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A Novel Framework of Fuzzy Rule Interpolation
for Takagi-Sugeno-Kang Inference Systems

Pu Zhang and Qiang Shen
Department of Computer Science, Faculty of Business and Physical Sciences

Aberystwyth University, Aberystwyth SY23 3DB, UK
{puz, qqs}@aber.ac.uk

Abstract—Fuzzy rule interpolation (FRI) technique has been
proposed to infer conclusions for unmatched instances when a
fuzzy rule-based system is presented with a sparse rule base.
Most existing FRI methodologies are not developed for Takagi-
Sugeno-Kang (TSK) inference models. TSK inference extension
(TSK+) is one of the methodologies proposed for TSK models
with sparse rule bases. It works by replacing matching degrees
with similarity measures across all the given rules, instead of
just the matched ones, to generate the final conclusion. However,
those rules with low similarities bring bias to the final result,
which is mainly determined by the closest rules. To significantly
strengthen the efficacy of this, a novel framework is presented
here through the use of just a small number of closest rules to
derive the final outcome. Compared with TSK+, the proposed
method reduces the computational overheads of the inference
process while avoiding the adverse impact caused by the rules
of low similarities with the new observation. More importantly,
to deal with large sized sparse rule bases, where neighbourhood
rules may be similar with each other, a rule-clustering approach
is proposed. That is, a clustering algorithm (say, fuzzy c-means) is
first employed to cluster rules into different groups and then, the
final interpolated conclusion is computed by the use of the closest
rules selected from a small number of closest rule clusters. This
approach helps further decrease the time complexity. The efficacy
of these two modified methods is demonstrated via systematic
experimental comparisons against the performance of the original
TSK+.

Index Terms—Fuzzy inference system, TSK, Fuzzy rule inter-
polation, Rule clustering, K closest rules, Closest rule clusters.

I. INTRODUCTION

Fuzzy rule based inference systems are one successful
representative of knowledge-based systems, the basic idea of
which is representing domain knowledge in the form of “if-
then” production rules. These rules are generally applied such
that if the input observations match rule antecedents, then the
outputs are derived from the corresponding rule consequents
[1] [2]. However, in traditional rule based systems, uncertain
and linguistic terms are hard to be described precisely, such as
fast, slow, young, old. Fortunately, with the support of fuzzy
logic and fuzzy set theory, fuzzy rule-based inference systems
allow all such terms to be represented by fuzzy sets, enabling
the inference process to resemble human reasoning.

There are several types of fuzzy rule inference system that
have been developed in the literature. Mamdani models [3] and
Takagi-Sugeno-Kang (TSK) models [4] are two conventional

and most widely used ones. The antecedents and consequents
of Mamdani models are both represented by fuzzy sets.
Thus, a defuzzification process is usually required to obtain
crisp results in practice. On the contrary, TSK models use
polynomials as rule consequents, resulting in crisp conclusions
directly and more applicable for solving regression problems.

In fuzzy rule based systems, when the input domain is
not fully covered, it is possible that an observation does not
match any rule in the given rule base, thereby no conclusion
can be produced using traditional rule-firing mechanisms.
This is independent of what rule models are employed. Rule
bases in this situation are named as sparse rule bases. Fuzzy
rule interpolation (FRI) has been introduced to deal with
this issue. When an observation does not overlap with any
rule antecedent, FRI helps generate an intermediate rule by
the approximation of neighbour rules to the observation in
order to obtain a potentially relevant conclusion. Although a
number of FRI methodologies have been established over the
last decades, such as linear interpolation [5], transformation-
based interpolation [6], adaptive interpolation [7] and GA-
aided dynamic interpolation [8], most of them are developed
for Mamdani models rather than for TSK models.

TSK inference extension (TSK+) [9] is a novel fuzzy
inference approach based on the TSK model which extends
its capability of handling sparse fuzzy rule bases. Instead of
exploiting matching degrees, a similarity measure based on
a certain distance metric is utilised to perform interpolative
inference, with all rules in the rule base being involved in the
interpolation. As such, even if an observation matches no rule,
a certain conclusion can be generated. Whilst being a useful
approach, TSK+ has its own shortcomings. In particular, far
away rules are usually not relevant to the observation but may
still bring (often counter-productive) biases to the final interpo-
lated outcome. This is in addition to the artificial introduction
of unnecessary computation, increasing computing overheads
in vain.

To address these limitations, a modified approach is pro-
posed in this paper, which has two forms of implementation.
The underlying principle is to perform interpolation with just
K closest rules (KCR) where K is normally a small number,
that is, only K rules closest to the observation will contribute
to the final conclusion. In so doing, the adverse impact caused
by rules with low similarities can be avoided while incurring
less computation. Furthermore, in cases where large sized



sparse rule bases are present, the K closest rules may be very
similar with each other, which leads to lack of diversity for
interpolation. Therefore, another implementation is to carry
out interpolation with K closest rule clusters (CRC), i.e.,
one closest rule is selected from each of a small number of
closest rule clusters for interpolation. According to systematic
experimental comparisons, KCR has led to improved results
over TSK+ and CRC in small sized sparse rule bases, while
for systems involving large sized sparse rule bases, CRC
outperforms TSK+ and KCR.

The rest of this paper is structured as follows. For com-
pleteness, Section II briefly outlines the inference process of
the conventional TSK model. Section III reviews the TSK
inference extension (TSK+). Section IV and Section V detail
the two aforementioned improved implementations, for inter-
polation with K closest rules (KCR) and that with K closest
rule clusters (CRC), respectively. Section VI describes the
setting of the experiments carried out and discusses the results
of comparative experimental evaluations. Finally, Section VII
concludes the paper with future research pointed out.

II. TSK FUZZY INFERENCE MODELS

The TSK fuzzy inference model was originally developed
by Takagi, Sugeno, and Kang in 1985 [4]. In general, suppose
that each rule is of n antecedent variables. Within a TSK fuzzy
rule base, a rule is then defined by

Ri : if x1 is Ai1, ..., xn is Ain,

then fi(x1, ..., xn) = ai0 + ai1x1 + ...+ ainxn
(1)

where Ai1, ..., Ain are the fuzzy sets taken by the rule
antecedent variables and ai0, ai1, ..., ain are the parameters
specifying the polynomials of the rule’s consequent.

Given an observation O(B1, ..., Bn), the TSK inference
process can be briefly described as follows:

1) Calculate the matching degrees between the antecedent
variables of the observation O and their counterparts in
each rule Ri:
D(Ai1, B1), ..., D(Ain, Bn)

2) Determine the weight of Ri by integrating all matching
degrees:
αi = D(Ai1, B1) ∧ ... ∧D(Ain, Bn)
where ∧ is usually implemented by a minimum operator.

3) Take the observation O as the input to compute the rule
consequent polynomial for each of the k matched rules,
resulting in sub-conclusions:
fi(B1, ..., Bn) = ai0 + ai1B1 + ...+ ainBn

4) Integrate all sub-conclusions to obtain the final outcome
for the consequent by weighted average:

f(O) =
Σk

i=1αifi(B1, ..., Bn)

Σk
i=1αi

(2)

If the given observation matches no rule, the weight of each
rule αi will be 0. Thus, neither sub-conclusion nor final result
can be generated. In this case, the conventional TSK model
will fail. The fuzzy rule bases that suffer from this limitation

are known as sparse fuzzy rule bases, namely they do not cover
such observations. As mentioned previously, FRI has been
developed to generate conclusions for unmatched observations
by exploiting the approximation of their neighbouring rules.

III. TSK INFERENCE EXTENSION (TSK+)
TSK inference extension (TSK+) [9] offers a novel fuzzy

reasoning approach for extending TSK inference, making
it applicable to handle sparse rule bases. Instead of using
matching or overlapping degrees that the conventional TSK
model utilises, TSK+ employs a modified similarity measure
based on Euclidean distance [10] to evaluate relationships
between an observation and the given rules. In this procedure,
the similarities between the observation and all rules are
always greater than zero. Thus, all rules will be involved in
the derivation of the final consequent outcome. In so doing,
even if an observation matches no rule, a conclusion can still
be approximately derived.

A. TSK+ Procedure

Suppose that an observation O(B1, ..., Bn) and a sparse rule
base are given, and that the rule base comprises m rules with
n antecedent variables, with each rule being specified as per
Eqn. (1). The inference procedure of TSK+ can be summarised
as the following:

1) Calculate the similarities between the observation and
rule Ri: S(Ai1, B1), ..., S(Ain, Bn)

2) Determine the weight of rule Ri:
αi = S(Ai1, B1) ∧ ... ∧ S(Ain, Bn)

3) Integrate all similarity measures to obtain an interpolated
rule, with the parameters of its consequent being:

a0 =
Σm

i=1αiai0
Σm

i=1αi
, ...., an =

Σm
i=1αiain
Σm

i=1αi
(3)

4) Take the observation O as the input of the interpolated
rule and compute the interpolated outcome as
f(B1, ..., Bn) = a0 + a1B1 + ...+ anBn

It is clear that TSK+ has similar inference steps as the
standard TSK model (as outlined in Section II), except when
no rules match a given observation, the matching degrees
are replaced with similarity measures and all m rules are
used to compute the final result (rather than the otherwise
k matched ones). Note that the time complexity of TSK+
inference process is O(mn).

B. Similarity Measure

The similarity measure applied in TSK+ is revised from the
one proposed in [10]. In particular, a distance factor (DF ) is
utilised to increase the sensitivity of the similarity measure
to the distance. As empirically proven, if the membership
functions can be appropriately fine-tuned, the use of different
types of membership function has little impact upon the fuzzy
rule-based inference results [9] [11]. Based on this empirical
observation, and for computational simplicity, only triangular
membership functions will be considered in this paper.

Suppose that there are two normalized fuzzy sets, represent-
ed by triangular membership function A = (a1, a2, a3) and



A′ = (a′1, a
′
2, a

′
3) respectively, their similarity degree S(A,A′)

can be defined as follows:

S(A,A′) = (1− Σ3
i=1|ai − a′i|

3
) ·DF

DF = 1− 1

1 + e−sd+5

(4)

where d is the Euclidean distance between the gravity centres
(or alternatively, representative values [6]) of the two fuzzy
sets and s represents a sensitivity factor (a smaller value of
s makes DF more sensitive to the distance measure). The
constant 5 in this definition ensures that DF is normalized
as 1 when d is 0. According to the definition, the greater the
value of S(A,A′), the closer and more similar the two fuzzy
sets A and A′. S(A,A′) = 1 if and only if A and A′ are
identical [9].

The effectiveness and applicability of the modified similar-
ity measure has been validated in [12] by comparing several
most commonly used similarity measures, such as S = 1− d
and S = 1/(1+d) and the original similarity measure as given
in [10].

IV. INTERPOLATION WITH K CLOSEST RULES (KCR)
When applying TSK+, it is observed that several closest

rules have much higher similarity degrees than others. This
may indicate that the final results are mainly determined by
these closest rules. Moreover, a basic presumption generally
assumed in FRI is that the interpolated consequent is estimated
by the neighbouring rules to the observation [3] [4], the closest
rules contain most relevant information while far away rules
may introduce bias into the results, often counter-productively.
Although such biases do not impose much influence upon the
interpolated results due to their relatively smaller similarity
measures, they do incur significant computational overheads
and hence, should be minimised.

In light of this observation, this work introduces a revised
inference procedure, termed interpolation with K closest rules
(KCR), based on the same similarity measure (4) applied in
TSK+. In particular, only K closest neighbouring rules to the
observation are involved in the interpolated rule generation,
rather than involving all the rules in the sparse rule base.

A. KCR Procedure

Suppose that a sparse rule base is given, containing m
rules with n antecedent variables, together with an observation
O(B1, ..., Bn), where each rule is specified in the format of
Eqn. (1). Then, the process of KCR can be detailed as follows:

1) Calculate the overall Euclidean distance between the
representative values of the individual variables within
the observation and those of the antecedent variables for
each given rule.

2) Select K closest rules by the Quickselect algorithm
[13] (which is utilised purely for efficiency while any
alternative selection mechanism may be employed if
preferred).

3) Calculate the similarity between the observation O and
each of Ri that belongs to the set of the selected K

closest rules:
S(Ai1, B1), ..., S(Ain, Bn)

4) Determine the weight of rule Ri:
αi = S(Ai1, B1) ∧ ... ∧ S(Ain, Bn)

5) Integrate all K similarities to obtain a working in-
terpolated rule with the following parameters for its
consequent:

a0 =
ΣK

i=1αiai0
ΣK

i=1αi
, ...., an =

ΣK
i=1αiain
ΣK

i=1αi
(5)

6) Take the observation O as the input to fire the inter-
polated rule such that the consequent is computed by
f(B1, ..., Bn) = a0 + a1B1 + ...+ anBn

B. KCR Complexity

From the above process and Eqn. (4), it can be seen that
whilst the Euclidean distance forms only a small part in the
calculation of similarity measures, it captures the essential
relationships between an observation and the rules. It is
appropriately utilised for the purpose of efficient determination
of closest rules, without resorting to the more complicated
similarity measurement. Thus, the similarity measure is only
applied K times for K selected rules rather than all rules. In
this case, the modified approach can significantly reduce the
running time. Additionally, the Quickselect algorithm helps
decrease the computation of closest rule selection.

In summary, the time complexity of the proposed implemen-
tation for KCR is O(mK+nK), where O(mK) stands for the
time complexity of K rules selection. In comparison, the time
complexity of TSK+ is O(mn) as mentioned previously. Note
that generally, K is much smaller than m and n. Thus, the
proposed approach has significantly lower time complexity.

V. INTERPOLATION WITH K CLOSEST RULE CLUSTERS
(CRC)

When applying KCR in large sized sparse rule bases (e.g.,
for a rule base consisting of more than 200 rules), it is
observed that the K closest rules with the greatest similarity
degrees may appear to be very similar. The information
reflecting the approximate relationships holding between the
antecedent variables and the consequent may therefore be very
similar also. If only just these K rules are taken into account,
the interpolated rule will be also similar to them regardless the
actual similarity measures. In TSK+, despite that all rules are
involved in rule interpolation, this problem remains because
the similarities of the K rules are much larger than the rest
and the final result is therefore, still mainly determined by
these closest ones.

To extend the diversity of rules used for interpolation
without involving far too many similar rules, a clustering-
aided inference process is proposed, termed interpolation with
K closest rule clusters (CRC) hereafter. Rules in sparse rule
bases are firstly clustered into different groups based on their
representative values by a clustering method. Here, the popular
fuzzy c-means algorithm [14] is adopted to implement this.
Rules in the same clusters are deemed to contain similar



information. As such, K closest clusters are selected so that
only one rule which is the nearest to the observation within
each cluster is selected for use as an element of the set of
K closest rules. The conclusion will be interpolated by such
resulting K closest rules. In so doing, other rules measured
without necessarily having the higher similarity measures will
be able to participate in the generation of the final interpolated
consequent. Yet, this approach always ensures that the closest
rule with the largest similarity measure is selected to partici-
pates in rule interpolation, since it always is the representative
of a certain cluster of rules given its highest similarity measure.

A. CRC Procedure

Suppose that a sparse rule base which contains m rules with
n antecedents and an observation O(B1, ..., Bn) are given,
with each rule being specified as per Eqn. (1). The detail of
the proposed procedure for CRC is described in the following:

1) Cluster all rules into C different groups by their repre-
sentative values, using fuzzy c-means.

2) Calculate the Euclidean distance between the obser-
vation and all cores of the C clusters and select K
(K ≤ C) closest clusters.

3) Choose one of the K clusters and compute the distance
between the observation O and each and every rule in
it.

4) Find the closest rule Ri in the selected cluster as the
representative of this cluster.

5) Determine the weight of the rule Ri:
αi = S(Ai1, B1) ∧ ... ∧ S(Ain, Bn)

6) Repeat Steps 3,4 and 5 for all K selected clusters,
obtaining K rules and corresponding similarities.

7) Integrate all K similarities to obtain the interpolated
rule, the parameters of the consequent will be:

a0 =
ΣK

i=1αiai0
ΣK

i=1αi
, ...., an =

ΣK
i=1αiain
ΣK

i=1αi
(6)

8) Take the observation O as the input to fire the inter-
polated rule and compute the final consequent outcome
with respect to the observation:
f(B1, ..., Bn) = a0 + a1B1 + ...+ anBn

B. CRC Complexity

The above SRS process has a time complexity of O(KC+
KG + nK), where O(KC) stands for the complexity to
conduct K clusters selection, and O(KG) denotes that for K
rules selection with one from each cluster, G being the largest
number of rules contained within any cluster. Compared
with KCR, of which time complexity is O(mK + nK) as
previously analysed, CRC can also decrease the computation
effort required to perform similarity measurement. In addition,
CRC does not need to compute the distances between the
observation and all rules but only those of the cores of
clusters and the rules in the K selected clusters. Therefore,
O(KC + KG) is generally smaller than O(mK). In other
words, the time complexity of the inference process can be
further reduced by CRC.

VI. EXPERIMENTAL EVALUATION

In this section, the performance of the proposed novel
framework of FRI for the TSK model, which is implemented
with two inference methods (namely KCR and CRC), is
experimentally compared against TSK+ over three benchmark
datasets. The datasets run include a nonlinear mathematical
model and two real-world datasets (Stock and Quake [15]).
In particular, the Stock dataset is adopted to evaluate their
performance regarding small sized sparse rule bases, while
the nonlinear model and Quake dataset represent sparse rule
bases in large sizes.

A. Generation of Sparse Fuzzy Rule Bases

In the present experimental study a sparse fuzzy rule base is
created artificially from a dense fuzzy rule base that is induced
from the original datasets at first. This will offer an opportunity
for the revealing of the potential of FRI should part of the
underlying rules be unavailable.

Here, a simple data-driven fuzzy rule base generation
method is employed: The instances in a given dataset are
firstly clustered into different categorises through a classical
clustering algorithm, fuzzy c-means [14]. Since fuzzy c-means
allows a data point to belong to more than one cluster with
different membership values, in this work, if an instance has
larger than 0.2 membership value to a cluster, it is deemed
as belonging to this category. As mentioned earlier, rule an-
tecedent variables take fuzzy values represented by triangular
membership functions. The three parameters of a triangular
membership function are implemented by the infimum, centre
and supremum of the corresponding cluster. The consequent
of a rule, which is a polynomial, is then derived by the popular
linear regression approach as per the work of [16].

The sparse fuzzy rule bases can be generated by randomly
removing a certain number of rules from the resulting dense
fuzzy rule bases. Specifically, in each of the following ex-
periments, to emphasise on rule base sparsity, only 80% and
60% rules are retained to form the sparse fuzzy rule bases for
inference.

B. Evaluation Methodology

To enable fair comparison, 10 times 10-fold cross-validation
is employed. Training sets are used to generate sparse fuzzy
rule bases by the above process while testing sets to evaluate
the performance described by RMSE (root-mean-square error,
in relation to the ground truth). The results are demonstrated
via the following three criteria: the amount of the best results
among 100 folds, Gaussian fitting and boxplots.

C. On Stock Dataset

The stock dataset investigated provides stock prices for ten
aerospace companies. The task is to predict the price for the
10th company given the prices for the rest [15]. The dataset
consists of 950 instances and 9 features (i.e., antecedent
variables). The output domain is [34, 62]. Fifty rules extracted
from the training sets constitute the dense fuzzy rule base.
For the other parameters in this experiment, regarding KCR



the number of closest rules K is empirically set to 3, and
regarding CRC, the number of clusters C is set to 5 with the
number of closest rule clusters K set to 3.

Table I shows the parameters of Gaussian fitting and the
amounts of the best results in 80% and 60% sparse fuzzy
rule bases, while Fig. 1 and Fig. 2 illustrate the boxplots of
the results. As can be seen from these results, KCR has the
best and the most robust results, and TSK+ has slightly worse
results due to all rules are involved and then bring forward
adverse biases. CRC does not work well in small sized sparse
fuzzy rule bases because the high relevant rules are clustered
into one cluster and does not contribute to the final results
generation. Note that although TSK+ does not produce any
overall best result, it outperforms CRC in this particular case
where the total number of rules within the rule base is rather
small, apart from the rule base being sparse.

D. On Nonlinear Function Model
In this experiment, a dataset randomly sampled from a 3-

dimensional nonlinear function is used as a benchmark dataset.
Note that the random sampling method has been employed by
a number of projects (e.g., those reported in [12] and [17]),
and that the nonlinear function applied herein has been used
in [9] and [18], which is given below:

F (x, y) =
sin(x)sin(y)

xy
(7)

Two thousand points are randomly sampled as the original
dataset. Each dense fuzzy rule base comprises 200 rules. The
output domain is [-0.217, 1]. For KCR the number of closest
rules K is set to 3, and for CRC, the number of rule clusters
C is set to 10 with the number of closest rule clusters K set to
3. The means and standard deviations (SD) of Gaussian fitting
and the amounts of the best results for TSK+, KCR and CRC
while running on 80% and 60% sparse fuzzy rule bases are
displayed in Table II, and the boxplots are shown in Fig. 3
and Fig. 4, respectively.

These results show that for this nonlinear model, in both
cases of running the two sparse fuzzy rule bases, CRC is the
overall winner. It obtains most of the best results, the best
values of mean in Gaussian fitting and the best value of the
median and interquartile range in boxplots. However, the SD
of CRC is larger than the other two methods (TSK+ and KCR).
One possible reason for this is that the number of rule clusters
C is manually decided rather than automatically generated, in
this specific dataset, such a manual decision does not ensure to
lead to the best rule clusters for all training sets. In addition,
when comparing TSK+ with KCR, KCR performs much better
than TSK+, which confirms that although all (the sparse) rules
are involved in deriving the final outcome, TSK+ does not
cope with the problem well, which is caused by running many
similar closest rules in such a large sized sparse rule base, as
indicated in Section V.

E. On Quake Dataset
The quake dataset contains 2178 instances and 3 antecedent

variables. The regression task is to estimate the strength of an

TABLE I
GAUSSIAN FITTING AND AMOUNT OF BEST ON STOCK DATASET

Gaussian fitting Number of best
TSK+ 0.21938, 0.09890 0

80% KCR 0.21932, 0.09888 88
CRC 0.24320, 0.11515 12
TSK+ 0.31831, 0.15113 0

60% KCR 0.31812, 0.15121 89
CRC 0.33991, 0.16307 11

Fig. 1. Boxplot of results running
with 80% sparse rule base on stock
dataset

Fig. 2. Boxplot of results running
with 60% sparse rule base on stock
dataset

earthquake based on the depth of its focal point, its latitude
and its longitude [15]. The output domain is [5.8, 6.9].

Two hundred rules are generated from the training sets as
the dense fuzzy rule base. In this experiment, the number of
closest rules K in KCR is set to 3, and the number of rule
clusters and that of closest rule clusters are set to 10 and 3,
respectively.

Table III lists the results of Gaussian fitting and the amounts
of the best results, and Fig. 5 and Fig. 6 describe the distribu-
tion of the results obtained by running 80% and 60% sparse
rule bases in boxplots.

From these results, once again, it can be seen that CRC
outperforms TSK+ and KCR overall. In the comparison of
TSK+ and KCR, KCR also performs slightly better than TSK+
in terms of accuracy, whilst taking much less computation

TABLE II
GAUSSIAN FITTING AND AMOUNT OF BEST FOR FUNCTION MODEL

Gaussian fitting Number of best
TSK+ 0.00251, 0.00056 0

80% KCR 0.00167, 0.00061 30
CRC 0.00150, 0.00065 70
TSK+ 0.00342,0.00063 0

60% KCR 0.00307, 0.00069 25
CRC 0.00266, 0.00084 75

Fig. 3. Boxplot of results with
80% sparse rule base on function
model

Fig. 4. Boxplot of results with
60% sparse rule base on function
model



time. This, together with the results of the experiments on the
nonlinear and quake datasets, demonstrates that for large sized
sparse rule bases, CRC can obtain much better results than
KCR and TSK+, showing the great potential of clustering-
aided fuzzy rule interpolation.

VII. CONCLUSION

This paper has presented a novel framework with two
implementations suitable for performing fuzzy rule interpo-
lation with TSK fuzzy inference models. The work has been
motivated by the observation that the existing method, TSK+
involves the use of all given rules, including redundant or
even possibly irrelevant rules in an attempt to compute the
final conclusion. The framework entails the generation of more
accurate interpolated results. In particular, for small sized
sparse rule bases, the corresponding implementation (KCR)
only requires the use of a small number of closest rules. When
applied for systems with large sized sparse fuzzy rule bases,
fuzzy c-means has been applied to clustering the rules first
so that only one closest rule from each of a small number of
the resulting rule clusters is utilised to perform interpolation
(CRC). Systematic comparative experimental studies have
demonstrated the effectiveness of both implementations.

The proposed work offers many opportunities for further
development. For instance, CRC directly employs the original
fuzzy c-means algorithm in rule clustering, but it may not gen-
erate the most appropriate categories since the rule bases are
sparse in the first place. Modified fuzzy c-means algorithms,
e.g., the kernel fuzzy c-means [19] and suppressed fuzzy c-
means [20] may be adopted as the alternative to strengthen
the performance. Also, the parameters required to carry out
interpolation, such as the number of closest rules and that of
the clusters are herein set manually. Introducing an automated
way to decide on these parameters from the training data
remains a challenge. Furthermore, all antecedent variables are

TABLE III
GAUSSIAN FITTING AND AMOUNT OF BEST ON QUAKE DATASET

Gaussian fitting Number of best
TSK+ 0.18795, 0.20215 0

80% KCR 0.16468, 0.19636 30
CRC 0.10440, 0.14123 70
TSK+ 0.26869, 0.41907 1

60% KCR 0.26275, 0.40029 36
CRC 0.20246, 0.28600 63

Fig. 5. Boxplot of results with
80% sparse rule base on quake
dataset

Fig. 6. Boxplot of results with
60% sparse rule base on quake
dataset

treated equally in the present implementations, how weighted
representations as per the most recent work of [21] may be
extended to accommodating interpolation with TSK models
forms another interesting piece of active research.
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