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Abstract 1 

Self-incompatibility (SI) is a genetic mechanism of hermaphroditic plants to prevent inbreeding 2 

after self-pollination. Allogamous Poaceae species exhibit a unique gametophytic SI system controlled by 3 

two multi-allelic and independent loci, S and Z. Despite intense research efforts in the last decades, the 4 

genes that determine the initial recognition mechanism are yet to be identified. Here, we report the fine-5 

mapping of the Z-locus in perennial ryegrass (Lolium perenne L.) and provide evidence that the pollen 6 

and stigma components are determined by two genes encoding DUF247 domain proteins (ZDUF247-I 7 

and ZDUF247-II) and the gene sZ, respectively. The pollen and stigma determinants are located side-by-8 

side and were genetically linked in 10,245 individuals of two independent mapping populations 9 

segregating for Z. Moreover, they exhibited high allelic diversity as well as tissue-specific gene 10 

expression, matching expected characteristics of SI determinants known from other systems. Revisiting 11 

the S-locus using the latest high-quality whole-genome assemblies revealed a similar gene composition 12 

and structure as found for Z, supporting the hypothesis of a duplicated origin of the two-locus SI system 13 

of grasses. Ultimately, comparative genomic analyses across a wide range of self-compatible and self-14 

incompatible Poaceae species revealed that the absence of a functional copy of at least one of the six 15 

putative SI determinants is accompanied by a self-compatible phenotype. Our study provides new 16 

insights into the origin and evolution of the unique gametophytic SI system in one of the largest and 17 

economically most important plant families. 18 

Keywords: Self-incompatibility (SI); Poaceae; Perennial ryegrass (Lolium perenne L.); SDUF247-I; 19 

SDUF247-II; ZDUF24-I; ZDUF247-II; DUF247; sS; sZ   20 
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Introduction 1 

The mating systems and mechanisms behind sexual reproduction of flowering plants are diverse: 2 

monoecious plants produce flowers with only one reproductive organ, either female or male, promoting 3 

cross-pollination (Willson 1983). Hermaphroditic plants developed various strategies promoting cross-4 

pollination, determined, for example, by the morphology of the reproductive organs (Ganders 1979) or 5 

by differences in the maturity of these organs (Lloyd and Webb 1986). 6 

Self-incompatibility (SI) is a mechanism preventing self-pollination upon self-pollen recognition 7 

by the female organ. Different genetic mechanisms exist in angiosperms (De Nettancourt 1977; 8 

Takayama and Isogai 2005). In most flowering plants, the recognition of self-pollen by the pistil is 9 

genetically controlled by a single multi-allelic locus, the S-locus. The S-locus encodes at least two closely 10 

linked genes, representing the male and female SI determinants (Fujii et al. 2016). The same S-allele 11 

specificity expressed by the pollen and the pistil will halt pollen tube development and hence, successful 12 

fertilization (Takayama and Isogai 2005). 13 

In-depth knowledge about the underlying genetic control has been acquired for three single 14 

locus multi-allelic SI systems: the S-RNase type SI system (McClure et al. 1989; Kao and Tsukamoto 2004; 15 

Sijacic et al. 2004; Williams et al. 2015; Sassa 2016), the Papaveraceae type SI system (Foote et al. 1994; 16 

Wheeler et al. 2009; Poulter et al. 2010; Wilkins et al. 2014; Wang et al. 2018); and the Brassicaceae type 17 

SI system (Nasrallah et al. 1987; Schopfer et al. 1999; Takasaki et al. 2000; Sehgal and Singh 2018). The 18 

diverse identity of the genetic determinants in these well-studied SI systems strongly supports the 19 

hypothesis that different SI systems have evolved independently in different lineages (Steinbachs and 20 

Holsinger 2002; Charlesworth et al. 2005). Despite their profound differences, several evolutionary 21 

features are shared, such as the high allelic and nucleotide diversity within a species but also the low 22 

nucleotide variation between the SI determinants of the same allelic specificity (Charlesworth et al. 23 

2005). Furthermore, the suppression of recombination between the male and female SI determinants in 24 

SI systems is considered essential, as a recombination event may produce a nonfunctional SI haplotype 25 

leading to the breakdown of SI (Fujii et al. 2016). 26 

SI in the grass family (Poaceae) is yet to be elucidated, despite early research by Lundqvist dating 27 

back to 1954 (Lundqvist 1954). In grasses, SI is reported in many tribes such as Triticeae (Secale cereale 28 

L., Hordeum bulbosum L.), Paniceae (Panicum virgatum L.), Oryzeae (Oryza longistaminata A. Chev. & 29 

Roehr), Andropogoneae (Miscanthus sinensis Anderss.) and the Poeae (Festuca pratensis Huds., Lolium 30 

perenne L., Lolium multiflorum Lam.) (see Li et al. (1997) and Do Canto et al. (2016) for a complete list). 31 
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The SI system in grasses is gametophytically controlled and genetically governed by two multi-allelic and 1 

independent loci, S and Z (Lundqvist 1954; Hayman 1956; Cornish et al. 1979). Self-recognition is based 2 

on the interaction between male and female determinants of both loci. The fertilization is halted when S- 3 

and Z-haplotypes of the pollen are matched in the stigma. The recognition of self-incompatible pollen in 4 

grasses, followed by the inhibition of the pollen tube growth, is very rapid, occurring at the stigma 5 

surface within minutes after germination (Shivanna et al. 1982). The downstream reaction upon the 6 

initial self/nonself-recognition is unknown. The involvement of calcium (Ca2+)-induced signaling 7 

transduction, protein phosphorylation, and the proteolysis pathway have been reported in preliminary 8 

studies (Wehling et al. 1994; Klaas et al. 2011). The current knowledge suggests that self-incompatible 9 

species of the entire Poaceae family share the same SI system, similarly as all dicotyledonous species 10 

investigated at the molecular level belonging to the same family share the same SI system (Li et al. 1997; 11 

Baumann et al. 2000). In perennial ryegrass (L. perenne), the S- and the Z-locus have been mapped to 12 

chromosomes 1 and 2, respectively, using genetic linkage mapping (Thorogood et al. 2002). These two 13 

loci have also been located on chromosomes 1 and 2 of rye (S. cereale; Wricke & Wehling, 1985; Gertz & 14 

Wricke, 1989) and sunolgrass (Phalaris coerulescens Desf.; Bian et al., 2004), for example. The syntenic 15 

region in self-compatible rice (Oryza sativa L.) can be found on chromosome 5 for S and chromosome 4 16 

for Z (Jones et al. 2002).  17 

More recently, the S-locus has been mapped to a 0.1 centimorgan (cM) region by Manzanares et 18 

al. (2016) in perennial ryegrass, containing eight genes. The gene SDUF247 (or LpSDUF247, as isolated in 19 

L. perenne) has been suggested as the gene encoding for the pollen component, due to its high sequence 20 

diversity and the fact that the allelic sequences observed at that gene were fully predictive for the S-21 

locus genotypes known to segregate in the population used for fine-mapping. Furthermore, within 22 

SDUF247, a frameshift mutation has been identified within self-compatible darnel (Lolium temulentum 23 

L.), whereas all self-incompatible species analyzed within the Festuca-Lolium species complex were 24 

predicted to encode functional SDUF247 proteins. However, due to the absence of a contiguous genome 25 

sequence at the S-locus, the identity of the female component remains elusive (Manzanares et al., 2016). 26 

Fine-mapping of the Z-locus is less advanced: In rye, the genomic region containing the Z-locus 27 

was narrowed down to 1.5 cM on chromosome 2RL (Hackauf and Wehling 2005). Shinozuka et al. (2010) 28 

identified the orthologous region spanning 60 kb on chromosome 5 in Brachypodium distachyon (L.) P. 29 

Beauv.. Using a comparative genomics approach based on the synteny between chromosome 5 of B. 30 

distachyon and chromosome 2 of perennial ryegrass, BAC clones co-segregating with the Z-locus were 31 

identified and used for sequencing. From this study, a gene encoding for a protein containing a DUF247 32 
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domain has been identified in the Z-locus region of perennial ryegrass, as well as three other candidate 1 

genes (Shinozuka et al. 2010). 2 

Longstamen rice (O. longistaminata), a self-incompatible African rice species, was recently 3 

reported to have maintained the two-locus gametophytic SI system of grasses (Lian et al. 2021). 4 

Comparative genomic analysis enabled the identification of the gene orthologous to the putative male S-5 

locus determinant of perennial ryegrass (LpSDUF247). The gene named OlSS1 encodes for a member of 6 

the DUF247 protein family. A second gene (OlSS2), also predicted to encode for a protein of the DUF247 7 

family, was identified nearby. Sequence polymorphism analysis of the genes adjacent to OlSS led to the 8 

identification of a possible female determinant at S, OlSP. The OlSP gene contains an N-terminal YfaZ 9 

domain of unknown function, and an ortholog to this gene in H. bulbosum (HPS10) has been previously 10 

presented as a possible candidate for the female determinant at the S-locus (Kakeda et al. 2008; Kakeda 11 

2009). The reported high density of sequence polymorphisms and expression data for the identified 12 

genes at the S-locus in O. longistaminata showed that OlSS1 and OlSS2 are plausible candidate genes for 13 

the male determinant, whereas OlSP likely encodes for the female determinant at S (Lian et al. 2021). 14 

Whole-genome sequences and high-quality assemblies thereof have been established for several 15 

major self-compatible crop species within the Poaceae family, for example for rice (O. sativa; Stein et al. 16 

2018), maize (Zea mays L.; Schnable et al. 2009), barley (Hordeum vulgare L.; Mayer et al. 2012), rye 17 

(S.cereale; Li et al. 2021; Rabanus-Wallace et al. 2021), wheat (Triticum aestivum L.; Appels et al. 2018), 18 

and purple false brome (B. distachyon; Vogel et al. 2010). In contrast, the genomic resources available 19 

for outbreeding forage grasses like perennial ryegrass, Italian ryegrass (L. multiflorum), orchardgrass 20 

(Dactylis glomerata L.), and meadow fescue (F. pratensis) are limited. The primary limitations hampering 21 

the development of high-quality genome assemblies within outbreeding forage grasses are their high 22 

level of heterozygosity and the high content of repetitive sequences within the genome (Byrne et al. 23 

2015). In recent years, more contiguous genome assemblies have become available for forage grasses 24 

and non-major crop species, including two reference-grade genome assemblies of perennial ryegrass 25 

(Frei et al. 2021; Nagy et al. 2022), a high-quality draft diploid genome assembly of Italian ryegrass 26 

(Copetti et al. 2021), and a chromosome-scale diploid genome assembly of orchardgrass (Huang et al. 27 

2020). The concurrent availability of high-quality Poaceae genome assemblies from self-incompatible 28 

and self-compatible species finally allows for an intensive comparative genomics approach to investigate 29 

the underlying genetic basis for SI. 30 

The main objective of this study was to further characterize and advance our understanding of 31 

the two-locus gametophytic SI system in Poaceae species by identifying the male and female 32 
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determinants at the S- and Z-locus. Specifically, we aimed to locate the Z-locus through fine-mapping in 1 

perennial ryegrass using a number of mapping individuals sufficiently high to reach gene-scale 2 

resolution. Learning from the gene composition, order, and orientation at the Z-locus, we further aimed 3 

to reconstruct the gene content at the S-locus and compare it to other species of the Festuca-Lolium 4 

species complex and grasses in general. Finally, through a complementary set of genetic analyses, 5 

including sequence diversity and gene expression analysis, we aimed to identify the S- and Z-locus 6 

determinants and distinguish between the male and female components of the SI system present in the 7 

family of grasses. 8 

Results 9 

Fine-mapping of the Z-locus in perennial ryegrass 10 

A total of 10,245 plants from two genetically unrelated perennial ryegrass populations, hereafter 11 

referred to as VrnA-XL and DTZ, were used for fine-mapping. With a similar approach as described by 12 

Manzanares et al. (2016), the two markers CADELP and Lp02_555 flanking the Z-locus identified a total of 13 

89 and 99 recombination events in VrnA-XL and DTZ, respectively (Supplementary Table 1). 14 

To establish the DNA sequence structure at the Z-locus and to locate the recombination events, 15 

the perennial ryegrass BAC libraries described by Farrar et al. (2007) were screened using the marker 16 

TC116908 (Hackauf and Wehling 2005). The BAC library constructed from the genotype NV#20F1-30 17 

(hereafter referred to as F1-30) was particularly suitable, as F1-30 is one of the two parental genotypes 18 

that was used to develop VrnA-XL. The BAC clone, identified to contain the Z-locus of F1-30, was grown, 19 

its DNA was isolated, and sequenced. Sequence assembly reconstructed a 99,618 bp long single contig of 20 

P205C9H17P (GenBank accession number OP292309), which was used to develop DNA markers for fine-21 

mapping (Supplementary Table 1). Projection of the recombination events from the two different fine-22 

mapping populations VrnA-XL and DTZ on P205C9H17P identified a region of 37,125 bp co-segregating 23 

with the Z-locus (hereafter referred to as haplotype P205), delimited by the markers BAC_BEG and 37600 24 

(Supplementary Table 1, Figure 1). 25 

The annotation of the genome region co-segregating with the Z-locus was done using available 26 

genomic resources (Byrne et al. 2015; Begheyn et al. 2018; Copetti et al. 2021; Frei et al. 2021; Nagy et 27 

al. 2022), gene prediction software (Stanke and Morgenstern 2005), and a manual BLAST-based 28 

approach. Six genes were identified on P205: LpUSP1, LpZDUF247-I, Lolium perenne stigma Z (LpsZ), 29 

LpZDUF247-II, LpGK, and LpLRR8 (Figure 1 and Table 1). The Z-locus as revealed for P205 was compared 30 

to the reference-grade perennial ryegrass genome of the doubled haploid genotype Kyuss (Frei et al. 31 
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2021): While the overall gene order was conserved between the two perennial ryegrass haplotypes, the 1 

partial duplication of LpGK on P205 (leading to LpGK-1 and LpGK-2) was missing in Kyuss. Furthermore, 2 

the orientation of LpZDUF247-I was not conserved between the two perennial ryegrass genotypes 3 

(Figure 1). Two Z-locus genes containing a DUF247 domain were present in both genotypes and were 4 

annotated as two different genes (LpZDUF247-I and LpZDUF247-II), their nucleotide sequence being too 5 

different to be considered as a recent gene duplication.6 

Fiure 1: The gene composition of the genome region co-segregating with the Z-locus in perennial ryegrass (Lolium perenne L.). 7 
Given ae the genotypes F1-30 (haplotype P205, above) and the doubled haploid genotype Kyuss (below). The sequence of the 8 
Z-locus is cntinuous, but for clarity, the gene- and marker-less regions are represented as shaded breaks. The genes are 9 
represented with bars, and their orientation is shown with the pointy side representing the 3’ end. The self-incompatibility 10 
candidate genes are colored in teal and blue. The markers used for the fine-mapping are represented by black bars, and the 11 
number of recombinants for each marker is indicated between brackets. The synteny between homologous genes is 12 
illustrated with lines connecting the two haplotypes, and in case of orientation change, a small circular arrow is used. On the 13 
right, the compatibility phenotype is indicated (SI = self-incompatible). 14 

Comparative genomics – Synteny of the S- and the Z-locus in the Poeae tribe 15 

and the Poaceae family 16 

The S-locus in perennial ryegrass, as described by Manzanares et al. (2016), contained nine 17 

unique genes, and the putative male determinant was identified as a gene harboring a DUF247 domain 18 

(LpSDUF247, hereafter referred to as LpSDUF247-I). In order to establish a contiguous genome sequence 19 

covering the S-locus, thereby identifying genes potentially missed in the fragmented assembly used by 20 

Manzanares et al. (2016), a comparative genomics analysis with the available genome sequence 21 

resources of Lolium spp. (Table 2) was applied. By such analysis, three additional genes were found: 22 

LpTPR, another gene encoding for a DUF247 domain-containing protein (LpSDUF247-II), and Lolium 23 

perenne stigma S (LpsS) (Table 1). 24 

Comparison of the structure and the annotation of the genes found at the S-locus with the six 25 

newly identified genes at the Z-locus revealed similarities between the two SI loci in Lolium spp. (Table 26 

1). The SI-DUF247 genes (SDUF247-I, SDUF247-II, ZDUF247-I, and ZDUF247-II) as well as sS, and sZ are 27 

here referred to as SI candidates, based on the already identified male determinant (SDUF247-I) by 28 

Manzanares et al. (2016) and the potential duplicative origin of the two-locus SI system in grasses 29 

(Lundqvist 1962). 30 
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Table 1: Gene composition at the Z- and the S-locus of the gametophytic self-incompatibility (SI) system in ryegrass (Lolium spp.). 1 

  
Lolium perenne 

P226/135/16
 
(inbred)

 a
 

Lolium perenne 

Kyuss (doubled haploid) 
b
 

Lolium multiflorum. 

Rabiosa (heterozygous) 
c
 

 

SI-locus Gene name Gene annotation name Gene annotation name Gene annotation name Gene description NCBI 

Z USP1 XLOC_023214 KYUS_G_chr2.53349 Lmu01_1905G0001430 & Lmu01_3448G0000660 Ubiquitin carboxyl-terminal hydrolase 

Z ZDUF247-I XLOC_014562 KYUS_G_chr2.53348 Lmu01_1905G0001490 & Lmu01_3448G0000640 DUF247; Plant protein of unknown function 

Z sZ XLOC_023217 KYUS_G_chr2.53336 Lmu01_1905G0001500 & Lmu01_3448G0000650 Conserved hypothetical protein 

Z ZDUF247-II XLOC_014562 chr2 14505344..14507005 
d
 Lmu01_1905G0001500 & scf3448 1166016..1167647 

d
 DUF247; Plant protein of unknown function 

Z GK-1 XLOC_008351 KYUS_G_chr2.53334 Lmu01_1905G0001510 & Lmu01_3448G0000620 Glycerol kinase 

Z GK-2 XLOC_014564 NA 
e
 NA 

e
 Glycerol kinase 

Z LRR8 XLOC_008352 KYUS_G_chr2.53330 Lmu01_1905G0001520 & Lmu01_3448G0000600 LRR receptor like protein 

S RecQ XLOC_040775 KYUS_G_chr1.6323 Lmu01_818G0000120 & Lmu01_1212G0000470 Putative DNA helicase RecQ 

S TIR1 XLOC_005302 KYUS_G_chr1.6316 Lmu01_818G0000130 & Lmu01_1212G0000460 Transport inhibitor response 1-like protein 

S dsRNAbp XLOC_005304 KYUS_G_chr1.6309 Lmu01_818G0000140 & Lmu01_1212G0000450 Double-stranded RNA-binding protein 2 

S SNF2 XLOC_005306 KYUS_G_chr1.6308 Lmu01_818G0000150 & Lmu01_1212G0000440 Probable chromatin-remodeling complex ATPase chain 

S SDUF247-I 
chr1 16486 45765361.. 

45766956 
d
 

chr1 224982167..224983759 
d
 Lmu01_818G0000190 & Lmu01_1212G0000400 DUF247; Plant protein of unknown function 

S sS XLOC_013962 chr1 224985003..224984683 
d
 Lmu01_818G0000200 & Lmu01_1212G0000430 Conserved hypothetical protein 

S SDUF247-II 
chr 1 4028 45834579.. 

45836240 
d
 

KYUS_G_chr1.6214 Lmu01_818G0000210 & scf1212 4724980..4726635 
d
 DUF247; Plant protein of unknown function 

S PLP-2 XLOC_040815 NA 
e
 NA 

5
 & Lmu01_1212G0000360 Pyridoxal phosphate homeostasis protein 

S NBS-LRR-2 XLOC_040814 NA 
e
 NA 

5
 & Lmu01_1212G0000350 NBS-LRR-like resistance protein 

S PLP-1 XLOC_040815 KYUS_G_chr1.6210 Lmu01_818G0000230 & Lmu01_1212G0000340 Pyridoxal phosphate homeostasis protein 

S NBS-LRR-1 XLOC_040817 KYUS_G_chr1.6209 Lmu01_818G0000240 & Lmu01_1212G0000330 NBS-LRR-like resistance protein 

S TPR-2 NA 
e
 NA 

e
 Lmu01_818G0000280 & NA 

e
 Anaphase-promoting complex subunit 7 

S TPR-1 XLOC_019013 KYUS_G_chr1.6161 Lmu01_818G0000290 & Lmu01_1212G0000280 Anaphase-promoting complex subunit 7 

S Ca
2+

bp XLOC_000861 KYUS_G_chr1.6125 Lmu01_818G0000300 & Lmu01_1212G0000270 Serine -protein phosphatase 2A regulatory subunit B 

Note: The annotation is given for each gene of the three genotypes P226/135/16 (Lolium perenne L., inbred), Kyuss (L. perenne, doubled haploid), and the genotype M.02402/16 of the 2 
cultivar Rabiosa (Lolium multiflorum Lam., heterozygous). Each gene is presented with a description of the function derived from the gene ortholog in the genus Oryza (NCBI, taxid 4527). 3 
Gene duplications are marked with an "-" plus an Arabic number at the end of the gene name.

 4 
a 

Genome sequence from Nagy et al. (2022) and annotation file from Begheyn et al. (2018), 
b
 Genome sequence and annotation file from Frei et al. (2021), 

c 
Genome sequence and 5 

annotation file from
 
 Copetti et al. (2021), 

d
 positions within a scaffold (scf) or chromosome (chr) are given as no annotation is present, 

e
 no orthologous gene sequence was identified 6 ACCEPTED M
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To further study the gene content, order, and orientation at the S- and the Z-locus, the comparative genomic 1 

analysis was extended to include a wide range of self-compatible and self-incompatible species belonging to the tribe 2 

Poeae (Figure 2 and Figure 3) and to the family Poaceae (Figure 4 and Figure 5), as summarized in Table 2. 3 

Generally, a high level of genome synteny was observed at the S- and the Z-locus. The highest degree of 4 

synteny was found within species and genotypes from the Poeae tribe. Minor deviations included changes in the gene 5 

orientation, the duplication level of certain genes, and the gene order of the SI candidate genes (Figure 2 and Figure 3). 6 

In contradiction to the high degree of synteny within the Poeae tribe stands the reference-grade genome assembly of 7 

the self-compatible L. perenne genotype P226/135/16, which displayed a unique gene order at both the S- and the Z-8 

locus: At the Z-locus, the region harboring LpGK-1 and LpZDUF247-II was inverted and reintegrated (Figure 2). At the S-9 

locus, the region harboring LpSNF2, LpdsRNAbp, and LpTIR was also inverted (Figure 3). 10 

The S- and the Z-locus in genotypes outside the Poeae tribe showed mainly a high synteny with the S- and the 11 

Z-locus of Lolium spp. (Figure 4 and Figure 5), especially closely related species of the Triticaceae tribe (T. aestivum, H. 12 

vulgare, and S. cereale). Notable gene order alterations within the Triticaceae tribe were found in the S. cereale 13 

genotype Weining at the S-locus (Figure 5). A lower but comparable degree of synteny was observed within the 14 

Oryzeae tribe (L. perrieri, O. longistaminata, and O. sativa subsp. japonica) and Sorghum bicolor L., except that the SI 15 

candidate genes are located outside of the perennial ryegrass S-locus. The gene cluster consisting of SDUF247-I, 16 

SDUF247-II, and sS was not flanked by the perennial ryegrass flanking markers or the flanking genes. For O. sativa 17 

subsp. japonica, the SI candidate genes were 3.14 Mbp upstream of the flanking marker 05_02889 (Manzanares et al. 18 

2016). In L. perrieri, the distance was 2.1 Mbp between the flanking marker 05_02889 and the SI candidate genes. For 19 

O. longistaminata, the SI candidate genes at S were present as duplication on individual scaffolds. However, whether 20 

the two copies result from a duplication or if both S-haplotypes were included in the haploid assembly remains elusive. 21 

In S. bicolor, the SI candidate genes were located on chromosome 10, whereas the S-locus flanking markers and 22 

flanking genes were localized on chromosome 8. In S. italica and Z. mays, almost no synteny could be observed at both 23 

loci, mainly through the absence of the SI candidate genes (Figure 4 and Figure 5). 24 

  25 
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The functionality of the SI candidate genes and their orthologs was evaluated in addition to the synteny within 1 

the Poeae tribe and Poaceae family. A total of six SDUF247 and seven ZDUF247 gene pairs could be extracted from four 2 

perennial ryegrass genotypes (Kyuss, F1-30, P226/135/16, and S23 Z) and one Italian ryegrass genotype (genotype 3 

M.02402/16 of the cultivar Rabiosa, hereafter referred to as genotype Rabiosa). All the extracted SI-DUF247 genes 4 

shared the following characteristics: an intronless open reading frame (ORF) leading to a protein size of 508 to 559 5 

amino acids (AAs), the translated protein belongs to the protein family DUF247 (pfam03140) and has a predicted non-6 

cytoplasmic domain at the C-terminus, followed by a transmembrane domain and a small cytoplasmic domain at the N-7 

terminus according to InterProScan. The six sS and seven sZ genes extracted from the same genotypes all shared the 8 

following characteristics: an ORF with one intron leading to a protein size of 82 to 122 AAs and a predicted signal 9 

peptide at the C-terminus, followed by a non-cytoplasmic domain according to InterProScan. These characteristics 10 

were used to assess the functionality of the SI candidate genes across the Poaceae family, i.e., a gene was considered 11 

functional if all of the above-mentioned characteristics were met. Therefore, the assessment of the functionality of SI 12 

candidate genes is solely based on the genomic sequence; neither their expression nor their translation was taken into 13 

account. 14 

In the Poeae tribe, all SI candidate genes were present and assessed to be functional (Figure 6). Within the 15 

Poaceae family, orthologous genes of sS and sZ were mainly predicted to be functional, unlike most of the SI-DUF247s 16 

(Figure 6). Furthermore, all Poaceae species and genotypes investigated displaying a self-incompatible phenotype 17 

always harbored six functional SI candidate genes (Figure 6) 18 
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Figure 2: Synteny maps of the Z-locus of multiple genotypes from the Poeae tribe. Lolium perenne L. genotype S23 Z and Lolium multiflorum Lam. 1 
represent diploid assemblies; therefore, both haplotypes are given. The phylogenetic tree (left) representing the different species was drawn 2 
according to the NCBI taxonomy database. The gene- and marker-less regions are represented as shaded breaks, and a white space indicates an 3 
assembly gap. The genes present at the Z-locus are represented with directed arrows, and self-incompatibility candidate genes are colored in 4 
teal and blue. The gene orientation is shown with the pointy side representing the 3’ end. The markers used for the fine-mapping are 5 
represented by black bars, and the number of recombinants for each marker is indicated between brackets for L. perenne Kyuss and F1-30. The 6 
synteny between genes is illustrated by lines, and in case of orientation change, a small circular arrow is used. In addition, the compatibility 7 
phenotype of the genotype is indicated on the right: self-incompatible (SI) or self-compatible (SC).  8 

Figure 3: Synteny maps of the S-locus of multiple genotypes from the Poeae tribe. Lolium perenne L. genotype S23 Z and Lolium multiflorum Lam. 9 
represent diploid assemblies; therefore, both haplotypes are given. The phylogenetic tree (left) representing the different species was drawn 10 
according to the NCBI taxonomy database. The gene- and marker-less regions are represented as shaded breaks, and a white space indicates an 11 
assembly gap. The genes present at the S-locus are represented with directed arrows, and the self-incompatibility candidate genes are colored in 12 
teal and blue. The gene orientation is shown with the pointy side representing the 3’ end. The markers used for the fine-mapping are represented 13 
by black bars, and the number of recombinants for each marker is indicated between brackets for L. perenne Kyuss and P226/135/16. The synteny 14 
between genes is illustrated by lines, and in case of orientation change, a small circular arrow is used. In addition, the compatibility phenotype of 15 
the genotype is indicated on the right: self-incompatible (SI) or self-compatible (SC).16 
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Figure 4: Synteny maps of the Z-locus of eleven Poaceae species. The phylogenetic tree (left) representing the different species was drawn 1 
according to the NCBI taxonomy database. For allohexaploid Triticum aestivum L., the three homologous genomes A, B, and D are given. The 2 
gene- and marker-less regions are represented as shaded breaks, and a white space indicates an assembly gap. The genes present at the Z-locus 3 
are represented with directed arrows, and the self-incompatibility candidate genes are colored in teal and blue. A nonfunctional gene copy of 4 
the self-incompatibility candidates is indicated with a white striped pattern. The gene orientation is shown with the pointy side representing the 5 
3’ end. The markers used for the fine-mapping are represented by black bars, and the number of recombinants for each marker is indicated 6 
between brackets for L. perenne Kyuss. The synteny between genes is illustrated by lines, and in case of orientation change, a small circular 7 
arrow is used. In addition, the compatibility phenotype is indicated on the right: self-incompatible (SI) or self-compatible (SC).  8 

Figure 5: Synteny maps of the S-locus of eleven Poaceae species. The phylogenetic tree (left) representing the different species was drawn 9 
according to the NCBI taxonomy database. For allohexaploid Triticum aestivum L., the three homologous genomes A, B, and D are given. The 10 
gene- and marker-less regions are represented as shaded breaks, and a white space indicates an assembly gap. The genes present at the S-11 
locus are represented with directed arrows, and the self-incompatibility candidate genes are colored in teal and blue. A nonfunctional gene 12 
copy of the self-incompatibility candidates is indicated with a white striped pattern. The gene orientation is shown with the pointy side 13 
representing the 3’ end. The markers used for the fine-mapping are represented by black bars, and the number of recombinants for each 14 
marker is indicated between brackets for L. perenne Kyuss. Lines illustrate the synteny between genes, and in case of orientation change, a 15 
small circular arrow is used. In addition, the compatibility phenotype is indicated on the right: self-incompatible (SI) or self-compatible (SC).16 
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Figure 6: Composition of the self-incompatibility candidate genes in 17 genotypes representing 13 different Poaceae species. A phylogenetic tree 1 
was drawn according to the NCBI taxonomy database on the figure's left. The compatibility phenotypes are indicated for each genotype: self-2 
incompatible (SI) or self-compatible (SC). A checkmark (✓) represents the presence of a functional gene, and an exclamation mark (!) indicates 3 
that the sequence is present but was evaluated to be nonfunctional. A cross (x) means no orthologous sequence was found. In addition, the 4 
position on chromosome or scaffold level of the self-incompatibility candidate genes in the genome is given. Lolium perenne L. genotype S23 Z 5 
and Lolium multiflorum Lam. represent diploid assemblies; therefore, both haplotypes are displayed. Triticum aestivum L. represents an 6 
allohexaploid species leading to a triplication of the S- and Z-locus. Besides, on chromosome 2B (chr2B), a nonfunctional copy of the ZDUF247-II 7 
was present three times. In Oryza longistaminata A. Chev. & Roehr, the gene copies of functional S self-incompatibility candidate genes are 8 
present twice on two different scaffolds. 9 
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Phylogenetic analysis of genes located within the S- and the Z-locus 1 

The allelic richness of the genes within the S- and the Z-locus in Lolium spp. was evaluated using the coding 2 

sequences from the perennial ryegrass genotypes Kyuss, F1-30, P226/135/16, S23 Z, and the Italian ryegrass genotype 3 

Rabiosa. A phylogenetic tree was constructed for each gene using the alleles present (Figure 7). The SI candidate genes, 4 

as well as NBS-LRR and LRR8, exhibited a high allelic richness. The remaining genes at the S- and the Z-locus were highly 5 

conserved within the genus Lolium. To further investigate the sequence diversity of the SI candidate genes, a pairwise 6 

comparison based on a T-Coffee alignment of the AA sequence was performed and displayed in a heat map 7 

(Supplementary Figure 1). The sS alleles showed a mean protein sequence identity of 52.9% with a standard deviation 8 

(σ) of 6.8. The mean protein sequence identity of the sZ alleles was significantly lower, being 32.5% (σ = 9.5). The mean 9 

protein sequence identity between the sS and sZ alleles was 28.1% (σ = 4.3). The SI-DUF247s showed a higher level of 10 

protein sequence conservation within the different alleles, with the mean protein sequence identity being 79.5% (σ = 11 

1.9) for SDUF247-I, 75.2 % (σ = 3.2) for SDUF247-II, 60% (σ = 6.7) for ZDUF247-I, and 53% (σ = 6.9) for ZDUF247-II. A 12 

comparison between all homologs and genotypes of the SI-DUF247s revealed mean protein sequence identities 13 

ranging from 40.9% to 45.2%.  14 

Expression analysis of genes located within the S- and the Z-locus 15 

To identify the female and the male components involved in the SI reaction, the expression pattern of the 16 

genes within the S- and the Z-locus in perennial ryegrass were analyzed using RT-qPCR. The expression pattern was 17 

investigated for the six SI candidate genes, one flanking gene at the Z-locus (LpGK) and three at S-locus (LpTIR1, 18 

LpdsRNAbp, and LpSNF2). Samples from the perennial ryegrass genotype S23 Z were taken from anther and stigma 19 

tissue at three development stages: one week before flowering (time point 0), two to three days before flowering (time 20 

point 1), and the day of flowering (time point 2). In addition, leaf tissue of S23 Z was sampled with no specific time 21 

point (time point NA).  22 

The high allelic diversity of LpsS, LpsZ and the LpSI-DUF247s made it necessary to analyze both alleles for these 23 

genes individually. The expression data were visualized in a polar chart (Figure 7), and a scatter plot (Supplementary 24 

Figure 2) as the relative gene expression ratio calculated according to Pfaffl (2001). Moreover, the ΔCt values (Ct value 25 

of the gene of interest minus the geometrical mean Ct value of the reference genes) were calculated to allow the 26 

comparison of the expression levels of different genes within the same sample and are displayed in a heat map 27 

(Supplementary Figure 3). 28 

Polar plots of the relative gene expression show that the LpSI-DUF247s genes displayed a tendency of anther-29 

specific expression with decreasing expression towards the day of flowering. In leaf and stigma tissue, little or no 30 

LpSDUF247 expression was measured (Figure 7, Supplementary Figure 2, and Supplementary Figure 3). In contrast, the 31 
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LpsS and LpsZ displayed a stigma-specific expression pattern. However, high expression was also measured in anther 1 

tissue for three biological replicates (A, C, and F) at time point 2 and the biological replicate E at time point 1 2 

(Supplementary Figure 2 and Supplementary Figure 3). Furthermore, LpsZ and LpsS in stigma tissue displayed the 3 

highest expression levels relative to the reference genes (Supplementary Figure 3). LpGK and LpSNF2 did not display a 4 

tissue-specific pattern and were expressed in all tissue types and development stages, with LpGK being overexpressed 5 

in leaves. The LpdsRNAbp showed an anther-specific expression with an apparent upregulation on the day of flowering. 6 

LpTIR1 displayed stigma-specific expression according to the RT-qPCR experiment. LpTIR1 showed up to a 14 times 7 

higher expression in the stigma on the day of flowering compared to the control sample (Anther T1 biological replicate 8 

A). 9 

 10 
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Figure 7: Phylogenetic trees and relative expression ratio of the genes at the Z-locus (A) and the S-locus (B). The 1 
phylogenetic trees and relative expression ratios are ordered according to the physical gene order as seen in Lolium 2 
perenne L. genotype Kyuss, and gene expression data is from the genotype S23 Z. The flanking genes are boxed in grey, 3 
whereas the self-incompatibility candidate genes are boxed in teal and blue. The scale bar in the top right corner 4 
represents one amino acid change per site, and the legend below shows the color code for the three tissue types used 5 
in the expression pattern analysis. For the LpsS, LpsZ, and the SI-DUF247s, the relative expression ratio measurement 6 
was explicitly performed for each allele present in the genotype. The two different alleles are displayed stacked on top 7 
of each other. For the remaining S- and Z-locus genes, the expression pattern was investigated with primers amplifying 8 
both alleles, and therefore only one polar plot is presented per gene. Only data points were included where the Ct 9 
difference was below 0.5, and the percent deviation was below 3% between the two technical replicates. Therefore, 10 
the standard error is not displayed in the figure. 11 
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Discussion 1 

After almost 70 years of research on the two-locus gametophytic SI system of grasses, we established the gene 2 

content, order, and composition at the S- and the Z-locus. This is a major advancement since Manzanares et al. (2016) 3 

reported the identification of the putative male component at S (LpSDUF247). In that work, however, at least one 4 

component remained elusive in the absence of a contiguous genome sequence at the S-locus region. Similarly, at the Z-5 

locus, only one LpDUF247 gene was mentioned together with LpTC116908 as prime candidates for SI determinants 6 

(Shinozuka et al. 2010). Our study further clarified the role of the genes identified previously and allowed the 7 

identification of two additional putative SI determinants, including the female components, at each locus. 8 

For each locus, two male and one female determinant are suggested to govern the SI system in grasses. All four 9 

putative male determinants have a similar gene structure and encode for proteins belonging to the same family 10 

(DUF247). The putative female determinants at S (sS) and Z (sZ) are also of similar gene structures and are predicted to 11 

code for secreted proteins with no known family membership. Typical characteristics of SI determinants could be 12 

observed for the putative SI genes, including genetic and physical linkage, high allelic richness, high sequence diversity, 13 

and an anther- or stigma-specific expression pattern. Furthermore, the absence of a functional copy of at least one of 14 

the six putative SI determinants is accompanied by a self-compatible phenotype within the Poaceae species. 15 

According to the hypothesis of Lundqvist (1962), the two-locus SI system in grasses originated from a 16 

duplication of a one-locus SI system. Following this hypothesis, the male and female determinants at S and Z represent 17 

gene duplicates with a similar gene sequence and structure (Yang et al. 2008). The sZ, ZDUF247-I, and ZDUF247-II at 18 

the Z-locus are the only three genes for which genes of similar structure and sequence were found at the S-locus (sS, 19 

SDUF247-I, and SDUF247-II) within self-incompatible grass species. The same protein family membership (DUF247), the 20 

same in silico motif predictions, similar protein size, and their conserved intron-less gene structures are clear indicators 21 

of a shared origin for the SI-DUF247s genes within grasses. The presence of two SI-DUF247s genes at each locus also 22 

suggests that a duplication event within a SI locus occurred prior to the duplication of the whole locus. For the sS and 23 

sZ, the data also indicates a duplicative origin as both are of similar size, have the same gene structure (one intron), 24 

and have the same in silico protein motif prediction within self-incompatible grass species. Furthermore, the presence 25 

of one additional coding sequence similar to SDUF247-II outside of the S- and Z-locus indicates even a further 26 

duplication event. The additional SDUF247-II sequence is located on chromosome 6 in the reference-grade genome 27 

assembly of the perennial ryegrass genotype Kyuss without an annotation (position: 11313479..11315143). 28 

The putative SI determinants at each locus were genetically and physically linked, indicating that they are 29 

inherited as a unit. The inheritance of SI determinants as a unit is necessary, as recombination events between SI 30 

determinants may lead to a breakdown of the SI system due to the generation of new haplotypes consisting of SI 31 
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determinants expressing different SI specificities (Takayama and Isogai 2005). However, at both loci in self-1 

incompatible grass species, the gene order and orientation vary, indicating preceding recombination events within the 2 

S- and Z-locus that, interestingly, did not lead to a breakdown of the SI system. Whereas unlikely due to the high 3 

quality of the genome assemblies used in this study, assembly errors at S and Z would represent an alternative 4 

explanation for the observed gene order and orientation changes. 5 

Besides the unifying scheme that the SI determinants must be inherited as one segregating unit, the 6 

physiological reaction and SI genetics dictate that male determinants must be expressed in the pollen. In contrast, the 7 

female determinants must be expressed in the stigma (Takayama and Isogai 2005). The putative SI determinants, 8 

already being in line with the duplicative origin of the SI system in grasses and showing a close linkage, all displayed 9 

either an anther- or stigma-specific expression pattern. The LpSI-DUF247s having an anther-specific expression, and the 10 

LpsS and LpsZ a stigma-specific expression, allowing the conclusion that the SI-DUF247s represent the putative male SI 11 

determinants, whereas the sS and sZ represent the putative female determinant of the grasses SI system. 12 

The LpdsRNAbp also showed anther-specific expression, whereas the LpTIR1 showed a stigma-specific 13 

expression. Nonetheless, their direct involvement in the self-recognition process of the SI system in grasses can be 14 

excluded (LpTIR1) or is highly unlikely (LpdsRNAbp): The design of the mapping population used by Manzanares et al. 15 

(2016) for the fine-mapping of the S-locus dictated the presence of five alleles, and only three alleles were found for 16 

LpTIR1. Our analysis aligns with these findings as TIR1 in the Lolium spp. analyzed showed high sequence conservation, 17 

uncharacteristic for an SI determinant. The same holds for the dsRNAbp, which, like LpTIR1, did not show a high allelic 18 

richness and sequence diversity within Lolium spp. In addition, the argument can be brought forward that, for dsRNAbp 19 

and TIR1, no gene with a similar gene structure or sequence is present at both loci, contradicting the duplicative origin 20 

hypothesis of the two-locus SI system in grasses. 21 

Besides the putative SI determinants being the only genes at the S- and the Z-locus suggesting a duplicative 22 

origin and at the same time showing an anther- or stigma-specific expression, they also showed the typical 23 

evolutionary characteristics of an SI determinant, i.e., a high protein sequence diversity and a high allelic richness 24 

(Charlesworth et al. 2005). The observed protein sequence diversity of the putative SI determinants in Lolium spp. was 25 

comparable to the ones observed within the S-RNase type SI system (Ioerger et al. 1990; Ushijima et al. 1998; Williams 26 

et al. 2014; Dzidzienyo et al. 2016), the Papaveraceae type SI system (Paape et al. 2011), and the Brassicaceae type SI 27 

system (Jany et al. 2019). The sequence identities were matched best with the S-RNase type SI system with a highly 28 

diverse female determinant (S-RNase) (Ioerger et al. 1990; Ushijima et al. 1998; Dzidzienyo et al. 2016) and more 29 

conserved male determinants (SLF) (Williams et al. 2014). This is similar to the putative SI determinants in grasses, 30 

where the putative male determinants (SI-DUF247s) were more conserved than the female determinants (sS and sZ). 31 

ACCEPTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sac259/6882748 by Aberystw
yth U

niversity user on 20 D
ecem

ber 2022



19 
 

In addition to the high sequence diversity, the expected high allelic richness was also matched. Each allelic 1 

sequence of the putative SI determinants represents a unique allele with one exception at the S-locus and one 2 

exception at the Z-locus. The sequence diversity and allelic richness analysis were limited to the sequence data of four 3 

perennial and one Italian ryegrass genotype. A more representative picture can be seen when the data presented here 4 

is combined with additional sequence data available. Especially for the LpSDUF247-I, a total of 24 allele sequences 5 

could be identified, which showed a mean protein sequence identity of 78.5% (σ = 3.7) when our data was combined 6 

with the allelic sequences identified by Manzanares et al. (2016) and Veeckman et al. (2019). 7 

Two more genes co-segregating with the S- or Z-locus would fulfill the requirement of high allelic richness and 8 

high sequence diversity: the NBS-LRR (NBS-LRR-1, NBS-LRR-2, and NBS-LRR-3) and the LRR8. Nonetheless, a possible SI 9 

determinant role is excluded for both: The involvement of the NBS-LRR in SI as an SI determinant was excluded in 10 

Manzanares et al. (2016) because the gene expression profile did not show a tissue-specific expression. Further, the 11 

NBS-LRR was present as gene duplication or triplication within multiple S-loci, and the sequences were pooled for the 12 

sequence diversity and the allelic richness analysis, biasing the results. The LRR8 is excluded as a possible SI 13 

determinant at the Z-locus because a marker with one recombination (BAC_BEG) lies within the gene's coding 14 

sequence. Further, for both the NBS-LRR and the LRR8, a gene with a similar gene structure and sequence is not 15 

present in both loci, contradicting the hypothesis of a duplicative origin of the two-locus SI system for grasses. Possible 16 

involvement in disease resistance was predicted for both genes, representing an alternative reason for the high allelic 17 

richness and the high sequence diversity observed (Mondragón-Palomino et al. 2002; McHale et al. 2006; Ng and 18 

Xavier 2011). 19 

As additional evidence that the here reported putative SI determinants indeed govern the SI system in grasses, 20 

a distinctive genotypic pattern within the S- and Z-locus of self-incompatible and self-compatible genotypes can be 21 

seen. All self-incompatible grass genotypes have a functional copy of the sS, SDUF247-I, SDUF247-II at S and sZ, 22 

ZDUF247-I, and ZDUF247-II at Z. A genotype missing a functional copy in any of the putative SI determinants showed a 23 

self-compatible phenotype. The two S. cereale genotypes are worth mentioning as the genotype Weining displayed a 24 

predominantly outcrossing phenotype with a low selfing rate (indicating the presence of a leaky self-incompatibility 25 

system), and the inbred line Lo7 displayed a self-compatible phenotype. They differ genotypically as the inbred line Lo7 26 

did not harbor a functional copy of the ZDUF247-I, representing an explanation for the breakdown of the SI system. In 27 

contrast, it cannot be concluded from a functional set of all six putative SI determinants that the plants show a self-28 

incompatible phenotype. The absence of a functional gene copy of an SI determinant, disrupting the initial self-29 

recognition process, is not the only source of self-compatibility (Do Canto et al. 2016). Similarly, a recombination event 30 

between the SI determinants, silencing of the SI determinants, or a mutation interfering with the downstream cascade 31 
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of SI unlinked to the S- and the Z-locus represent other sources of self-compatibility (Do Canto et al. 2016; Cropano et 1 

al. 2021). 2 

In our analysis, the perennial ryegrass genotype P226/135/16 represented the only case where six functional SI 3 

determinants were present but no self-incompatible phenotype was reported. The source of self-compatibility for that 4 

genotype remains unknown. But the loss of close linkage of the putative SI determinants at the Z-locus indicates a 5 

recombination event and a possible self-compatibility source (Takayama and Isogai 2005). 6 

Based on the physiological observations of the pollen tube growth and its halt in self-incompatible grass 7 

species, Heslop-Harrison and Heslop-Harrison (1982) suggested that the male determinant must be anchored in the 8 

membrane of the pollen and that the female determinant is a secreted and diffusible protein. A similar mechanism of 9 

the SI system was also suggested by Wehling et al. (1994). The putative male determinants (SI-DUF247s) being 10 

predicted to be membrane-bound proteins and the putative female determinants (sS and sZ) predicted to be secreted 11 

into the extracellular space would agree with the suggested physiological mechanisms. The identification of the 12 

putative SI determinants on the AA sequence level also allows us to further speculate about the mode of action of the 13 

SI system in grasses. It is plausible that the two SDUF247s and the two ZDUF247s each form a heterodimer, 14 

representing a receptor towards its ligand sS and sZ, respectively. The interaction of an SI-DUF247 heterodimer with its 15 

female determinant of the same SI specificity would trigger an unknown signal. If this unknown signal accumulates 16 

from both loci S and Z, a downstream reaction is triggered, leading to the halt of the pollen tube growth. Further, it is 17 

also plausible that all four SI-DUF247s would form a heterotetramer. The interaction of the SI-DUF247 heterotetramer 18 

with both the sS and sZ of the same SI specificity would trigger a downstream reaction, leading to the halt of the pollen 19 

tube growth. In order to elucidate the mode of action of the SI system in grasses and to test the proposed hypotheses, 20 

it will be crucial to functionally characterize the putative SI determinants in vivo using, for example, bimolecular 21 

fluorescence complementation (BiFC) or co-immunoprecipitation (Co-IP). 22 

Whereas our analysis was mainly focused on Lolium spp., it is commonly believed that the outbreeding nature 23 

of grass species can be attributed to the same SI system (Li et al. 1997; Baumann et al. 2000). This belief is further 24 

supported by the high synteny observed of the S- and Z-locus and especially the presence of functional copies of the 25 

putative SI determinants in self-incompatible species belonging to the Poeae tribe (L. perenne, L. multiflorum, and D. 26 

glomerata), Triticeae tribe (S. cereale), and Oryzeae tribe (O. longistaminata). Furthermore, for another member of the 27 

Triticaceae tribe (H. bulbosum), the gene HPS10 was presented as a possible candidate for the female determinant at 28 

the S-locus (Kakeda et al. 2008; Kakeda 2009). The HPS10 is orthologous to the presented putative female determinant 29 

at the S-locus (sS). Our findings further support those of Lian et al. (2021), who reported two male candidates at the S-30 

locus, OlSS1 and OlSS2, orthologous towards the SDUF247-I and SDUF247-II, and one female candidate, the OlSP, 31 

orthologous to the sS. 32 
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In conclusion, our study provides multiple lines of evidence that the SI-DUF247 are the male SI determinants in 1 

grasses at both loci (S and Z), whereas sS is the female determinant at S, and sZ is the female determinant at Z. The 2 

identification of the SI determinants enables the prediction of pollen compatibility and pollination efficiency as well as 3 

the targeted induction and exploitation of loss-of-function mutations at S or Z, leading to self-compatibility, both a 4 

quantum leap in the breeding of allogamous grass species. More broadly, our study offers new insights into the origin 5 

and evolution of the unique gametophytic SI system in one of the largest and economically most important plant 6 

family.  7 

 8 

Material and Methods 9 

Fine-mapping of the Z-locus in perennial ryegrass 10 

The two perennial ryegrass populations used for fine-mapping (VrnA-XL and DTZ) were designed to segregate 11 

for the Z-locus as described by Manzanares et al. (2016). VrnA-XL had its origin in the VrnA population (Jensen et al. 12 

2005), initially derived from a cross between a genotype of the Italian cultivar ‘Veyo2’ and an ecotype collected on the 13 

Danish island Falster. The F1 genotype F1-30 (SI composition S12Z22) was clonally propagated at a large scale and 14 

pollinated with pollen from a second F1 genotype (F1-39, S12Z12). The resulting offspring, i.e., seeds harvested on F1-30, 15 

were supposed to be heterozygous at the Z-locus. Homozygosity at the Z-locus either indicated rarely occurring self-16 

pollination or a recombination event between the marker under investigation and the Z-locus. Similarly, DTZ originated 17 

from the perennial ryegrass ILGI mapping family (Jones et al. 2002) and was developed by crossing the ILGI siblings 18 

P150/112/129 (S12Z13) and P150/112/132 (S12Z12) but in the opposite direction as reported in Manzanares et al. (2016), 19 

i.e., P150/112/129 as male and P150/112/132 as the female parent. 20 

Single seeds of both VrnA-XL and DTZ were grown in soil-filled plastic trays (8 x 12 pots), covered by a thin layer 21 

of sand. Around four weeks after germination, young leaf samples (approximately 15 cm long) were collected in 96-22 

well collection plates and used for high-throughput DNA extraction as described in Manzanares et al. (2016). 23 

For fine-mapping and BAC library screening, publicly available DNA markers from Hackauf and Wehling (2005) 24 

and Shinozuka et al. (2010) were used. Additional markers were developed by alignment of P205C9H17P and additional 25 

BAC clone sequences kindly provided by Prof. Iain Armstead, later published by Harper et al. (2019), with the rice 26 

genome sequence (RAP Build 3 of O. sativa japonica, NCBI) using BLASTN analysis. Primers were designed in regions 27 

being conserved between rice and perennial ryegrass using the Primer3 software (Untergasser et al. 2012). Markers 28 

were designed to amplify PCR products of 80-150 bp, suitable for high-resolution melting (HRM) analysis of unknown 29 

DNA sequence polymorphisms as described by Studer et al. (2009). Genotyping of VrnA-XL and DTZ was done at high 30 

throughput using HRM analysis as described by Manzanares et al. (2016).  31 
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Construction of the Poaceae synteny maps and assessment of the functionality of the 1 

self-incompatibility (SI) candidate genes 2 

The gene annotations from the perennial ryegrass genotype Kyuss (Frei et al. 2021), the perennial ryegrass 3 

genotype P226/135/16 (Begheyn et al. 2018), and the genome assembly of the Italian ryegrass genotype Rabiosa 4 

(Copetti et al. 2021) were used to obtain the sequences of the genes within the S-locus and the Z-locus. For this 5 

purpose, the flanking markers of the S-locus (05_02790 and 05_02889, Manzanares et al. 2016) and the Z-locus 6 

(CADELP, 37600, BAC_BEG, 171R) were used to identify the S- and the Z-locus, respectively. Gene annotations were 7 

considered if an orthologous sequence was present within the S-locus and Z-locus of Kyuss, P226/135/16, and Rabiosa; 8 

otherwise, they were removed from further analysis. If no annotation was present for an identified coding sequence, 9 

the gene structure was added using the Augustus (Organism: Oryza brachyantha L.) gene prediction tool or manually 10 

through a BLAST-based approach (Stanke and Morgenstern 2005). Furthermore, the intron-exon structure leading to 11 

the coding sequence was further streamlined for all the genes in the three genome assemblies using the ORF finder 12 

from NCBI combined with a BLAST-based manual approach. Therefore, the coding sequence based on the annotation 13 

file does not always perfectly align with the coding sequence used in this study. For example, within the three high-14 

quality genome assemblies displayed in Table 1, 16 SI-DUF247 gene sequences were identified. Of these 16 identified 15 

gene sequences, only four were annotated as an intronless gene, whereas the other sequences were either not 16 

annotated or annotated with minor or major deviations toward the intronless gene structure. All 16 gene sequences 17 

identified were then streamlined into an intronless gene structure of similar size. 18 

Using the CLC Genomics Workbench software 11.0 (CLC bio, Aarhus, Denmark), the identified S- and Z-locus 19 

genes and flanking marker amplicon sequences were used as a query for BLAST analysis against a database containing 20 

13 Poaceae genome assemblies (Table 2). BLAST hits were mapped if the BLAST E-value was below 1E-80 for all the 21 

genes except sS and sZ. For sS and sZ, the BLAST E-value was 1E-10. Furthermore, when a new orthologous sequence of 22 

sS or sZ was identified, it was added to the BLAST query. For the amplicon sequences of the flanking markers, the 23 

BLAST E-value was 1E-10. The BLAST-based annotation files of the S- and Z-locus were then translated into a CMAP file 24 

format as Veltri et al. (2016) described. The CMAP files were used to generate synteny maps using the advanced mode 25 

of the SimpleSynteny tool (Veltri et al. 2016). The graphical representation (e.g., fill colors of the structures) of the 26 

synteny maps was adopted using the Affinity Designer software (Serif (Europe) Ltd, West Bridgford, United Kingdom). 27 

In order to assess the functionality of the SI candidate genes, besides standard analysis regarding the size of a protein 28 

and the number of introns, InterProScan was used to predict the protein motifs (Blum et al. 2021; 29 

https://www.ebi.ac.uk/interpro/search/sequence).  30 

ACCEPTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sac259/6882748 by Aberystw
yth U

niversity user on 20 D
ecem

ber 2022



23 
 

Table 2: Genome sequence data used for the comparative genome analysis.  1 

Species Source 
GenBank accession 

number 
Accessed 

Lolium perenne Kyuss Frei et al. (2021) GCA_019359855 July 2021 

Lolium perenne P226/135/16 

Byrne et al. (2015) 
a
 & Nagy et al. (2022) 

a
 

Begheyn et al. (2018) 
b 

NA July 2022 

Lolium perenne S23 Z In-house OP292310-OP292318 NA 

Lolium multiflorum  Copetti et al. (2021) NA July 2020 

Dactylis glomerata Huang et al. (2020) GCA_007115705  June 2019 
Brachypodium distachyon Vogel et al. (2010) GCA_000005505 June 2020 

Triticum aestivum Appels et al. (2018) GCA_900519105  April 2020 
Hordeum vulgare Mayer et al. (2012) GCA_901482405 June 2020 

Secale cereale Lo7 Rabanus-Wallace et al. (2021) GCA_900002355 March 2021 

Secale cereale Weining Li et al. (2021)  GCA_016097815 May 2021 
Leersia perrieri Stein et al. (2018) GCA_000325765 June 2020 

Oryza sativa subsp. japonica  Stein et al. (2018) GCA_001433935 June 2020 

Oryza longistaminata Stein et al. (2018) GCA_000789195 June 2020 
Setaria italica Bennetzen et al. (2012) GCA_000263155 August 2020 

Zea mays Schnable et al. (2009)  GCA_902167145 February 2020 

Sorghum bicolor Paterson et al. (2009) GCA_000003195 June 2020 

Note: For each genome assembly used, the scientific paper describing it, the GenBank accession number, if available, and the access date is given. 2 
a
 Articles describing the genome assembly, 

b
 article describing the genome annotation file used in this study 3 

  4 
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Phylogenetic tree construction of S- and Z-locus genes 1 

The S- and Z-locus gene sequences from the perennial ryegrass genotypes Kyuss, F1-30 (haplotype P205), 2 

P226/135/16, and S23 Z, as well as from the Italian ryegrass genotype Rabiosa, were extracted. The intron-exon 3 

structure of all S- and Z-locus genes extracted were further streamlined, leading to a comparable gene structure using 4 

the ORF finder from NCBI combined with a blast-based manual approach. The LmTPR-2 of the Rabiosa scf818 5 

(Lmu01_818G0000280) was excluded from analysis, as it represented a distinctive duplication to the TPR-1 and was 6 

present only once in the six S-locus regions analyzed. The LpGK-2 from P226/35/16 was excluded as it seemed to 7 

display a truncated duplication of the GK-1, and no streamlined coding sequence could be found. The coding sequence 8 

for 44 S-locus and 75 Z-locus gene sequences were extracted. The duplications of NBS-LRR, GK, and PLP were pooled. 9 

TranslatorX was used for AA-directed multiple sequence alignment for each group of orthologous genes (Abascal et al. 10 

2010) by using the MAFFT algorithm v7.147b (Katoh et al. 2002). An additional alignment curation step was performed 11 

using Gblocks v0.91b with the minimal block length of five AAs (Talavera and Castresana 2007). The alignment file was 12 

then transformed into the PHYLIP format using EasycodeML v1.2 (Gao et al. 2019). The phylogenetic trees were built 13 

using PhyML-3.1 (Guindon et al. 2010). The trees were visualized using the ggtree package in R statistical environment, 14 

version 4.1.1 (Yu 2020). 15 

Pairwise comparison of protein sequences of the putative SI determinants 16 

A multiple protein sequence alignment of the Lolium male SI candidate genes (SI-DUF247s) and the Lolium 17 

female SI candidate genes (sS and sZ) was performed using the T-Coffee multiple sequence alignment package 18 

provided by EMBL-EBI (Madeira et al. 2019). The calculated percentage identity matrix was converted into a heat map 19 

for graphical representation. 20 

Expression pattern analysis of S- and Z-locus genes using RT-qPCR 21 

Plant material and growth conditions 22 

The self-incompatible and highly heterozygous perennial ryegrass genotype S23 Z (Valentine and Charles 1975) 23 

was vernalized over the winter outdoors in Eschikon, Switzerland. A total of six clones were transferred into a climate 24 

chamber in the spring once the first signs of flowering (emerging of flower heads) were visible. The plants were grown 25 

under long-day conditions (16 hours light; 8 hours dark) with temperatures ranging from 20 °C during the night and 24 26 

°C during the day. 27 

Tissue sampling 28 

Anther and stigma tissue was collected during flowering at three different time points (T0: one week before 29 

flowering, T1: two to three days before flowering, T2: on the day of flowering). Leaf tissue was collected as a control and 30 

did not have a specific time point (TNA). The sampled tissue was transferred in a 1.5 ml Eppendorf tube, immediately 31 
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frozen in liquid nitrogen, and stored in a -80 °C freezer. Anther tissue was collected instead of pollen tissue as a 1 

sufficient amount of pollen for RNA extraction prior to the day of flowering (T2) is not possible with perennial ryegrass. 2 

RNA extraction and cDNA synthesis 3 

Plastic grinding pestles were used to homogenize 45 to 80 mg of plant tissue in a 1.5 ml Eppendorf tube. The 4 

ground tissue was used for RNA extraction using the Qiagen RNeasy Mini Kit, following the "Purification of Total RNA 5 

from Plant Cells and Tissues and Filamentous Fungi" protocol (Qiagen, Hilden, Germany). Furthermore, an additional 6 

on-column DNase Digestion with the RNAse-Free DNase Set was performed according to the manufacturer's protocol 7 

(Qiagen, Hilden, Germany). The integrity of the total RNA extracted was confirmed with the TapeStation 2200 using 8 

RNA screen tape (Agilent Technologies, Santa Clara, CA, USA). RNA samples with an RNA integrity number (RIN) value 9 

below 4.5 were discarded (Schroeder et al. 2006). The RNA quantity was determined using the Qubit BR RNA assay 10 

(Thermo Fischer Scientific, Waltham, USA). The weight, the concentration in ng/μl, and the individual RIN values can be 11 

seen in Supplementary Table 3. Double-stranded cDNA was synthesized from 0.3 μg to 1 μg of RNA using the RevertAid 12 

First Strand cDNA Synthesis Kit (Thermo Fischer Scientific, Waltham, MA, USA), following the manufacturer's protocol 13 

with 0.5 μl Oligo (dT)18 primer and 0.5 μl Random Hexamer primers. For each RNA sample that was reverse transcript 14 

(RT sample), a no-reverse transcriptase control (NoRT sample) was included to detect a possible genomic DNA 15 

contamination of the RNA samples.  16 

Primer design 17 

Primer pairs were designed for multiple genes of interest (GOI) co-segregating with the S- and the Z-locus of 18 

perennial ryegrass (Supplementary Table 2). Furthermore, primer pairs were designed for the reference genes EF1-α, 19 

elF4A-2, CPB20, and elf4A-1 as they showed a conserved expression level between pollen and stigma samples 20 

(Manzanares et al., 2016). The unresolved diploid genome assembly of the perennial ryegrass genotype S23 Z was used 21 

to obtain the sequences of the GOI and the reference genes. The software Primer3 (Untergasser et al. 2012) was used 22 

to design primers leading to a product size of 75-160 bp, a primer melting temperature of 60 °C, and a primer size of 23 

18-23 bp. The SDUF247-I, SDUF247-II, LpsS, ZDUF247-I, ZDUF247-II, and LpsZ displayed a high sequence diversity 24 

between the two alleles, making it necessary to design allele-specific primers. The sequences of the primers for the 25 

amplification of the GOI and the reference genes are displayed in Supplementary Table 2. 26 
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RT-qPCR data acquisition 1 

The RT-qPCR was performed on the high-throughput BioMark HD system using a 192.24 Dynamic Array™ 2 

(Fluidigm, South San Francisco, CA, USA). All of the samples were pre-amplified for 17 cycles before the initial run, 3 

following the manufacturer's protocol, and the final product was diluted fivefold. The samples and four negative 4 

control samples (ddH20) were loaded in duplicates according to Fluidigm's EvaGreen DNA-binding dye protocol onto 5 

the BioMark HD system. The following qPCR conditions were used: 95 °C for 30 seconds, 40 cycles of 95 °C for 5 6 

seconds, and 60 °C for 20 seconds, plus a melting curve analysis. The data were processed using the software Fluidigm 7 

Real-Time PCR analysis 4.0 (Fluidigm, South San Francisco, CA, USA). The quality threshold was set to the default value 8 

of 0.65. Furthermore, a linear baseline correction was performed, and the setting automatic detectors were used as 9 

the Ct threshold method. 10 

RT-qPCR data analysis 11 

The Ct values were exported using the Fluidigm Real-Time PCR analysis 4.0 software (Fluidigm, South San 12 

Francisco, CA, USA). All 16 GOI and the four reference genes consistently showed a single amplicon peak. Measured Ct 13 

values over 21 were set to 999. This specific threshold was chosen as we observed a high standard deviation between 14 

the technical replicates with values above 21. The standard deviation between the two technical replicates for each 15 

sample was calculated, and data points with more than a 0.5 Ct difference were excluded from downstream analysis. 16 

Besides, only data were used where the percent deviation between the two technical replicates was below 3%. 17 

Furthermore, the four ddH20 controls were assessed for each primer pair to exclude possible contamination in the 18 

chemicals. The gDNA contamination was assessed by comparing the RT samples' Ct value with the noRT samples' Ct 19 

value for each of the four reference genes. The gDNA contamination was considered negligible when the difference in 20 

Ct value between the RT sample and the noRT sample was above ten cycles. The primer efficiencies were calculated 21 

using LinReg PCR 7.5 (Ramakers et al. 2003) and are shown in Supplementary Table 2. The stability of the reference 22 

genes was assessed using GeNorm (Huang et al. 2014). The expression stability value for EF1-alpha was 0.292, for 23 

CPB20 0.488, for eIF4A-2 0.292, and for eIF4A-1 0.385, meaning all four reference genes qualify to be used as they all 24 

have an expression stability value below 1.5 which represent the geNorm cut off (Vandesompele et al. 2002). 25 

To determine the relative gene expression ratio of the GOI, a relative quantification method, as described by 26 

Pfaffl (2001), was used. The ΔCt value was calculated by subtracting the Ct value of the sample minus the Ct value of the 27 

control. LpTIR, LpdsRNAbp, SNF2, LpGK, LpSDUF247-I, LpSDUF247-II, LpZDUF247-I, and LpZDUF247-II, the first biological 28 

replicate of the anther tissue at time point 1 was used as the control. For LpsS and LpsZ, the first biological replicate of 29 

the stigma tissue at time point 1 was used as the control. The ΔCt was set to the power of the respective PCR efficiency, 30 

leading to the relative quantity (RQ) value. The relative gene expression was calculated by dividing the RQ value of the 31 
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GOI by the geometrical mean RQ value of the reference gene. The relative gene expression ratios of the S- and Z-locus 1 

genes were displayed in polar charts and a scatter plot using the R statistical environment, version 4.1.1. 2 

In addition, the ΔCt values of S- and Z-locus genes were calculated to compare the expression levels of different 3 

genes in the same sample. The ΔCt values were calculated as the Ct value of GOI minus the geometrical mean Ct value 4 

of the four reference genes (EF1-alpha, CPB20, eIF4A-2, eIF4A-1). The ΔCt values were then displayed in a heat map 5 

using the R statistical environment, version 4.1.1. No scaling was applied, and the data were clustered on the level of 6 

genes (rows). 7 

Availability of data and materials 8 

The nucleotide sequence of the BAC clone P205C9H17P is available under the GenBank accession number 9 

OP292309. The nine contigs spanning the S- and the Z-locus of the perennial ryegrass genotype S23 Z are available 10 

under the GenBank accession numbers OP292310, OP292311, OP292312, OP292313 OP292314, OP292315, OP292316, 11 

OP292317, and OP292318. The nucleotide sequence of the four scaffolds spanning the S- and the Z-locus of the Italian 12 

ryegrass genotype Rabiosa are available at http://doi.org/10.5281/zenodo.7289792. The corresponding annotation file 13 

is available at http://doi.org/10.5281/zenodo.7015164. The coding sequence of all genes identified within the S- and Z-14 

locus within Lolium spp. are available at http://doi.org/10.5281/zenodo.7290695. 15 
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