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Abstract 

Debonding of coatings from substrate due to coating compression occurs in many engineering applications. A 
simplified analytical approach for the estimation of the ultimate coating compression leading to debonding is 
developed in this paper, assuming an assigned out-of-plane defect of the coating. The formulation is based on the 
solution of a beam on a Pasternak (two parameters) elastic foundation, and on the assumption of a Mode I 
cohesive failure of the coating-substrate interface. The resulting formulas are simple and require the knowledge 
of a limited number of parameters. 
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1  INTRODUCTION 

   The estimate of the limit capacity of adhesive lap joints is an important engineering problem, since 
the majority of structural failures are reported to take place starting from joints, and it has attracted the 
attention of many researchers over the years and given rise to a number of different approaches. A 
particular type of joint, constituted by an eccentrically compressed layer of coating attached onto a 
substrate by an adhesive, is considered in this paper (see Figure 1). An interesting example of these 
type of coatings is represented by civil tile claddings, usually employed for both floorings and external 
walls of civil buildings, where the eccentricity is the consequence of out-of-plane defects due to poor 
workmanship in tile placement. 
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Figure 1 – Scheme of the problem. 

 

Strength based approaches to the failure of joints were initiated by the early works of Volkersen (1938) 
and Goland and Reissner (1944) for single lap joints, where perfect elasticity of both adhesive and 
adherends was postulated, and have undergone a continuous refinement over the years (see e.g. 
Bigwood and Crocombe, 1989; Tsai et al., 1998; Tong, 1998; Yang et al., 2004). Fracture mechanics 
approaches for a plate debonding from a rigid substrate, have been studied by several authors, in 
particular for the analytical modeling of the peel test. Among others, De Lorenzis and Zavarise (2008) 
used the estimates of the energy released during peeling provided by Williams (1997) and Thouless 
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and Jensen (1992) to obtain an analytical mixed mode prediction of fracture propagation conditions to 
be compared with finite element simulations. Yuan et al. (2007) studied the elastic response of a thin 
plate bonded to a rigid substrate under peeling load as a beam on a Pasternak foundation (Pasternak, 
1954), though without providing a complete explicit analytical solution. The Mode I closed form solution 
discussed by Williams and Hadavinia (2002) appears to be particularly useful for the purposes pursued 
in the present paper and will be used as a starting point for the developments required for the study of 
the problem in Figure 1. 

In recent years, the problem of the debonding of different lap joint configurations has also been the 
object of numerical finite element simulations by several authors. See e.g. Andruet et al. (2001), 
Gonçalves et al. (2002), Schmidt and Edlund (2006), Edlund et al. (2009), Gustafson and Waas (2009) 
and Mahaboonpachai et al. (2010). Venturini and coworkers, developed boundary element approaches 
for cohesive crack structural analyses (see e.g. Manzoli and Venturini, 2007, Leonel and Venturini, 
2009 and 2010, Ferreira et al. 2011). 

In the proposed simplified approach, it is assumed that debonding occurs according to a Mode I 
mechanism, described through a cohesive interface between the coating and a rigid support. In the 
considered problem, the compression force N  has an eccentricity e  and generates a bending moment 
Ne  at the coating edge which acts as driving force for decohesion. Two different assumptions have 
been considered for the behavior of the adhesive interface: a linear elastic behavior up to failure or a 
rigid-cohesive behavior as shown in Figure 3. In both cases, it is possible to compute the limit state in 
closed form (Williams and Hadavinia, 2002, Carpinteri et al., 2008) and hence determine a bilateral 
bound for the safety margin of the adopted coating. Reference is made to the geometry and material 
properties of a specific, realistic joint configuration, corresponding to a tile of a civil flooring placed onto 
a concrete substrate. 

The following notation will be used for each material i : =iE  Young's modulus, =i  Poisson's ratio, 

=iG  shear modulus, 
2

= =
1

i
i

i

E
E





 plane strain modulus, =it  thickness, with = , ,i c a s  for coating, 

adhesive and substrate, respectively. Small strains and displacements and negligible second order 
effects are assumed throughout the paper. 

 

2  ELASTIC DEBONDING LIMIT 

      The problem considered in the present work is shown in Figure 1: it concerns the possible 
debonding of a coating joined to a substrate by an adhesive layer. Debonding is assumed to be caused 
by an eccentric compression force N  which produces the bending moment Ne at the coating edge. 
The limit value of N  in the coating, which triggers the decohesion mechanism, can be computed in 
closed form using the simplified model proposed by Williams and Hadavinia (2002). The coating is 
modeled as an elastic Euler-Bernoulli beam of length L  laying on an elastic-fracturing spring bed 
constituted by the adhesive (see Figure 2). To determine the elastic limit of the system, the adhesive is 
modeled as an elastic-brittle interface (model (a) in Figure 3), while to determine the ultimate strength, 
the adhesive is modeled as a rigid-cohesive interface (model (b) in Figure 3). The free body diagrams 
of a coating element is shown in Figure 2 for the Pasternak type assumption (two elastic parameters) 
on the adhesive behavior which will be considered in what follows; the simpler Winkler type model (one 
elastic parameter) is recovered as a special case for vanishing shear stiffness 2k . 
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Figure  2 – Coating on spring bed, Pasternak model. 
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Figure  3 – Constitutive behavior of the adhesive: (a) elastic model (b) rigid-cohesive model. 

 

 For the elastic-brittle interface, considering the Pasternak idealization of the adhesive with spring 

constant 1 = /a ak E t  and 2

 
=

2
a c

a

G t
k

t
, the transversal displacement v  is obtained from the following 

differential equation 
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  (1) 

where 3= / 12c cI t  is the moment of inertia and N , V  and M  are the compression force, the shear 

force and the bending moment of a unit strip of the coating. For solution convenience let us introduce 
two parameters  and   with dimensions of an inverse of a length  

 
2

4= , =
4 4  

a c a

c c a c c a

E t G

E I t E I t
 



     (2) 

 and rewrite equation (1) in the form: 
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4 2

2 4
4 2

4 = 0
d v d v

v
dx dx

      (3) 

 By introducing the non-dimensional variables  
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     (4) 

 equation (3) can be more conveniently rewritten in non-dimensional form  
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  (5) 

The non-dimensional solution can be obtained in closed form using a symbolic manipulator  

          1 2=  cosh 2 cos  cos 2 sin  cosh 2 cos  sin 2 sin  w s m C s s C s s       

        3 4sinh 2 cos  cos 2 sin  sinh 2 cos  sin 2 sin  C s s C s s         (6) 

 where   is such that  

  
2

2

1
cos 2 =

4




 (7) 

 and the constants iC  and   are given by  

      2 2
1

1
= cos 2 2 sin  cosh 2 2 cos cos 2cos sinC        

   

    2
2

1
= sin 2 2 sin sin cos sinh 2 2 coscosC       

   

    2
3

1
= cos sin sin 2 2 sin sinh 2 2 cossinC       

    (8) 

      4

1
= cos sin cos 2 2 sin cos sin cosh 2 2 cos sin 2C           

   

            = cos 4 cos 2 cosh 2 2 cos cos 4 cos 2 cos 2 2 sin 2                  

  

The critical bending moment m  corresponding to the attainment of the limit elastic displacement 0v  at 

= 0s  is obtained by setting (0) = 1w  in (6), which gives  

 
1

1
=m

C
 (9) 

 and hence  

 
2

. . 0

1

(0) =cr el c c
P

v E I
N

eC

 

   (10) 

 The Winkler type solution corresponding to 2 = 0k  can be obtained from (6) by simply setting = 0  

and reads (subscript W  stands for Winkler-type solution)  
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 

   (11) 

In the following developments, reference will be made to the specific geometry and material properties 
reported in Table 1, representative of a typical engineering tile cladding configuration, where the 
coating is composed by a sequence of tiles and the substrate is a concrete layer. With these values, 

the transverse displacement 0= /w v v in (6), for assigned bending moment   . .0 = cr el
WM N e , where 

. .cr el
WN  is given in (11), is plotted in Figure 4 for different values of the parameter  . 

  

Table  1 – Parameter definition for considered model problem 

 = 8ct  mm   = 50cE  GPa   = 0.2c  

 = 3at  mm   = 3.5aE  GPa   = 0.3a  

 = 40st  mm   = 22sE  GPa   = 0.175s  

 3
0 =1.87 10v   mm   0 = 2.4  MPa   = 400L  mm 

 = 0.1096  mm 1    = 43.84L    = / 2 = 4ce t  mm 

 = 0.05684  mm 1    = 22.74L    = 0.75  

 = 0.063  mm 1    = 25.44L    ˆ = 0.19  

 = 0.066 v mm   0 = 2.4  MPa  
 = 0.08fG  

N

mm
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Figure  4 – Deflection of the tile for different ;L  = 0L  (finer curve), 0.05 , 0.1 and 0.2  (thicker curve). 

  

When considering the shear stiffness of the adhesive, there are shear stresses on the tile bottom 

surface and, for equilibrium reasons, the resulting axial forces varies along the tile. Hence . .cr el
PN  varies 

along the tile length. The resultant F  of these shear stresses can be computed from the Pasternak 

solution (6) as 
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  
0

= = 0
2 2

L
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t dx t     (12) 

 The value in correspondence of the attainment of the critical opening  0 =v 0,v  does not require the 

solution of (3) and is simply  

 . .
0

 
=

2
cr el a c

a

G t
F v

t    (13) 

 Outside the debonding zone, the tile deflection tends to vanish together with the shear stresses in the 

adhesive. As a consequence, the axial force remains constant. The critical axial force  . .cr el
PN L  at the 

end of the tile is obtained from the tile horizontal equilibrium (see Figure 5) as   

    . . . .= 0cr el cr el cr
P PN L N F    (14) 
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Figure  5 – Free body diagram of the tile including shear stresses (only horizontal forces are shown). 

  

It is remarkable that, for a wide range of parameters including the values listed in Table 1, numerically 

one has   . . . .2
0cr cr el cr el

P W
c

e
F N N

t   . Figure 6 shows the ratio  . . . .0 / ( )
2

cr el cr el crc
P W

t
N N F

e   for = 2,ce t  

as a function of ,  for different values of tile length L . From this parametric study it appears that the 

ratio is 1  whenever > 5L , condition which is satisfied for the range of material and geometric 
parameters of usual tile flooring. One can therefore obtain a simple estimate of the tile compressive 

force at the decohesion elastic limit  . .cr el
PN L , outside the debonding zone, which accounts for the 

shear stiffness of the adhesive 
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Figure  6 – Ratio between the exact Pasternak solution and the approximate solution given in Eq. (15). 

 

3  COHESIVE CRACK DEBONDING LIMIT 

      The ultimate strength of the coating is obtained assuming that a cohesive process zone of length 

pzL  can develop along the adhesive interface. The rigid-cohesive behavior shown in Figure 3b is 

assumed for the normal stress, while the shear behaviour is assumed to remain elastic. In this case the 
coating transverse displacement is governed by the following differential equation 
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  (16) 

 The condition / ( ) = 0pzdv dx L  accounts for the fact that no singularity exists at the tip of the cohesive 

process zone. 

Using the definition of   given in Eq. (2)2, introducing another parameter   with the dimensions of the 

inverse of a length  

 0
4=

c cE I v


     (17) 

where v  is the limit opening displacement of the cohesive model (Figure 3b), and introducing the 
following non-dimensional quantities  

 
2

ˆˆ ˆˆ = , = , = , =pz
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v Ne
w s x L m

v v E I
 

     (18) 

 also in this case the problem can be conveniently formulated in non-dimensional form:  
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After integration of the differential equation and enforcement of the boundary conditions, the 
transversal displacement in non-dimensional form is given by 

          ˆ ˆ ˆ ˆ

1 2 3 4
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 where the non-dimensional parameter ̂  is defined by  
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The length pzL  of the process zone can be computed by imposing  0 =v v  or, in non-dimensional 

form,  0 =1w , i.e.: 
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ˆ ˆ ˆ ˆ ˆ ˆ2 1 cosh 4 cosh cos sinh 2 sinh sin

e e e e

e e e e

   

    

 

 

    
   

 

   
  (23) 

 Solving this equation for m̂  provides the following expression which depends on the non-dimensional 

length ̂  of the process zone  

          
           

ˆ ˆ ˆ4 4

ˆ ˆ ˆ ˆ

ˆ ˆ1 cos 1 cosh1ˆˆ =
ˆ ˆ ˆ ˆ ˆ ˆ2 sinh 2 sinh sin sinh 2 cosh cos

e e e e
m

e e e e

   

    

 

 

   
 
    

 


   
  (24) 
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 The critical condition is assumed to be attained for the minimum value of  ˆm̂   for which the ultimate 

separation v  is reached at x  = 0 . This turns out to be given by: 

 
 ˆˆ

= 0
ˆ

dm

d




   (25) 

 Equation (25) implicitly defines the critical length of the process zone ˆ ,cr  which is a function of the 

material parameters and geometry through ̂  defined in Eq. (21). The critical value  ˆˆ ˆ=cr crm m   of the 

moment at decohesion can then be obtained from (24) by setting ˆ ˆ= cr  . Even though ˆ
cr  cannot be 

given an explicit expression, it can be numerically computed from (25) for assigned ̂  and then 
substituted in Eqs. (24) and (20) to obtain the solution at decohesion in terms of critical bending 
moment and coating displacement. From Table 1, for the considered reference problem one has 
ˆ = 0.19  which, from (25), gives ˆ =1.79cr . If instead ˆ = 0 , corresponding to vanishing shear stiffness 

in the adhesive, is used one obtains ˆ =1.87cr , with an error on ˆ
cr  of 1.1%. 

The influence of the adhesive shear stiffness on the solution is further evidenced in Figures 7a and 7b. 
Figure 7 shows the vertical tile displacement along the process zone obtained with the adhesive shear 

stiffnesses = 0aG  MPa, 673 MPa, 1346 MPa,  which correspond to ˆ = 0 , ˆ = 0.10 , ˆ = 0.19 , a very 

similar distribution is obtained. Since the normal tractions ( )x  in the tile-adhesive interface are 

proportional to the displacement as in Figure 3, one can conclude that the normal traction distribution 

obtained neglecting the shear stiffness ( ˆ = 0 ) is a reasonable approximation, in particular in the case 
of tile floorings of practical interest.  

Unlike for the displacements, the shear stiffness greatly affects the distribution of the tangential 
stresses between the tile and the adhesive as shown in Figure 7b. The value of shear stresses 
corresponding to the material parameters of Table 1 ( =1346aG  MPa) are very large and certainly not 

compatible for a real adhesive with the assumed purely elastic shear behavior. The correct solution of 
the problem would require the formulation, on the basis of experimental results, of a proper mixed 
mode decohesion model for the adhesive. However, the above analysis shows that both the length of 
the critical process zone and the normal stress distribution are almost independent of the assumed 
shear behavior of the adhesive. This conclusion can be used to obtain an estimate of the maximum 
compression force sustainable by the tiles without causing decohesion from the adhesive. 
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Figure  7 – (a) Vertical tile displacement for different adhesive shear stiffness. (b) Tangential stress for varying 
adhesive shear stiffness. 
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  To the purpose of assessing the critical value of the coating compression leading to coating 
decohesion, consider the free body diagram of the coating at the decohesion limit ( ˆ (0) =1w ), either 

neglecting or considering shear stresses (Figure 8). The quantities related to the case without shear 
stresses in the left sketch are labeled with subscript W  (Winkler-type model). Hence, denoting by W  

the normal tractions between tile and adhesive in the Winkler case, global equilibrium for the two cases 
reads (see Figure 8 for a pictorial interpretation of symbols):  

        
0

0 = ; 0 =  
LpzW

W W pz W W pzW W
N N L N e L x dx   

        
0

0 = ; 0 =  
2

Lpzt
pz pz

t
N F N L N e F L x dx       (26) 

 As discussed in the previous section, from the comparison of the deflected shapes in Figure 7a, one 
can assume pz pzW

L L  and W   obtaining from (26)  

    0 1
2

t
pz W

t
N L N F

e
    
 

   (27) 

 This result extends to the nonlinear case the relation (15) obtained for the elastic solution and allows 
to compute an estimate of the critical compression force in the coating at the decohesion limit . .cr cohN , 

provided that the critical compression force in the limit of zero shear stiffness . .cr coh
WN  and the critical 

resultant of the shear stresses . .cr cohF  at the decohesion limit are known 

 . . . . . . 1
2

cr coh cr coh cr coh t
W

t
N N F

e
    
 

   (28) 

  

N(0)
N(Lpz)



NW(0)
NW(LpzW)

LpzW

W
F

Lpz

ee
tt/2

Figure  8 – Coating free body diagram neglecting shear stresses (left sketch, index W) and considering shear 
stresses (rigth sketch). 

 

The value of . .cr coh
WN  can be obtained as a special case from the above analysis setting = 0  and 

hence ˆ = 0 . In this case, the solution greatly simplifies and one can find closed form expressions to 
be used in the simplified analysis of debonding. In particular, Eq. (24) simplifies to  

  
ˆ=0

ˆ ˆcos coshˆˆ =
ˆ ˆsinh sin

m


 
 

   (29) 

 and the critical condition reads  

 
ˆ ˆ ˆ= 0 cos cosh 1= 0
ˆ cr cr

dm

d
  


   (30) 

 from which the following non-dimensional values of the process zone length and of the moment are 
found 
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 ˆ=0
ˆ ˆ=1.8751; =1cr crm


    (31) 

 Note that the last equality follows from Eqs. (29) and (30) using the identity:  

 2 2ˆ ˆ ˆ ˆsinh sin = 1 1cosh coscr cr cr cr      

Imposing ˆ=0
ˆ =1,crm


 from (17) and (18) 4 , one can obtain the critical coating compression leading to 

decohesion  

 . . 0=
 

cr coh t t
W

E Iv
N

e v

 

   (32) 

The value of . .cr cohF  in (27) cannot be deduced from the solution of Eq. (16) since, as already 

remarked, the values of   computed in that way would exceed the shear strength of the adhesive. A 

first, simple estimate of . .cr cohF  can be obtained assuming a linear distribution of   in the process zone 

with maximum value equal to the shear strength of the adhesive 0.   

 . .
4

0 0
0

ˆ1 1.8751
=

2 2
cr coh cr t tE I v

F  
 






   (33) 

 Using (32) and (33) in Eq. (28) one obtains 

 . . 0 4
0

0

1.8751
1

 2 2
cr coh t t t t tE I E I v tv

N
e v e






      
 

  (34) 

 which gives a simple closed form expression to evaluate the cohesisve crack debonding limit of the 
coating. 

 

4  CONCLUSIONS 

    A simplified approach has been proposed for the estimation of the ultimate strength of a coating-
substrate adhesive joint under a compression force applied to the coating with a known eccentricity. 
This problem can be representative of the one occuring in civil tile claddings, under assigned 
temperature variation and/or other sources of inelastic substrate shrinking. The proposed approach 
leads to simple closed formulas which require the knowledge of a limited number of parameters. The 
procedure can be easily implemented in a spreadsheet and used for the selection of the most 
appropriate adhesive for a given joint configuration. 
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