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Abstract. Non-dominated sorting is a crucial operation used in many
popular evolutionary multiobjective algorithms. The problem of non-
dominated sorting, although solvable in polynomial time, is surprisingly
difficult, and no algorithm is yet known which solves any instance on N
points and M objectives in time asymptotically smaller than MN2.
For this reason, many algorithm designers concentrate on reducing the
leading constant and on (implicitly) tailoring their algorithms to inputs
typical to evolutionary computation. While doing that, they sometimes
forget to ensure that the worst-case running time of their algorithm is
still O(MN2). This is undesirable, especially if the inputs which make
the algorithm work too slow can occur spontaneously. However, even if
a counterexample is hard to find, the fact that it exists is still a weak
point, as this can be exploited and lead to denial of service and other
kinds of misbehaving.
In this paper we prove that a recent algorithm for non-dominated sorting,
called Filter Sort, has the worst-case complexity of Ω(N3). In particular,
we present a scenario which requires Filter Sort to perform Θ(N3) dom-
inance comparisons, where each comparison, however, needs only O(1)
elementary operations. Our scenario contains Θ(N) non-domination lay-
ers, which is a necessary, but by no means a sufficient condition for being
difficult for Filter Sort.

Keywords: Non-dominated sorting, Filter Sort, time complexity.

1 Introduction

Optimizers that rank solutions based on the Pareto dominance relation arguably
prevail in evolutionary multiobjective optimization for already more than two
decades, and only relatively recently they started to partially lose many-objective
ground to decomposition-based methods. In turn, among the ranking methods
that employ the Pareto dominance relation, non-dominated sorting is probably
one of the most frequently used. With a relatively small computation cost and a
possibility of writing a relatively easy implementation, it is now used not only in
the algorithm NSGA-II [9] that popularized it, but in a wide range of algorithms
belonging to different paradigms, such as Strength Pareto Evolutionary Algo-
rithm (SPEA), Pareto Envelope-Based Selection Algorithm (PESA) [6], Pareto
Archived Evolution Strategy (PAES) [14], M-Pareto Archived Evolution Strat-
egy (M-PAES) [13], Micro-GA [5], KnEA [38], NSGA-III [8] and many others.



Assume that there are M objectives and, without loss of generality, that
we are required to minimize all objectives. A solution p is said to dominate,
in Pareto sense, another solution q, which is written as p ≺ q, if the following
conditions are satisfied:

1. ∀i ∈ [1..M ] it holds that pi ≤ qi;
2. ∃j ∈ [1..M ] such that pj < qj ;

where the notation is as follows: [a..b] is the set of integers {a, a+1, . . . , b−1, b}.
Non-dominated sorting can then be defined as follows. Let P = {P1, . . . ,PN}

be a population of N evaluated solutions. The problem is to divide P into several
fronts F = {F1,F2, . . .}, such that the following conditions are satisfied:

1. The fronts constitute a partition, that is:
–

⋃
i Fi = P;

– if i 6= j, then Fi ∩ Fj = ∅;
2. For any two solutions s, t ∈ Fi, neither of them dominates another one;
3. For i > 1, for any s ∈ Fi there exists some t ∈ Fi−1 such that t ≺ s.

We shall explicitly state here that, for the soundness of the definition above,
a solution does not dominate itself (as well as it does not dominate any other so-
lution with identical objective values), as otherwise the ordering of the solutions
would affect the results of the procedure in an implementation-dependent way.
However, it is often desirable, that, whenever there are three solutions p1, p2, q
such that p1 = p2 and p1 ≺ q, the solution q gets a worse rank than it would
have without p2. The reader is welcome to an extended discussion about possi-
ble sound extensions of this version of non-dominated sorting, as well as other
similar problems, in a recent paper [2].

Outside evolutionary computation, non-dominated sorting is often known
under other names (such as layers of maxima or longest chains) and has appli-
cations in various domains like data clustering [11], graph theory [17], computer
vision, economics and game theory [16], database [1] and others [7, 28,29].

Since in this paper we are interested in algorithms for non-dominated sorting,
and do not investigate its applications, we do not differentiate between solutions
and their objective vectors, treat them as points in an M -dimensional space and
use “points” and “solutions” interchangeably.

The apparent simplicity of the non-dominated sorting problem makes it sur-
prising that, despite a huge effort, no algorithms are still known that solve this
problem in time o(MN2) for any input of N points and M objectives. Below,
we give a quick summary of the basic ideas of these algorithms.

There are plenty of algorithms that run in Θ(MN2) time in the worst case,
beginning with the algorithm called “fast non-dominated sorting” that accompa-
nied NSGA-II [9], as well as more advanced approaches [10,23–27,30,31,33,36,37]
and some others. All these algorithms focus on the running time on inputs with
rather small values of N , and on those that are distributed similar to typi-
cal populations in evolutionary multiobjective optimization. The basic desire
driving most of these designs is to somehow “reduce the number of unnecessary



comparisons” with certain heuristics that work reasonably well under uniform or
other similar distributions. Most of these algorithms cannot cope with N = 105

points, however, there are notable exceptions, such as the kd-tree-based algo-
rithm called ENS-NDT [10] and, to some extent, the flavours of Best Order
Sort [23,25,30,31].

The algorithms belonging to a different group apply the divide-and-conquer
paradigm in a particular manner that allows an asymptotically better upper
bound of O(N(logN)M−1) to be proven. This expression holds when M is con-
stant with regards to N , and all these algorithms also satisfy the O(MN2) upper
bound, which they quickly reach with large enough M . The divide-and-conquer
flavour in question is suggested long time ago in [15], and it was applied for the
first time to non-dominated sorting in [12]. Subsequent development involved
modifications to reliably work on every input [4] and various practical runtime
improvements typically involving hybridization with other algorithms [18, 19],
and word-RAM data structures [3].

However, some algorithms have even worse running time guarantees. The
original NSGA algorithm [32] featured a particularly naive algorithm that works
in O(MN3) time, where one of the N factors is the number of fronts in the out-
put. Unfortunately, some of the algorithms are also that slow. On some occasions
it is trivial to show, as it was the case with the DDA sorting [22, 39], however,
sometimes the original paper features a wrong optimistic bound, such which
can be non-obvious to prove, and even more difficult to persuade the scientific
community that it is true [20,21].

In this paper, we focus on a fairly recent algorithm called Filter Sort [34]. Al-
though this algorithm bears a large resemblance with Best Order Sort, which is
O(MN2), it loses this worst-case bound in an attempt to speed-up. We present
the test scenario which requires this algorithm to perform Ω(N3) dominance
comparisons between the points; however, because of a particular property of
this algorithm, we cannot guarantee that even a constant fraction of these com-
parisons will take Ω(M) time, so our running time lower bound is as well Ω(N3).

The rest of the paper is structured as follows. Section 2 explains Filter Sort
in necessary detail. Then we present our test scenario in Section 3 and show that
Filter Sort runs in Ω(N3) on this scenario. Finally, we conclude the paper and
discuss the consequences of our results in Section 4.

2 Filter Sort

In this section, we shortly discuss Filter Sort, which is outlined in Algorithm 1.
This algorithm is based on an idea that a solution that minimizes any linear
combination of objectives, or even of functions that grow monotonically with an
index of an objective, cannot be dominated. Furthermore, if such a function is
chosen to be noticeably different from each objective, one can efficiently filter
(hence the name) the solutions that can be non-dominated assuming there is a
pre-sorted list of solutions for each objective. In Filter Sort, the sum of ranks of



solution’s objectives is chosen as such a linear combination, which is arguably a
choice that requires as few assumptions as possible.

Algorithm 1 Filter Sort

Require: P = {P1,P2, . . . ,PN}: point in M -dimensional space
Ensure: F = {F1,F2, . . .}: points from P split into fronts
1: for j ∈ [1..M ] do . Phase 1: Pre-sorting
2: Oj ← P sorted by objective j, compared lexicographically if equal
3: for i ∈ [1..N ] do
4: Iij ← index of Pi in Oj

5: end for
6: end for
7: for i ∈ [1..N ] do . Phase 2: Finding objective statistics
8: BPi ← arg minj Iij . Find the best objective of Pi according to its index
9: WPi ← arg maxj Iij . Find the worst objective of Pi according to its index

10: SPi ←
∑

j Iij . Find the sum of objective indices
11: end for
12: T← P sorted by S . Phase 3: Creating filters
13: for r ∈ {1, 2, . . .} do . Phase 4: Actual sorting
14: if |T| = 0 then
15: break . No more solutions left
16: end if
17: t← T1 . Choose filter solution with the smallest index sum
18: C ← ∅ . Candidate solutions, initially empty
19: for j ∈ [1..M ] do
20: k ← 1
21: while Ojk 6= t do . Add all solutions from Oj preceding t to candidates
22: C ← C ∪ {Ojk}, k ← k + 1
23: end while
24: end for
25: Fr ← Fr ∪ {t}, remove t from T and Oj , j ∈ [1..M ] . Rank and remove t
26: for c ∈ C do . Try each candidate for being non-dominated
27: isDominated← False, k ← 1, b← Bc, w ←Wc

28: L← Ob . Compare c with the shortest list of maybe-dominating points
29: while Lk 6= cb do . When c is hit, the rest cannot dominate
30: if (Lk)w ≤ cw and Lk ≺ c then . Check the worst objective first
31: isDominated← True, break
32: end if
33: k ← k + 1
34: end while
35: if isDominated then
36: C ← C \ {c} . Remove c if it was dominated
37: end if
38: end for
39: for c ∈ C do
40: Fr ← Fr ∪ {c}, remove c from T and
41: end for
42: end for



The first three phases are rather straightforward. Phase 1 (lines 1–6 in Algo-
rithm 1) performs sorting of the population by each of the objectives, using lex-
icographical sorting in the case of ties. This phase can be done in O(MN logN)
using a quicksort-like O(MN + N logN) algorithm for lexicographical sorting,
that also sorts the points by the first objective, and M − 1 runs of any efficient
sorting algorithm in O(N logN). The points sorted by the j-th objective are
stored in Oj . During this phase, the indices of each point i in the sorted order
along each objective j are stored in Iij , which can easily be done from within
the sorting algorithms.

Phase 2 (lines 7–11) computes, using the indices Iij from the previous stage,
the best objective of each solution (that is, the objective, for which this point
comes earlier in the corresponding list Oj), the worst objective, and the sum of
objective indices. This phase is done in O(MN). Next, Phase 3 (line 12) sorts
the population according to the sum of objective indices, again in O(N logN),
and stores the result in a list T.

Note that the lists Oj and T subsequently require fast removal of elements
from arbitrary locations. One of the possible choices is to create them as doubly
linked lists, or to convert them to such lists soon after creation, for which the
most efficient implementation would probably be to store the next/previous
pointers in the point itself. An alternative solution would be to use auxiliary
Boolean arrays that store whether a solution was deleted, and to compact the
arrays and the (non-linked) lists when enough solutions are removed.

Finally, the actual non-dominated sorting happens in Phase 4 (lines 13–42).
If there are any remaining solutions, the filter solution t is first chosen as the
first solution in the list T. As no other solutions have a smaller sum of objective
ranks, t is guaranteed to be non-dominated. Then, in lines 18–24, the algorithm
collects the solutions which precede t in at least one objective by joining the
corresponding prefixes of all Oj for each objective j, effectively filtering out all
the solutions that are dominated by t. Next, the filter solution t is removed from
all the lists and is added to the currently populated front Fr. Finally, each of
the candidates c is tested for non-dominance. For that, c is compared with all
the solutions that come before c in the objective list Ob, where b = Bc is the
best objective of c (populated in line 8 in Algorithm 1). To further speed-up
the comparison, first the comparison in the worst objective of c is performed, as
if c is not dominated in this objective, then it is not dominated at all. All the
candidate points that passed the non-dominance checks are also added to Fr,
after which this front is declared complete.

3 Worst-Case Running Time Analysis

Now we turn to the worst-case running time analysis of Filter Sort. Our analysis
consists of a nearly-trivial upper bound and a much more involved lower bound,
which we state as two separate lemmas.

Lemma 1. The worst-case running time of Filter Sort is O(MN3).
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Fig. 1. Test example for N = 17, M = 2. Points from the same front are connected
with blue lines

Proof. This follows from the simple static analysis of Algorithm 1. Indeed,
Phases 1–3 require O(MN logN) time in common. The number of iterations
of the main loop (lines 13–41) in Phase 4 coincides with the number of reported
fronts, which is O(N). In each iteration, the time spent in lines 14–25, as well as
39–41, cannot exceed O(MN). The size of the candidate set C is at most N −1,
the number of iterations of the while-loop in lines 29–33 is at most N − 1 since
Ob cannot contain more than N points, and the dominance comparison in line
30 cannot take more than O(M) time.

In total, each loop in lines 29–34 is at most O(MN), each iteration in lines
26–38 is at most O(MN2), and the whole algorithm cannot take more than
O(MN3) time. ut

We proceed with the lower bound. We first present the analysis for M = 2
and then we produce a hard input for any M > 1 based on this analysis.

Lemma 2. There exists an input P with N two-dimensional points which re-
quires Filter Sort to run for Ω(N3) time.

Proof. In the proof, we use the notation (x, y) to denote a two-dimensional point
with objective values x and y. We assumeN3 = bN−13 c and use the test consisting
of three sets of points as below, depicted on Figure 1:

– left points: (i, 2N3 + i) for i = 1, . . . , N − 2N3;

– middle points: (N − 2N3 + i,N3 + i) for i = 1, . . . , N3.

– right points: (N −N3 + i, i) for i = 1, . . . , N3;



We chose N3 this way so that N −N3 > 2N3, that is, the number of left points
is always greater than the number of middle points and of right points, which is
crucial in our analysis.

Note that this test example has exactly N − 2N3 fronts, however, only the
first N3 of them are the complete fronts that consist of three points each. What
is more, as long as N ≥ 4, when we compute and remove the first front, the
remaining test would be essentially the same test for N ′ = N − 3 points and
larger gaps between the point groups, which does not influence the way Filter
Sort works. This consideration makes our analysis much simpler.

The three points that compete for being a filter element are the first left point
(1, 2N3 +1), the first middle point (N−2N3 +1, N3 +1) and the first right point
(N −N3 + 1, 1), which are highlighted in Figure 1. With our choice of objective
values, the sum of ranks is the same as the sum of objectives themselves, hence
the best middle and right points have these sums equal to N −N3 + 2 and the
best left point has the sum equal to 2N3 + 2. As, per our choice, N −N3 > 2N3,
the best left point is unambiguously chosen as the filter point t.

Next, Filter Sort constructs the set of candidate solutions. By our construc-
tion, every middle and every right point has the smaller second objective than
t, so these points constitute the candidate set C.

To prove that the loop at lines 26–38 requires Θ(N2) point comparisons,
we note that the best objective of every middle point is the second objective,
since the offset in the second objective is N3 and in the first objective it is
N − 2N3, which is greater. For this reason, every middle point would necessary
be compared with every right point, which yields N2

3 = Θ(N2) comparisons.
Note that each such comparison terminates early and costs O(1), because the
worst objective of each middle point is the first objective, and in this objective
every middle point is better than every right point.

As a result, sorting of the entire input of this sort would require at least

bN−1
3 c∑

i=1

i2 =
bN−13 c(b

N−1
3 c+ 1)(2bN−13 c+ 1)

6
=
N3

81
+O(N2)

point comparisons and running time. ut

Lemma 3. There exists an input P with N points of dimension M which re-
quires Filter Sort to run for Ω(N3) time.

Proof. We first construct an auxiliary set of N two-dimensional points Q using
the method provided in Lemma 2. Next, we define each point Pi as follows:

– for 1 ≤ j ≤M − 1, Pij ← Qi1;
– for j = M , Pij ← Qi2.

In this case, Filter Sort will still select the filter element from the equivalent of
left points, since the objective index sum would be the smallest for such a point.
For every equivalent of a middle point, the best objective would be the last one,
and the worst objective would be any objective except the last one. As a result,



Filter Sort would make exactly the same choices for P as it would do for Q,
hence it will also make Ω(N3) point comparisons for the input P. ut

Now we can formulate and prove the main theorem of the paper.

Theorem 1. The worst-case running time of Filter Sort is Ω(N3) and O(MN3).

Proof. The upper bound is proven in Lemma 1 and the lower bound is proven
in Lemma 3. ut

4 Conclusion and Discussion

We have proven that Filter Sort, despite the reports on its wall-clock time ef-
ficiency compared to some other algorithms, can be forced to perform Ω(N3)
dominance comparisons, which is much worse than O(MN2) ensured by many
other algorithms.

As a result, we suggest that the authors of evolutionary multiobjective soft-
ware use Filter Sort with caution (if at all) even if they like its typical per-
formance. One recipe would be to track the number of dominance comparisons
and switch to any algorithm that is less efficient in average, but has asymptot-
ically better worst-case running time, for example, from the ENS family [35].
The availability of the non-modified algorithm that can be forced to work much
slower than expected is, in fact, a security breach that can exposes a DoS-attack
in the case the evolutionary multiobjective software is accessible as a service.

Concerning the possible improvements of Filter Sort, we do not currently
have much to propose. One of the important weaknesses is that the list L of the
points which may dominate the current candidate c, as in line 28 of Algorithm 1,
may contain former candidate solutions that have already been dominated by
some other candidate solution. One can get rid of that by making deep copies
of all the lists Oj before line 26, using these copies in line 28 instead of the
originals, and removing the former candidate solutions from these copies in line
36 together with the removal from the set of candidate solutions. However, just
making these copies, although taking at most O(MN2) total time, may introduce
a huge overhead in typical scenarios, essentially destroying the “average” benefits
of Filter Sort.

It is currently an open question whether Ω(N3) is the best lower bound
we can prove (e.g. there is a matching O(N3 + MN2) bound), or our principle
of constructing hard test cases is not the best one, and a strictly better lower
bound holds. It appears now that tracking the worst objective and using it first
to compare points is a crucial component of Filter Sort that makes it harder to
propose Ω(MN3) tests. However, we find it difficult now to prove or disprove
that the O(N3 +MN2) bound actually holds.

Acknowledgment. This research is financially supported by The Russian
Science Foundation, Agreement No. 17-71-30029 with co-financing of Bank Saint
Petersburg.
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