by
polarization transfer). These experiments were able to overcome the efficiency limitations
of CP and provided enhanced sensitivity for mobile regions [55].

To obtain deep insights into the carbon skeleton chemical structure for starch-based
materials, 2D INADEQUATE (Incredible Natural Abundance Double Quantum Technique)
is one of the most powerful NMR techniques available. This technique relies on J(C-C) to
provide information about the carbon skeleton. 2D INADEQUATE is not used extensively
in characterizing materials due to its extremely low sensitivity when compared to a 1D 13C
direct excitation experiment.

Enhancement techniques can be used to improve sensitivity of 2D INADEQUATE. For
instance, 13C isotopic labeling can be used on the sample (e.g., algae, plant and fungal cell
wall [48]). This is, however, not used often due to the complexity and cost [48]. Alternatively,
a cryogenic probe (cooling the detector coil to 20 K) can be used for polymeric materials,
e.g., polyolefins [56]. Enhancement can also be achieved via magic angle spinning dynamic
nuclear polarization (MAS-DNP) [48,57].

MAS and CP are standard techniques used in ssNMR for the study of organic and
polymeric materials. A wealth of information on carbohydrate polymers can be obtained
from these techniques including: polymorphism, degree of substitution/crosslinking,
grafting position, crystallinity index, solvent–biopolymer interactions, aggregate formation,
polymer chain dynamics and lipid–biopolymer interactions [58–61].

2. Study of Starch Polymorphism

Starch is the most abundant biopolymer in plants, consisting mainly of amylose
and amylopectin. These form semicrystalline granules with a wide range of crystallinity
between 15 and 45% [62]. Starch’s semicrystalline structure can be classified into A, B and C
polymorphs, with the latter existing from the combination of A and B [63]. The crystalline
orientation for A and B polymorphs is a parallel double helical strand. They differ in their
lattice structure: with the A polymorph having a monoclinic lattice corresponding to a B2
space group with 8 molecules of water, and the B polymorph having a hexagonal lattice
corresponding to a P61 space group with 36 molecules of water [62,63]. Another crystalline
structure exists, mainly forming after the recrystallization of gelatinized starch, the V-form,
and is based on a single helical strand of glucopyranosyl chains [64].

The 13C CP MAS NMR experiment is a powerful and straightforward analytical tool for
studying the molecular organization [65], semicrystalline vs. amorphous structure [66–70],
and mobility of the polymeric chains of starch [71–74]. The spectrum depicted in Figure 2a
consists of three main regions including: (I) the region between 60 and 65 ppm, assigned to
C6, (II) theregion between 68 and 78 ppm, assigned to the ring of the molecule C2,3 and 5,
followed by C4 at 84 ppm, and (III) the region between 90 and 105 ppm, assigned to C1 [43].

The starch polymeric structure is assembled of crystalline and amorphous regions
differing in the torsion angles of the α-(1 → 4) glycosidic bond. Thus, carbon atoms at
opposite ends of the glycosidic bond possess different local electron densities in their
different ordering structures [43]. Upon decomposing and deconvoluting the C1 region in
Figure 2b,c, it is possible to determine the type of crystalline packing. Three deconvoluted
peaks appear at 99, 100 and 101 ppm, having the same intensity ratio. This indicates three
distinct classes of torsion angles were assigned to an A-polymorph with a monoclinic lattice.
Two deconvoluted peaks appear at 100 and 101 ppm, which indicates that two distinct
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classes of torsion angles were assigned to a B-polymorph with a hexagonal lattice. Three
different peaks assigned to interfacial conformations were observed at 94, 97 and 103 ppm
and represented in Figure 2c. Moreover, the C4 signal at the opposite end of the glycosidic
bond at 84 ppm was related directly to the amorphous phase content in the sample, thus
showing less information compared to the C1 signal [43,67,68,75].
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by i, ii and iii. Adapted with permission from Ref. [43]. Copyright 2012, Elsevier.

To obtain higher-resolution spectra, 2D INADEQUATE ssNMR experiments based
on NOE (Nuclear Overhauser Effect) and CP were performed on 13C-labeled starches
produced from Chlamydomonas reinhardtii microalgae [76]. The complete assignment of
native and retrograded starches (including all the crystalline and amorphous forms) were
resolved, and chemical shifts for carbon atoms C2, 3 and 5 (overlapped and poorly resolved
in 1D spectra) were fully assigned [76]. The latter have never been reported before.

This NOE-based experiment, represented in Figure 3A, was used for signal enhance-
ment of the mobile regions (reported via dashed lines as non-reducing terminal glucose
groups) of native starch (A-polymorph). These mobile regions had weak heteronuclear
dipolar coupling. Their signal intensities were enhanced due to their close proximity
to the directly irradiated nuclei where the NOE is transferred to the mobile region via
cross-relaxation effect.

Meanwhile, the CP-based experiment represented in Figure 3B was more efficient for
detecting the amorphous regions (high-density populated regions with strong heteronuclear
dipolar coupling). This is due to the polarization transfer from high- to low-gyromagnetic-
ratio spin-active nuclei (protons to carbon).

The spin correlation between the crystalline domains appeared to be well resolved
in the NOE-based experiment, while the amorphous domains were observed better in
the CP-based experiment (having different chemical shifts and line shape). Overall, the
2D ssNMR experiments were able to characterize the structure of both highly crystalline
amylopectin and poorly crystalline B-type amylose. Moreover, new chemical shifts and
multiplicities were assigned and an interpretation for the ordered, disordered, chain length,
crystallinity and amylose/amylopectin ratio was provided [76].
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3. Study of Structural and Dynamic Heterogeneity in Starch

Several factors have a direct effect on, and bear responsibility for, the structure het-
erogeneity of starch-based products and food products. These factors include: water
content [77–80], pH changes [81–84], storage conditions [85–88], temperature and pres-
sure [89–92] and enzymatic degradation [93–96].

On a molecular level, these heterogeneities appear in the forms of granule swelling,
starch gelatinization and granule disintegration [73,77,97]. However, studying such hetero-
geneous structures is challenging, with few techniques being capable of holistic analysis.
Polarization transfer 13C ssNMR spectra based on CP and insensitive nuclei enhanced by
polarization transfer (INEPT) experiments are considered an alternative approach. CP-
based experiments exhibit better efficiency on rigid crystalline and amorphous structures,
while INEPT-based ones depend directly on the mobility of polymeric segments and flex-
ible gelatinized chains [97,98]. The CP spectrum for dry uncooked pasta (represented in
Figure 4a) reveals broad peaks of starch’s rigid structure, while INEPT shows no peaks
of starch except for some visible peaks related to lipids and proteins. Upon soaking the
pasta in water for 1h, the broad peaks in the CP spectrum represented in Figure 4b become
narrower, and the C1 region becomes more resolved, showing a mixture of type A and B
polymorphic crystalline structures.
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The INEPT experiment appears to work better for soaked starch; however, only
relatively small peaks were observed from the starch region which could be assigned
possibly to mobile fractions of dissolved starch or amylose leakage. The INEPT experiment
showed peaks related to lipids and proteins with higher intensities compared to the dry
starch pasta [97].

A different approach for measuring and assigning the local mobility of a heterogeneous
structured compound is by the comparison of CP and single pulse CP (CPSP) MAS NMR
experiments [99]. This approach was used for starch (maize) hydrogels [99]. In this case,
the local environments for all carbon atoms were investigated, except for C4 where little
difference was observed. Under CPSP conditions, several additional peaks (represented
in Figure 5A and labelled in green) were detected when the spectrum was overlaid and
compared to the normal CP MAS experiment. These newly detected peaks are considered
more mobile compared to the rest of the structure.

To obtain a better understanding, spectral deconvolution was applied to the C1 region,
which was separated into three different peaks, represented in the insert of Figure 5B. The
side peaks, appearing only in the CP MAS experiment at 99.8 and 100.8 ppm, exhibited
reduced local mobility compared to the central peak at 100.3 ppm, appearing exclusively in
the CPSP MAS spectrum, which exhibits an increase in the local mobility. The full spectral
deconvolution and quantification represented in Figure 5B showed the local mobility and
dynamics of the starch hydrogel structure. It also confirmed the change that occurred in the
helical packing observed in results from powder X-ray diffraction data, reported in [99].
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4. Study of Dynamics in Starch in the Presence of Plasticizers and
Structural Modifications

Many industrial and food applications of starch are directly related to its physical-
chemical properties, such as gelatinization, crystallinity, adhesion, solubility, and viscosity.
Starch plasticization, via the addition of water and glycerol in different proportions, can
tune the thermoplastic properties and change the phase transition of starch. This, in turn,
produces a physically modified starch in a homogeneous polymeric state [100–104].

Carr–Purcell–Meiboom–Gill (CPMG) echo decay train [105,106] is an essential compo-
nent in NMR pulse sequences used for measuring the dynamic properties of starch [107].
Train pulses refocus the inhomogeneous broadening of the nuclear spins. This makes it
possible to obtain spin–spin T2 relaxation decays that possess crucial information regarding
the dynamics and composition of native and plasticized starch. The CPMG decay curves
presented in Figure 6a show a slight difference for native starch (10.8% water) and starch
with addition of water (24.2% water). However, upon the addition of glycerol, a significant
difference was revealed. Three separated peaks appeared for native and water mixed starch,
as represented in Figure 6b. In contrast, four peaks were observed in the case of glycerol
addition (with and without water).
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Figure 6. T2 relaxation time NMR measurements: (a) CPMG-based NMR experiments for starch with
variable glycerol and water content; and (b) T2 time distributions obtained from the CPMG decay
curves via Laplace inversion. Adapted with permission from Ref. [107]. Copyright 2013, Elsevier.

From the three peaks observed for native starch, two could be related to the rigid
backbone chain. The first peak at 0.2 msec could be associated with the polymeric chain
segments with the lowest mobility located close to the branched backbone. The second
peak at 1 msec could be associated with a more mobile segment located away from the
core branched region. The third peak at 20 msec represents the mobile branches of the
amylopectin microstructure and free amylose end chains.

Upon the addition of water, a shift in the mobile and semi-mobile peaks to higher
T2 values was observed. The peak corresponding to the rigid component shifted in the
opposite direction, thus indicating the formation of soft matter structures. The addition of
glycerol lead to the formation of a semi-mobile region. This semi-mobile region consists of
two peaks at 0.6 and 2.5 msec and a mobile one at around 20 and 70 msec. This is related to
an increase in the amylose free end chains and amylopectin lateral branches. This suggests
an increase in the total mobility of the starch polymeric chain [107].

Starch modification and blending with active compounds have been considered a wide
sectional area in the food and product industry. However little information, on a molecular
level, is known about the dominant interactions and binding sites between the starch
and the integrated active compounds [108–116]. The interaction between potato starch
and cuminaldehyde was analyzed via ssNMR [117], and found to be based on hydrogen
bonding, with primary starch binding sites on the oxygen atoms of the hydroxyl-2, 3
functional groups [117].
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Conventional solid-state NMR experiments, including the 1H single pulse depicted in
Figure 7a and the 13C CP MAS experiments presented in Figure 7b, were performed on
porous starch (PS) and a blend of starch and cuminaldehyde (C/PS). For the purposes of
comparison, a 13C solution state NMR experiment was conducted on cuminaldehyde (C).
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Figure 7. ssNMR techniques for measuring the structure and relaxation properties of PS (black) and
C/PS (red): (a) single pulse 1H MAS NMR spectra for PS and C/PS; (b) 13C CP MAS NMR spectra
for PS and C/PS compared to solution state spectrum of cuminaldehyde; and (c) 1H T1 relaxation
curve for cuminaldehyde; and (d) 1H T1 relaxation curve for C/PS. Adapted with permission from
Ref. [117]. Copyright 2022, Elsevier.

The results obtained from proton and carbon solid-state NMR spectra were consistent
with starch loaded with significant amounts of cuminaldehyde. Upon comparing the
solution state spectra of cuminaldehyde to the solid-state one for C/PS, it was found that
only a single methyl peak appeared in the solution state spectrum, while three peaks be-
tween 20 and 30 ppm were detected in the solid-state spectrum. This indicates interactions
between cuminaldehyde methyl groups and starch. It also indicates that three different
environments of free and adsorbed cuminaldehyde were present. The same phenomena
appeared in C3 of the phenyl group, where two different peaks appeared in the solid-state
spectrum compared to one single peak in solution state.

Molecular mobility was investigated by measuring the relaxation properties for cumi-
naldehyde represented in Figure 7c and C/PS represented in Figure 7d. The 1H T1 measure-
ments show a significant difference in the molecular dynamics between cuminaldehyde in
its pure form (1H T1 = 1.5 sec) and when adsorbed in the starch structure (1H T1 = 1.92 sec).
The increase in the 1H T1 values for cuminaldehyde was attributed to the restricted mobility
of the cuminaldehyde molecules in the starch structure, thus resulting in an increase in the
longitudinal relaxation [117].
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5. Future Perspectives and Conclusions

Starch is one of the most abundant components in food products. However, it pos-
sesses a complicated semicrystalline packing ordered structure, which creates a dilemma
for investigators resolving the molecular structure, polymorphism and solvent–matrix
interactions. Several analytical techniques have been used to investigate the structure
of starch, but none as efficient at providing information about the structure and dynam-
ics in a quantitative, non-destructive way. ssNMR has proven to be a useful technique
when it comes to the inspection of the structure and dynamics of food derivatives, since
the majority of such compounds have disordered to semicrystalline structures with wide
range of polymorphs. Using ssNMR, valuable information can be gathered about the
dynamics, crystallinity, water pools, degree of modification, starch blending and structural
heterogeneity of starch-based compounds.

Recently, ssNMR has seen major developments in pulse sequences such as water-
edited 1D 13C and 2D 13C-13C CP MAS experiments and 3D NMR experiments. It has also
seen a wide range of newly developed hardware including, but not limited to, Pulse Field
Gradient NMR, comprehensive multiphase NMR, low field NMR, magnetic resonance
imaging and microimaging, ultra-high-magnetic-field magnets, CryoProbes, and ultra-fast
MAS probes. This opens the way for resolving the full structure of native, gelatinized,
plasticized and modified starch, as well as starch-based products.

Advanced hyperpolarization and sensitivity boosting techniques have developed
significantly and have been applied to different materials, including carbohydrate and
cellulose-based systems [48,57,118,119]. This is especially true for MAS-DNP, where this
technique enabled the performance of low sensitivity and time-consuming experiments.
These advances enhance conventional NMR techniques [120], and provide higher sensitivity
and resolution. This enables investigations to reach a deeper level of understanding with
regards to starch structure, reaction mechanisms, intermediates detection, starch-blends
interactions, ion diffusion and drug delivery release performance.
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