
Aberystwyth University

Decoder Choice Network for Metalearning
Liu, Jialin; Chao, Fei; Yang, Longzhi; Lin, Chih Min; Shang, Changjing; Shen, Qiang

Published in:
IEEE Transactions on Cybernetics

DOI:
10.1109/TCYB.2021.3123403

Publication date:
2021

Citation for published version (APA):
Liu, J., Chao, F., Yang, L., Lin, C. M., Shang, C., & Shen, Q. (2021). Decoder Choice Network for Metalearning.
IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2021.3123403

Document License
CC BY

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 28. Dec. 2022

https://doi.org/10.1109/TCYB.2021.3123403
https://pure.aber.ac.uk/portal/en/persons/fei-chao(a89a7d8c-80f6-49d6-8d48-9490ea79c9c5).html
https://pure.aber.ac.uk/portal/en/persons/changjing-shang(b892bfaa-ae7f-45c2-9082-7bfbf2b70a5e).html
https://pure.aber.ac.uk/portal/en/persons/qiang-shen(695ae0bf-c764-425b-9496-cca71f02cb57).html
https://pure.aber.ac.uk/portal/en/publications/decoder-choice-network-for-metalearning(15f0bb9c-7b1f-41e4-823c-d150c6b46246).html
https://doi.org/10.1109/TCYB.2021.3123403

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Decoder Choice Network for Metalearning
Jialin Liu, Fei Chao, Member, IEEE, Longzhi Yang, Senior Member, IEEE, Chih-Min Lin, Fellow, IEEE,

Changjing Shang, and Qiang Shen

Abstract—Metalearning has been widely applied for imple-
menting few-shot learning and fast model adaptation. Partic-
ularly, existing metalearning methods have been exploited to
learn the control mechanism for gradient descent processes,
in an effort to facilitate gradient-based learning in gaining
high speed and generalization ability. This paper presents a
novel method that controls the gradient descent process of the
model parameters in a neural network, by limiting the model
parameters within a low-dimensional latent space. The main
challenge for implementing this idea is that a decoder with many
parameters may be required. To tackle this problem, the paper
provides an alternative design of the decoder with a structure that
shares certain weights, thereby reducing the number of required
parameters. In addition, this work combines ensemble learning
with the proposed approach to improve the overall learning
performance. Systematic experimental studies demonstrate that
the proposed approach offers results superior to the state-of-the-
art in performing the Omniglot classification and miniImageNet
classification tasks.

Index Terms—Metalearning, latent variable, decoder, ensemble
learning.

I. INTRODUCTION

MACHINE learning has recently demonstrated near-
human performance in performing challenging tasks

of object recognition, image classification, digital games and
scenario generations, etc. [1]–[5]. The key to the success of
machine learning is the availability or obtainability of high-
quality large-sized datasets. Collecting and labeling data or
harvesting labeled data from the literature and historic archives
require massive human efforts, and the resulting dataset can
usually only be used for one specific task. Yet, humans have
the ability to quickly learn new concepts and skills for novel
tasks based on prior knowledge and experience. Metalearning
is a machine learning technique that imitates this ability by
learning parameters fine-tuned from prior datasets and pre-
trained models. Consequently, metalearning may significantly
extend the boundary of machine learning in terms of the
applicable range of tasks and different distributions of data
samples. It not only enables the ‘reuse’ of datasets across

J. Liu and F. Chao are with the Department of Artificial Intelligence, School
of Informatics, Xiamen University, China e-mail: (fchao@xmu.edu.cn). L.
Yang is with the Department of Computer and Information Sciences,
Northumbria University, UK. C.-M. Lin is with the Department of Electrical
Engineering, Yuan Ze University, Taiwan. F. Chao, C. Shang, and Q. Shen are
with Institute of Mathematics, Physics and Computer Science, Aberystwyth
University, UK. Corresponding Author: Fei Chao

This work was supported by the National Natural Science Foundation of
China (No. 61673322, 61673326, and 91746103), the Fundamental Research
Funds for the Central Universities (No. 20720190142); the Key Project
of National Key R & D Project (No. 2017YFC1703303), the European
Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No. 663830, and the Strategic Partner
Acceleration Award (80761-AU201) under the Sêr Cymru II programme, UK.

Manuscript received; revised.

different tasks but also prevents overfitting on new and usually
small datasets for novel tasks [6]. In this case, each novel
learning task is supported by training samples (or shots) and
testing samples (or queries) [7].

The most widely researched area within metalearning is
few-shot learning, which requires models to predict labels of
instances from unseen classes during the testing phase, with
the support of only a few labeled samples from each category.
Many methods have recently been proposed to implement
few-shot learning tasks, which can be categorized into three
types [8]: memory-based, optimization-based, and metric-
based. Memory-based methods extend a memory space to store
key training examples or model-related information [9], which
are often achieved by applying attention models [10], [11].
Optimization-based methods learn to control the process of
optimization for a given task by learning the initial parameters
(e.g., [12], [13]) or the underlying optimizer (e.g., [14]–[16]).
Metric-based methods focus on learning similarity metrics
that maximize the similarity between members from the same
class.

The purpose of this work is to design an optimization-
based method that controls the optimization of a network’s
model parameters, by restricting the parameters within a low-
dimensional space. This is inspired by the development of
the approach for neural style transfer [17], which updates the
input images of a deep network rather than the network’s
parameters. If the input images are treated as a latent variable
and the output as model parameters, the model parameters
can be indirectly modified by updating the latent variable.
For cross-referencing simplicity, the network that implements
the mapping from the latent variable to the model parameters
is hereafter termed the decoder, for use in the proposed
optimization-based process.

Whilst potentially powerful, the aforementioned idea can be
difficult to implement for a high-dimensional model parameter
space. If a fully connected network is adopted as the decoder,
its complexity is usually the square of the number of model
parameters. Instead of a fully connected network, a new
structure is introduced in this work, named “group linear
transformation (GLT)”, which requires less computational time
and has lower space complexity. In addition, the ideas of
task-dependent adaptive metric (TADAM) [18] and latent
embedding optimization (LEO) [8] are also exploited, in an
effort to better capture the correlation between the model and
a task, such that the model parameters reflect the need of the
task. In particular, the correlation between the decoder and the
task is enhanced by choosing different decoders in response
to the task features with a decoder choice network (DCN).
All decoders are designed to be able to share a certain part of
their parameters. Thus, the complexity of the choice network

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

is lower than that of the decoders, enabling the decoders to
be task-dependent with little additional cost. Following this,
to further strengthen the generalization ability of the resulting
model, the learning mechanism adopts the training protocol of
snapshot ensemble [19]. The resulting protocol is capable of
selecting models with the highest accuracy on the validation
set within a single training process.

The effectiveness of a DCN is evaluated while performing
both regression and classification few-shot learning tasks. Sys-
temmatic experimental results demonstrate that the proposed
optimization-based method greatly improves the accuracy of
the few-shot learning model. It achieves such positive results
by reinforcing the dependency between the model and a given
task, while having fewer learnable parameters (on a number
of application problems). The main contribution of this work
is threefold: 1) an efficient structure that enables gradient
control for high-dimensional model parameters to fall within a
low-dimensional space, 2) implementation of task-dependent
gradient control by choosing decoders based on task features,
and 3) integration of snapshot ensembles and the proposed
DCN model for performance enhancement.

The rest of the paper is organized as follows. Section II
outlines the underlying techniques for the development of the
present work. Section III details the proposed DCN model.
Section IV reports on, and discusses about, the experimental
results. Section V concludes the work and points out directions
for relevant future research.

II. BACKGROUND

The theoretical underpinning of the proposed approach is
reviewed in this section, including few-shot learning and
metalearning.

A. Few-Shot Learning

In supervised learning, the training dataset
contains a number of labeled data instances
D = {(x1, y1), (x2, y2), · · · , (xK , yK)}, where each
(xi, yi), 1 ≤ i ≤ K is a data instance with given features
xi and labels yi, and K is the number of data instances.
Particularly, with labeled training data, a few-shot learning
method learns how to differentiate between tasks, for which
the input dataset is represented as Dmeta = {Dtri ,Dtesti }i,
where Dtri = {xtrij , ytrij}j and Dtesti = {xtestij , ytestij }j . In other
words, together with given features, few-shot learning takes
each dataset and regards the decision tasks as instances of
training. Note that, in this work, Dmeta is divided into three
subsets, labeled as: Dmeta−tr, Dmeta−val and Dmeta−test,
standing for meta training data, meta validating data, and
meta testing data, respectively.

Running few-shot learning involves three important con-
cepts, namely: N -way, K-shot, and H-query tasks. What these
concepts indicate is that there are N classification tasks, each
with K training samples and H testing samples [20]. Fig. 1
shows a 5-way, 1-shot, 1-query task of miniImageNet, with
each class in a task having one training instance and one
testing instance. In the 5-way, 5-shot, 1-query task, there are
five training instances and five testing instances in each class.

1 2 3 4 5 ? ? ???

1 2 3 4 5 ? ? ???

1 2 3 4 5 ? ? ???

... ...

Meta-
Data

Fig. 1. Example of few-shot learning data. These are instances from 5-way, 1-
shot, 1-query metadata. Each learning task contains ten images from different
classes, and each class has one training example and one testing example.
Note that images marked with the same number in the upper left corner of
each line are from the same image class.

The objectives of supervised learning in general and few-
shot learning in particular can be expressed by the following
two optimization tasks, respectively:

θ̂ = argmin
θ

∑
i

L(fθ(xi), yi), (1)

θ̂ = argmin
θ

∑
i

∑
j

L(f{Dtr
i ,θ}(x

test
ij), ytestij). (2)

Eq. (1) represents a standard empirical risk minimization task
of supervised learning, in which the prediction of yi only
depends on xi and θ. However, with respect to few-shot
learning, as shown in Eq. (2), the prediction of ytestij also
depends on the training examples of Dtri that reflects the tasks
concerned, in addition to the corresponding features xtestij and
the parameters θ.

B. Metalearning

Methods for few-shot learning are commonly implemented
by a certain metalearning mechanism, which enables the learn-
to-learn ability. Generally speaking, metalearning involves two
hierarchical learning processes: 1) low-level learning, which is
usually termed the “inner loop”, learns how to handle general
tasks; and 2) high-level learning, which is often referred to as
the “outer loop”, improves the performance of the low-level
learning process.

Deep learning is in turn, typically employed to implement a
metalearning process, although other machine learning meth-
ods, such as Bayesian learning [21], may also be applied.
Indeed, most of the metalearning techniques use the gradient
descent method within the “outer loop”; with the gradient of
the “outer loop” termed the metagradient. As for the “inner
loop” different learning methods may be applied, including
the metalearning approaches that can be implemented in either
of the following three types of method: 1) memory-based, 2)
optimization-based, and 3) metric-based [8].

Metric-based methods can be artificially viewed as ap-
plying the K-nearest neighbor (KNN) method or one of its
variations to optimize a feature embedding space within the
“outer loop”. This minimizes the similarity metrics between
instances from the same class and maximizes those from
different classes. Such a method predicts testing sample labels
based on the similarity metrics in the embedding space within
the “inner loop”. To support this type of metalearning learning,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 2. A typical metalearning model, where θ is the parameters updated
within the “outer loop”, θ′i represents the parameters obtained by the training
on task i during the “inner loop”, and {xtrij , ytrij }j and {xtestij , ytestij }j are
training samples and testing samples regarding task i, respectively.

a number of similarity metric approaches have been suggested
for use in metalearning, such as cosine distance, squared
Euclidean distance, and even relationships learned by a neural
network [20], [22], [23].

Optimization-based methods adopt deep learning methods
within the “inner loop”, and during the “outer loop”, to
learn the hyperparameters, such as parameter initialization,
learning rate, and gradient direction, of the model. Among
these methods, model agnostic meta learning (MAML) is the
most typical [12]; it tries to learn the initialization of the model
parameters. In addition, those methods reported in [14] and
[15] attempt to learn the learning rate of the “inner loop”.

Memory-based methods memorize and search for key
training examples [10] or model-related information within
the “inner loop”. Here, model-related information may include
any information that is related to the model of the “inner
loop”, such as the network weights [11] or the activation
values [24] within different layers. These methods typically
work by extending an external memory, and by reading and
writing the memory with attention models.

In summary, a general metalearning model is illustrated
in Fig. 2. If a parametric learning method is utilized during
the “inner loop”, the model will obtain the parameters θ′i by
training on the data of task i; otherwise, if a nonparametric
learning method is used, θ′i is just equal to {θ, {xtrij , ytrij}j}.
During the “inner loop”, θ is then updated to θ′i, thereby being
capable of differentiating between θ and θ′i. Last, within the
“outer loop”, θ is updated by the gradient descent method.

III. PROPOSED METALEARNING MODEL

The proposed approach offers an optimization-based method
that controls the gradient descent process within the “inner
loop”, by limiting the model parameters in a low-dimensional
latent space (as shown in Fig. 2). The latent variable in the
latent space is decoded by a nonlinear decoder to obtain the
parameters of the prediction model. The GLT structure is
devised to implement decoder networks. Different decoders
can be chosen in response to a given task. Therefore, the low-
dimensional latent space used in the decoder choice network
is also dependent on the task. For presentational simplicity,
Table I lists all notations and summarized descriptions.

TABLE I
Notations and descriptions. # means “the number of”. * means “the

parameters of”.

Notation Description Notation Description
Dtri training dataset i cs weight of s decoder
Dtesti test dataset i α “inner loop” learning rate
xtrij training feature η “outer loop” learning rate
ytrij training label M # “inner loop” iterations
xtestij test feature z latent variable
ytestij test label ε * batch normalization
Ti task i θi parameter for task i
gφc choice network θ̂i θi without normalization
gsφd

decoder s ξ mean of {θ̂i}i
S # decoders σ2 variance of {θ̂i}i
fθi network with θi h hidden variable matrix
Wn weight matrix n λ * softshrink
ω * ELU Fh # groups of h
Fg # groups of z Fx # data features
Ff # firing strengths µA firing strengths A
γn state variable n µB firing strengths B
φfc * last layer

Fig. 3. Typical structure of a neural network layer with DCN, where xtri =
{xtrij }j and ytri = {ytrij }j , and the choice network gφc is illustrated as a
white box.

A. Decoder Choice Network

Fig. 3 illustrates the structure of DCN, consisting of
three parts: a choice network gφc

, a number of decoders
{g1φd

, g2φd
, · · · , gSφd

}, and a latent variable z. At the start
of the “inner loop”, the choice network receives the task
features and produces the choice of the decoder. To make
the decoder choice differentiable, the idea of neural Turing
machine (NTM) [25] is adopted. The choice network, gφc

,
selects each decoder with different extents, {c1, c2, · · · , cS}.
When applying an NTM, the weights of the decoders are not
provided by the attention model but flexibly via the use of a
fuzzy set (which will be explained in Section III-B).

Given the weights of the decoders, the latent variable of the
“inner loop” is initialized with the latent variable z′ = z and it
is decoded to obtain the parameters of a neural network model
for the task Ti under consideration:

θ̂i ←
S∑
s=1

cs · gsφd
(z′). (3)

Before parameterizing the neural network model with θ̂i, to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Algorithm 1 Inner Loop of DCN.
Require: Choice network gφc ; Decoders {g1φd

, g2φd
, · · · , gSφd

}; La-
tent variable z; Training samples Dtri = {xtrij , ytrij }j ; Testing
samples Dtesti = {xtestij , ytestij }j ; Learning rate α; Number of
steps M ; Loss function L.

1: Initialize z′ = z
2: {c1, c2, · · · , cS} ← gφc(Dtri)
3: for m = 1, · · · ,M do
4: θ̂i ←

∑S
s=1 cs · g

s
φd

(z′)

5: θi ← Normalize θ̂i by Eq. (4)
6: Ltri =

∑
j L(fθi(x

tr
ij), y

tr
ij)

7: z′ ← z′ − α∇z′Ltri
8: end for
9: θ̂i ←

∑S
s=1 cs · g

s
φd

(z′)

10: θi ← Normalize θ̂i by Eq. (4)
11: Ltesti =

∑
j L(fθi(x

test
ij), ytestij)

12: return Ltesti

prevent vanishing gradient and accelerate convergence, θ̂i is
normalized with batch normalization [26], which is given by:

θi = ρ ∗ θ̂i − ξ√
σ2 + ε

+ β, (4)

where ξ and σ2 are the mean and variance of {θ̂i}i, respec-
tively, ρ and β are learnable parameters, ε is a positive value
close to zero that is added to the denominator for numerical
stability, and ε = 1e− 05 is chosen following the work [26].
After obtaining θi, the model fθi is built in relation to the task.
fθi is used to process each data point from training samples
with a general feed-forward mapping. The forward process is
depicted in Fig. 3.

After obtaining the prediction and loss functions for all
training samples, gradient descent is used to update θ. Note
that θ is not directly updated whilst the latent variable z is
updated instead:

z′ ← z′ − α∇z′Ltri (fθi), (5)

where α is the learning rate of gradient descent within the
“inner loop”. For simplicity,

∑
j L(fθi(xtrij), ytrij) is rewritten

as Ltri . In the next step, the model parameterized by θi is used
to calculate the loss on the training samples, and the process
(3) → (4) → (5) → (3) loops several times before it is
evaluated on the testing samples. The “inner loop” process of
DCN is summarized in Algorithm 1.

Finally, the adapted parameters θi are used to calculate the
testing loss

∑
j Li(fθi(xtestij), ytestij), written as Ltesti . Within

the “outer loop”, the choice network, gφc
; the decoders,

{g1φd
, g2φd

, · · · , gSφd
}; and the iatent variable, z, are updated

to reduce Ltesti .

B. Decoders

The main challenge for the implementation of DCN is that
if fully connected multilayer networks are used as decoders,
a significantly large number of parameters will be required.
The decoders receive the latent variable, producing the model
parameters of a neural network. Because the dimension of
the model parameters is rather large, the complexity of the

X=

X=

X=

... ...
X=

C
oncatenates

C
oncatenates

C
oncatenates

Fig. 4. Group linear transformation structure, where {h1, h2, · · · , hFh
} are

concatenated rto h and the length of the vector in each channel of h is
increased Fh times, which is the number of the weight matrices.

decoders often becomes unacceptable. To address this prob-
lem, methods are introduced to reduce the complexity of the
decoders.

1) Group Linear Transformation: Although the main chal-
lenge is the output of the decoders being of a high dimension-
ality, the dimensionality of the latent variable z should also be
considered (which may be 10 times smaller than the total of
model parameters at most). This is because if the number of
the latent variables is too low, it will limit the expression of
the metalearning model.

One way to overcome these two challenges, is to divide the
input and weight matrices of a certain layer in the decoders
into groups, and to reuse each of the weight matrices in
all groups of the input. Here, as an example, the first layer
of the decoders is utilized for this to illustrate the idea. In
particular, the latent variable is divided into a number of
groups z = [z1, z2, · · · , zFg

], where z is a matrix and the
elements in each column are from the same group. Each
element of the output depends only on the latent variables in
the group. Then, each weight matrix of {W1,W2, · · · ,WFh

}
is exploited to calculate the hidden variable:

hn = Wnz, (n = 1, 2, · · · , Fh). (6)

From this, {h1, h2, · · · , hFh
} are concatenated into a matrix

h and of course, h has already been divided into Fh. This
process is summarized in Fig. 4. The resulting structure is
named as GLT, which is then analyzed in order to reduce the
number of parameters in the decoder network (see III-B4).

2) Non-linear: Within the hidden layer, the exponential
linear unit (ELU) (ω = 1) [27] is chosen as the nonlinear
transformation in the decoder network, which is given by:

ELU(x) = max(0, x) + min(0, ω ∗ (exp(x)− 1)), (7)

where ω is for simplicity, set to one in all experimental
investigations unless otherwise stated. In the output layer, a
double-thresholding strategy is adopted, applying an equal
threshold on both the positive and the negative side. Such
a function, called “softshrink”, is utilized on the basisof
PyTorch [28]. It is given by:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

softshrink(x) =


x− λ, if x > λ

x+ λ, if x < −λ
0, otherwise

, (8)

where λ denotes the threshold. For all experiments in this
work, λ is set to 0.01, as commonly done in the literature.

3) Structure sharing: To further reduce the complexity of
the decoders, all the decoder networks are devised to share
the same low-level layers. In particular, the last layer of this
neural network is set to have multiple heads, with each head
representing a decoder and the output dimension of each of
the heads being the same to one another. As the functions of
each head are related to each other, this type of structure not
only helps reduce the time and spatial complexity of the model,
but also prevents gradient vanishing while rapidly accelerating
convergence. The reason is that the shared shallow layers of
the network can obtain the gradients from all heads. This
is a classical method adopted in a number of deep learning
works (e.g., [29]–[31]), and it has been proven to be efficient
supported with empirical evidence.

The choice network and decoders are reused in different
layers. However, if the task features are the same for these
layers, all layers with a DCN structure are set to have the
same {c1, c2, · · · , cS}. The features of the training samples
of the previous layer are employed as the task features of the
current layer. In so doing, each layer chooses its own decoder.
Note that in all following experimental studies, a 2-layer neural
network is used to implement the decoder, whose outputs of
the second layer are S vectors with a size equaling to the
number of the model parameters.

Note that in certain circumstances, such as miniImageNet,
the number of model parameters may still be too large.
Thus, θ̂ is resized with linear interpolation to enlarge its
dimensionality. This method effectively reduces the output size
of the decoders and makes each model parameter related to the
others, which can be viewed as a type of regularization [17]. In
addition, the execution of linear interpolation allows DCN to
be reused in layers with different model dimension parameters.
In implementation, the upsampling bilinear 2D model based
on PyTorch [28] is utilized to perform the required linear
interpolation.

4) Complexity Analysis One: The number of model param-
eters in the prediction model is first analyzed. The number
of channels (corresponding to the convolution layer or the
fully connected layer) is assumed to be F . If the numbers
of channels are equal to each other in the hidden layers,
they will be proportional to F 2. Denote such a proportion
rate as lκ, with l representing the number of layers and
κ the kernel size of the convolutional unit. Thus, most of
the convolutional neural networks (CNNs) will meet this
condition. Any deviations caused by the first and last layers
can therefore be ignored due to their rather minute magnitudes.

Consider the worst case, where each decoder is a single
fully connected network. Suppose that both the input and the
output of the decoder network are the latent variable and the
model parameters, respectively. Then, the fact of dim(z) ∝
dim(θi) leads to dim(W) ∝ F 4l2κ2, where W denotes the

weight matrix of the decoder network. Since the time and
spatial complexities are proportional to the number of weights
in a neural network, both the time and spatial complexities are
O(F 4l2κ2).

Now that all decoders are shared amongst the different
layers, the time and spatial complexities are reduced to
O(F 4Sκ2). If the decoders are also shared between the
dimensions of the kernel, the complexity will decrease to
O(F 4S). In the general case, S � l2κ2, when replacing the
fully connected network with the proposed GLT structure.

The number of parameters in a 2-layer fully connected net-
work and GLT are [dim(z)+dim(θi)S]dim(h) and dim(h)

dim(z)F
2
g+

dim(θi)
dim(h) SF

2
h , respectively, where dim(h) and dim(z) denote

the total dimensionality of the latent variables and that of
the hidden variables. Note that dim(h)

dim(z) and dim(θi)
dim(h) should be

integers, while 1 ≤ Fg ≤ dim(z) and 1 ≤ Fh ≤ dim(h).
Smaller Fg and Fh values indicate fewer parameters in GLT.
Therefore, the number of parameters can be reduced by
decreasing the number of groups. If Fg = Fh = 1 and
dim(h)

2
= dim(z)dim(θi), the time and spatial complexities

are reduced to O(F
dim(z)). In contrast, if Fg = dim(z) and

Fh = dim(h), GLT is equal to the fully connected network.

C. Choice Network

The choice network, gφc
, receives the task features and

produces the choice of the decoders. In order to answer the
question of how to choose the task features, questions of what
type of neural network to use for processing the task features
and how to calculate the weights for each decoder need to be
considered.

1) Choice Mechanism: First, the choice network is reused
in different layers. To select different decoders for different
layers, the choice network receives the input features of all
training samples in the current layer as its task features.
Thus, each layer chooses its own decoder. Second, the choice
network is reused in the different dimensions of the convolu-
tional network kernel. The task features should therefore be
organized with respect to the dimension of the kernels.

After obtaining the task features, a capsule net [32] is
adopted to process such features (with just one capsule layer
utilized in this work). The task features, which are input to the
capsule layer, are divided into a number of capsules, and each
capsule is set o only involve one variable. Thus, the output
variables of the capsule layer are all in one capsule. This
follows the conventional process of dynamic routing [32] in
the literature.

Finally, fuzzy sets are used to represent the weights of each
decoder. Suppose that the output variables of the capsule layer
lie in [−1, 1] and are denoted as {v1, v2, · · · , vFf

}. They are
transformed to fall within [0, 1] to denote the state variables,
γn = (vn + 1)/2, n = 1, 2, · · · , Ff . The value of each state
variable is represented by a pair of fuzzy sets (say, A and B).
Thus, there are 2n (i.e., 2Ff) value combinations, and each
such combination of two fuzzy sets determines the weights of
a decoder. From this, it can be readily derived that S = 2Ff .
The relationship between the membership functions of the two

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

fuzzy sets is set to µA(x) = 1− µB(x), and the value of µA
are determined by

µA(x) =


1, x ≤ 0

1− x, 0 < x ≤ 1

0, x > 1

. (9)

Without losing generality, denote the membership functions
of each pair of fuzzy sets specifying γn as µA(γn) and 1 −
µA(γn). The weight of each decoder is then calculated by:

cs =

∏
n µA(γn)

ans µB(γn)
1−ans∑S

l=1

∏
n µA(γn)

anl µB(γn)1−a
n
l

, (10)

where ans ∈ {0, 1} indicates which fuzzy set the sth variable
takes as its value. Due to

∑S
l=1

∏
n µA(γn)

anl µB(γn)
1−anl ≡

1, Eq. (10) can be written as:

cs =
∏
n

µA(γn)
ans µB(γn)

1−ans . (11)

Note that S in Eq. 10 is a hyperparameter. In general,
a higher value of S normally implies that the model can
obtain a better performance since higher values represent more
decoders, but there is balance to strike between accuracy and
efficiency. Therefore, S is empirically set to four in this work;
such a structural specification of the choice network entails a
low computational complexity.

2) Complexity Analysis Two: More generally speaking, the
complexity of the choice network can be analyzed as follows.

First, the complexity of the capsule net is the same as that
of a regular fully connected network and can be obtained
by multiplying the input dimension by the output dimension.
Since the input and output of the choice network are data
features and the membership values of their states, respec-
tively, its complexity is O(FxFf), where Fx is the number
of the data features. For this work, Fx is not greater than the
dimensionality of the set of original features. As Ff = log 2S,
the complexity of the choice network can be rewritten as
O(Fx log 2S). If however, no fuzzy set representation is used
in the choice network, the network’s complexity is O(FxS).
Note that feature embedding is herein used to process data
in order to obtain low-dimensional, highly abstract features
(see Section III-D next). In addition, unless otherwise stated,
Ff = logS and the largest S are both set to 16 to facilitate
fair comparison in the experimental studies. As Ff is rather
small, the size of the capsule net is fairly small relative to that
of the decoders.

Second, the complexity of calculating the membership val-
ues is O(S logS). Obviously, this complexity can also be
ignored relative to that of the decoders. As a result, the overall
time and spatial complexities of DCN are similar to those of
the decoders with little effect from the inclusion of the choice
network.

D. Metatraining Strategies

A successful application of metalearning requires an appro-
priate introduction of the underlying metatraining strategies,
which are discussed below.

The structure of feature embedding
is always differentiable.

Fig. 5. A typical training process, where φ = {φfe, z, φc, φd, φfc, α}; FC,
denotes the last layer of the model; X tr = {xtrij }j and Ytr = {ytrij }j are the
feature values and their corresponding labels in the training samples, X test =
{xtestij }j and Ytest = {ytestij }j are those of the testing samples, and Ptr
and Ptest are the model predictions for the training and testing samples. Note
that z denotes the latent variable and is transformed into the model parameter
θ by the decoder network. During the inner training step, the training loss
Ltri is obtained and (z, φfc) is fine-tuned to (z′, φ′fc) by ∇z,φ′

fc
Ltri within

the “inner loop”. Then, the choice network and the decoders receive z′ and
product θi. Last, the testing loss Ltesti is calculated to update φ during the
“outer loop”.

1) Feature embedding: It is necessary to use a much
deeper network (e.g., ResNet [33] or dense net [34]) to
obtain a higher classification accuracy on a dataset involving
complicated image contents, such as miniImageNet. However,
deeper networks require a great amount of GPU memory
to learn all the parameters. This is independent of whether
the learning is done by an optimization-based method or a
memory-based method, whilst a metric-based method may
be unstable in such use [18]. Therefore, recently, cotraining
or supervised pretraining methods have been proposed to
ease this problem. For example, TADAM [18] trains ResNet
with auxiliary cotraining of 64 classifications [18] to improve
system convergence, and LEO [8] uses all classes from the
training and validation sets to perform 80 pretraining steps to
obtain a feature embedding, with other similar approaches as
reported in [35]–[37].

In contrast, DCN is herein trained in an end-to-end man-
ner, as illustrated in Fig. 5. Particularly, the job of feature
embedding is implemented with a standard CNN (or a much
deeper network, such as ResNet [33] or dense net [34]). As
indicated in Fig. 5, the system parameters required by feature
embedding, φfe, remain constant within the “inner loop” and
are updated during the “outer loop”. Because the fine tuning
process (see next) in the last few layers is differentiable, the
feature embedding mechanism can be updated by gradient
back propagation from the last few layers directly. This makes
metatraining a very deep network simpler and more efficient.

2) Fine tuning: DCN works based on the use of an
optimization-based method and the latent parameters are up-
dated by the method explained in III-A. Thus, it is required
to implement gradient descent in the “inner loop”. Indeed,
the other parameters, such as φfc in the last fully connected
layer, are updated by a gradient descent algorithm (e.g.,
MAML [12]), as shown in Fig. 5. Note that the hyperparam-
eters controlling the “inner loop”, such as the learning rate α,
the choice network gφc and the decoders {g1φd

, g2φd
, · · · , gSφd

},
remain constant within the “inner loop” and updated during
the “outer loop” by stochastic gradient descent (SGD).

The “outer loop” process of DCN is summarized in Al-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 2 Outer Loop of DCN.
Require: Parameters of the choice network and decoders, φc and

φd; Learning rate of the “inner loop” α; Number of steps of the
“inner loop” M ; Loss function L; Parameters of fully connected
layer φfc and latent variable z; Distribution over the tasks p(T);
Parameters of the feature embedding φfe; Learning rate of the
“outer loop” η;

1: Initialise φ = {φfe, z, φc, φd, φfc, α}
2: while φ has not converged do \\ Outer Loop
3: Sample batch of the tasks {Dtri ,Dtesti }i ∼ p(T)
4: for all {Dtri ,Dtesti } do \\ Inner Loop
5: Use the feature embedding to extract features:

D̂tri = {x̂trij , ytrij }j , D̂testi = {x̂testij , ytestij }j

6: Initialize z′ = z, φ′fc = φfc
7: {c1, c2, · · · , cS} ← gφc(Dtri)
8: for m = 1, · · · ,M do
9: θ̂i ←

∑S
s=1 cs · g

s
φd

(z′)

10: θi ← Normalize θ̂i by Eq. (4)
11: x̂trij ← fθi(x̂

tr
ij)

12: Ltri =
∑
j L(fφfc(x̂

tr
ij), y

tr
ij)

13: z′ ← z′ − α∇z′Ltri
14: φ′fc ← φ′fc − α∇φ′

fc
Ltri

15: end for
16: θ̂i ←

∑S
s=1 cs · g

s
φd

(z′)

17: θi ← Normalize θ̂i by Eq. (4)
18: x̂testij ← fθi(x̂

test
ij)

19: Ltesti =
∑
j L(fφ′

fc
(x̂testij), ytestij)

20: end for\\ Inner Loop
21: φ← φ− η∇φ

∑
i L

test
i

22: end while\\ Outer Loop

gorithm 2. As can be seen from this algorithm, φfc is also
updated during the “inner loop”, which is slightly different
from the process in Algorithm 1. After model initialization,
the approach randomly samples a batch of tasks {Dtri ,Dtesti }i
with regard to the given task distribution T and extracts the
features of all samples in {Dtri ,Dtesti }i by feature embedding.

Then, forward propagation of training samples is performed
for each task, and the backward gradient method is used to
update the parameters φfc and z to obtain φ′fc and z′ (as
detailed in the “inner loop”), respectively. After training, a
unique model is generated per task, and the model is tested
on the testing samples of each task. Finally, the loss of
all tasks based on the testing samples is used to update φ
within the “outer loop”. Since all operations within the “inner
loop” process are derivable, the parameters can be updated
by stochastic gradient descent based on the training result
achieved within the “inner loop” process.

E. Ensemble Learning

The standard training protocol followed by most previous
few-shot learning methods is to decrease the learning rate
during training and to choose a resulting model with the
validation set. However, a recent study has showed that a
training protocol with a snapshot ensemble [19] may be
more suitable for model training on certain datasets, such as
miniImageNet. Such a protocol makes better use of a model
obtained through a single training process.

Note that when a model is trained on the basis of miniIma-
geNet, the training and validation sets do not have overlapping
classes and typically, the number of classes in the training set
is rather small. Therefore, a larger generalization gap exists
between the training and validation loss. When the training
loss reduces rapidly, the validation loss barely changes. In this
case, choosing models from different numbers of iterations
may result in models with similar validation losses and com-
pletely different training losses. This means that certain models
may have good generalization performance during training, but
their performance can be rather different on various classes
or datasets, showing the diversity and quality of models with
ensemble learning.

Having recognized above, in this work, instead of using the
best model returned by a training process, all models with
strong performance from the training process are used. This
approach has been adopted in “support nets” [38], with its
effectiveness shown and supported by empirical results. Fol-
lowing this approach, top n models of the best performance on
the validation set are herein chosen to construct an ensemble
model.

Particularly, the models are selected over certain iteration
intervals and are sorted according to their accuracy. These
models are then added to the ensemble model in the sequence
with respect to their accuracy on the validation set. If such
an added model improves the performance of the ensemble
model, it is retained; otherwise, it is dropped. The model with
the highest validation accuracy is tested for the ensemble prior.

Ensemble learning is integrated with the proposed
optimization-based DCN method, with the resultant system
referred to as DCN with ensemble learning, and abbreviated
as DCN-E. Such an ensemble learning approach exploits all
information contained within the given all selected models
that have been obtained in a single training process. As to be
shown later, this method greatly improves the generalization
performance of the resulting system.

F. Comparison between DCN and LEO

In principle, the proposed network has a similar manner
aim to that of LEO [8]. That is to encode latent variables in
response to the task and to decode latent variables as the model
parameters, by the use of a certain decoder. Both LEO and
DCN perform gradient descent within a low-dimensional latent
space during the “inner loop”. However, significant differences
exist between them.

First, LEO and DCN address the issue of task dependence
in different places. Whilst they both try to learn the latent
variables and the decoders, via decoding the latent variables
into model parameters, LEO attempts to build task dependence
on the latent variables, while DCN does this on the decoder.
Besides, the decoders of LEO and the latent variables of DCN
are set for different tasks. Second, they build task dependence
in a different way. LEO uses a network to convert the task
features into the latent variables, while DCN chooses the
decoders from the set of candidate decoders according to the
given task features. Third, the model parameters generated by
LEO and DCN are different. The former creates the model

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

parameters for the last layer, while DCN generates parameters
for the hidden layer. Higher time and space complexities are
required for generating the model parameters of the hidden
layer.

Note that as the model parameters in the last layer can be
separately generated by the classes within a given task, the
features of each class may be used as its model parameters.
However, the model parameters of the hidden layer cannot
be separated from classes. For this reason, the output size
of a decoder increases from hs to h2s, and the number of
parameters in the decoder increases from h2s to h4s. This is the
problem analyzed in Section III-B4. Therefore, LEO does not
considering the use of a multilayer nonlinear decoder within
any large-scale model. Nonetheless, since DCN can reduce the
parameter size of the decoders to an acceptable scale, DCN
can use multilayer nonlinear decoders.

IV. EXPERIMENTATION

A comparative experimental study in reference to the state-
of-the-art approaches is reported in this section for model
evaluation. It particularly addresses these three questions: (1)
Can optimization control of DCN learn useful information
for metalearning? (2) Can the proposed training strategy train
a much deeper network without co-training or pretraining?
(3) Can snapshot ensemble [19] improve the performance of
metalearning? In answering these questions, all experimental
investigations are run on “Pytorch” [28].

Regression and classification tasks are used in the exper-
iments. The regression task is regarded as a sinusoid curve
fitting, with the results compared against those obtained by
MAML [12]. A range of classification tasks are run on the
Omniglot [39] and miniImageNet datasets [20], which are
common benchmarks for few-shot learning in the literature.
The code for all programs implemented is available for open
access on github1.

A. Data Description

The sinusoidal curve fitting task was originally reported
in [12]. The data samples for each task are obtained from
the input and output of a sine wave, where the amplitudes
and phases of the task p(T) are different. The amplitudes and
random phases are sampled from uniform distributions over
the ranges of 0.1 to 5.0 and 0 to π, respectively. Both training
and testing features are sampled uniformly from [−5.0, 5.0].
The mean-squared error between the output of the network
and the corresponding sine function value is used for both
evaluation and computing the loss functions.

The Omniglot dataset consists of samples from 50 interna-
tional languages, each character has 20 instances, and there
are a total of 1,623 characters. The 20 instances of each
character are written by a different person. Following [20],
the Omniglot dataset is divided into 1,200 and 423 characters
for training and evaluation, respectively. All images are resized
to 28 × 28, and samples are augmented by rotating 90, 180,
and 270 degrees. The model is evaluated on 1-shot and 5-shot,

1www.github.com/AceChuse/DCN

5-way and 20-way tasks. Each task contains the same number
of shots and queries.

The miniImageNet consists of 100 classes, each of which
involves 600 natural images. All images are resized into those
of 84 × 84 to ensure a fair comparison with the prior work.
The miniImageNet dataset is sampled from the ILSVRC-12
dataset [40] (which was first proposed in [20] by Vinyals et
al.). Following the split of the miniImageNet proposed by Ravi
and Larochelle [14] and most previous work, the dataset is
herein split into 64, 16 and 20 classes for training, validation,
and testing, respectively.

B. Experimental Setup

Prior to the presentation and discussion of experimental
results, it is helpful to give an overview of the experimental
methodology used.

1) Sinusoid Curve Fitting: Three hidden layers of sizes,
[40, 40, 35], are used with rectified linear unit (ReLU) non-
linearities, and the two middle layers are used with DCN.
This is different from the work of [12] because if two hidden
layers were used in the model, there would be only one layer
with DCN. In that case, it would be difficult to reflect the
advantages of DCN since it would not be able to illustrate the
idea of choosing the decoders that are shared between layers.
Except for the hidden layers with DCN, the other layers are
standard fully connected ones trained by MAML. There is no
feature embedding involved as no fine tuning is required in
this sinusoid curve fitting experiment.

During the training process, two-step updates are applied
with the “inner loop” having a fixed learning rate of α =
0.01 and the “outer loop” having a fixed learning rate of β =
10−3. These rates are set following the common practice in
the literature. Both models are trained for 60,000 iterations by
Adam with AMSGrad [41]. Note that the inner learning and
weight decay rate are not updated in this experiment. During
testing, 10-, 20- and 30-step updates for the 5-shot, 10-shot,
and 20-shot images are used, respectively. The popular mean-
squared loss function is used, with the form of the loss being
given by:

Ltesti =
∑
j

‖fθ(xtestij)− ytestij ‖22, (12)

where xtestij and ytestij are the input and output sampled from
each sinusoid curve, respectively, and fθ denotes a model with
parameters θ.

Since the sizes of the hidden layers are not equal to each
other, linear interpolation is adopted to resize the output of
the decoders. There are 3,116 learnable parameters in MAML
and 2,020 learnable parameters in DCN. Their forwarding
structures built in the “inner loop” are the same. A total of
600 minibatches of tasks are randomly sampled for evaluation,
and each batch has 25 tasks.

2) Omniglot Classification: The layers with DCN are
applied to replace two convolution layers before the fully
connected layer in a standard 4-layer embedding CNN (which
was proposed in [20]), and mean pooling is used to replace
max pooling. Such a model is denoted by DCN4 hereafter.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Similarly, DCN6 denotes a model implemented by four convo-
lution layers and two layers with DCN being employed before
the fully connected layer. Layers used before those layers with
DCN realize feature embedding, which are not fine-tuned, and
their parameters are updated by gradient descent during the
“outer loop”. The fully connected layer with a size of 64 and
softmax is exploited to calculate the classification probability.

As with the case study on sinusoid curve fitting, the
proposed model has fewer parameters than a standard 4-
layer convolution embedding with a fully connected layer and
softmax. In running the 5-way task, there are 112,005 learnable
parameters in a standard 4-layer convolution embedding net-
work and 76,553 learnable parameters in DCN4. The models
are trained for 60,000 iterations, and the initial learning rate
is set to 10−3 and is decayed by 0.5 for every 10K episodes.
Inner learning and the weight decay rate are updated, and their
learning rates are 0.1 times those of the other parameters. The
common cross-entropy loss is used for classification, which
takes the following form:

Ltesti =
∑
j

∑
k

ytestij,k log fθ,k(x
test
ij) (13)

where xtestij denotes the features of a testing example, {ytestij,k }k
denotes the labels of a testing example, and fθ denotes a model
with parameters θ.

Given the similar aim between DCN is similar to LEO [8],
for fair comparison, LEO is used to replace DCN in DCN4,
DCN4-E, DCN6, and DCN6-E in places. The coefficients of
entropy penalty and stopgrad penalty are set to 0.1 and 1e-
8, which are of a similar scale as those obtained by random
search (see [8]), without using the orthogonality penalty (be-
cause it would require too much GPU memory). As explained
earlier, LEO requires substantially more parameters, making
it unfair to directly compare with other models. In running
the 5-way task, there are 5,125,525 parameters in LEO4, and
the other three models also contain many more parameters
than the DCN model. However, DCN has better performance
in most cases. Since DCN4 is of the same size as the model
used in prior works, it is compared with those methods too.

3) MiniImageNet Classification: The feature embedding
network is trained by DenseNet-161 [34] with 96 initial
channels and 16 growth rates (but not fine-tuned during the
“inner loop”). After DenseNet-161, one 1×1 convolution layer
is used to change the number of channels to 256 without pool-
ing as feature embedding. Standard data augmentation from
ImageNet is employed, involving: 1) randomly flipping an
image horizontally; 2) resizing of each image into a 100×100
frame while cropping it with a random size and aspect ratio
and then, resizing to 84 × 84; and 3) randomly jittering the
brightness contrast and saturation of a given image.

After feature embedding, the structure of the ResNet (3, 3)
block will include a layer with DCN, a convolution layer
with batch normalization and the nonlinear function ReLU.
Although there is only one layer within DCN, it is yet
effective. This is because the decoders can be reused within
the layer. The features after global average pooling are fed
into a fully connected layer with softmax. Models are trained
for 40K iterations by Adam with AMSGrad [41]. The initial

TABLE II
Number of parameters in the models which are used in few-shot

classification on the miniImageNet dataset.

Model 5-way space
1-shot 5-shot

LEO (mini) 81.74M 81.74M
DCN (mini) 4.07M 4.07M

TABLE III
Average time consumed by 10 iterations on the miniImageNet dataset. After
± is the 95% confidence intervals over 10 iterations. The units are seconds.

Model 5-way time
1-shot 5-shot

LEO(mini) 3.322±0.015 3.640±0.004
DCN(mini) 2.757±0.010 3.052±0.036

learning rate is set to 0.1 and decay rate to 0.5 for every 10K
episodes. After 20k episodes, learning rate cyclic annealing is
used, which is defined by:

υ(t) =
υ0
2

(
cos

(
πmod(t− 1, T)

T

)
+ 1

)
, (14)

where υ0 denotes the initial learning rate that is set to
υ0 = 0.001, and T is the period of cyclic annealing which
is empirically set to T = 2000.

Similar to Omniglot, the classification system for miniIm-
ageNet is trained using cross-entropy loss, learnable inner
learning and a weight decay rate. The learning rate is 0.1
times that of the other parameters. Clips of the gradient norm
of an adaptable parameter are added during the “inner loop”.
After testing on the validation set, the model is retrained on
the dataset involving the training set and validation set, with
the same hyperparameters. A resulting model trained with
the same number of iterations to that used for training the
ensemble is chosen and tested on the testing set. Note that the
computing power available in conducting the present research
is not sufficient to train WRN-28-10 [42] using the population-
based training (PBT) [43] (as done in [8]). Thus, DCN is
replaced with LEO in dealing with the miniImageNet model.
There are more than 80 million parameters in the minImageNet
model with LEO, which is much larger than the number of
parameters in the DCN model (that has 4 million parameters).

The proposed model is evaluated on 1-shot, 5-shot, and
5-way tasks. All tasks have eight sub-tasks in a mini-batch,
each containing 15 samples from a query. One thousand tasks
are randomly generated through the use of the validation and
testing sets after training.

C. Time and Space Consumption

To demonstrate the efficiency of DCN, both time and space
consumptions respectively incurred by DCN and LEO are
compared. The number of parameters in the models that work
on the miniImageNet and Omniglot datasets are listed in
Tables II, V, and IV, respectively.

The average time consumption and confidence intervals of
10 iterations on the miniImageNet datasets are shown in III,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE IV
Number of parameters of the models that are used in 5-way few-shot

classification on the Omniglot dataset.

Model 5-way space

1-shot 5-shot

LEO4 [23] 5.126M 5.126M

LEO6 [23] 5.200M 5.200M

DCN4 0.077M 0.077M

DCN6 0.151M 0.151M

TABLE V
Number of parameters of the models that are used in 20-way few-shot

classification on the Omniglot dataset.

Model 20-way space

1-shot 5-shot

LEO4 [23] 5.127M 5.127M

LEO6 [23] 5.200M 5.200M

DCN4 0.078M 0.078M

DCN6 0.151M 0.151M

respectively. Clearly, the parameter number of the DCN model
is much lower than that of the corresponding LEO model. The
time consumption of the DCN model is lower than that of
LEO on the miniImageNet dataset. However, on the Omniglot
dataset, which is of a moderate size, the time consumption
of the DCN model is higher than that of LEO. This is likely
due to the fact that LEO uses a linear decoder mechanism,
which has a faster parallel calculation speed than a multilayer
nonlinear decoder. Nonetheless, once the DCN model is used
to solve problems involving massive data, DCN will have a
faster processing speed than LEO. All compared results are
listed in Tables II, III, IV, V, VI, and VII.

D. Model Accuracy

The results on the accuracy of sinusoidal curve fitting
are summarized in Table X, which shows that the proposed

TABLE VI
Average time consumed by 10 iterations on the Omniglot 5-way few-shot

classification task. After ± is the 95% confidence interval over 10 iterations.
The units are seconds.

Model 5-way time

1-shot 5-shot

LEO4 [23] 0.059±0.006 0.130±0.008

LEO6 [23] 0.067±0.004 0.168±0.003

DCN4 0.234±0.003 0.644±0.003

DCN6 0.219±0.001 0.570±0.004

TABLE VII
Average time consumed by 10 iterations on the Omniglot 20-way few-shot

classification task. After ± is the 95% confidence interval over 10 iterations.
The units are seconds.

Model 20-way time

1-shot 5-shot

LEO4 [23] 0.056±0.002 0.216±0.001

LEO6 [23] 0.076±0.003 0.301±0.001

DCN4 0.277±0.002 1.082±0.003

DCN6 0.240±0.001 0.955±0.003

model has better performance than MAML. Together with the
observation on the model efficiency as discussed above, this
implies that sinusoid function can be learned rapidly by DCN.
Note that the performance improvement is more significant
when the number of shots is smaller. Comparing 5-shot to
20-shot images, the loss of MAML increases 28 fold, but the
loss of DCN only increases 6 fold. This demonstrates that the
approach introduced in this work has made better use of a
small amount of data in performing the regression task.

The results of model accuracy regarding the Omniglot
dataset are listed in Tables IX and VIII. The “Support nets6”
model in Table VIII involves 6-layer embedding CNNs, ,
which has more convolutional layers than, and hence is
different from, the others. It is included here to have a more
complete comparison with the existing literature. Except for
the 5-way 1-shot task, all implemented models following the
proposed approach obtain higher accuracy than the state-of-
the-art ones. The results of DCN4 on the 20-way, 1-shot and
5-shot tasks are even better than those of “Support nets6”. In
addition, the results in Table IX show that DCN has better
performance on the Omniglot dataset than LEO.

The results on the miniImageNet dataset are shown in
Table XI. Whilst most of the large-scale models require co-
training or pretraining, the proposed method can lead to state-
of-art results on 5-way 5-shot classification, or comparable
to those of state-of-art 5-way 1-shot classification, without
co-training or pretraining. DCN and LEO are shown to have
similar accuracies on the miniImageNet, but DCN has much
fewer parameters than LEO.

Furthermore, the improvements brought forward by ensem-
ble learning can be observed in Tables IX and XI: it enhances
most of the results. In particular, ensemble learning has the
most significant positive impact upon the model learned for
the miniImageNet dataset, which has higher generation gaps.

E. Ablation Study

The effects of GLT, choice networks and ensemble learn-
ing are studied here, supported with the use of additional
validation datasets, in terms of generalization accuracy. The
results on miniImageNet are shown in Table XII. The results
illustrate that the training protocol with a snapshot ensemble
is more suitable for few-shot learning tasks. In addition, the
improvement gained from the snapshot ensemble is more

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE VIII
Averages of the accuracy values over 1800 tasks generated from the testing set, of few-shot classification on the Omniglot dataset. After ± is the 95%

confidence interval over the testing tasks. The best-performing methods are highlighted, and ’-’ means no report.

Model 5-way Acc 20-way Acc

1-shot 5-shot 1-shot 5-shot

MANN [10] 82.8% 94.9% - -

Siamese nets [44] 97.3% 98.4% 88.1% 97.0%

Matching nets [20] 98.1% 98.9% 93.8% 98.5%

Neural statistician [45] 98.1% 99.5% 93.2% 98.1%

Prototypical nets [46] 98.8% 99.7% 96.0% 98.9%

MAML [12] 98.7±0.4% 99.9±0.1% 95.8±0.3% 98.9±0.2%

Meta-SGD [15] 99.53±0.26% 99.93±0.09% 95.93±0.38% 98.97±0.19%

Relation nets [22] 99.6±0.2% 99.8±0.1% 97.6±0.2% 99.1±0.1%

SNAIL [23] 99.07±0.16% 99.78±0.09% 97.64±0.30% 99.36±0.18%

Support nets4 [38] 99.24±0.14% 99.75±0.15% 97.79±0.06% 99.27±0.15%

Support nets6 [38] 99.37±0.09% 99.80±0.03% 98.58±0.07% 99.45±0.04%

DCN4 99.800±0.050% 99.891±0.008% 98.825±0.025% 99.505±0.004%

TABLE IX
Averages of the accuracy values over 1,800 tasks generated from the testing set, of few-shot classification on the Omniglot dataset. After ± is the 95%

confidence interval over the testing tasks. The higher accuracies of DCN and LEO with same structures are highlighted.

Model Choice Ens 5-way Acc 20-way Acc

1-shot 5-shot 1-shot 5-shot

LEO4 99.433±0.074% 99.727±0.011% 98.358±0.030% 99.178±0.005%

LEO4
√

99.444±0.075% 99.727±0.011% 98.361±0.030% 99.184±0.005%

LEO6 99.422±0.073% 99.751±0.012% 98.692±0.026% 99.355±0.005%

LEO6
√

99.478±0.070% 99.771±0.010% 98.736±0.026% 99.370±0.004%

DCN4 99.722±0.050% 99.860±0.009% 94.556±0.052% 97.719±0.009%

DCN4
√

99.733±0.055% 99.851±0.009% 94.775±0.050% 97.838±0.009%

DCN6 99.711±0.058% 99.913±0.006% 96.933±0.040% 98.974±0.006%

DCN6
√

99.733±0.055% 99.924±0.006% 97.236±0.038% 99.061±0.006%

DCN4
√

99.800±0.050% 99.891±0.008% 98.825±0.025% 99.505±0.004%

DCN4
√ √

99.833±0.042% 99.909±0.007% 98.842±0.025% 99.522±0.004%

DCN6
√

99.856±0.040% 99.924±0.007% 99.183±0.021% 99.593±0.004%

DCN6
√ √

99.922±0.032% 99.924±0.007% 99.108±0.022% 99.633±0.003%

TABLE X
Mean-squared error of sinusoid curve fitting. The 95% confidence intervals

over given tasks is shown after ±.

Models 5-shot 10-shot 20-shot
MAML 0.1564±0.0052 0.0360±0.0011 0.0055±0.00014
DCN 0.0176±0.0011 0.0051±0.0001 0.0028±0.00005

significant in miniImageNet than in Omniglot, which validates
the hypothesis taken in this work in that a larger generalization

gap will cause more improvement.

As for the impact of the choice network as introduced in
Section III-C, a significant improvement is observed. Since
LEO has provided task-related information by the encoder and
relation network, the results of LEO are better than those of
DCN without the choice network. However, in most cases,
DCN with a choice network obtains better results. Possible
reason for this outcome is that the learning process under
such a severe experimentation condition is too complicated
for a linear decoder, such as LEO, to perform, thereby unable
to return an optimal learning system. In contrast, DCN can

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE XI
Averages of the accuracy values over 1000 tasks generated from the test

dataset, of few-shot classification on the miniImageNet dataset. After ± is
the 95% confidence interval over the testing tasks. The first set shows the
results of the models that use convolutional networks (Matching nets [20],
Meta-learner LSTM [14], MAML [12], Prototypical nets [46], Meta-SGD

[15], Reptile [13], Relation nets [22] and Support nets [38]), and the results
of the models that use much deeper networks with ResNet or dense net

blocks are shown in the second set (SNAIL [23], Dynamic Few-Shot Visual
Learning [37], Predicting Parameters from Activations [35], TADAM [18]

and LEO [8]). The best-performing methods are highlighted.

Model Fine Tune Co- or Pre 5-way Acc

-shot 5-shot

[20] N N 43.56±0.84% 55.31±0.73%

[14] N N 43.44±0.77% 60.60±0.71%

[12] Y N 48.70±1.84% 63.11±0.92%

[46] N N 49.42±0.78% 68.20±0.66%

[15] Y N 50.47±1.87% 64.03±0.94%

[13] Y N 49.97±0.32% 65.99±0.58%

[22] N N 50.33±0.82% 65.32±0.70%

[38] N N 56.32±0.47% 71.94±0.37%

[23] N N 55.71±0.99% 68.88±0.92%

[37] Y Y 56.20±0.86% 73.00±0.64%

[36] Y Y 56.30±0.40% 73.90±0.30%

[35] Y Y 59.60±0.41% 73.74±0.19%

[18] N Y 58.50±0.30% 76.70±0.30%

[8] Y Y 61.76±0.08% 77.59±0.12%

LEO (best) Y N 60.22±0.08% 77.67±0.06%

DCN (best) Y N 61.64±0.08% 77.74±0.06%

use multilayer nonlinear decoders to handle these complex
nonlinear situations.

F. Discussions

The proposed approach benefits from an integrated use
of DCN, feature embedding, and ensemble learning. First,
DCN improves the performance of the model by updating
parameters in a low-dimensional space. Importantly, adopting
DCN does not increase the size of the model, but reduces it.
The reasons are that the model parameters of the layer with
DCN are replaced by a latent variable, which has a much lower
dimension, and DCN has fewer parameters itself.

Second, feature embedding is also proven to be effective and
efficient. Fine tuning is only required on the last few layers,
while the feature embedding process can be updated during
the “outer loop” to enhance the performance of the “outer
loop” itself. This enables the model to learn useful features
for metalearning and to achieve higher accuracy than many
models with pretraining feature embedding, while making the
training of a large-scale metamodel end-to-end.

Finally, the results show that the performance improvement
of ensemble learning on miniImageNet is more significant

TABLE XII
The Averages of the accuracy values over 1000 tasks generated from the

test dataset, of few-shot classification on the miniImageNet dataset. After ±
is the 95% confidence interval over the testing tasks. The best-performing

methods are highlighted.

Model Choice Ens +Val 5-way Acc

1-shot 5-shot

LEO 57.90±0.09% 73.31±0.07%

LEO
√

59.57±0.08% 77.02±0.06%

LEO
√

59.06±0.09% 73.51±0.06%

LEO
√ √

60.22±0.08% 77.67±0.06%

DCN 55.67±0.09% 72.51±0.07%

DCN
√

57.69±0.08% 76.38±0.06%

DCN
√

56.48±0.09% 72.50±0.07%

DCN
√ √

58.44±0.08% 77.07±0.06%

DCN
√

59.11±0.09% 72.22±0.07%

DCN
√ √

61.11±0.09% 76.62±0.07%

DCN
√ √

59.72±0.08% 73.81±0.07%

DCN
√ √ √

61.64±0.08% 77.74±0.06%

than that on Omniglot. This validates the hypothesis that a
task with a larger generation gap between the training set and
the validation set is more suitable for snapshot ensembles. In
performing such tasks, the proposed approach is capable of
obtaining models with higher quality and diversity.

V. CONCLUSION

This paper has proposed a metamodel with a decoder choice
network and applied a decoder to control the learning process.
Additionally, an innovative GLT structure has been included
to reduce the computational time and space complexities.
The results have shown that DCN is able to denote task-
general information. Also, ensemble learning is integrated
with DCN to improve the generalization ability of the learned
model. Further experimental results have demonstrated the
effectiveness of the approach in solving few-shot learning
problems.

For future work, despite promising experimental results, it
would be interesting to investigate whether, and how, this work
may be improved by replacing the decoder networks with other
types of neural network. Also, introducing an attention method
into DCN may help to improve the network’s efficiency; this
forms a worthy piece of further research. Additionally, DCN
may be applied to performing reinforcement learning tasks for
quick adaptations. This is potentially very useful since learning
environment information from a low-dimensional parameter
space may enable the resulting deep reinforcement learning
models to become more stable during training.

REFERENCES

[1] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

neural networks using pipeline parallelism,” in Advances in neural
information processing systems, 2019, pp. 103–112.

[2] C. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets:
Minkowski convolutional neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
3075–3084.

[3] B. Singh, M. Najibi, and L. S. Davis, “Sniper: Efficient multi-scale
training,” in Advances in neural information processing systems, 2018,
pp. 9310–9320.

[4] B. Zoph, G. Ghiasi, T.-Y. Lin, Y. Cui, H. Liu, E. D. Cubuk, and
Q. V. Le, “Rethinking pre-training and self-training,” arXiv preprint
arXiv:2006.06882, 2020.

[5] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He,
J. Mueller, R. Manmatha et al., “Resnest: Split-attention networks,”
arXiv preprint arXiv:2004.08955, 2020.

[6] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 28, no. 4, pp. 594–611, 2006.

[7] M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and
P. Abbeel, “Continuous adaptation via meta-learning in nonstationary
and competitive environments,” arXiv preprint arXiv:1710.03641, 2017.

[8] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero,
and R. Hadsell, “Meta-learning with latent embedding optimization,”
arXiv preprint arXiv:1807.05960, 2018.

[9] Z. Xu, X. Chen, and L. Cao, “Fast task adaptation based on the
combination of model-based and gradient-based meta learning,” IEEE
Transactions on Cybernetics, pp. 1–10, 2020.

[10] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in Interna-
tional Conference on Machine Learning, 2016, pp. 1842–1850.

[11] T. Munkhdalai and H. Yu, “Meta networks,” arXiv preprint
arXiv:1703.00837, 2017.

[12] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” arXiv preprint arXiv:1703.03400,
2017.

[13] A. Nichol and J. Schulman, “Reptile: a scalable metalearning algorithm,”
arXiv preprint arXiv:1803.02999, 2018.

[14] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” 2016.

[15] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-sgd: Learning to learn quickly
for few shot learning,” arXiv preprint arXiv:1707.09835, 2017.

[16] H. Zhu, L. Li, J. Wu, S. Zhao, G. Ding, and G. Shi, “Personalized
image aesthetics assessment via meta-learning with bilevel gradient
optimization,” IEEE Transactions on Cybernetics, pp. 1–14, 2020.

[17] N. Bansal, X. Chen, and Z. Wang, “Can we gain more from orthogonal-
ity regularizations in training deep cnns?” in Proceedings of the 32nd
International Conference on Neural Information Processing Systems.
Curran Associates Inc., 2018, pp. 4266–4276.

[18] B. N. Oreshkin, A. Lacoste, and P. Rodriguez, “Tadam: Task depen-
dent adaptive metric for improved few-shot learning,” arXiv preprint
arXiv:1805.10123, 2018.

[19] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Wein-
berger, “Snapshot ensembles: Train 1, get m for free,” arXiv preprint
arXiv:1704.00109, 2017.

[20] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in Advances in Neural Information
Processing Systems, 2016, pp. 3630–3638.

[21] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science, vol.
350, no. 6266, pp. 1332–1338, 2015.

[22] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 1199–1208.

[23] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural
attentive meta-learner,” arXiv preprint arXiv:1707.03141, 2018.

[24] T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler, “Rapid adaptation
with conditionally shifted neurons,” in International Conference on
Machine Learning, 2018, pp. 3661–3670.

[25] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv
preprint arXiv:1410.5401, 2014.

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[27] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[28] N. Ketkar, “Introduction to pytorch,” in Deep Learning with Python.
Springer, 2017, pp. 195–208.

[29] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[30] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and
alignment using multitask cascaded convolutional networks,” IEEE
Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016.

[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[32] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Advances in Neural Information Processing Systems, 2017,
pp. 3856–3866.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[34] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[35] S. Qiao, C. Liu, W. Shen, and A. L. Yuille, “Few-shot image recognition
by predicting parameters from activations,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
7229–7238.

[36] M. Bauer, M. Rojas-Carulla, J. B. Świątkowski, B. Schölkopf, and R. E.
Turner, “Discriminative k-shot learning using probabilistic models,”
arXiv preprint arXiv:1706.00326, 2017.

[37] S. Gidaris and N. Komodakis, “Dynamic few-shot visual learning
without forgetting,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4367–4375.

[38] J. Liu, S. J. Gibson, and M. Osadchy, “Learning to support: Exploiting
structure information in support sets for one-shot learning,” arXiv
preprint arXiv:1808.07270, 2018.

[39] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum, “One shot
learning of simple visual concepts,” in Proceedings of the Annual
Meeting of the Cognitive Science Society, vol. 33, no. 33, 2011.

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[41] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[42] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[43] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Don-
ahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan
et al., “Population based training of neural networks,” arXiv preprint
arXiv:1711.09846, 2017.

[44] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in ICML Deep Learning Workshop, vol. 2,
2015.

[45] H. Edwards and A. Storkey, “Towards a neural statistician,” arXiv
preprint arXiv:1606.02185, 2016.

[46] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” in Advances in Neural Information Processing Systems, 2017,
pp. 4077–4087.

APPENDIX

A. Task Feature

Suppose that the size of the input u of the network layer is
(Nd, Cin,Win, Hin), where Nd and Cin are the number of examples
and that of channels, respectively, and Win and Hin are the width
and height, respectively. The output size is (Nd, Cou,Wou, Hou). An
example of the feature choice is shown in Fig. 6, where the kernel
size is 9× 9 and Cin = 1. The mathematical form of the channel e

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Fig. 6. An example of a 9× 9 kernel with Cin = 1, where Ul is the output
capsule. The kernel size, stride, zero-padding and channel size of the layer are
9×9, 2×2, 1×1 and 1, respectively. When the channel size is not equal to 1,
w is not a vector but a matrix, and the number of Ul remains unchanged. The
lower right corner of the graph is the operation process after the generated
parameters. The convolution operation is consistent with standard a CNN.

is given by,

unek =



une
hk
1 ,w

k
1

une
hk
1 ,w

k
2

· · · une
hk
1 ,w

k
Wou

une
hk
2 ,w

k
1

une
hk
2 ,w

k
2

· · · une
hk
2 ,w

k
Wou

...
...

. . .
...

une
hk
Hou

,wk
1

une
hk
Hou

,wk
2
· · · une

hk
Hou

,wk
Wou


(n = 1, 2, · · · , Nd), (e = 1, 2, · · · , Cin),

, (15)

uek = vec
([

u1e
k , u

2e
k , · · · , uNek

])
, (16)

where e and k are the indexes of channel and kernel dimensions,
respectively; hki = hk0 + (i − 1)str1, (i = 1, 2, · · · , Hou) and
wki = wk0 + (i − 1)str2, (i = 1, 2, · · · ,Wou); hk0 and wk0 are the
starting coordinates of scanning; str1 and str2 are the strides in rows
and columns, respectively; and vec() is the operation of pulling the
matrix into a row vector. The weights of a capsule layer are shared by
the same channel across different samples. Finally, the task features
received by the capsule layer are given by:

ûk = cat
(
w1
ku

1
k,w

2
ku

2
k, · · · ,wCin

k uCin
k

)

=


û1|1 û1|2 · · · û1|J

û2|1 û2|2 · · · û2|J
...

...
. . .

...

ûFf |1 ûFf |2 · · · ûFf |J

 ,
(17)

where cat() denotes the concatenation of the matrix, Ff is the
number of state variables, J = HouWouNdCin, and wek is a column
vector with a length of Ff .

B. Dynamic Routing
After obtaining the features, dynamic routing [32] is adopted to

calculate the output capsule. The “prediction vector” [32] is given
by:

û·|j =
[
û1|j , û2|j , · · · , ûFf |j

]T
, (18)

where j = 1, 2, · · · , J . Each û·|j accumulates its value according to
the coupling coefficients, and nonlinear squashing is used to shrink
the vector module to 0 ∼ 1:

ŝ =
∑
j

Lj ◦ û·|j , (19)

v =
‖ŝ‖2

1 + ‖ŝ‖2
ŝ

‖ŝ‖ , (20)

where ◦ denotes element-wise multiplication. In this case, the input
includes a J capsule, the length of which is 1, and the output includes
the 1 capsule, the length of which is Ff ; the squashing operation is

applied to the entire output ŝ. Lj is the coupling coefficient that is
calculated by iterative dynamic routing [32] through:

Lij =
exp(bij)∑
k exp(bkj)

, (21)

where Lj = {Lij}i and b = {bij}ij denotes the correlation between
ûl and v. The initial value of b is a zero matrix. After obtaining the
output v, b can be recalculated as follows:

bn· = ûn|·vn, (n = 1, 2, · · · , Ff), (22)

where bn· and ûn|· are the row vector of b and that of ûk,
respectively, and vn is an element of v. The process is repeated
on the basis of Eq. (21) → (19) → (20) → (22) r times after
initializing b. Following the original work of [32], r = 3 is applied
in all the experiments.

Jialin Liu is a research assistance in the Department of Artificial Intelligence,
Xiamen University, China. He received his BEng. Degree in Mechatronics
from the Jimei University, China, in 2014; and he received his M.Sc. Degree
in Artificial Intelligence from the Xiamen University in 2020. His research
interests include machine learning and reinforcement learning algorithms.

Fei Chao (M’11) received the B.Sc. degree in Mechanical Engineering
from the Fuzhou University, China, and the M.Sc. Degree in Computer
Science from the University of Wales, Aberystwyth, U.K., in 2004 and
2005, respectively, and the Ph.D. degree in robotics from the Aberystwyth
University, Wales, U.K. in 2009. He is currently an Associate Professor with
the Xiamen University.

Longzhi Yang (M’12-SM’17) is currently a Programme Leader and a Reader
with Northumbria University, Newcastle upon Tyne, U.K. His research inter-
ests include computational intelligence, machine learning, big data, computer
vision, intelligent control systems, and the application of such techniques in
real-world uncertain environments. He is the Founding Chair of the IEEE
Special Interest Group on Big Data for Cyber Security and Privacy.

Chih-Min Lin (M’87-SM’99-F’10) was born in Taiwan, in 1959. He received
the B.S. and M.S. degrees from Department of Control Engineering and the
Ph.D. degree from Institute of Electronics Engineering, National Chiao Tung
University, Hsinchu, Taiwan, in 1981, 1983 and 1986, respectively. He is
currently a Chair Professor and the Vice President of Yuan Ze University,
Taiwan.

Changjing Shang received a Ph.D. in computing and electrical engineering
from Heriot-Watt University, UK. She is a University Research Fellow with
the Department of Computer Science, Institute of Mathematics, Physics and
Computer Science at Aberystwyth University, UK. Her research interests
include pattern recognition, data mining and analysis, space robotics, and
image modelling and classification.

Qiang Shen received the Ph.D. in Computing and Electrical Engineering
(1990) from Heriot-Watt University, Edinburgh, U.K., and the D.Sc. in Com-
putational Intelligence (2013) from Aberystwyth University, Aberystwyth,
U.K. He holds the Established Chair in Computer Science and is the Pro
Vice-Chancellor: Faculty of Business and Physical Sciences, Aberystwyth
University. His research interests include computational intelligence and its
application in robotics.

