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Abstract
Respiratory rate (RR) monitoring is essential in neonatal intensive care units. Despite its importance, RR is still monitored 
intermittently by manual counting instead of continuous monitoring due to the risk of skin damage with prolonged use of 
contact electrodes in preterm neonates and false signals due to displacement of electrodes. Thermal imaging has recently 
gained significance as a non-contact method for RR detection because of its many advantages. However, due to the lack of 
information in thermal images, the selection and tracking of the region of interest (ROI) in thermal images for neonates are 
challenging. This paper presents the integration of visible (RGB) and thermal (T) image sequences for the selection and 
tracking of ROI for breathing rate extraction. The deep-learning based tracking-by-detection approach is employed to detect 
the ROI in the RGB images, and it is mapped to the thermal images using the RGB-T image registration. The mapped ROI 
in thermal spectrum sequences gives the respiratory rate. The study was conducted first on healthy adults in different modes, 
including steady, motion, talking, and variable respiratory order. Subsequently, the method is tested on neonates in a clini-
cal settings. The findings have been validated with a contact-based reference method.The average absolute error between 
the proposed and belt-based contact method in healthy adults reached 0.1 bpm and for more challenging conditions was 
approximately 1.5 bpm and 1.8 bpm, respectively. In the case of neonates, the average error is 1.5 bpm, which are promis-
ing results. The Bland–Altman analysis showed a good agreement of estimated RR with the reference method RR and this 
pilot study provided the evidence of using the proposed approach as a contactless method for the respiratory rate detection 
of neonates in clinical settings.

Keywords Non-contact · Respiratory rate · Remote monitoring · Thermal imaging · Neonates

1 Introduction

The first month after birth is crucial for the newborn infant’s 
survival, especially when born prematurely. During the first 
month after birth, vital signs must be continuously moni-
tored. The respiratory rate is a vital indicator in neonatal 
intensive care units (NICU) [1]. Respiratory diseases are one 
of the leading causes of morbidity in neonates, and the inci-
dence of these diseases is higher among preterm neonates 
[2, 3]. Many preterm neonates need admission and monitor-
ing in special care neonatal units. Studies have shown that 
there is an increment in the number of neonatal admission 
due to respiratory distress [4]. Detection and assessment of 
respiratory dysfunction at an early stage enable appropriate 
medical treatment, and respiratory monitoring saves the lives 
of newborns [5].

The respiratory rate (RR) measurement involves the 
counting of breathing cycles per minute and is generally 
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indicated by bpm (breath per minute). The breathing cycle 
is composed of inspiration and expiration, which are physi-
ological phenomena used for the intake of oxygenated air 
into the lungs and the release of carbon dioxide-rich air to 
the environment, respectively. Generally, the intake air tem-
perature is lower than the exhaled air at room temperature. 
The range of RR in healthy adults varies from 12 to 20 bpm 
whereas newborn infants breathe at a faster rate and normal 
RR in neonates varies from 30 to 60 bpm [6, 7]. The litera-
ture has evidence that despite the importance of continuous 
respiration monitoring benefits, it is usually ignored in pri-
mary care. Physician and nursing staff usually measure the 
respiratory rate manually by counting abdominal and chest 
movements [1, 8].

Two methods based on a wearable sensor are predomi-
nantly used for RR measurement. One is measuring the 
changes in impedance due to the chest and abdomen move-
ments. The second is indirectly measured by a pulse oxime-
ter. To measure the impedance changes, a small electrical 
signal is passed through the adhesive skin electrodes. The 
placement and removal of these adhesive skin sensors (elec-
trodes) and the presence of all sensors cause discomfort and 
can even be painful [9].

Neonates with a gestational age of less than 28 weeks 
are more prone to suffering from epidermal stripping due to 
the use of adhesive sensors [10]. Premature infants, particu-
larly those with an underdeveloped central nervous system, 
are extremely susceptible to external stimuli. Another set 
of problems, including motion artefacts, sensor dislocation, 
calibration shift, false connections, and the possibility of 
infection are associated with adhesive sensors. Motion arte-
facts due to the dislocation of the sensor are problematic 
when attempting continuous respiratory rate detection in 
neonates. Also, the chest impedance presents a limitation 
when detecting episodes of apnea [11]. Hence, an alterna-
tive, non-contact method would resolve these issues for the 
monitoring of respiration rate to provide neonatal care in 
both intensive care centres and homes.

This study aims to develop an approach for automatic 
region of interest (ROI) selection based on a contactless 
respiration rate (RR) measurement. The proposed method 
integrates visible and thermal imaging to estimate the RR. 
The visible image is used to find the facial landmarks for 
the ROI selection and tracking, while the thermal image is 
utilized to extract the respiratory signals. The contributions 
in this work are:

• The registration algorithm provides a linear mapping 
between thermal imaging and visible imaging so that 
the extracted facial landmarks in the visible domain are 
correctly mapped to the corresponding thermal image.

• A deep learning-based approach is employed for ROI 
selection and tracking.

• For the proof of concept, first, we applied the proposed 
method among healthy adults in a lab setting. Then, the 
method was tested on neonates in a clinical setting.

2  Related work

In recent years, significant efforts have been made to develop 
a non-contact-based method for RR monitoring to overcome 
the drawbacks of the contact-based methods. Laser Dop-
pler, radio frequency, and ultra-wideband impulse radio 
have been investigated for the extraction of respiration rate. 
Scalice et al. [12, 13] used a laser Doppler vibrometer in a 
contactless manner to detect abdominal movement for RR 
calculation; however, this method risks exposing neonates' 
eyes to laser light and relies on surface reflectance. Kim 
et al. [14] used impulse radio ultra-wideband on neonates 
to estimate the breathing cycle. The results were promis-
ing and correlated well with the contact-based impedance 
pneumography. The method has the benefit of being able 
to detect the signal under challenging conditions, such as a 
baby being covered with blankets or garments, and even in 
darkness, however, it was found to be sensitive to the new-
born infant’s motion. Another approach by Khaemphukh-
iao et al. [15] used a radio frequency for the detection of 
RR, but the method was not tested in a clinical setting. The 
major concern with the radar-based method is the use of 
electromagnetic waves. Radiation exposure has a negative 
impact on the health of neonates and may sometimes cause 
adverse effects such as nervous system disorder [16]. As a 
result, researchers have taken an interest in the development 
of methodologies that employs passive modalities, such as 
visible cameras and infrared thermography. In addition, the 
camera-based methodology supports remote measurement 
and a large field of view (FOV), which adds the possibility 
of detecting the respiratory signals of multiple people. The 
visible camera has been used to find the RR either by using 
the concept of motion-based or reflectance photoplethys-
mography (PPG) based. The motion-based technique works 
on the basis of the detection of subtle changes in the chest 
wall, whereas the PPG-based technique detects the change 
in optical characteristics of the red, green, or blue spectrum 
of light transmitted or reflected by human skin. The motion-
based methods have challenges in separating the breathing-
induced movements from the movements not related to the 
breathing process.

Gastel et al. [17] presented a method of extracting the 
breathing signal from breathing-induced skin colour changes 
by exploiting the spatial redundancy in both visible and infra-
red lighting conditions. The method was tested on the NICU 
and achieved a correlation of 0.87. Cobos et al. [18] used 
the skin colour variation in a particular area of the newborn 
baby’s diaphragm to find the heart rate and breathing rate. Sun 
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et al. [19] compared the conventional optical flow and deep 
learning-based flow to calculate the breathing-induced motion 
matrix. The breathing signal was obtained through motion fac-
torization and compared with the signal extracted via chest 
impedance in the NICU. Villarroel et al. [20] proposed a multi-
task convolutional neural network (CNN) for the segmenta-
tion of skin or non-skin automatically and estimated the vital 
signs from the segmented skin only when the newborn was 
in the field of view. The clinical aspect of the newborn data 
sample were studied in detail. Additionally, it performed well 
in low-light conditions. However, it has been suggested that 
more research is needed for dark-skinned subjects and dark 
ambient conditions. Further, Khanam et al. [21] used a CNN 
for the ROI selection and noise-assisted signal decomposition 
to supress the noise in the extracted respiratory signal.

Abbas et al. [22] proposed an approach using thermal imag-
ing to extract respiration signals from premature infants. The 
nostril region was selected as the ROI and the nasal airflow 
temperature variation was used to calculate the RR. Klaes-
sens et al. [23] used a visible colour camera to find the heart 
rate and a thermal camera to obtain the respiration rate and 
validated it using an ECG-based technique. Pereira et al. [24] 
used a high definition infrared camera and particle filter-based 
tracking on high-resolution infrared frames to find the RR 
in newborns. Furthermore, a Butterworth filter was applied 
to obtain a smoothed respiratory signal for RR monitoring 
purpose. The ROI selection for this work was manual. For a 
similar objective in the case of newborn babies, Pereira et al. 
[25] developed an automatically ROI selection based ‘black-
box’ algorithm in which the movement of the grid boxes with 
a high signal to noise ratio is fused on a probability basis to 
extract the respiration movement. However, this methodology 
works efficiently even in frontal-view cases, which was the 
limitation in the previous study [24], as there is no need for 
nostril detection in this methodology. Lorato et al. [26] pro-
posed an automatic ROI selection-based algorithm by merg-
ing three low resolution thermal camera views to extract the 
breathing signal from the pixels that have respiration motion or 
flow. Besides the benefit of not depending on facial landmark 
detection, the algorithm dealt with the problems of significant 
motion of infants and the presence of another person in the 
FOV. Further, Lorato et al. [27] addressed the problems of 
more challenging conditions such as head and limb movement 
and also the motion caused by non-nutritive sucking by motion 
detection and optimizing the motion that hides the respiration 
information.

3  Proposed methodology

In this work, the visible image sequences are integrated with 
the thermal image sequences for the breathing rate detection. 
For the integration of visible and thermal images (termed 

RGB-T) spectrum data is collected using a dual imaging 
setup and aligned by the RGB-T image registration. Visible 
images are used to detect and track the ROI, and thermal 
images are used to extract the respiratory signal from the 
selected ROI. The flowchart of the methodology is depicted 
in Fig. 1, and each step is elaborated in detail below.

3.1  Acquisition of RGB‑T

The integration of thermal and visible image sequences cap-
tured by the visible and thermal cameras gives the benefits 
of using the complementary features of RGB and thermal 
images. The RGB-T dataset is acquired by visible and ther-
mal cameras simultaneously. To capture the same field of 
view with both cameras, they should be positioned parallel 
to one another and separated by a modest distance, as per 
the pinhole camera paradigm. The details of camera speci-
fication and configuration are discussed in the experimental 
subsection. The acquisition is triggered by the custom acqui-
sition software with a zero-lapse time.

3.2  RGB‑T image registration

The two modalities have different principles of imaging. The 
visible camera captures the RGB image, which captures the 
object's information in the visible spectrum, while the ther-
mal camera captures the object’s information in the infrared 
spectrum. In the integration of RGB-T spectrum data, the RGB 
spectrum has more information than the thermal spectrum, 
and the thermal image adds a meaningful band of informa-
tion for determining the temperature distribution of objects. 
Due to the different modalities and configurations of cameras, 
the alignment of both types of images is required. By utilizing 
the RGB-T registration, the frames from the visible camera are 
aligned to the thermal frames. Traditionally, both cameras are 
usually fixed, and calibration is performed to obtain the aligned 
images. The scale and translation parameters obtained by per-
forming the calibration were used to obtain the transformation 
matrix for alignment. This type of transformation depends on 
the camera parameters, and parameters vary according to the 
camera and distance from the object. To overcome this prob-
lem, we used the automatic two-phase registration method. 
First, the scale of large-sized visible images is adjusted to align 
them with the thermal image coordinate. After that, the precise 
registration is employed to tune the alignment of RGB-T pairs. 
A calibration rig is used for the scale adjustment method to 
automatically detect correspondence points in both RGB and 
thermal image pairs. The calibration rig is a square-cut check-
erbox constructed from a material that is an inefficient heat 
conductor. The calibration rig is used during the initial phase 
of recording, and the person holds the rig during the initial 
recording in front of his body to emphasize the good contrast. 
More details about the calibration-based method can be found 
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in previous work [28]. Due to a large difference in resolution 
between RGB and thermal images, there is a significant scale 
disparity between RGB and thermal image pairings. The scale 
adjustment steps overcome the large-scale disparity between 
RGB and thermal image pairs. In case of newborn infants data 
acquisition, the calibration is performed during setup. Although 
the scale adjustments aligned the RGB image sequences, there 
might be some misalignment caused by the selection of limited 
number of correspondence points from a small region. After 
the scale adjustment, the alignment is refined using a phase 
congruency-based automatic registration algorithm. The phase 
congruency represents the structural key features such as edges 
and corners. Instead of using derivatives, the phase congruency 
defines the feature points in the image where all Fourier com-
ponents are in phase [29]. The phase congruency is calculated 
by applying the 2D log Gabor wavelet with multiple scales and 
orientations [30]. The precision registration involved the fol-
lowing steps:

1. The initial step is to find the key feature points in the 
RGB-T pair. The phase congruency at scale k and ori-
entation o is used to find the edges and corner points 
in RGB-T pair. For the imageI(x, y) , the odd and even 

components of the 2D log Gabor filter ([LGodd
ko

, LGeven
ko

 ]) 
of each scale k and orientation o are applied to calculate 
the amplitude response MRko(x, y) of the image [30].

The phase congruency of each orientation is calculated 
by the use of the odd and even responses of the log-Gabor 
filter [30].

where, the element �o(x, y) quantifies the sigmoidal weight-
ing function to penalizes the frequency distribution. The ele-
ment TN  is used to effectively wavelet denoising via soft 
thresholding. The max function gives the maximum values 
of enclosed variables. � is a small positive real value used 
to prevent the division by zero. In Eq. (3) E is calculated as:

(1)

[

ERko(x, y),ORko(x, y)
]

= [I(x, y) ∗ LGeven
ko

, I(x, y) ∗ LGodd
ko

]

(2)MRko(x, y) =

√

ERko(x, y)
2 + ORko(x, y)

2

(3)PCo(x, y) =

∑

k �o(x, y) ∗ max(
�

E − TN
�

, 0)
∑

k MRko(x, y) + �

Fig. 1  The flowchart depicting the proposed method's steps. The 
RGB-T video dataset is collected by the dual camera setup. The 
RGB-T registration gives the transformation matrix to provide the 
linear mapping. The deep learning-based TD approach performs the 

ROI selection and tracking in RGB images and by using transfor-
mation matrix maps in the thermal spectrum images. Some filtering 
approaches are utilized to extract the respiratory signal from the raw 
signal
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where,

The concept of classical moment analysis equations 
[31] is applied to the obtained phase congruency maps of 
each orientation angle � as follows:

The M and m are the maximum moment and minimum 
moment images respectively for an image I(x, y). The FAST 
[32] algorithm is applied on the M and m to extract the edges 
and corners keypoints in image I(x, y).

2. Feature descriptors are used to distinguish feature points. 
The feature descriptor quantified the feature points with 
the neighbourhood information. The calculated log-
Gabor responses are utilized to find the feature descrip-
tor. For each orientation o , the sum of the amplitude 
response MR(x, y) (using Eq. (2)) at each scale k is cal-
culated and they are stacked for each orientation o to 
form an array {MRk

o
(x, y)}

No

1
 , where No represents the 

total number of orientations. The maximum value of  
{MRk

o
(x, y)}

No

1
 at each pixel location (x, y) and its index 

values i are utilized to build a histogram for feature 
description similar to SIFT [33].

3. After locating the feature points and corresponding point 
descriptors in both images, the sum of square differences 
is used to perform feature matching. When the nearest 

(4)E = ERko(x, y)�
even

o
(x, y) + ORko(x, y)�

odd

o
(x, y) −

|

|

|

|

ERko(x, y)�
odd

o
(x, y) − ORko(x, y)�

even

o
(x, y)

|

|

|

|

(5)�
even

o
(x, y) =

∑

k

ERko(x, y)∕ARo(x, y)

(6)�
odd

o
(x, y) =

∑

k

ORko(x, y)∕ARo(x, y)

(7)ARo(x, y) =

√

∑

k

ERko(x, y) +
∑

k

ORko(x, y) + �

(8)p =
∑

(PC(�)cos(�))2

(9)q = 2
∑

(PC(�)cos(�)) ⋅ (PC(�)sin(�))

(10)r =
∑

(PC(�)sin(�))2

(11)M =
1

2
(r + p +

√

q2 + (p − r)2)

(12)m =
1

2
(r + p −

√

q2 + (p − r)2)

neighbour distance ratio is met, the feature points of 
two images are matched. The matched feature points are 
used to calculate the geometrical affine transformation 
matrix using fast sample consensus (FSC) [34].

3.3  ROI selection and tracking

The fundamental concept of this work is to use the RGB image 
sequences for ROI selection and tracking, then by applying the 
obtained transformation matrix through registration, to conduct 
linear mapping of the ROI in the thermal image sequences. The 
mapped ROI in the thermal images is then used to extract the 
respiratory signal. The RGB image sequences have more detailed 
information compared to the thermal images and have a large 
database and pre-trained models for the detection of facial fea-
tures. Haarcascade classifiers [35] for nose detection, multi-task 
cascaded convolution neural network (MTCNN) [36] and, more 
recently, the YOLO5Face detection [37] model are mostly used 
for the detection of faces and facial keypoints. The YOLO5Face 
detection model is designed by the YOLOv5 object detector 
[38]. The five key facial landmark regression introduced in the 
YOLOv5 model with the Wing loss function. Additionally, the 
key modification in stem block structure and the block in the 
architecture were introduced to make it for the face and face 
landmark detection. It was not only achieved high accuracy than 
the state-of-the-art techniques, but also perform faster [37]. The 
YOLO5Face model can accurately detect the centre of the left 
and right eye, the tip of the nose, and the right and left mouth 
corners. The ROI defining the nostril region consists of the rec-
tangular bounding box defined by corner (bx,by), width w and 
height h. Assuming that (nx,ny), (mlx,mly), and (mrx,nry) are the 
coordinates of the tip of the nose, the left corner of the mouth, 
and the right corner of the mouth, respectively. The ROI for RR 
monitoring is defined as bellow:

where,

The tracking approach utilizes either the manual selection 
of objects in the initial frame and performing the tracking in 
subsequent frames or combining the detector model with the 

(13)ROI =
[

bx, by,w, h
]

= [nx − �, ny − �, 2 ⋅ �, 3 ⋅ �]

(14)� = round

⎛

⎜

⎜

⎜

⎝

�

(mlx − nx)2 + (mly − ny)2

4

⎞

⎟

⎟

⎟

⎠

� = round

(

|mlx − mrx|

2

)
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tracking model to perform automatic tracking, which is gen-
erally called the "tacking-by-detection (TD)" approach [39]. 
The TD-based method is simple to implement and performs 
efficiently in terms of object variation, scene variation, and 
the number of targets. In this work, the deep learning-based 
tracking by detection approach is used, which includes the 
YOLO5Face detector [37] and the dlib correlation tracker [40] 
to perform the automatic ROI selection in more challenging 
conditions, e.g., rapid movement, multiple people, and high 
dynamic background. Also, it handles the deviation of objects 
from the FOV or occlusions by reinitialization of the detectors. 
As illustrated in Fig. 1, the deep learning-based TD technique 
used a selection operator to associate detection with tracked 
frames.

The functioning of the deep learning-based TD approach for 
ROI detection and tracking has been explained in Algorithm 1. 
The main work of the selection operator is to enable learning of 
the tracking model when tracking fails. The status of tracking 
and detection is defined by ts and ds , respectively. At the initial 
frame of the video, the detection is performed, and the tracking 
is initialized with the selected ROI. After that, the function of 
selection operator is performed in successive frames as follows:

1. When both ts and ds are True, tracking will be enable in 
the successive frame,

2. When one or both of  ts and  ds are False, the tracking 
will disable, and detection will be performed for the ROI 
detection.

3.4  Extraction of respiratory signal and RR

The cropped image R obtained by the deep learning-based 
TD framework in the RGB frame is linearly mapped to 
obtain the ROI in the thermal image. The linear mapping 
is obtained by applying the transformation matrix obtained 
through the RGB-T image registration. The mapped ROI 
IRTROI has the respiratory signal information, and the res-
piratory signal is obtained by the averaging of the pixels 
value in the IRTROI . The raw respiratory signal rs in each 
frame i of the video sequence is calculated as:

where, the IRTROI is the mapped ROI in the thermal image. 
The width and height of the mapped ROI are denoted by 
W  and H , respectively. To extract the smoothed respiration 
signal, filtering approaches are applied to the normalized 
raw respiratory signal. First, the unwanted spikes are filtered 
out by a Hampel filter [41], secondly, a moving average filter 
is applied to smooth out abrupt changes. Lastly, we used a 
Butterworth bandpass filter of 2nd order with a configura-
tion of 3 dB low pass and high pass cut off range [0.1, 0.85] 
for the healthy adults and [0.5, 1.5] for newborn infants, 
respectively. The respiratory rate is obtained by applying the 
chirp Z transformation (CZT) [42] on the smoothed respira-
tory signal. In clinical practice, the physicians and nursing 
staffs count the breathing cycle either in 30 or 60 s for the 
RR measurements [43]. To analyse and calculate the rate, 
the window of 30 s with a sliding step of 20 s has been used 
in this work.

4  Experimental setup and protocol

The developed algorithm has been applied first to healthy 
volunteers to validate the feasibility of the work. The data of 
healthy adults were collected to evaluate the human breath-
ing rate in a room environment. The newborn data was 
obtained from the neonatal intensive care unit in the pres-
ence of health experts and nursing staff. The camera con-
figuration used was a dual camera setup as shown in Table 1.

4.1  Study in healthy adults

The human data is collected in three protocol settings to see 
the efficiency of the proposed approach in more challeng-
ing cases like high movement, talking, and dynamic breath-
ing patterns. The study included the 14 healthy adults with 
an average age of 29.7 ± 2.8. The dual camera setup was 
mounted on a tripod and was about 180 cm away from the 
subjects. The data is collected mainly in three modes, Mode 

(15)rs(i) =
1

W × H

W−1
∑

x=0

H−1
∑

y=0

IRTROI(x, y, i)
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A, B, and C. In Mode A, the person was seated on a chair 
in a comfortable, steady position and was told to breathe 
at their own pace for a time period of 1 min 20 s. Mode A 
setting is to see the efficacy in clinical setting scenario. In 
Mode B, persons were allowed to move and talk during the 
breathing recording. However, the person was restricted to 
be seated on the chair and not performing any movement 
beyond the FOV. Mode B is attempting to simulate practical 
scenarios such as measurements in social gatherings, quar-
antine centers, and airport screening. The duration of record-
ing was the same as in Mode A. In Mode C, the healthy 
adults have been told to breathe in varying orders, such as 
normal, fast, and stop for a while during the recording. The 
recording of Mode C was 3 min.

The ground truth respiratory signal was collected simulta-
neously with the RGB-T data recording in each mode utiliz-
ing the Go Direct® respiration belt [44]. The belt measures 
the chest or abdominal movement during respiration with 
0.01 N force resolution and the data is recorded at 10 sam-
ples per second.

4.2  Study in neonates

To study the feasibility of the proposed method on new-
born infants in a clinical setting, ten RGB-T video data 
sets of clinically stable newborn infants were obtained. 
The camera setup and videos were recorded at Govern-
ment Medical College Hospital (GMCH), Chandigarh 
and were approved by the Institute Ethics Committee of 
GMCH (Approval No: GMCH/IEC/2020/522/87). The 
dual-camera setup was placed approximately 1 m away 
from the subjects. The room temperature and humidity 
were set according to the acceptable level of the inten-
sive care unit. The study excluded neonates who needed 
respiratory support, had dyspnea or tachypnea, or had 
unstable vital parameters, an elevated temperature, or any 
congenital anomaly.

4.3  Evaluation metrics

The proposed contactless breathing monitoring method is 
validated with the contact base reference method. To eval-
uate the effective performance and to analyse the error, the 
average absolute error (AAE) and the standard deviation 

error (SDE) have been calculated between the proposed 
and contact-based methods. BRm(k) and BRr(k) are the 
respiratory rate of proposed contactless approach and 
contact-based approach for each measurement ‘k’, respec-
tively, and N is the total number of measurements for each 
subject, the AAE and SDE are calculated as follows:

The Bland–Altman analysis and correlation plot are uti-
lised to graphically and statistically demonstrate the proof of 
agreement between the proposed technique and the reference 
method. The effectiveness of the ROI selection by using the 
deep learning-based TD approach is evaluated by the ROI 
success rate. The ROI success rate is defined as follows:

5  Result

Automatic facial landmark detection is crucial for the suc-
cessful extraction of RR. Instead of only detection, it is also 
important to note how accurately a landmark is detected in 
successive frames. In the proposed method, the YOLO5Face 
detection model has been used because of its fast and effi-
cient accuracy in a wide range of databases. Here, the per-
formance of YOLO5Face detection is compared to that of 
the current state-of-the-art Nose detector and MTCNN in the 
deep learning-based TD method for ROI detection. Figure 2 
shows a boxplot comparison of ROI success rates for healthy 
adults in various modes. In Mode A, the average ROI suc-
cess rates for nose detection, MTCNN, and YOLO5Face 
were 99.82%, 99.98%, and 99.99%, respectively. For Mode 
B, the obtained values were 93.75%, 99.37%, and 99.90%, 
respectively, and for Mode C, the values were 98.85%, 
99.66%, and 99.88%, respectively. It has been observed that 
the YOLO5Face model has a higher average success rate 

(16)AAE =
1

N

N
∑

i=1

AE ;where,AE = |

|

BR
m
(k) − BR

r
(k)|

|

(17)SDE =

√

√

√

√
1

N − 1

N
∑

k=1

(AE(k) − AAE)2

(18)ROI success rate =
ROI detected

number of frames
× 100

Table 1  The configuration and 
specifications of the cameras 
used in the experiments

Modality Name Type Fps Resolution Thermal sensitivity Reference

Infrared 
thermog-
raphy

FLIR-E60 LWIR 30 320 × 240 0.05 °C at 30 FLIR Systems
Inc

Visible C922 webcam Color 30 960 × 720 – Logitech International S.A
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than the other state-of-the-art models. Most importantly, the 
YOLO5Face model successfully performs ROI detection in 
the newborn dataset. Figure 3 shows the boxplot analysis of 
different models for the newborn dataset. The average of the 
ROI success rates in the newborn dataset for Nose detection, 
MTCNN, and YOLO5Face model are 18.65%, 32.96%, and 
99.86%, respectively.

We evaluated the performance of various window step 
sizes for assessing the respiratory rate in the healthy adults’ 
data. Figure 4 demonstrates the mean AAE and mean SDE 
in each mode of data collection for healthy adults. It has 
been observed that for window step size 20, the mean AAE 
and mean SDE were less than the lower and higher values 
of window step size. In the case of small step sizes, mostly 
the movements affect the results, whereas if the step size is 
larger than 20, most of the signal information is overlooked 
during the evaluation.

Figure 5 shows the boxplot of AAE and SDE in differ-
ent modes for healthy adults. The mean of AAE and SDE 
was 0.1004 ± 0.0608 and 0.0808 for Mode A. Moreover, the 
estimated mean AAE and SDE between the proposed and 
contact-based methods were 1.5115 ± 0.9058 and 1.8138 
for Mode B, and they were 1.8485 ± 0.8079 and 2.7048 for 
Mode C, respectively. In the obtain results, 100%, 71.40%, 
and 57.14% of the absolute error results were below than the 
2 breaths/minute.

In the case of neonate data, the boxplots of error met-
rics are shown in Fig. 6. The observed mean AAE and SDE 
were 1.4861 ± 1.3567 and 0.8591, respectively. Figure 7 
depicts the visualisation of facial landmark detection and 
tracking using the deep learning-based TD approach and 
the respiratory signal extracted by the mapped ROI in the 
thermal image. The visualisation is shown in Video A (see 

Supplementary files) to represent the working functionality 
of the proposed non-contact-based method.

The Bland Altman and linear correlation plots for aggre-
gating all of the mode's RR measurement data for healthy 
persons are displayed in Fig. 8. The results indicate a strong 
correlation between the proposed contactless approach and 
contact based approach. By observing the Bland Altman 
plot, the mean difference between the proposed contactless 
and contact-based approaches for all the RR measurements 
was − 0.11 breaths/minute with the 95% limit of agreement 
range from − 4.3 breaths/minute to 4.1 breaths/minute. Fig-
ure 9 depicts the Bland–Altman plot for the neonate study. 
The analysis shows that the mean difference between pro-
posed RR and reference RR was 0.51 breaths/minute and 

Fig. 2  The boxplot of the ROI success rate of Nose detector, MTCNN, and YOLO5Face models for healthy adults in different modes

Fig. 3  The boxplot of the ROI success rate of Nose detector, 
MTCNN, and YOLO5Face model for newborn data
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the limit of agreements ranged from -3.6 breaths/minute to 
4.6 breaths/minute.

6  Discussion

The experimental results indicate that the proposed non-
contact method using thermal and visible imaging per-
forms better for respiratory rate monitoring in both stable 
and challenging conditions like rapid head movement, talk-
ing, and variable breathing patterns in healthy adults. More 
importantly, the selection of ROI is automatic, with an ROI 
success rate of more than 99% in each mode of the dataset. 
The YOLO5Face detection model outperforms other state-
of-the-art methods in each mode and efficiently works in the 
case of newborn infants' nostril area detection. The auto-
matic ROI selection was the limitation of existing work in 
the literature because thermal imaging has less information 
and poor resolution as discussed in [22, 45, 46]. The cost is 
the prime factor for the high-resolution camera. The average 
absolute error and the correlation coefficient in the stable 
mode are approximately 0.1 bpm and 0.9994, respectively. 
The findings are similar to a study conducted by Pereira 
et al. [47] when they used a high spatial resolution infrared 
camera with a spatial resolution of 1024 × 768 pixels for res-
piratory rate detection. The methodology of using the RGB 
spectrum along with the thermal spectral image sequences 
eliminates the need of utilizing of thermal images feature for 
ROI selection and tracking. The RGB spectrum is used for 
the ROI detection and the mapped ROI in the thermal image 
sequence is used to extract the respiratory signal and respira-
tory rate. In the proposed method, the deep learning-based 

Fig. 4  The mean AAE and mean SDE values for different values of window step size for healthy adults’ study

Fig. 5  The boxplot of AAE and SDE between the proposed approach 
and the contact-based reference method for different modes in healthy 
adult study

Fig. 6  The boxplot of AAE and SDE between the proposed approach 
and the contact-based reference approach for neonate study
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TD approach performs the ROI detection and tracking, and 
it reinitializes the detection if the tracking fails due to the 
presence of an obstacle or out of the FOV condition. Dur-
ing the rapid head movement and talking, the proposed 
method performs better as detection is reinitialized when 
the obstruction is removed and the respiratory signal is col-
lected again. The results demonstrated that for Mode B and 
Mode C scenarios, the average error is approx. 1.5 bpm and 
1.8 bpm, respectively, which is under the error of 2 bpm for 
the challenging conditions such as motion and talking, and 
has better agreement with the reference method than the 
study performed by Chauvin et al. [48]., which included the 
breathing detection during talking and paddling.

After the method was successfully validated on healthy 
adults, the proposed method was also tested on newborn 
data in a clinical setting. The results demonstrated the mean 

of AAE between the proposed and reference methods is 
approximately 1.5, about 80% are the relevant estimation i.e. 
error less than 2 breaths/minute. The correlation plot shown 
in Fig. 9 shows a significant correlation with the reference 
method, and the calculated correlation coefficient is 0.9244. 
The proposed approach detects the ROI automatically and 
employs efficient tracking to record the continuous respira-
tion rate, which was the limitation of the study conducted 
on 8 neonates by Abbas et al. [22]. The integration of RGB 
with thermal image sequences includes the characteristics 
of using standard thermal resolution with better results 
than the work proposed by Pereira et al. [24] using a high-
resolution camera (VarioCAM® HD head 820S/30 mm, 
InfraTec). Another study by Pereira et al. [25] used the 
‘black-box’ approach by choosing the best ROI with high 
signal quality index, but the results were mostly affected 

Fig. 7  The visualization of the 
respiratory signal extraction 
using the proposed contact-
less method. It can be found in 
Video A depicting the function-
ality of the proposed method

Fig. 8  The linear correlation 
plot (left) and Bland–Altman 
plot (right) for the different 
mode of health adult study. 
Total 196 RR measurement data 
points. The different modes are 
represented by different colours 
and symbols
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by newborn infants’ motion. Overall, the mean AAE and 
Bland Altman plot analysis were comparable with the stud-
ies by Pereira et al. [25] and our proposed method showed 
less spread of error in the range of − 4.3 breaths/minute to 
4.1 breaths/minute in the Bland Altman plot analysis. How-
ever, in overall neonate dataset, two infants N_4 and N_10 
exhibited head motion during recording, still methodology 
successively records the RR continuously and the result-
ant AAE values were 4.9280 and 2.3350, respectively. The 
infant N_4 showed a failure of ROI detection and tracking 
during recording because of head rotation. However, after 
some frames, when the infant's head returns to the camera’s 
FOV, the deep learning-based TD approach automatically 
detects and tracks the ROI for respiratory signal extraction.

There are several challenges associated with the data 
collection of newborn infants in the clinical setting. One 
of the primary challenges is the stability of the babies. 
Normally, they move their heads, hands, and legs dur-
ing the awake period. Babies in open beds are the major 
population, and they are usually covered by a blanket to 
keep them warm as shown in Fig. 10. In such a situation, 
the detection of movement and feature extraction in ther-
mal imaging is a challenging task. Also, the method of 

respiration detection based on skin segmentation [49] and 
motion extraction from the camera [25] has limitations 
when most of the baby’s body is covered with a blanket. 
Our study provides the methodology of respiration sig-
nal extraction from the temperature variation within the 
surface of the nostril area in the face, which is mostly 
uncovered except when other contact-based devices are 
not attached to the baby’s face. The RGB images are used 
to find the ROI and tracking as RGB images have a large 
extent of information in comparison to thermal images and 
have pre-trained models to extract the feature to a deep 
extent successfully. The deep learning-based TD approach 
automatically detects the nostril area as an ROI in the RGB 
spectrum, overcomes the problem of high movements and 
less anatomical area for feature detection in the FOV of 
cameras, and the linearly mapped ROI in thermal image 
sequences extracts the respiratory signal efficiently. The 
head rotation observed in the infant N_10 caused ROI 
detection failure in some frames, but the deep learning-
based TD approach was able to continue tracking the ROI 
when the head is in the FOV of the camera. Although, 
during this interval of time, the value of RR is affected 
and it was also observed as an outlier in the boxplot and 

Fig. 9  The linear correlation 
plot (left) and Bland–Altman 
plot (right) for the newborn 
infant study. Total 30 RR meas-
urements data points

Fig. 10  The sample images recorded by the thermal camera showing the challenges associated with the newborn’s RR measurements. The 
babies, mostly covered by the blanket to keep them warm, have less anatomical area for feature extraction
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Bland Altman plot shown in Figs. 6 and 9. The success 
rate of YOLO5Face is higher in healthy adults and suc-
cessfully works in newborn cases in comparison to other 
models, making it a more prominent choice for newborn 
respiration detection.

One of the problems with respiration that occurs in the 
newborn is apnea, and the accurate diagnosis of clinically 
significant episodes of infant apnea is a clinical necessity. 
However, the existing chest impedance (CI)-based monitor-
ing used in clinical practise has major issues with mistaking 
the cardiac signal for breathing during apnea [50]. The pro-
posed thermal imaging-based approach detects the respira-
tion signal by measuring the nasal area temperatures, which 
directly depend on the process of respiration, and the cessa-
tion of breathing might be detected. Further efforts will be 
focusing mostly on utilizing and improving our method for 
detection of apnea. During the initial few days, the incubator 
temperature is closer to the body temperature. However, the 
proposed approach may easily detect if there is a temperature 
variation in the nostril area. Thermal camera has a thermal 
sensitivity of 0.05 °C at 30 °C environment temperature. 
Further studies are needed to test the usefulness of the pro-
posed method in this special situation.

In NICU, sick preterm neonates are frequently managed 
with CPAP or a high-flow nasal cannula [51]. In this sce-
nario, challenges in the non-contact monitoring  include 
altered temperature due to gases at the nasal interface and 
the area around the nose being covered with adhesives to fix 
the nasal respiratory interface. However, the temperature of 
the inhaled gases should not interfere with the monitoring, 
as the inhaled gases are not cold but heated and humidified. 
We believe that in this special situation, some alteration in 
the modelling may be needed due to a change in the airflow 
pattern and a narrower difference between the temperatures 
of the inhaled and exhaled gases. Again, further studies are 
needed in this special situation.

7  Conclusion

Non-contact respiratory rate monitoring is important and 
should be used in the intensive care unit because it is harm-
less, passive and does not require any connecting wires. 
This paper introduced the methodology for non-contact RR 
monitoring in noenates. The integration of RGB spectrum 
data enables the use of an efficient deep learning model for 
ROI selection and tracking. The detected ROI in the RGB 
spectrum is linearly mapped to find the correspondence 
ROI in thermal imaging for respiratory rate extraction. The 
deep learning-based TD approach reinitializes the detec-
tion in the case of failed tracking due to the presence of an 
obstacle or the out of FOV scenario.

Initially, the algorithm was validated by the contact-
based respiration belt with high accuracy on the healthy 
adult data collected in the lab settings. Subsequently, the 
proposed method was validated on newborn infant data 
recorded in a clinical setting. The results were promising, 
and the average absolute errors between the estimated and 
reference methods were less than 2 bpm. In conclusion, 
the proposed method robustly extracts the RR by utilizing 
RGB-T image sequences not only in a lab setting but also 
in a clinical setting for newborn infants and is a clinically 
relevant alternative to the contact-based method.
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