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Abstract

In this thesis, we consider the development of algorithms suitable for designing evacuation

procedures in sparse or remote communities. The works are extensions of sink location

problems on dynamic networks, which are motivated by real-life disaster events such as

the Tohoku Japanese Tsunami, the Australian wildfire and many more. The available algo-

rithms in this context consider the location of the sinks (safe-havens) with the assumptions

that the evacuation by foot is possible, which is reasonable when immediate evacuation

is needed in urban settings. However, for remote communities, emergency vehicles may

need to be dispatched or situated strategically for an efficient evacuation process. With

the assumption removed, our problems transform to the task of allocating capacities on

the edges of dynamic networks given a budget capacity c. We first of all consider this

problem on a dynamic path network of n vertices with the objective of minimizing the

completion time (minmax criterion) given that the position of the sink is known. This leads

to an O(n logn+ n log(c/ξ)) time, where ξ is a refinement or precision parameter for an

additional binary search in the worst case scenario. Next, we extend the problem to star

topologies. The case where the sink is located at the middle of the star network follows

the same approach for the path network. However, when the sink is located on a leaf node,

the problem becomes more complicated when the number of links (edges) exceeds three.

The second phase of this thesis focuses on allocating capacities on the edges of dynamic

path networks with the objective of minimizing the total evacuation time (minsum criterion)

given the position of the sink and the budget (fixed) capacity. In general, minsum problems

are more difficult than minmax problems in the context of sink location problems. Due to

few combinatorial properties discovered together with the possibility of changing objective
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function configuration in the course of the optimization process, we consider the develop-

ment of numerical procedure which involves the use of sequential quadratic programming

(SQP). The sequential quadratic programming employed allows the specification of an ar-

bitrary initial capacities and also helps in monitoring the changing configuration of the

objective function. We propose to consider these problems on more complex topolgies

such as trees and general graph in future.
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Chapter 1

Introduction and Background

The importance of evacuation planning or strategy is becoming increasing in our world to-

day. Given the havoc and loss caused by recent natural disasters such as tsunami (in Tohoku

city, Japan), earthquakes (in Haiti), flood (in parts of England) and wildfire (in Alberta,

Canada) just to mention a few, governments of developed nations are particularly interested

in efficient measures or strategies that could aid the quick evacuation of people, livestock

and valuables immediately there is a sign or warning that demands such an evacuation.

The extent of destruction and loss of valuable properties and infrastructures may not be

quantifiable after the disaster. Bridges may be swept away, mansions may be demolished,

and train tracks wrecked just to mention a few. Above all, lack of an effective evacuation

procedure may result in a large death toll which can add to the aftermath psychological

trauma of the people and also cause a huge increase in the government disaster recovery

cost. If a natural disaster is unavoidable, as the name indicates, huge cost of recovery and

death toll are two negative impacts every government wants to avoid.

The required evacuation strategy in the event of emergency does not only involve time,

but also the identification of safe locations within a street, region or the whole city at large.

Depending on the scale of a disaster, evacuation strategy may also be planned within a

school, hospital environment, engineering environment and any working environment.

In this thesis, we focus on developing algorithms suitable for the effective evacuation in

remote or sparse communities. The existing algorithms in this context are developed with

the assumption that evacuees can get to the sink by foot, which may not be feasible when
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1. INTRODUCTION AND BACKGROUND

considering remote communities as the sink may be located more than hundred kilometers

away. Therefore, emergency vehicles may have to be stationed strategically for an effec-

tive evacuation procedure. This leads to the problem of capacity provisioning on dynamic

networks, given a budgeted (fixed) capacity and with the assumption that the sink position

is known. Just as in traditional sink location problems, all algorithms considered in this

work are classified into two optimal criteria. The first with more flurry of work is the min-

imax sink location which focuses on evacuation completion time while the second called

the minsum sink location focuses on the sum of the evacuees’ evacuation times.

The minmax and minsum sink location problems can be seen as the generalization of

the NP−hard unweighted center and median problems respectively with respect to static

networks [24]. In fact, if the edge capacities are large enough, both sink location prob-

lems reduce to the respective static problems. Extensive work up to tree networks have

been considered for the case of the minimax criterion while only path networks have been

investigated in the case of the minsum criterion in literature.

For the rest of this thesis, we shall use the following definitions and parameters. Let

P = (V,E) represent a path graph with a vertex set V = {v1,v2, . . . ,vn+1} and an edge

set E = {ei = (vi,vi+1), i = 1, . . . ,n}. Each vertex vi has a non-negative weight wi which

represents the number of evacuees situated at vi, and each edge ei has a fixed length li but

unknown capacity xi, which represents the upper limit on the number of evacuees that can

be evacuated through the edge ei in a unit time. The parameter c denotes a given budgeted

capacity to be shared optimally between all the edge lengths and τ denotes the transit time

per unit distance.

We let p ∈ P denote any point p that lies on the path graph P, and for p,q ∈ P, p < q

(resp. p > q) is interpreted as point p lies at the left (resp. right) of point q. We define

d(p,q) as the sum of edge lengths between p and q and if p and/or q are on an edge, we

use prorated distance. We also denote the minimum capacity of the edges in a subpath

connecting points p and q by x(p,q). For evacuees to travel from p to q, τd(p,q) time is

2



1.1. CONCEPT OF THE MINMAX CRITERION WITH A FIXED SINK

expended.

1.1 Concept of the minmax criterion with a fixed sink

Let us review the concept of the minmax evacuation criterion, which simply minimizes

the evacuation maximum time or completion time in any topology of interest while also

considering the effect of congestion that may ensue as a result of the edge capacities. The

minmax problem has been studied up to tree topology and the approximation algorithm

approach to a general graph network has been proposed recently in literature [35]. We

review the concept by focusing on path networks with a fixed sink.

Problem 1.1. Given a path network P with a fixed sink (located anywhere on the path either

a vertex or on an edge) and known number of evacuees wi located at each vertex vi. Let us

assume that the edge length li and the edge capacity ci for each edge ei = (vi,vi+1), i ≥ 1

are available. Let also assume that the transit time τ to travel a unit distance is known. The

task is to minimize the maximum time of evacuation on the path network.

The above task is also equivalent to minimizing the evacuation time of the last evacuee

on the network. Let us look at the following path network for example, where evacuees

wi and w2 are located at vertices v1 and v2 respectively. The sink denoted by S is located

(fixed) on the right end.

v1 v2

w1 w2

S
l1
c1

l2
c2

Figure 1.1: Two-edge network with a sink fixed at the right end.

Now, the time for the last evacuees at v2 to get to the sink is

τl2 +
w2

c2
, (1.1)

where we refer to the first term as the distance time and the second term the waiting time.

For the evacuees moving from v1, we have to consider two cases:

3



1.1. CONCEPT OF THE MINMAX CRITERION WITH A FIXED SINK

Case 1 (No congestion): This means evacuees from v1 are not impeded at v2 as they journey

to the sink. Mathematically this implies τl1 ≥ w2
c2

. With this assumption, we have the

evacuation time to be

Tv1 =
w1

min{c1,c2}
+ τ(l1 + l2), (1.2)

where we note that that the waiting time to the sink is dictated by the minimum of the edge

capacities.

Case 2 (Congestion): This is when evacuees from v1 have to stop at v2 due to backlog of

evacuees waiting to evacuate through the edge e2 to the sink. Mathematically this implies

τl1 < w2
c2

. In this case the evacuation time is given by

Tv2 = τl2 +
w1 +w2

c2
. (1.3)

Before we present a more interesting example, we introduce the following array

W [i] =W [1, i] =
i

∑
j=1

w j, for i = 1,2, . . . ,n, (1.4)

so that for i≤ j we have

W [i, j] =W [ j]−W [i−1]. (1.5)

Similarly we define the prefix sum of the edge lengths

L[i] = L[1, i] =
i

∑
j=1

l j, for i = 1,2, . . . ,n, (1.6)

so that for i≤ j we have

L[i, j] = L[ j]−L[i−1]. (1.7)

Also we let c(i, j) denote the smallest capacity between subpath P[vi,v j]. Now let us con-

sider the following path network where the sink is fixed in the interior of the path

4



1.1. CONCEPT OF THE MINMAX CRITERION WITH A FIXED SINK

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

w1 = 15 w2 = 12 w3 = 10 w4 = 9 w5 = 7 w6 = 5 w7 = 11 w8 = 6 w9 = 5 w10 = 7

l1 = 4 l2 = 3 l3 = 5 l4 = 2 l5 = 3 l6 = 2 l8 = 5 l9 = 33 2

S
c1 = 4 c2 = 5 c3 = 2 c4 = 6 c5 = 4 c6 = 3 c7 = 5 c8 = 3 c9 = 2

Figure 1.2: A path network with a sink located on an edge.

We have the left evacuation (where evacuees move from left to right) time with respect

to a vertex p ∈ [vi,v j] to the sink as

T [i, j]
L (S, p) = τL[p,S]+

W [i, p]
c(p,S)

, for S > j (1.8)

and the right evacuation (where evacuees move from right to left) time is given as

T [i, j]
R (S, p) = τL[S, p]+

W [p, j]
c(S, p)

, for S < i. (1.9)

As the sink is located on an edge say e j′ = (v j′,v j′+1) (resp. ei′ = (vi′,vi′+1)), a prorated

distance is used to compute the distance between the last vertex v′j and S (resp. the dis-

tance between the last vertex v′i and S). Let us compute the left evacuation time for the

subpath P[v2,v7] of the network above. This means we need to compute T [2,7]
L (S, p) for

p = 2,3, . . . ,7. We have the following calculations based on equation (1.8)

T [2,7]
L (S,2) = 18+

12
2

= 24 T [2,7]
L (S,3) = 15+

22
2

= 26

T [2,7]
L (S,4) = 10+

31
3

= 20.33 T [2,7]
L (S,5) = 8+

38
3

= 20.67

T [2,7]
L (S,6) = 5+

43
3

= 19.33 T [2,7]
L (S,7) = 3+

54
5

= 13.8

From the above calculations, the maximum evacuation time for the subpath is 26 given by

T [2,7]
L (S,3).

Definition 1.2. The vertex vp ∈ [vi,v j] that maximizes T [i, j]
L (S, p) is called the critical vertex

[5].

For example, the critical vertex for the subpath P[v2,v7] is v3. The example above shows

5



1.2. CONCEPT OF MINSUM SINK LOCATION PROBLEM WITH A FIXED SINK

that once the critical vertex within a subpath is determined, then the maximum evacuation

time for the subpath can be quickly computed. With n being the number of vertices in the

network, Bhattacharya et al. in [5] constructed a data structure called the capacities and

upper envelope (CUE) tree to aid the determination of the critical vertices in O(n log2 n)

time while Higashikawa et al. in [24] employed a dynamic programming data structure to

determine the critical vertex for the case when the edge capacities are uniform.

1.2 Concept of minsum sink location problem with a fixed sink

The minsum evacuation procedure focuses on minimizing the total evacuation time of

all evacuees on a specified network. This criterion is more challenging than the minmax

counterpart and all algorithms on the problem (in literature) are limited to path networks.

Let us review the concept with respect to a fixed sink on a path network. Given a path

network with a fixed sink and known number of evacuees wi located at each vertex vi.

Suppose also that the edge length li and edge capacity ci for each edge ei are known. The

task is to minimize the total evacuation time of all the evacuees to the sink. An important

fundamental property known in literature for this problem is given in Theorem 1.3 below

Theorem 1.3. The minsum sink must be on a vertex [24].

Let us consider the two-edged path network in Figure 1.1. We have two cases

Case 1 (No congestion): We construct the following time-weight graph to illustrate the

model or objective function for the case when τl1 ≥ w2
c2

.

6



1.2. CONCEPT OF MINSUM SINK LOCATION PROBLEM WITH A FIXED SINK

0 w2 w1 + w2

T

W

w2
c2

f1(w)

f2(w)

τ l2

Jump

Figure 1.3: Time-weight graph modeling the objective function for the two-edged path
network of Figure 1.1 illustrating congestion free scenario.

The x−axis is the prefix sum array of the weights while the y−axis is the time to the

sink. For example, the first evacuees from v2 get to the sink in time τl2 while the rest have

to wait w2
c2

unit of time before they proceed to the sink. The graph also shows a gap which

corresponds to the time of zero flow-rate and no congestion at v2. The areas of the two

trapezoids in the time-weight graph gives the required evacuation total time.

z = w2τl2 +w1τ(l1 + l2)+
w2

2
2c2

+
w2

1
2min(c1,c2)

. (1.10)

Note also that we can derive the model by considering the time for the last evacuees at both

v1 and v2 and computing the integral with respect to the evacuees. Thus we have

fv2(w) = τl2 +
w
c2
, w > 0

fv1(w) = τ(l1 + l2)+
w−w2

min(c1,c2)
, w > w2,

(1.11)

and
z =

∫ w2

0
fv2dw+

∫ w1+w2

w2

fv1dw

= τl2w2 + τ(l1 + l2)w1 +
w2

2
2c2

+
w2

1
2min(c1,c2)

.

(1.12)

7



1.2. CONCEPT OF MINSUM SINK LOCATION PROBLEM WITH A FIXED SINK

Case 2 Congestion case: Let us assume that τl1 < w2
c2

, that is, evacuees from v1 are

delayed at v2 due to some evacuees waiting to depart v1 to the sink. The following time-

weight graph illustrates the scenario:

f2(w)

f1(w)

η w1 + w2w2

τ l2

τ(l1 + l2)

T

Figure 1.4: Time-weight graph modeling the objective function for the two-edged path
network of Figure 1.1 illustrating congestion scenario.

Using the diagram above and Equation (1.11), we have the objective function to be

z =
1
2
( fv2(0)+ fv2(η))η+

1
2
( fv1(η)+ fv2(w1 +w2))(w1 +w2−η), (1.13)

where η is the prefix sum weight which includes the evacuees from v1 that get delayed at

v2. We can easily solved for η in the equation fv1(η) = fv2(η).
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Chapter 2

Background information and literature
review

2.1 Overview of the sink location problem

The theory of network flow problems originated from a trivial notion of moving from

one place to another together with the objective of reducing some cost function. This theory

however opened a wide door for numerous interesting problems, where algorithm designers

often wish to design procedures reliable to transport supplies from fixed sources to some

target locations or sinks (not necessarily pre-established).

One of the well known applications of this theory is in the quickest transshipment prob-

lems. In this problem, a set of sources with specified amount of supplies and a set of sinks

with pre-determined demands are given. The objective is to send exactly the right amount

of supplies to the sinks in a shortest possible time. Ford and Fulkerson [29] in their quest

to tackle this problem (for one source and sink) introduced the concept of dynamic flow

network which has been exploited to tackle different evacuation problems. A dynamic

network is a graph (path, tree or general graph) which models the movement of supplies

(people, commodities, or other movable valuables) in a network. Each vertex in the graph

holds some amount of supply and each edge is equipped with non-negative capacity, which

limit the flow rate of supply through it. Also, the edges are often equipped with transit time

which represents the time of travel in a unit distance.

Hoppe and Tardos in [10] investigated the problem further for multiple sources and

sinks under the assumption of integral transit time. They presented the first polynomial

9



2.1. OVERVIEW OF THE SINK LOCATION PROBLEM

time algorithm for the problem. However, the complexity of their procedure is inapplicable

in reality and as far as we know, finding a practical polynomial algorithm for the quickest

transshipment problem is still open.

A related application of the dynamic flow theory is the evacuation problem (see survey

paper [25] ). In this problem, discrete supplies are given at some set sources and in contrast

to the quickest transshipment problem, the demands for the set of sinks are not specified.

The objective is to determine appropriate locations of the set of sinks in the network so as

to minimize the travelling time of all evacuees on the network to these sinks. Two optimal

criteria have been categorised in literature for the evacuation problem. The first known

as the minmax criterion focuses on locating sinks on the network so as to minimize the

evacuation completion time. Flurry of works have been published in this category even up

to tree topology. The second category which focuses on the total evacuation time of all

evacuees in the network is known as the minsum criterion. This category is harder than

the former and as a result, few publications limited only to path networks have appeared in

literature.

One important concept which characterized the flows in a network is the confluent or

non-confluent property. Whenever there is a restriction that all flows entering a vertex

must leave along same edge in the network, then we have confluent flows, otherwise non-

confluent flows. Confluent flows are appreciated in evacuation problems for orderliness

and to avoid confusion in the evacuation process. For both minmax and minsum optimal

criteria, it is difficult to construct an optimal confluent flow when the underlying network

is a general graph. In fact, if P ̸= NP, a constant-factor approximate scheme for confluent

flows cannot be achieved in polynomial time [39, 15]. The result of Hoppe and Tardos in

[10] and PTAS result of Belmonte et al in [35] are based on non-confluent flow property,

since there is no restriction on the flows in the network. Examples based on confluent flows

can be seen in (evacuation) sink location problems where the underlying networks are trees

and paths (see [12, 13, 24, 7] for examples.)

10



2.1. OVERVIEW OF THE SINK LOCATION PROBLEM

Under the minmax criterion with confluent flow, Mamada et al in [38] investigated the

location of 1-sink on a dynamic tree network with general edge capacities by employing a

table data structure. In particular, they constructed arriving and sending tables (at a specific

destination vertex) which denote the arrival and departure rate as functions of time. The end

of the arriving table clearly indicates the evacuation completion time. They assumed that the

sink can only be on a vertex and developed an O(n log2 n) time algorithm for the problem.

Also on the tree network, Higashikawa et al in [23] and Bhattacharya and Kameda in [7]

presented an O(n logn) time algorithms under the condition that the sink can be located

on any part of the network. They exploited the unimodality of the objective function and

the concept of tree’s centroid in developing their algorithms. The most recent multiple

sinks location algorithms under the tree topology was by Chen and Golin in [12] and [13].

They presented an O(max{k, logn}·kn log4 n) time algorithms with general edge capacities

while investigating the location of k-sink in the network. Systematically, their algorithm

isolates each subtree with enough sinks in a bottom up fashion until no subtree is left.

Under the non-confluent characterization of flows with minmax criterion, Belmonte et al

in [35] presented an approximation algorithm for locating sinks on general graph. Their

algorithm employed the polynomial-time algorithm of Hoppe and Tardos [10] as subroutine

to develop a fully polynomial time approximation scheme (FPTAS) [17, 32] for k-sink

location on general network. They further showed that the problem is W [1]-hard [17, 32]

when parametrized by k (the number of required sinks in the network). However, it is

known that the complexity of their underlying approach is practically inapplicable.

Considering the path networks, Higashikawa et al in [24] presented an O(kn) time al-

gorithm under the condition that the edge capacities are equal and the flow is confluent.

They formulated a recursive formulation for their approach and employed a 1-sink algo-

rithm to locate a sink in a subpath divided by a (k−1)-dimensional divider. Improving on

this was Bhattacharya et al in [5]. They presented O(min{n log3 n,n logn+ k2 log4 n}) and

O(min{n logn,n+ k2 log2 n}) time algorithms for general and uniform edge capacities re-

11
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spectively. Their algorithms are based on the Megiddo’s parametric search [31] and sorted

matrix method of Frederickson and Johnson [18]. They employed a novel tree data structure

called the capacities and upper envelope tree (CUE tree) to facilitate their feasibility test as

well as efficient methods to extract information from the tree data structure. The minmax

k-sink location problem is a generalization of the NP-Hardness of the k-center problems in

general graph [27, 20].

Regarding the minsum sink location problems, only the path algorithms exist so far in

literature. The difficulty is due to the non-unimodal nature of the objective function. Hi-

gashikawa et al in [24] presented an O(n) time algorithm for the case of one sink on a path

network. They further showed that k−sink can be found in O(min{kn2,2O(
√

logk log logn)n2}).

Benkoczi et al in [37] presented improved algorithms for the minsum sink location on the

same topology. They showed that 1−sink minsum problem on path with general edge ca-

pacities can be solved in O(n logn) time complexity. They further derived O(kn log3 n) and

O(kn log4 n) time algorithms for the k−sink location on path topology with uniform and

general edge capacities respectively. These algorithms are based on efficient optimized dy-

namic programming formulation and a tree data structure called the cluster sequence tree

which allowed efficient preprocessing of necessary information.

In comparison with the classical median problem, the minsum criterion can be reduced

to the classical unweighted median problem by making the edge capacities as large as possi-

ble. Hence minsum optimal criterion is a generalization of the NP-hardness of the classical

median problem [24, 37]. Tables 2.1 and 2.2 summarize the results known to date for the

minmax and minsum sink location problems.
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Topology Problem Time complexity

Path

1−sink [U] O(n) [24]

k−sink [U] O(kn) [24], O(n+ k2 log2 n) [5], O(n logn) [7]

k−sink [G] O(n logn+ k2 log4 n) [5], O(n log3 n) [5]

Tree

1−sink [U] O(n logn) [7, 23]

1−sink [G] O(n log2 n) [38]

k−sink [U] O(kn2 log4 n) [12], O(max{k, logn}kn log3 n) [13]

k−sink [G] O(kn2 log5 n) [12], O(max{k, logn}kn log4 n) [12]

Cycle
1−sink [U] O(n) [4]

1−sink [G] O(n logn) [4]

Table 2.1: Table of minmax algorithms with their topologies and complexity in literature.
[U] represents uniform edge capacities and [G] general edge capacities.

Topology Problem Time complexity

Path

1−sink [U] O(n) [24]

k−sink [U] O(n2 ·min{
√

k logn+ logn,2
√

logk log logn}) [24], O(kn2 log3 n) [36]

k−sink [U] O(kn log3 n) [37]

k−sink [G] O(kn2 log2 n) [36], O(kn log4 n) [37], O(kn2 log2 n)

Table 2.2: Table of minsum algorithms with their topologies and complexity in literature.
[U] represents uniform edge capacities and [G] general edge capacities.

All the novel algorithms discussed above emerged from the perspective of evacuating

densely populated or urban communities. However, remote areas or sparsely populated

communities, such as in British Columbia, Alberta, California and New South Wales are

not left out from disasters, especially wildfires and floods. These areas are far from urban

settings and evacuation by foot may not be efficient during unprecedented disasters, as
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the safehaven maybe located very far away. Therefore in our research, we shall consider

developing models and algorithms suitable for remote regions, where effective evacuation

may not be possible by foot and emergency vehicles may have to be deployed or situated

strategically to evacuate victims to safe haven (sink) hundreds of kilometers away.

2.2 Review of data structure for minmax evacuation criterion

The study of sink location problems present reliable procedures backed up by rigorous

theoretical analysis for city planners to locate safe-havens in strategic positions and to aid

the efficient evacuation process in the event of unforeseen disaster. In this section, we

review an efficient algorithm proposed in [6] for locating k sinks on a path network, in such

a way that the evacuation completion time is minimized. We acknowledge that Aramgutan

et al. in [3] had presented an O(kn log2 n) algorithm in 2014 while an O(kn) algorithm

was presented in [24] in 2015 for the case where the edge capacities are uniform, using

a special dynamic programming data structure. However, the data structure in [6] proved

more efficient as far as path network is concerned. As for tree networks, Mamada et al

in [30] presented an O(n log2 n) algorithm for 1-sink location with the assumption that the

sink is located on a vertex, using a special table data structure, while an O(n logn) time

algorithm for the case where the sink could be on any part of the tree was presented in [7].

With the important understanding of how crucial the critical vertices are to the compu-

tation of optimal cost (see definition 1.2) they construct an efficient data structure that can

speed up the determination of these vertices, and also to aid the important task called the

feasibility test. Given a time t, a problem instance is t−feasible if there exists a k−sink

such that every evacuees can evacuate to a sink in time not exceeding t. The figure below

shows how 3 sinks are located on a path network with 9 evacuee vertices.

14
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v1 v2 v3 v4 v5 v6 v7 v8 v9

w1 w2 w4 w6 w7

S1 S2 S3

Figure 2.1: Three sinks located on a path network. The picture shows how subpaths are
isolated with a sink fixed in each.

We generalize that k < n otherwise, we can assign a sink on each vertex to have optimal

cost of zero.

Let us describe the t−feasibility test before we explain the data structure. Starting with

initial vertex va, find vb such that all evacuees on the subpath P[va,vb] can be evacuated

within time t but evacuees on P[va,vb+1] fail the test. This is called the left feasibility test

and θL is used. Next locate a sink s on (vb,vb+1] such that θ
[a,b]
L (vb,C

[a,b]
L )+ xτ = t and

d(vb,s) = x. If s ∈ (vb,vb+1), set index c = b+ 1. If s = vb+1 then set c = b+ 2. Then

locate a vertex vd such that evacuees on P[vc,vd] can be evacuated to s within time t. This

we call the right feasibility test and θR is used. The feasibility test is repeated and at each

round, subpaths are isolated with a fixed sink until the last vertex vn belongs to the last or

kth isolated subpath.

2.2.1 The critical and upper envelope tree structure

To perform the t−feasibility test with respect to k sinks efficiently and to compute the

critical vertices as quickly as possible, they construct a balance tree on the path network

with the vertices being the leaves of the tree. Let v+j be the right end of vertex v j and let ul

and ur be the left and right children of node u of the tree T .
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u

vlu vruvi vj

ρ′

π(ρ′, vi)

π(ρ′, vj)

Figure 2.2: Balanced tree constructed on the vertices.

During preprocessing, the minimum capacities as well as the cumulative weights asso-

ciated with any given subpath are stored at the nodes using a heap-like data structure bottom

up in O(n) time. We shall explain the left evacuation as the right evacuation procedure is

symmetric. We recall that for any given subpath P[vi,v j] the time to evacuate the evacuees

within the subpath to a sink s beyond v j is given by

θL = max
vp∈[vi,v j]

{
d(vp,v j)τ+W [vi,vp]/c(vp,v j+1)

}
(2.1)

Let us denote by π(u,u′) the path that connects the nodes u and u′ of the tree T and let ρ′

be the lowest common ancestor of any pair of leaves vi,v j. If we collect all the nodes that

are the right children of the nodes on the path π(vi,ρ
′) and the left children of the nodes

on the path π(vi,ρ
′) including vi and v j, (but ignoring the ones on the path) then we have a

total of O(logn) such nodes. Let N[vi,v j] be the set of the nodes and P (vi,v j) be the set of

O(logn) subpaths spanned by the nodes in N[vi,v j]. With the existence of N[vi,v j], formula
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(2.1) is broken into

max
vp∈V [vlu ,vru ]

{
d(vp,vru)τ+(W +W [vlu,vp])/min{c(vp,vru+1),c}

}
, (2.2)

where W =W [vi,vlu−1] and c = c(vru+1,v j+1). Equation (2.2) is further broken down into

two upper envelope functions with respect to each u ∈ N[vi,v j]. The first is a function of W

given by

θ
u
L,1(W ) = max

vp∈V [vlu ,vru ]

{
d(vp,vr(u))τ+(W +W [vl(u),vp])/c(vp,vr(u)+1)

}
= max

vp∈V [vl(u),vr(u)]

{
θ
[l(u),r(u)]
L (v+r(u),vp)+

W
c(vp,vr(u)+1)

}
,

(2.3)

and the second is a function of c given by

θ
u
L,2(c) = max

vp∈V [vl(u),vr(u)]

{
d(vp,vr(u))τ+

W [vl(u),vp]

c

}
. (2.4)

Both formulas are derived by considering the smaller of c(vp,vr(u)+1) and c= c(vr(u)+1,v j).

They are piecewise linear and continuous in their respective variables and therefore can be

stored as sorted points using the idea of line duality and the computation of convex hull

achievable in linear time by Graham scan algorithm.

Lemma 2.1. Given a dynamic path network with n vertices, the capacity and upper enve-

lope tree T can be constructed with associated data in O(n logn) in time and space.

Once a pair of vertices (vi,v j) is given, the values of W and c are determined and the

critical vertices can be determined by binary search over the bending points of θu
L,1(W )

and θu
L,2(c), which is obtainable in O(logn) time. Thus, the L−critical vertices for P[vi,v j]

can be computed in O(log2 n) because we need to compare O(logn) candidates of N[vi,v j].

With the CUE tree prepared, it takes O(log3 n) time to locate a sink in an isolated sub-

path given a starting vertex va. This is because it takes O(log2 n) to compute the critical
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vertices as well as the left evacuation time and right evacuation time and then repeat the

computation O(logn) time. Finally for general edge capacities, the t−feasibility test to

insert k sinks on a path network can be carried out in O(min{n log2 n,k log3 n}) time. The

O(k log3 n) complexity can be achieved by locating 1 sink in the first partition of the path

network starting from v1 in O(log3 n) and then repeating the operation in k−1 more times.

The O(n log2 n) complexity is achievable by computing each left and right evacuation time

sequentially which takes O(n) and each computation takes O(log2 n) time.

When the edge capacities are uniform, the critical vertices can be computed by concate-

nating two subpaths in constant time and for each node in T bottom up, which takes O(n)

time to construct the CUE tree. Therefore when the CUE tree is available, the left and right

critical vertices for P[vi,v j], 1 ≤ i ≤ j ≤ n can be computed in O(logn) by exploring the

O(logn) nodes in N[vi,v j]. Finally the t−feasibility test for the case of uniform edge can

be carried out in O(min{n,k logn}) time provided the CUE tree is available.

2.3 Review of data structures for minsum evacuation criterion

We turn attention to review the problem of locating sinks on a path network in such a

way that the evacuation total time is minimized. In particular, we review the 1-sink minsum

work presented in [36] where special innovative method is employed, and for the k > 1 sinks

the innovative method is combined with dynamic programming to solve the problem effi-

ciently. We acknowledge that Higashikawa et al in [24] invented a dynamic programming

approach for the case of uniform edge capacity network. They later converted the prob-

lem to an equivalent problem of searching for k−edge path in a complete weighted directed

acyclic graph (DAG), an approach which yielded an O(n2 ·min{
√

k logn+logn,2
√

logk log logn})

time. When k = 1, their algorithm runs in O(n) time. The minsum sink location problem is

more difficult than the minmax sink location on any topology and its studies so far in liter-

ature is limited to path topologies. One important property of the minsum problem which

also differentiates it from the minmax is that the optimal location of the sink can only be on
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a vertex.

With reference to a particular vertex vi which could also be the location of the sink, if

the arrival flow rate at vi (or departure flow rate from vi) is plotted against time, then we

have a sequence of clusters. A cluster is regarded as the maximal time interval for which

the arrival flow rate at vi is continuously greater than zero. A cluster consists of sequence

of sections which may occur as a result of congestion at the arriving vertex. Sections in a

cluster have different heights, where the heights are given by the exiting edge capacities.

We have a simple cluster when the cluster contains only 1 section, for example, when the

edge capacity is uniform. The head vertex of a cluster is the vertex from which the evacuees

corresponding to the start time of the cluster originates. The head vertex contains the first

set of evacuees who are not impeded on their way to the reference vertex. Thus, the time

for which the first set of evacuees from a cluster reaches a reference vertex vi is called the

offset of the cluster. Finally, the time interval of flow rate zero between adjacent clusters is

termed a gap.

2.3.1 The 1-sink minsum problem

Let us consider the case when k = 1. We define the following time function (or cost)

θL(x) = Cost at x due to the vertices on P[v1,vi] if vi < x≤ vi+1

θR(x) = Cost at x due to the vertices on P[vi+1,vn] if vi ≤ x < vi+1,

(2.5)

so that

θ(x) = θL(x)+θR(x). (2.6)

A point x ∈ V that minimizes θ(x) is called a minsum 1−sink. Thus, the total cost can be

computed by summing all the cost due to the vertices of all sections. Therefore, we need

a model to compute a cost due to a section. Given a section of height c with offset t0 and
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duration δt , the cost of the section is given by

λt0 +
λ2

2c
, (2.7)

where λ = cδt is the weight carried by the section. The first term of equation (2.7) is called

the extra cost, which is the time required for the evacuees carried by the section to move

from the vertex head to their destination. The second term is referred to as the intra-cost,

and it is the time required for all evacuees in the section to move from their origin vertices

to the head vertex.

Now, to solve the 1−sink minsum problem, we need an efficient way of detecting the

arrival section sequence denoted by αR(vi) and departure section sequence βR(vi) (both

assumed to be moving to the left). Computing αL(vi) and βL(vi) can be taken symmetrical.

We note that αR(vn) = βR(v1) = Λ, where Λ is an empty sequence. This is because

there is no right arrival at vn and no right departure from v1. We also note that if the height

of a section arriving vi is higher than the exiting edge capacity ci−1 of edge ei−1 then the

evacuees carried by that section cannot depart through vi, hence the duration of such section

gets stretched. There is also a possibility that an arriving section encounter a congestion at

vi due to some backlog of evacuees waiting to depart vi. This prompts the use of gap filling

operation where the delayed evacuees are used to fill the gaps in αR(vi). A section with

higher height than ci−1 is adjusted using the ceiling operation to stretch the duration of the

section. However, if the height of an arriving section is less than ci−1, the underutilized

capacity is used to accommodate as many delayed evacuees as possible. The following

observations are paramount to the algorithm:

(i) A stretched section may end in a gap

(ii) A section may shrink due to the stretched preceding it while its start time pushed to

a later time.

From the above observation, we realise that the number of sections in βR(vi) is at most one
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more than that in αR(vi) for i = n,n− 1, . . . . Moreover, since the evacuees coming from

further vertices would encounter smaller capacities, the heights of the sections in βR(vi)

due to the evacuees on subpath P[vi,vn] are non-increasing with time.

With the above properties at hand, we let λ(C) denote the number of evacuees carried

by a cluster C and for mth cluster in αR(vi), the ratio λ(Cm)/tm is recorded where tm is the

time difference between the start of Cm and the succeeding section Cm+1. We term the ratio
λ(Cm)

tm
the critical capacity.

Now, clusters are merged depending on if there is an interaction (congestion) at the

departure vertices, using the filling and ceiling (if incoming height is greater than outgoing

height) operation. To also facilitate the computation of the sequences, max-heap H is

introduced to store the critical capacities. This lead to the following lemma

Lemma 2.2. The section sequences {αR(vi),βR(vi)|i= 1, . . . ,n} can be computed in O(n logn)

time.

For the efficient computation of the extra cost, we first of all create an array of weights

W [i] = ∑
n
j=i w j. Now using the formula

Ei = Ei+1 +diW [i+1]τ, (2.8)

for i = n−1,n−2, . . . ,1, we can compute the extra cost. In fact Ei−1 can be computed from

Ei in constant time. The weight array W [i] can be precomputed in linear time.

Lemma 2.3. The extra costs {Ei|1≤ i≤ n} can be computed in O(n) time.

To compute the intra cost efficiently, we classify all sections of the same height in

different clusters as sections of the same group or height group. Suppose the arrival section

sequence αR(vi) consists of groups of sections, say G of which the heights of the groups

are non-increasing from the first to the last in G . Let G be a group of G with height h(G)

consisting of sections S1,S2, . . .Sg such that λ(Sq) is the sum of the weights carried by a
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section Sq, 1≤ q≤ g. Easily, we can compute the sum of the intra cost of the group G by

I(G) =
g

∑
q=1

λ(Sq)
2/2h(G). (2.9)

Then the total intra cost can be computed using

I(G) = ∑
G∈G

I(G). (2.10)

However, changes occur in G when sections in αR(vi) are merged due to smaller capacity

ci−1 encountered along ei−1 and adjustments have to be done for accurate computation. To

do this, we add the square weight of the new stretched section and the square weight of the

section not totally swallowed, and we subtract the sum of the square weight of the totally or

partially swallowed up sections. This computation takes O(n) time because the swallowed

up section takes no part in the updating time. Based on the explanation above, we have the

following lemma

Lemma 2.4. The intra cost {Ii|1≤ i≤ n} can be computed in O(n logn) time,

and all together we have the following theorem

Theorem 2.5. A minsum 1−sink in path network can be found in O(n logn) time.

2.4 Numerical approach to non-linear constrained problems

The general model for a constrained optimization can be written as follow

min
x∈Rn

f (x)

s.t hi(xk) = 0, i ∈ E

g j(x)≤ 0, j ∈ I ,

(2.11)

where E and I are sets of indices for equality and inequality constraints respectively. Let

us denote by p the size of E and by m, the size of I . We define the feasible region as
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the set of points that satisfies all the constraints, and we denote by x⋆ the solution of the

problem. The solution vector x⋆ can be local or global. It is a global solution when f (x⋆) is

the lowest function value when compared to the values at all other feasible points. A local

solution vector is a set of points at which the objective function is smaller than the values of

all other feasible nearby points or neighborhood. Many algorithms especially, for nonlinear

problems often seek local solutions because the global solutions are often difficult to locate.

However, when the functions are convex, local solution x⋆ is also global.

Let us denote the feasible set by Ω given by

Ω = {x | hi(x = 0), i ∈ E ;g j(x)≤ 0, j ∈ I}, (2.12)

thus equation (2.11) can be rewritten compactly as

min
x∈Ω

f (x). (2.13)

Optimality conditions are of two types. The first is the necessary conditions which must

be satisfied by any solution point (under certain assumptions) and the second is the sufficient

conditions which guarantee that x⋆ is in fact a solution. For unconstrained problems, the

optimality conditions are straight forward. The necessary condition is that the gradient of

the function at the optimal solution must be equal to zero, while the sufficient condition

is that the second derivative at the optimal solution must be positive definite. A solution

vector x⋆ is a local solution of problem (2.13) if x⋆ ∈ Ω and there exists a neighborhood

N of x⋆ such that f (x) ≥ f (x⋆) for all x ∈ N ∩Ω, x ̸= x⋆. The solution x⋆ is said to be

an isolated local solution if x⋆ ∈ Ω and there exists N of x⋆ such that x⋆ is the only local

solution in N ∩Ω.

One of the crucial properties for characterising solutions in constrained optimization

problems is the smoothness of the objective function and the constraints. The presence

of constraints in the problem definition often introduces many kinks and sharp edges and
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that does not mean that the constraint functions that describe the feasible region are non-

smooth [33]. This is because a non-smooth constraint can be broken down into set of

smooth (piecewise) constraints. For example ∥x∥1 = |x1|+ |x2| ≤ 1 can be broken down

into x1+x2 ≤ 1,−x1+x2 ≤ 1, x1−x2 ≤ 1, and−x1−x2 ≤ 1. Also, a non-smooth objective

function can be reformulated as a smooth constrained problem.

One idea of dealing with the inequality constraints in the problem definition (2.11) is

transforming them to a set of equality constraints by adding a set of variables called the

slack variables [2]. Since the inequality constraints in our problem definition is of the

form ”≤”, their values are either negative or zero at a feasible point. Therefore, the slack

variables value must be either positive or zero at optimality. Thus, g j(x)≤ 0 can be written

as g j(x)+ s j = 0, s ≥ 0. The slack variables are then treated as part of the unknowns and

their values are determined as part of the solution set.

Note that when s j for a particular constraint is zero, then such constraint g j is active,

otherwise we have an inactive constraint. Note also that the size of the unknown variables

increases by this idea. To avoid additional constraints s j ≥ 0, we can add the square of the

slack variables to the constraint set to have g(x)+ s2 = 0.

Before we present the necessary and sufficient conditions for constrained problem (2.11),

we give the following definitions.

Definition 2.6. [33, 2, 8] The active set A(x) at any feasible x consists of the equality

constraint indices from E together with the indices of the inequality constraints j for which

g j(x) = 0. That is

A(x) = E ∪{ j ∈ I | g j(x) = 0}. (2.14)

At a feasible point x, the inequality constraints g j is said to be active if g j(x) = 0 and

inactive if otherwise.

Definition 2.7 (LICQ [33]). Given a point x and the active set A(x), the linear indepen-

dent constraint qualification (LICQ) holds if the set of the gradient of active constraints
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{
∇g j(x), j ∈ A(x)

}
is linearly independent. If LICQ holds, all active constraints gradients

are nonzero.

Definition 2.8 (Regular points). A point x⋆ satisfying the constraint h(x⋆) = 0 is said to

be a regular point of the feasible set if f (x⋆) is differentiable and gradient vectors of all

constraints at x⋆ are linearly independent.

Definition 2.9. Given a feasible point x and the active constraint set A(x), the set of lin-

earized feasible directions F (x) contains the vectors d that satisfy

F (x) =


dT ∇hi(x) = 0 ∀ i = 1, . . . , p

dT ∇g j(x)≤ 0 ∀ j ∈ A(x)∩ I .
(2.15)

2.4.1 The optimality conditions

We review the necessary and sufficient conditions needed to be satisfied by x⋆ to be a

local solution of (2.11). The first order conditions are connected with the properties of the

gradients of the objective (in relation to unconstrained problems) and constraint functions

(extended to constrained problems). We have conditions in the following theorem.

Theorem 2.10 (First order necessary conditions [33, 2, 8]). Let x⋆ be a regular point of the

feasible set that is a local minimum for problem (2.11). Then there exists Lagrange multi-

pliers µ⋆ (a p-vector) and λ⋆ (an m-vector) such that the Lagrangian function is stationary

with respect to xk, k = 1, . . . ,n, µi i = 1, . . . , p, λ j j = 1, . . . ,m and s j, j = 1, . . . ,m at point

x⋆.

(i) The Lagrangian function for the problem is given by

L(x,µ,λ,s) = f (x)+
p

∑
i=1

µihi(x)+
m

∑
j=1

λ j(g j(x)+ s2
j)

= f (x)+µT h(x)+λ
T (g(x)+ s2)

(2.16)
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(ii) Gradient conditions

∂L
∂xk

=
∂ f
∂xk

+
p

∑
i=1

µ⋆i
∂hi

∂xk
+

m

∑
j=1

µ⋆i
∂g j

∂xk
= 0, k = 1, . . . ,n

∂L
∂µi

= 0 =⇒ hi(x⋆) = 0, i = 1, . . . , p

∂L
∂λ j

= 0 =⇒ (gi(x⋆)+ s2
j) = 0, j = 1, . . . ,m

(2.17)

(iii) Feasiblity check for inequality constraints. That is s2
j ≥ 0 or g j ≤ 0 for j = 1, . . . ,m.

(iv) Switching conditions or the complementary slackness conditions:

∂L
∂s j

= 0 =⇒ 2λ js j = 0, j = 1, . . . ,m. (2.18)

(v) Non-negativity of the Lagrange multiplier for the inequality constraints: λ⋆
j ≥ 0 j =

1, . . . ,m.

(vi) Regularity check: that is the matrix

G = (∇h1,∇h2, . . . ,∇hp,∇g j1,∇g j2, . . . ,∇gqx) (2.19)

is linearly independent. The index qx is the size of the set of active constraints as-

sociated with the inequality constraints. If this condition holds, then the Lagrange

multipliers for the constraints are unique.

The switching conditions in the above theorem also tells us that if the inequality con-

straint g j(x) ≤ 0 is active at the candidate minimum point x⋆ then the corresponding La-

grange multiplier must be non-negative [2].

The first order conditions help us to understand the relationship between the derivatives

of the objective function and the active constraints at the optimal solution x⋆. When these

conditions are satisfied, a move along any vector d from F (x) either makes dT ∇ f (x⋆)> 0
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or dT ∇ f (x⋆) = 0. When we have dT ∇ f (x⋆) = 0, the second order derivative informa-

tion helps us to understand whether a move along this direction increases or decreases the

objective function f .

To establish the second order conditions, we first impose a stronger smoothness assump-

tion on f , h and g. We require the functions to be twice continuously differentiable. Now,

given F (x) and some µ⋆ and λ⋆ that satisfy the KKT conditions, we define the critical cone

as

C (x⋆,µ⋆,λ⋆) = {d∈F (x) |∇[hi g j]
T d= 0, i= 1, . . . , p and all j ∈A(x⋆)∩ I with λ

⋆
j > 0}.

(2.20)

Theorem 2.11 (Second order necessary conditions [2]). Suppose that x⋆ is a local solution

of (2.11) and that the LICQ holds. Let (λ⋆,µ⋆) be the Lagrangian multiplier vector for

which the KKT conditions hold. Then

dT
∇

2L(x⋆,µ⋆,λ⋆)d≥ 0, ∀ d ∈ C (x⋆,µ⋆,λ⋆). (2.21)

Theorem 2.12. (Second order sufficient condition [2]) Suppose that for some feasible point

x⋆ ∈Rn there are Lagrange multiplier vectors λ⋆ and µ⋆ such that the KKT conditions hold.

Suppose also that dT ∇2L(x⋆,µ⋆,λ⋆)d > 0 for all d ∈ C (x⋆,µ⋆,λ⋆), d ̸= 0. Then x⋆ is a

strict local solution of problem (2.11).

The second order conditions can be reformulated in a slightly weaker version by using

two-sided projection of the Hessian of the Lagrangian HL(x⋆,µ⋆,λ⋆) onto the subspaces

that are related to C (x⋆,µ⋆,λ⋆). When the strict complementary conditions and LICQ hold,

we have

C (x⋆,µ⋆,λ⋆) = Null[∇[hx⋆, g(x⋆)]T ] j∈A(x⋆) = Null(G(x⋆)) (2.22)

where G is defined in (2.19). Let Z be a full column rank whose column span the space
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C (x⋆,µ⋆,λ⋆), that is

C (x⋆,µ⋆,λ⋆) = {Zu | u ∈ R|A(x⋆)|}, (2.23)

then the necessary condition can be written as

uT ZT HL(x⋆,µ⋆,λ⋆)Zu≥ 0 ∀ u, (2.24)

or ZT HL(x⋆,µ⋆,λ⋆)Z is semi positive definite. Similarly, the second order sufficient the-

orem becomes ZT HL(x⋆,µ⋆,λ⋆)Z is positive definite. The matrix Z can be computed nu-

merically using the QR-factorization of the active constraints gradient.

2.4.2 Obtaining global optimum solution

Global solution to a constrained non-linear optimization problem can be obtained in

two ways [2, 33]:

(i) Exhaustive search method, which involves calculating all the local minimum points

and computing the cost function at those points. The point with the least value of cost

function is then taken as the global minimum. This approach can be employed if the

cost function is closed and continuous on a bounded feasible set

(ii) Convexity: the KKT conditions are sufficient to compute the global minimum points

if we can show that the optimization problem is convex.

We focus on the second method in this subsection.

Definition 2.13. A set S is said to be convex if two points p1 and p2 are any points in S

and the line segment joining the two points is entirely in S [2, 33].

Mathematically for two points x(1) and x(2) the line segment joining them is given by

x = αx(2)+(1−α)x(1), 0≤ α≤ 1. (2.25)
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If the whole line segment (2.25) is in S , then S is convex.

We can determine if a given function f (x) is convex in relation to a convex set.

Definition 2.14. A function f (x) is called convex on the convex set S if the graph of the

function lie below the line joining any two points on the curve f (x). For n−dimensional

space, f (x) defined on a convex set S is said to be convex if the following inequality is

satisfied [2]

f (α(x(2)+(1−x(1))))≤ α f (x(2))+(1−α) f (x(1)), 0≤ α≤ 1. (2.26)

To check or determine the convexity of a function, equation (2.26) is not often used as

it may require an infinite number of pairs of points. The following theorem is handy to use

Theorem 2.15. A n−dimensional variable function f (x1,x2, . . . ,xn) defined on a convex

set S is convex if and only if the Hessian matrix of the function is positive semi-definite

or positive definite at all points in the set. The function f is strictly convex if the Hessian

matrix is positive definite for all points. The Hessian matrix of f is given by [2, 33]

H f =


∂2 f
∂x2

1

∂2 f
∂x1∂x2

· · · ∂2 f
∂x1∂xn

...
... · · · ...

∂2 f
∂x2

n

∂2 f
∂xn∂x2

· · · ∂2 f
∂x2

n

 (2.27)

The above theorem is necessary and sufficient condition to show if a function is convex.

Convex programming

For the constrained optimization problem, if function g j(x) is convex, then the singleton

set g j(x)≤ e j (e j a constant) is convex [2]. Now, if all g j for j = 1, . . . ,m are convex, then

the set {g j(x)≤ e j, j = 1, . . . ,m} is also convex, since the intersection of convex functions

is convex.
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Theorem 2.16. Let Ss constitute the points that satisfy the constraint functions. That is

Ss = {x | hi(x) = 0, i = 1, . . . , p g j(x) = 0, j = 1, . . . ,m
}
, (2.28)

then Ss is convex if functions set g are convex and functions h are linear [2, 33].

Feasible set Ss is also convex if the set is defined by linear equality or inequality func-

tions. Now if the cost function is convex over the feasible set, we have a convex program-

ming problem. The following theorem gives us the information needed for the local and

global solution for convex programming problems

Theorem 2.17. If f (x⋆) is a local minimum for a convex function f (x) defined on a convex

feasible set S , then f (x⋆) is also a global minimum and x⋆ is the global minimum vector

[2, 33].

2.4.3 Unconstrained techniques for solving constrained problems

The study of unconstrained non-linear optimization problems has opened a bank of

techniques that can be exploited to solve constrained optimization problems. Many of the

methods include the Newton method, which offers a second-order approximation and the

quasi-Newton methods, which combine the attractive features of the steepest descent and

Newton method. To employ the unconstrained methods to solve constrained problems,

some sort of transformations need to be done. The objective function of the constrained

problem is often wedded together with its associated constraint functions to form a compos-

ite function. Penalty parameters are often incorporated in the composite function formed,

and are included to penalise the new objective function if the constraints are violated. The

values of the penalty parameters are directly proportional to the extent of the violation. That

is, the bigger the violation, the larger the penalty value [2, 33].

When the composite objective function is constructed successfully with some set of

penalty parameters, it can be minimized using any of the unconstrained methods. At every
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iteration, the penalty parameters are adjusted inline with some conditions and the composite

objective function is again redefined and minimized. The process continues until desired

solutions are obtained.

We review the transformation method under two categories [2, 33]:

(i) Sequential unconstrained minimization technique (SUMT)

(ii) Multiplier method.

Both transformation categories transform the problem to the following form [2]

Φ(x;r) = f (x)+P(h(x),g(x),r), (2.29)

where r denotes a vector of penalty parameters and P is a real-valued function that imposes

a penalty on the cost function with the help of r. We discuss the two categories in turn.

Sequential unconstrained minimization techniques (SUMT)

Under this categories are the penalty function method and barrier function method. The

penalty function method constructs the real-valued function P in (2.29) in such a way that a

positive value of P is added to f (x) whenever there is a violation of constraint. An example

is the quadratic loss function given as [33]

P(h(x),g(x),r) = r{
p

∑
i=1

[hi(x)]2 +
m

∑
j=1

[g+i (x)]
2}

g+i (x) = max(0,gi(x)),

(2.30)

where r is a scalar penalty parameter. It is easy to observe that the function P is always

positive in value. We also observe that g+i (x) = 0 if the inequality constraint is active

(gi(x) = 0) or inactive (gi(x)< 0) but positive if the inequality constraint is violated.

The advantages of the method include the ability to search through infeasible region and

the possibility of assigning an arbitrary initial solutions for both the solutions and penalty
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parameter. The drawbacks of the method include the fact that the iterative process may stop

prematurely and the final solution may not be feasible if this happens.

The barrier function methods designed for inequality-constrained problems include [33,

2]

(i) The inverse barrier function

P(g(x),r) =
1
r

m

∑
j=1

−1
gi(x)

(2.31)

(ii) The Log barrier function

P(g(x),r) =
1
r

m

∑
j=1

log(−gi(x)). (2.32)

Both functions above give an infinite value whenever any of the inequality function is active.

Therefore it is not advisable to start the method with some feasible solutions due to large

barrier set around the feasible set. We can observe that as r→ ∞, x(r)→ x⋆. Some of the

weaknesses of the barrier methods include instability (ill-behavior) near the boundary of the

feasible set, unclear method of choosing or selecting the iterates of the penalty parameters

and the ill-conditioning of the Hessian of the unconstrained function as r→ ∞

The multiplier methods

The methods under this category provide ways of circumventing the difficulties of the

methods under the SUMT category. To make sure that the composite function Φ has a good

conditioning, the transformation is carried out in such a way that the penalty parameters

need not go to infinity. The methods also have the advantage of faster convergence rate

compared to the SUMT methods with an arbitrary starting solution. The multiplier methods

are also referred to as the augmented Lagrangian methods in literature. Below is an example

of the method, whose construction introduces a penalty and multiplier for each constraint
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[2]

P(h(x),g(x),r,θ) =
1
2

p

∑
i=1

r′i(hi +θ
′
i)

2 +
1
2

m

∑
j=1

r j((g j +θ j)
+), (2.33)

where θ j > 0, r j > 0, and θ′i, r′i > 0 are parameters associated with the jth inequality and

ith equality constraints respectively. Also, g(i+θi)
+ = max(0,gi+θi). It is easy to observe

that if θ′i = θ j = 0 and r′i = r′j = r, then we have the quadratic loss function (2.30) which

requires r→ ∞ in order to enforce convergence.

For a special case of equality-constrained problem, the augmented or composite func-

tion can be defined as

ΘE(x,h(x),r) = f (x)+
p

∑
i=1

(µihi(x)+
1
2

rh2
i (x)), (2.34)

where r > 0 is a penalty parameter and µi is the Lagrange multiplier for the ith equality

constraint. In general for equality-inequality constrained problem, the multiplier method

can be written as [33]

Φ(x,g(x),r) = ΦE(x,h(x),r)+
m

∑
j=1


λ jg j(x)+ 1

2rg2
j(x) if g j +

λ j
r ≥ 0

− 1
2r λ2

j , if g j +
λ j
r < 0,

(2.35)

where λ j ≥ 0 represents the Lagrange multiplier for the jth inequality constraint.

2.5 The sequential quadratic programming (SQP) method

The sequential quadratic programming (SQP) is arguably the most successful method

for solving nonlinear constrained optimization problems [8, 2, 33]. It is regarded as a con-

ceptual method from which different algorithms have emerged. The SQP was seemed to

have been invented in 1963 by R.B Wilson in his PhD thesis titled ”A simplicial algorithm

for concave programming” [41], where he called the method Newton-SQP algorithm. How-

ever, the method became popular in the late 70s through the works of Garcia Palomares and
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Mangasarian [34] and Han [21], where methods for unconstrained optimization problems

were embedded in the SQP concept.

The SQP method basically models the nonlinear constrained problem for a given iterate

xk, k ∈ N0 by a quadratic programming (QP) subproblem, and then uses the solution to the

subproblem to construct a better iterate xk+1. Iterating this process leads to a sequence of

iterates that is hoped will converge to a local solution x⋆ as k→ ∞. The method shares

some properties of Newton-type methods such as rapid convergence, especially when the

iterates are close to the solution. It may behave erratically when the iterates are far from the

solution, however some techniques have been invented to control this phenomenon [8].

The SQP method allows infeasible initial starting solution which is a big advantage

when solving a nonlinear programming problem with nonlinear constraints. The method

also depend largely on the existence of rapid and accurate algorithms and techniques for

solving quadratic programming problems. Fortunately, there are many good procedures for

solving quadratic programming problems.

2.5.1 SQP notations and model formulation

We briefly discuss here the required notations, process, and subquadratic model for the

SQP method. We also list some assumptions needed for the method, which include the

blanket assumption that all functions in the problem definition are three times continuously

differentiable. We denote by ∇ f (x) to be the gradient of a scalar function f , i.e., ∇ f (x) =

[ ∂ f
∂x1

, · · · , ∂ f
∂xn

]T . We also employ the same notation ∇ to denote the Jacobian of a vector-

valued function, for example, ∇h(x) = (∇h1(x),∇h2(x), . . . ,∇hp(x)). We let H denote the

Hessian of a scalar-valued function, which is a symmetric matrix with entries of the form

H f (x)i, j =
∂2 f (x)
∂xi∂x j

.

Paramount to the SQP method is the Lagrangian function

L(x,µ,λ) = f (x)+µT h(x)+λ
T g(x), (2.36)
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where µ ∈ Rp and λ ∈ Rm
+ are the Lagrangian multiplier vectors for the equality and in-

equality constraints respectively. We define the index set of active constraints by

I(x) = {i : gi(x) = 0}, (2.37)

and we denote by G(x) ∈ Rn×(p+qx) the matrix given by

G(x) = (∇h1(x), . . . ,∇hp(x),∇gi1(x), . . . ,∇giqx
(x)), (2.38)

where qx = |I(x)|. We denote by x⋆ ∈ Rn the local minimum point of the problem and

we write HL(x⋆,µ⋆,λ⋆), where µ⋆ ∈ Rp, λ⋆ ∈ Rm are the optimal multiplier vectors. We

assume the following conditions pertinent to the optimal solution (see [8, 2, 33] ).

(i) The first order necessary optimality condition: That is, there exist Lagrangian multi-

pliers µ⋆ ∈ Rp and λ⋆ ∈ Rm
+ such that

∇L(x⋆,µ⋆,λ⋆) = ∇ f (x⋆)+∇h(x⋆)µ⋆+∇g(x⋆)λ⋆ = 0. (2.39)

This condition is also known as the KKT conditions. If a feasible point x satisfies the

KKT conditions, we call the point a critical point of the problem. Critical point may

not be a local minimum point.

(ii) The columns of G(x⋆) are linearly independent.

(iii) The strict complementary slackness holds at x⋆, that is, gi(x⋆)λ⋆
i = 0, for j = 1, . . . ,m.

But if gi(x⋆) = 0, λ⋆
i > 0.

(iv) The positive definite condition on HL⋆. That is, the Hessian of the Lagrangian with

respect to x is positive definite on the null space of G(x)T . That is dT HL⋆d > 0 ∀

d ̸= 0 such that G(x⋆)T d = 0.
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The last three conditions are referred to as the second-order sufficient optimality conditions

which ensure that x⋆ is an isolated local solution of the problem and that the multipliers are

unique.

2.5.2 Quadratic subproblem formulation

The quadratic subproblem is constructed in a way that it reflects local attributes of the

original problem. First, we express f as its local quadratic approximation

f (x)≃ f (xk)+∇ f (xk)dx +
1
2

dx
T BKdx, (2.40)

where dx = x− xk and the direct or natural definition of matrix Bk is the Hessian of f at

iterate xk. The constraints are also expressed by their local linear approximations

g(x)≃ g(xk)+∇g(xk)dx

h(x)≃ h(xK)+∇h(xk)dx.

(2.41)

This leads to the following quadratic programming subproblem

min
dx

∇ f (xk)
T dx +

1
2

dx
T Bkdx

s.t ∇h(xk)dx +h(xk) = 0

∇g(xk)dx +g(xk)≤ 0.

(2.42)

The above formulation is reasonable and useful if the constraints are linear. The presence

of nonlinear constraints in many constrained optimization problems requires the use of a re-

lated approach that involves the Lagrangian as the objective function. The related approach

is given below:

min
dx

∇L(xk,µk,λk)
T dx +

1
2

dx
T Bkdx

s.t ∇h(xk)dx +h(xk) = 0

∇g(xk)dx +g(xk)≤ 0.

(2.43)
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The subproblems Eq.(2.42) and (2.43) are equivalent in some instances. First, if there is no

inequality constraints. This is because the term ∇h(xk)
T dx is a constant and the functional

in (2.43) reduces to that in (2.42). Secondly, if the multiplier λk in (2.43) satisfies λi
k = 0,

for i∈ Iin(xk). This is because only the active inequality constraints are important and since

terms ∇h(xk)
T dx and ∇g(xk)dx, i ∈ Iac(xk) are constants, we have equivalency.

Another idea of formulating the subproblem suggests the addition of slack variables

to the inequality constraints before constructing the subproblem. This idea leads to the

following

min
dx,ds

∇ f (xk)
T dx +

1
2

dx
T Bkdx

s.t ∇h(xk)dx +h(xk) = 0

g(xk)+ sk +∇g(xk)
T dx +ds = 0,

(2.44)

where s = t2. The formulation is equivalent to the one below where the Lagrangian is used

as the objective functional:

min
dx,ds

∇L(xk,µk,λk)
T dx +

1
2

dx
T Bkdx

s.t ∇h(xk)dx +h(xk) = 0

g(xk)+ sk +∇g(xk)
T dx +ds = 0.

(2.45)

The quadratic subproblem is solved at each iteration and the solution together with the

multipliers is updated using:

xk+1 = xk +αdx

µk+1 = µk +αdµ

λk+1 = λk +αdλ,

(2.46)

where α is the steplength and

dµ = µ−µk

dλ = λ−dλ.

(2.47)
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2.5.3 The SQP algorithm framework

Consistency of the quadratic subproblem is very crucial to all SQP algorithm variants.

This implies that the associated system of constraints must have a non-empty feasible set.

This requirement is guaranteed when xk is close to x⋆ supported also by condition imposed

on matrix G(x). However, some difficult problems may fail consistency condition even

when xk is in the neighborhood of x⋆.

Another issue we need to consider is the convergence of the iterates. Iterates may

converge locally or globally. Local convergence is based on the assumptions that the initial

solution is relatively close to a local solution x⋆ and the initial Hessian is close to HL⋆.

Apart from the non-singular requirement of HL⋆, the following are the conditions imposed

on HL⋆ and Bk and are important for local convergence (see [33, 2, 8]):

(i) Uniform positive definiteness of Bk on the null space of ∇h(xk)
T is required. That is,

there exists β1 > 0 such that ∀k, dT Bkd≥ β1∥d∥2 ∀d such that ∇h(xk)
T d = 0.

(ii) The sequence of matrix {Bk}must be uniformly bounded. That is, there exists β2 > 0,

such that ∥βk∥ ≤ β2

(iii) The inverses of matrices Bk must be uniformly bounded. That is there exists β3 > 0

such that ∀k, B−1
k exists and ∥B−1

k ∥ ≤ β3.

For global convergence, we assume that that initial iterate may be remote and a func-

tion that measures the progress of convergence is often incorporated. This function is called

merit function denoted by Φ. It reduction at each step indicates a progress towards a solu-

tion. We present the SQP skeleton algorithm below [8, 2]:
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Algorithm 1: SQP algorithm framework.
Result: Output the approximate solution vector for a given nonlinear constrained

problem

(1) Initialize (x0,µ0,λ0) and B0 ;

(2) Choose a merit function Φ and set k = 0;

(3) Form the QP and solve for (dx,dµ,dλ) ;

(4) Choose steplength α such that Φ(xk +αdx)< Φ(xk);

(5) Set

xk+1 = xk +αdx

µk+1 = µk +αdµ

λk+1 = λk +αdλ

;

(6) Stop if converged ;

(7) Otherwise compute Bk+1, set k = k+1 and return to 3.

Since the full constraint nonlinear problem can be converted to equality-constrained

problem by adding slack variables, we shall focus on the following equality-constrained

quadratic programming for easy explanation of different variants of SQP method

min
dx

∇ f (xk)
T dx +

1
2

dx
T Bkdx

s.t ∇h(xk)dx +h(xk) = 0.
(2.48)

2.5.4 Newton version of the SQP

The Newton-type SQP provides an algortithm with a unit steplength [8, 2]. The lo-

cal convergence proof of SQP is also based on the Newton version. From the first order
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necessary conditions apply to (2.48), we have

∇h(xk)µk+1 +Bkdx =−∇ f (xk)

∇h(xk)
T dx =−h(xk),

(2.49)

where µk+1 is a vector of multipliers at k+1. Setting µk+1 = µk +dµ, we have

Bkdx +∇h(xk)dµ =−∇L(xk,µk)

∇h(xk)
T dx =−h(xk).

(2.50)

Now, setting Bk = HL(xk,µk) and applying Newton’s method together with the first order

necessary conditions, we have the right-hand side vector as

ψ(x,µ) =

∇L(x,µ)

h(x)

= 0, (2.51)

and the Jacobian matrix at the solution is

J (x⋆,µ⋆) =

 HL⋆ ∇h(x⋆)

∇h(x⋆)T 0.

 (2.52)

The matrix J (x⋆,µ⋆) is assumed to be non-singular. The Newton SQP scheme now requires

to solve

J (xk,µk)dx,µ =−ψ(xk,µk), (2.53)

where dx,µ = (dx,dµ) and the scheme is updated with a unit steplength. The initial iterate

for the multiplier can be computed using (see [8])

u0 =−[∇h(x0)
T

∇h(x0)]
−1

∇h(x0)
T

∇ f (x0). (2.54)
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Formula (2.54) follows the first order necessary condition and also referred to as the least

square estimate [2, 8].

The advantages of the Newton-SQP scheme include the benefit of a unit steplength and

rapid convergence with no need of line searches. It has been proven that if the initial iterate

(x0,µ0) is sufficiently close to (x⋆,µ⋆), the scheme converges quadratically. However, it

is practically difficult to choose an initial iterate that will be closer to the true local solu-

tion. Moreover, when the initial iterate is far from the true solution, HL(xk,µk) cannot be

assumed to be positive definite on the required subspace and this may not guarantee the

existence of local solution to (2.48).

2.5.5 Other variants of SQP methods

The updating scheme for the matrix Bk play an important role in SQP algorithms. As we

have noticed earlier, the Newton version uses a direct Hessian approximation as the matrix

Bk, which of course has some practical advantages. Other variants of SQP method emerge

from finding good approximation schemes for Bk. These schemes, however emerge from

the in-depth study of unconstrained optimization problems. The variants are divided into

two categories. The first called the full Hessian approximations approximate the matrix Bk

to be close to HL as possible while the second referred to as reduced Hessian approxima-

tions compute matrices that approximate the Hessian on the null space of the Jacobian of

the constraints [8]. One important property of the sequence {Bk} necessary for the approx-

imation of HL⋆ is the bounded deterioration property defined below:

Definition 2.18. [8, 9] A sequence of matrix approximation, Bk, for the SQP method is said

to have the bounded deterioration property if there exist constants α1 and α2 independent

of k such that

∥Bk+1−HL⋆∥ ≤ (1+α1αk)∥Bk−HL⋆∥+α2αk, (2.55)

where

αk = max{∥xk−xk∥,∥xk−x⋆∥,∥µk+1−µ⋆∥,∥µk−µ⋆∥}.
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We discuss the full Hessian approach first, followed by the reduced Hessian method.

2.5.6 Full Hessian methods

Under the full Hessian approximation methods, we have (see [8])

(i) The rank-two Powell-Symmetric-Broyden (PSB) [21]. This method approximate

Bk using

Bk+1 = Bk +
1

(ST S)
(y−BkS)ST +S(y−BkS)T − (y−BkS)T S

(ST S)2 (SST ), (2.56)

where

S = xk+1−xk (2.57)

and

y = ∇L(xk+1,µk+1)−∇L(xk,µk+1). (2.58)

The sequence of matrices {Bk}, k > 0 may not be positive definite. It has been verified

that if x0 is close to x⋆, and B0 is close to HL⋆, then {Bk} satisfies the bounded

deterioration property and the iterates converges superlinear to a local solution. If

the initial solution is chosen remotely, the scheme may suffer the same drawback of

the Newton SQP, due to the positive indefiniteness of the sequence {Bk}. Moreover,

global convergence scheme maybe difficult to establish.

(ii) The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. The BFGS scheme fo-

cuses on generating sequence of Bk approximations that are positive definite. The

formula is given by (see [8, 2, 33])

Bk+1 = Bk +
yyT

ST y
− Bk(SST )Bk

ST BkS
, (2.59)

and

ST y > 0. (2.60)
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The formula possess the bounded deterioration property and if Bk is positive definite

and yT S > 0, then Bk+1 is positive definite. The main drawback is that condition

(2.60) may not be satisfied. The advantages of the scheme are attractive. First, initial

matrix B0 can be chosen to be an identity matrix. Secondly, if the problem is convex,

then it is easy to satisfy the positive definite requirement of HL⋆. Also, due to the

positive definite of Bk, the existence of solution to (2.48) is guaranteed even when

the initial iterates are chosen remotely. Lastly, BFGS scheme is also backed with

rigorous analysis in the realm of unconstrained optimization problems.

(iii) The Powell-SQP method. This scheme modifies the formula (2.59) by replacing y

by

ŷ = θy+(1−θ)BkS, for θ ∈ (0,1]. (2.61)

The modification still preserves the positive definiteness of the Hessian approxima-

tion and the condition (2.60) is always satisfied. However, the secant condition satis-

fied by (2.59) no longer apply. Although the local convergence proof of the method

is yet to be established, the method has performed experimentally very well.

(iv) The augmented Lagrangian method. This method transforms the objective func-

tion of the problem to

fA(x) = f (x)+
η

2
∥h(x)∥2, η > 0, (2.62)

whose Lagrangian function is given by

LA(x,µ) = L(x,µ)+
η

2
∥h(x)∥2, (2.63)

and Hessian at (x⋆,µ⋆) is

HLA(x,µ) = HL⋆+η∇h(x⋆)∇h(x⋆)T . (2.64)
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BFGS method is then applied to the transformed objective function. The drawback

of the problem is the difficulty in choosing η. In some problems, large value of η

may be required to ensure the positive definiteness of HL⋆, which also requires the a

priori knowledge of x⋆. Numerical instability may ensue if an arbitrary large η value

is used.

(v) The SALSA SQP method. To circumvent the difficulties of the argumented La-

grangian SQP idea, the SALSA SQP method was invented and formulated in such a

way that independent of x⋆, a precise estimate of η can be chosen. Let

yA = ∇LA(xk+1,µk+1)−∇LA(xk,µk+1), (2.65)

then we can write

yA = y+η∇h(xk+1)h(xk+1), (2.66)

where y is given in (2.58). Positive definiteness of the augmented BFGS scheme is

preserved if the condition (2.60) is satisfied. The attractive feature also include the

idea that a minimum value of ηk independent on x⋆ can be given to ensure yT
AS > 0

for values of xk, µk+1 close to (x⋆,µ⋆). The drawback include the possibility that

HL⋆ could fail positive definite test despite the possibility of positive definite of the

sequence {Bk}. The bounded deterioration property may not be satisfied. Lastly, the

local convergence theory is not yet established.

2.5.7 The reduced Hessian method

The reduced Hessian approximation of sequence of matrices {Bk} is based on the con-

dition that HL⋆ is required to be positive definite on the null space of the gradient matrix

G(x)T defined in (2.38) [8, 11]. Thus the methods approximate only the portion of the

Hessian matrix pertinent to the subspace G(x)T . Attractive advantages of the method are

the size of the Jacobian matrix is reduced to n−m and standard positive definite updating
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scheme can be employed. We shall discuss the method in [8, 11].

Let ∇h(xk) estimated at xk be a full rank matrix. Let us denote by Zk and Yk the ma-

trices whose columns form bases for the null space of ∇h(x)T and range space of ∇h(xk)

respectively. Matrices Zk and Yk can be computed by a QR factorization of ∇h(xk). We

also assume that the columns of Zk are orthogonal. The definition of a reduced Hessian is

given below:

Definition 2.19. Let (xk,µk) be a given iterate and ∇h(xk) has a full rank. The ma-

trix ZT
k HL(xk,µk)Zk is called a reduced Hessian for the Lagrangian function estimated

at (xk,µk).

The term of the reduced Hessian depends on the choice of the basis for the null space

of the matrix ∇h(xk)
T and hence not unique. The reduced Hessian at (x⋆,µ⋆) is positive

definite and if (xk,µk) is chosen close to (x⋆,µ⋆) the reduced Hessian at (xk,µk) will also be

positive definite.

Let us decompose dx as follow:

dx = Zk pz +Yk py, (2.67)

then the constraint in (2.48) becomes

∇h(xk)
TYk py =−h(xk), (2.68)

and we can solve for py using

py =−[∇h(xk)
TYk]

−1h(xk). (2.69)

The QP subproblem in (2.48) reduces to

min
pz

1
2

pT
z ZT

k BkZk pz +(∇ f (xT
k + pT

y Bk))Zk pz (2.70)
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and pz satisfies

pz =−ZT
k BkZk[(∇ f (xk)+ pT

y Bk)Zk]. (2.71)

The reduced matrix can be updated directly instead of updating Bk and recomputing ZT
k BkZk.

Let Rk be a given (n−m)× (n−m) positive definite matrix at xk and µk, we can compute

the next solution by first computing py using (2.69) and setting

pz =−R−1
k ZT

k (∇ f (xk)+ pT
y Bk). (2.72)

With pz and py computed, the next iterate is computed by setting

xk+1 = xk +dx, (2.73)

where dx is given by (2.67). To continue the iteration, a new multiplier µk+1 is needed and

this can be computed using the least square formula (2.54). Also to update Rk, the BFGS

scheme (2.59) can be employed by replacing Bk with Rk, and setting

S = ZT
k (xk+1−xk) = ZT

k Zk pz

y = ZT
k [∇L(xk +Zk pz,µk)−∇L(xk,µk)].

(2.74)

2.5.8 Merit function for SQP

Merit functions denoted Φ are often incorporated in SQP algorithms to monitor global

convergence (see [8]). They are usually constructed in a way that the solutions of the

nonlinear constrained problem are the unconstrained minimizers of the merit functions and

satisfy

Φ(xk +αdx)< Φ(xk), (2.75)

where α is an appropriate steplength. Merit functions in constrained problems have pa-

rameters that control the step reduction of f and the feasibility of the solution xk at each

iteration.
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To ensure a steady decrease of a merit function, the following conditions are imposed []

(i) The initial vector x0 and all subsequent iterates xk, k ∈N are located in some compact

set C ∈ Rn

(ii) The columns of ∇h(x) are linearly independent for all x ∈ C .

We present the two commonly used merit functions below.

(i) The augmented Lagrangian merit function

The augmented merit function of the form [40, 8]

ΦF(x;η) = f (x)+h(x)T µ(x)+
η

2
∥h(x)∥2, η > 0 (2.76)

have been employed in literature. The multiplier µ(x) can be estimated using the least

square equation (2.54), and therefore µ(x⋆) = µ⋆. Based on the above conditions, ΦF

and µ are differentiable and ΦF is bounded below on C for sufficiently large η. It has

been proven that x⋆ ∈ C is a strong local minimum of ΦF if and only if x⋆ is a strong

local minimum of the original nonlinear problem, provided that the above conditions

are satisfied. However, if x is not a critical point of the original problem, then dx is a

descent direction for ΦF .

The augmented merit function can be extended directly to handle inequality con-

straints in two ways. First by the active set strategy where some set of inequality

constraints are treated as equality constraints. Let

Ik = {i : gi(xk)≥
−λi

η
}, (2.77)

where at xk, Ik contains all unsatisfied constraints but no satisfied ones. The merit
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function can then be defined as

ΦFI(x,µ,λ;η)= f (x)+h(x)T µ(x)+
1
2

η∥h(x)∥2+ ∑
i∈Ik

(gi(x)λi(x)+
1
2

ηgi(x)2)+
1

2η
∑
i/∈Ik

(λ(x))2
i .

(2.78)

The second extension uses the idea of slack variable formulation of the quadratic

subproblem, where squared slack variables are added to g(x)

min
x,t

f (xk)

s.t h(x) = 0

g(x)+ t2 = 0.

(2.79)

If we let z j = t2
j , for j = 1, . . . ,m, we have an adjusted equality constraint vector

h(x,z) =

 h(x)

g(x)+ z.

 (2.80)

The merit function is then constructed as

Φ f z(x,z) = f (x)+h(x,z)T µ(x,z)+
η

2
∥h(x,z)∥2, (2.81)

where µ(x,z) can be computed using the least square estimate (2.54) and the slack

variables step dz can be computed after each iteration using

dz =−(∇g(xk)
T dx +g(xk)+ zk). (2.82)

Note that equation (2.82) is derived from the linearization of g(x)+ z = 0.

(ii) The ℓ1 merit function [22, 8] is another applicable merit function for the SQP al-

gorithm. When the problem is defined with only equality constraints, we have it to
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be

Φ1(x;ρ) = f (x)+ρ∥h(x)∥1, ρ > 0 (2.83)

while for the full constrained nonlinear problem we have it to be

Φ1(x) = f (x)+ρ[∥h(x)∥1 +∥g+(x)∥1], (2.84)

where

g+(x) =


0 if gi(x)≤ 0

gi(x) if gi(x)> 0
(2.85)

The ℓ1 merit function is a form of penalty function just like the augmented La-

grangian. That is, there exists ρ⋆ such that for all ρ ≥ ρ⋆, if x⋆ is an unconstrained

minimum of Φ1 then x⋆ is a solution of the nonlinear problem. Note that Eq. (2.83) is

not differentiable on the feasible set and the term ρ∥h(x)∥1 cannot be squared because

the exact penalty property will be lost. The merit function is constructed in such a

way that as ρ→ ∞, the minimizer of Φ1 converges to the solution of the nonlinear

constrained problem.
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Chapter 3

Minmax capacity provisioning on path
networks

In this chapter, we develop and analyse a novel algorithm and data-structure suitable for

evacuation procedure in remote and sparsely populated communities. When considering

remotely or sparsely populated areas, such as the sparse areas of British Columbia, Cali-

fornia and New South Wales, evacuation process may not be feasible by foot as assumed

in many (traditional) sink location algorithms (see Chapter 1). As a matter of urgency,

emergency vehicles or aircraft may have to be dispatched (or already situated) in order

to evacuate the distressed population. In this case also, congestion may not be the primary

concern of the evacuation planners and hence, there is need for a new evacuation procedure.

To explore this problem, we introduce the concept of capacity provisioning for evac-

uation on dynamic networks as an extension of the traditional sinks location problems,

suitable for the effective evacuation planning of the aforementioned communities. Unlike

the usual sink location problem (irrespective of the criterion) which always incorporate road

capacities in the model development, this new concept involves the determination of the op-

timal capacities distribution from a fixed budgeted capacity under the assumption that the

location of the sink is known. In other words, the budgeted capacity is viewed as a resource

to be allocated optimally to the edges of the network such that the evacuation time of the

evacuees to the sinks is minimized. We formerly present the problem definition and model

in the next section, specifically for a path topology.
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3.1 Model formulation and problem definition

Using the parameters defined in Chapter 1, We define our problem as follows:

Problem 3.1. Given a dynamic path network N = (P,c,τ,w), a fixed sink s ∈ P, and a total

capacity budget c. Let z(x) denote the evacuation time which represents the time for the

last evacuee to get to sink s given the capacity vector x = (x1,x2, . . . ,xn) where xi represents

the capacity assigned to edge ei on the path. Find the optimal capacity vector x⋆ such that

z(x⋆) is minimum and ∑
n
i=1 xi = c.

Just like the traditional sink location problem on a path, we observe that two inde-

pendent flows emerge on either side of the sink (see Chapter 1). If we denote by zL(x)

(resp. zR(x)) the evacuation time of evacuees on the left (resp. right) side of the sink, then

z(x) = max{zL(x),zRx}. We shall focus on function zL(x) and treat zR(x) symmetrically.

For simplicity, we assume a path with n vertices with the sink s connected to vertex vn via

edge en. Thus, all evacuee vertices are on the left side of the sink. From Higashikawa et

al. [24] and Bhattacharya et al. [5], we learn that the objective function or cost can be

expressed in terms of n evacuation time functions θi(x)

zL(x) = max
i∈[1,n]

{θi(xi)}, (3.1)

where

θi(xi) =
∑

i
j=1 w j

x(vi,s)
+ τd(vi,s) (3.2)

and x(vi,s) denotes the minimum edge capacity between a vertex vi and the sink s, that is

x(vi,s) =mini≤ j≤n x j. The first term in Eq. (3.2) computes the waiting time (at vi) of the last

evacuee from v1 if the congestion occurs at vi. We next illustrate several simple instances

of the capacity provisioning problem.

Illustration 3.1.0.1 (Sink in the middle with two evacuee nodes). Let us consider the simple

path network shown in Fig. 3.1, where the sink is located at the middle of the path. We

denote the budgeted capacity by c and the number of evacuees at v1 and v2 by w1 and w2
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respectively. Our objective is to find optimal values of edge capacities x1 and x2 such that

the completion time of all evacuees is minimized. Note also that x1 + x2 = c and both edge

capacities are non-negative. For simplicity, let x2 = x so that x1 = c− x.

w1

s
w2c− x x
v2l2l1v1

Figure 3.1: Simple path network with sink in the middle.

We understand that the evacuation times (or costs of evacuation) for evacuees on both

sides of the sink are given by the following evacuation functions (see [24, 5]).

θ1(x) =
w1

c− x
+ τl1

θ2(x) =
w2

x
+ τl2.

(3.3)

Intuitively, the first term of the functions represents the time the last evacuee needs to wait

at the node before it can proceed on the edge. This time is determined by the edge capacity.

The second term represents the travel time through the edge. We notice that the optimal

solution x∗ has the following property: θ1(x∗) = θ2(x∗). If this is not the case, assume

θ1(x∗) > θ2(x∗), thus z(x∗) = θ1(x∗). Then there exists ε > 0 such that the solution x∗−

ε, which is obtained by transferring ε capacity from edge (s,v2) to edge (s,v1), is still

determined by θ1(x∗− ε). But then θ2(x∗− ε) ≤ θ1(x∗− ε) = z(x∗− ε) < θ1(x∗) = z(x∗)

which contradicts the assumption that x∗ is optimal. Based on this property, we have the

following quadratic equation

x2(l2− l1)τ+ x(w1 +w2 + τl1c− τl2c)−w2c = 0. (3.4)

If l1 = l2, then we obtain x2 = x = w2c
w1+w2

and x1 = c− x = w1c
w1+w2

.

Without loss of generality, suppose that l1 > l2. Then, the optimal solution is given by

one of the roots of Eq. (3.4).
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We can show that only one of the roots of the equation is feasible for our problem. The

roots of Eq. (3.4) are

xa,b =
w1 +w2

2τ(l1− l2)
+

c
2
± 1

2

√(
w1 +w2

τ(l1− l2)
+ c

)2

− 4w2c
τ(l1− l2)

=
w1 +w2

2τ(l1− l2)
+

c
2
± 1

2

√
c2 +

(w1 +w2)2

τ2(l1− l2)2 +
2(w1−w2)c

τ(l1− l2)
.

We analyse the first root x = xa as follow :

Case 1: When w1 > w2, we have

xa =
w1 +w2

2τ(l1− l2)
+

c
2
+

1
2

√
c2 +

(w1 +w2)2

τ2(l1− l2)2 +
2(w1−w2)c

τ(l1− l2)

xa >
w1 +w2

2τ(l1− l2)
+

c
2
+

1
2

√(
c+

(w1−w2)

τ(l1− l2)

)2

= c+
w1

τ(l1− l2)
.

(3.5)

Case 2: When w1 < w2, we have

xa =
w1 +w2

2τ(l1− l2)
+

c
2
+

1
2

√
c2 +

(w1 +w2)2

τ2(l1− l2)2 −
2(w2−w1)c

τ(l1− l2)

xa >
w1 +w2

2τ(l1− l2)
+

c
2
+

1
2

√(
c− (w2−w1)

τ(l1− l2)

)2

= c+
w1

τ(l1− l2)
.

(3.6)

The case when w1 = w2 is obvious. Thus xa is more than the total allocated budget c and is

infeasible. The same idea can be employed to show that 0 < xb < c. We present the proof
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for only the case w1 > w2, as the case w2 > w1 follows the same idea. We have

xb =
w1 +w2

2τ(l1− l2)
+

c
2
− 1

2

√
c2 +

(w1 +w2)2

τ2(l1− l2)2 +
2(w1−w2)c

τ(l1− l2)

>
w1 +w2

2τ(l1− l2)
+

c
2
− 1

2

√
c2 +

(w1 +w2)2

τ2(l1− l2)2 +
2(w1 +w2)c

τ(l1− l2)

=
w1 +w2

2τ(l1− l2)
+

c
2
− 1

2

√(
c+

(w1 +w2)

τ(l1− l2)

)2

= 0.

(3.7)

Next we show that xb < c

xb =
w1 +w2

2τ(l1− l2)
+

c
2
− 1

2

√
c2 +

(w1 +w2)2

τ2(l1− l2)2 +
2(w1−w2)c

τ(l1− l2)

<
w1 +w2

2τ(l1− l2)
+

c
2
− 1

2

√
c2 +

(w1 +w2)2

τ2(l1− l2)2 −
2(w1 +w2)c

τ(l1− l2)

=
w1 +w2

2τ(l1− l2)
+

c
2
− 1

2

√(
w1 +w2

τ(l1− l2)
− c

)2

= c.

(3.8)

Algorithm 2: Capacity allocation algorithm for dynamic path network with two

evacuee nodes and a sink at the middle.
Result: Output optimal cost and vector of edge capacities for the network in

Fig. 3.1

Inputs: w1, w2, c, τ, l1, l2;

if l1 = l2 then

Assign x⋆2 =
w2c

w1+w2
;

else

Assign x⋆2 = xb, where xb is the root of Eq. (3.4) that lies in (0,c) ;

end

Compute z(x⋆2) = θ2(x⋆2) ;

Output the optimal cost z(x⋆2) and vector (c− x⋆2,x
⋆
2)

Illustration 3.1.0.2 (Path with two edges and sink at an endpoint). Let us now consider
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another simple path network (shown in Fig. 3.2)

s

l2
x

w2

v2

w1

v1 c− x

l1

Figure 3.2: Illustration of capacities allocation on a two-edged path network with the sink
located at the end vertex on the right.

where the sink is denoted by s on the right. The case where the sink is located on the left

can be treated symmetrically. We again denote x2 by x and x1 = c− x. From the figure, the

time taken for the first evacuee at v2 to reach the sink is τl2. Since the last evacuee at v2

must wait up to w2
x , then the evacuation time for the last evacuees at v2 is w2

x + τl2. At the

same time, evacuees from v1 start moving towards the sink. We have to consider two cases:

Case 1: (Non-congestion scenario) Evacuees from v1 arrive at v2 and v2 is empty (its

evacuees have already left v2). For this case, we can write the completion time as

z(x) = θ1(x) =
w1

min{c− x,x}
+ τ(l1 + l2). (3.9)

Case 2: (Congestion scenario) Evacuees from v1 get to v2 but are being delayed due

to backlog of evacuees waiting to evacuate through edge e2.The completion time for this

scenario is (see [5, 24])

z(x) = θ2(x) =
w1 +w2

x
+ τl2. (3.10)

According to authors of [5] and [24], the two cases can be merged into a single relation:

z(x) = max{θ1(x),θ2(x)}. (3.11)

We observe the following property (see Theorem 3.2) of the optimal solution vector

called the monotonicity property. The property states that the allocation of capacities must

be non-decreasing towards the sink. This helps us further simplify the expression for the

evacuation time. In addition, we now know that x⋆ ≥ c
2 . We shall discuss the proof of the
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property in Section 3.2.

Theorem 3.2. Given a path P with n+ 1 vertices where v1, . . .vn are occupied by evac-

uees w1, . . . ,wn and the sink is located at vn+1. Let x⋆ = (x⋆1, . . . ,x
⋆
n) be the optimal edge-

capacities vector, then x⋆i ≥ x⋆j if i > j.

Based on Theorem 3.2, we rewrite both time functions as follows:

θ1(x) =
w1

c− x
+ τ(l1 + l2)

θ2(x) =
w1 +w2

x
+ τl2.

(3.12)

To obtain the optimal solution for z(x) in Eq. (3.11) with θ1 and θ2 defined in Eq. (3.12),

we first examine the nature of both evacuation time functions θ1 and θ2. We observe

that evacuation function θ1(x) (resp. θ2(x)) is increasing (resp. decreasing) with x and

limx→c θ1(x) = ∞. Two situations are possible. The two evacuation functions may either

intersect (θ1(
c
2)≤ θ2(

c
2)) or not (θ1(

c
2)> θ2(

c
2)) for x∈ [ c

2 ,c]. We explain the consequences

of the two situations below:

Case 1 : If θ1 and θ2 do not intersect for x ∈ [ c
2 ,c], then, z(x) = θ1(x) and x = c

2 is the

optimal solution with the optimal cost θ1(
c
2).

Case 2 : If θ1 and θ2 intersect, then the intersection point determines the optimal solution.

These two cases are determined by the values of θ1 and θ2 at point c
2 . To identify these

cases, we solve the following equation.

θ1

(c
2

)
−θ2

(c
2

)
= τl1−

2w2

c
= 0, (3.13)

and consequently we have

c =
2w2

τl1
. (3.14)

We call the value of the capacity in Eq. (3.14) critical capacity and we denote it by ccritical .

The above shows that if we have any budgeted capacity c greater than ccritical , allocating
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equal capacities is enough to attain optimality. However, if the two functions intersect at a

point in (c/2,c), then this point is the value of x that minimizes the cost function z(x). To

compute this point, we require θ1(x)− θ2(x) = 0, which leads to the following quadratic

equation

τl1x2− (2w1 +w2 + τl1c)x+(w1 +w2)c = 0. (3.15)

The solutions to Eq. (3.15) are

xa,b =
2w1 +w2 + τl1c

2τl1
±

√
(w2− τl1c)2 +4w1(w1 +w2)

4τ2l2
1

. (3.16)

We now show in the lemma below that only one of the solutions in Eq. (3.16) lies in the

open interval (c/2,c) and the other can be discarded.

Lemma 3.3. Given a path network with 3 vertices {v1,v2,v3} where the sink is located on

v3. If the total capacity c is less than the critical value ccritical , then the optimal solution is

one of the zeros of Eq. (3.15) presented in Eq. (3.16).

Proof. Based on the condition τl1 < 2w2
c from Eq. (3.14), we first show that the solution

given by

xa =
2w1 +w2 + τl1c

2τl1
+

√
(w2− τl1c)2 +4w1(w1 +w2)

4τ2l2
1

. (3.17)

is more than the budgeted capacity c to be shared. We analyse xa as follow:

xa =
w1

τl1
+

w2

2τl1
+

c
2
+

√
1
4

[
w2

τl1
− c

1

]2

+

(
w1

τl1

)2

+
w1w2

(τl1)2

≥ w1

τl1
+

c
4
+

c
2
+

√
1
4

[c
2
− c

]2
+

(
w1

τl1

)2

+
cw1

2τl1

=
3c
4
+

w1

τl1
+

√
c2

16
+

w1

τl1

[
w1

τl1
+

c
2

]

=
3c
4
+

w1

τl1
+

√(
c
4
+

w1

τl1

)2

= c+
2w1

τl1
,

(3.18)
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Thus xa is more than our budgeted capacity and not feasible.

With c < 2w2
τl1

, we analyse xb as follow:

xb =
w1

τl1
+

w2

2τl1
+

c
2
−

√
1
4

[
w2

τl1
− c

1

]2

+

(
w1

τl1

)2

+
w1w2

(τl1)2

>
w1

τl1
+

w2

2τl1
+

c
2
−

√
1
4

[
w2

τl1
− 2w2

τl1

]2

+

(
w1

τl1

)2

+
w1w2

(τl1)2

=
w1

τl1
+

w2

2τl1
+

c
2
−

√(
w2

2τl1
+

w1

τl1

)2

=
c
2
.

(3.19)

Next,(with c < 2w2
τl1

) we show that xb < c as follow:

xb =
w1

τl1
+

w2

2τl1
+

c
2
−

√
1
4

[
w2

τl1
− c

1

]2

+

(
w1

τl1

)2

+
w1w2

(τl1)2

<
w1

τl1
+

c
4
+

c
2
−

√
1
4

[c
2
− c

1

]2
+

(
w1

τl1

)2

+
w1c
2τl1

=
w1

τl1
+

3c
4
−

√
c2

16
+

(
w1

τl1

)2

+
w1c
2τl1

<
w1

τl1
+

3c
4
−

√
c2

16
+

(
w1

τl1

)2

− w1c
2τl1

=
w1

τl1
+

3c
4
−

√(
w1

τl1
− c

4

)2

= c.

(3.20)

Since xb ∈ ( c
2 ,c), x = xb is the optimal solution and the optimal solution vector is x⋆ =

(c− xb,xb).

Definition 3.4. Whenever the optimal capacities for two consecutive edges are not obtain-

able by allocating equal capacity, we call this situation a touching scenario, and the solution

method a touching solution. The solution xb in Eq. (3.19) is an example of a touching solu-

tion.

We can summarize our findings in the following algorithm for the case of a path network

with two evacuee nodes and the sink node located at one of the endpoints of the path.

58



3.1. MODEL FORMULATION AND PROBLEM DEFINITION

Algorithm 3: Capacity allocation algorithm for dynamic path network with two

evacuee nodes and one sink at an endpoint.
Result: Output optimal cost and vector of edge capacities for a two-edged network

Inputs: w1, w2, c, τ, l1, l2;

Compute the critical capacity ccritical =
2w2
τl1

;

if If c≥ ccritical then

Assign equal capacity x⋆ = c− x⋆ = c
2 ;

else

Let x⋆ = xb, where xb is computed in (3.19);

end

Compute z(x⋆) = θ1(x⋆) ;

Output the cost z and vector (c− x⋆,x⋆)

Illustration 3.1.0.3 (Path network with four evacuee nodes, two nodes on each side of the

sink). Let us consider a more interesting case where we have a path network with four

edges with the sink located in the middle of the path (see Fig. 3.3).

v5

l2
x2

w2

v2

w1

v1 x1

l1 w4

v4

w5

s

l3
x3 x4

l4

Figure 3.3: Four-edged path network with sink at the middle.

Based on Theorem 3.2, we require a non-decreasing allocation of capacities towards the

sink from both sides. In other words, we require x2 ≥ x1 and x3 ≥ x4. From the path graph,

we have the following evacuation functions

zL(xT) = z1,2(xT ) = max{θ1(x1),θ2(x2))}

zR(xT) = z3,4(xT ) = max{θ3(x3),θ4(x4))},
(3.21)
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where

θ1(x1) =
w1

x1
+ τ(l1 + l2)

θ2(x2) =
w1 +w2

x2
+ τl2

θ3(x3) =
w3 +w4

x3
+ τl3

θ4(x4) =
w4

x4
+ τ(l3 + l4).

(3.22)

Before we present an algorithm for this problem, we prove the following lemma which

gives us an insight into how the optimal solutions can be obtained.

Lemma 3.5. At the optimal solution x⋆,

z1,2(x⋆) = z3,4(x⋆). (3.23)

Proof. Suppose the above is not true and without loss of generality, let us assume z1,2(x⋆)>

z3,4(x⋆). Then there exists ε > 0 so that we decrease x3 and x4 by ε each and increase x1

and x2 by ε each to obtain a new vector x satisfying the conditions z1,2(x) ≥ z3,4(x) and

z1,2(x)< z1,2(x∗). This contradicts the fact that x⋆ is the optimal solution.

Based on the lemma above, we sketch an algorithm to solve this more general problem.

We observe that, each sub-path on either side of the sink reduces to a problem which we

know how to solve if we are given the total budget capacity for the sub-path. Let X1 be

the total capacity allocated to one of the sub-paths, which we call the left sub-path. We

extend our notation to denote the optimal solution cost for the left sub-path if the total

capacity allocated to the left sub-path is X1 by zL(X1). Similarly, we have zR(c−X1) as the

optimal cost for the right sub-path. In addition, the actual solutions x1, . . . ,x4 are parametric

solutions with X1 as the parameter. Algorithm 4 illustrates the steps we can take to solve

this problem instance.
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Algorithm 4: Capacity allocation algorithm for the instance in Fig. 3.3
Result: Output optimal cost zL(X∗1 ) and vector x∗

Inputs: w1, w2, w3, w4 c, τ, l1, l2, l3, l4;

Compute the critical capacities c1,2 =
2w2
τl1

and c3,4 =
2w4
τl4

;

Solve the left sub-path problem with budget X1 = c1,2 and the right with budget

X2 = c−X1;

if If zL(X1)≥ zR(X2) then

X⋆
1 ≥ c1,2 and x⋆1 = x⋆2 =

X1
2 is the parametric solution;

zL(X1)← 2w1
X1

+ τ(l1 + l2) ;

else
X⋆

1 < c1,2 and zL(X1)← f2(xb), where x∗2 = xb (given by (3.19)) is a parametric

solution that depends on X1 and x∗1 = X1− x∗2;

end

Solve the left sub-path problem with cost X1 = c− c3,4 and the right with cost

X2 = c3,4 ;

Repeat the test for the right sub-path;

Obtain function zR(X1) and the corresponding parametric solutions x∗3 and x∗4 as

functions of X1;

Solve equation zL(X1) = zR(X1) numerically, and obtain X∗1 ;

Output the optimal cost zL(X⋆
1 ) and the capacity vector (x⋆1,x

⋆
2,x

⋆
3,x

⋆
4) by

evaluating the parametric solutions at X∗1 ;

Before we present the general properties of the optimal solution for a given arbitrary

path network, let us briefly discuss the running time of Algorithm 4. We note that, in the

first part of the algorithm, we obtain a parametric optimal solution x∗ which depends on

the unknown capacity budget X1 assigned to the sub-path left of the sink. The time com-

plexity for this computation is O(1). The more challenging phase of the algorithm is to

determine the value for the budget X1 so that zL(X1) = zR(X1). The expressions zL(X1) and
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0 c

Θ

X∗X− X+

δ

zL zR

solution returned
upper bound

Figure 3.4: Binary search procedure for the optimal capacity budget X1.

zR(X1) are linear functions of the reciprocal of the parametric solution. In the worst case,

the parametric solutions depend on budget X1 as illustrated by Eq. 3.16. It is impractical to

attempt to find an algebraic expression for X1 that solves equation zL(X1) = zR(X1). This

equation can be transformed into a complicated polynomial equation of degree larger than

four in X1 and we know that there is no algebraic expression for the roots of a general

polynomial equation of degree higher than four [1]1. We opt to find the value for X1 ap-

proximately using a simple binary search procedure. We find next an upper bound on the

number of steps needed by this binary search procedure to obtain a solution with evacuation

time Z ≤ (1+ ε)Z∗ for any ε > 0, where Z∗ is the evacuation time of the optimal solution.

Let δ be the difference between the upper and lower bounds on the optimal X∗1 that is main-

tained by the binary search procedure. Since the initial binary search range for X1 is interval

(0,c) where c is the value of the total capacity budget, the number of binary search itera-

tions performed is O(log c
δ
). Let X−1 and X+

1 be the lower and upper bounds respectively

1This doesn’t mean that an algebraic solution for this particular equation does not exist.
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on the optimal X∗1 maintained by the binary search (see Fig. 3.4). We know that zL(X1) is

a decreasing function of X1 and zR(X1) is increasing. During any iteration of the binary

search procedure, value min{zL(X−1 ),zR(X+
1 )} can be returned as an approximate solution

and max{zR(X−1 ),zL(X+
1 )} is a lower bound on the optimal solution. The binary search can

stop when min{zL(X−1 ),zR(X+
1 )} ≤ (1+ ε)max{zR(X−1 ),zL(X+

1 )}. It can be verified that

this condition is satisfied if,

zR(X−1 +δ)≤ (1+ ε) · zR(X−1 ) or (3.24)

zL(X−1 )≤ (1+ ε) · zL(X−1 +δ). (3.25)

We consider first function zL(X1) and condition (3.25) to identify a suitable constraint on

δ. To simplify the calculations, we note from Algorithm 3 that there are two cases for

calculating the capacity assignment of the left sub-path. In both cases, the capacity assigned

to an edge such as (v2,s) in Fig. 3.2 for the left sub-path grows linearly with the budget

X1 (we note that the unknown parameter X1 corresponds to budget c in Eq. (3.16)). The

evacuation time zL(X1) grows asymptotically as a fractional expression in X1. To simplify

the calculations, we take zL(X1) =
a

gX1+h for some constants a,g,h with a,g > 0. If we

substitute zL(X−1 ) in (3.25), we obtain

a
gX−1 +h

≤ (1+ ε)
a

g(X−1 +δ)+h
, . . . (3.26)

δ≤ ε
gX−1 +h

g
= εX−1 + ε

h
g
. (3.27)

Similarly, we can write zR(X1) =
a′

h′−g′X1
which we substitute in (3.24).

a′

h′−g′X+
1
≤ (1+ ε)

a′

h′−g′(X+
1 −δ

, . . .

δ≤ ε
h′−g′X+

1
g′

= ε
h′−g′(X−1 −δ)

g′
= ε

h′−g′X−1
g′

+ εδ.
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We consider the tighter inequality that implies the inequality above,

δ≤ ε
h′−g′X−1

g′
= ε

h′

g′
− εX−1 . (3.28)

We notice that the upper bounds on δ from Eq.(3.27) and (3.28) can be arbitrarily small

depending on the value of X−1 . However, the sum of the upper bounds, ε(h
g +

h′
g′ ), does not

depend on X−1 . This means that, when δ≤ ε

2(
h′
g′ +

h
g), at least one of eq. (3.24) and (3.25) is

satisfied and we obtain a (1+ ε) approximate solution. We conclude that, the running time

of Algorithm 4 is O(log c
ε
).

3.2 Properties of the optimal solution for an arbitrary path with the

sink located at an endpoint

In this section, we study and analyse the properties of the optimal solution vector x⋆

exploitable to develop an efficient algorithm given an arbitrary path with the sink located

at the endpoint. Note that x⋆ is a vector of capacities which, when allocated to the edges

of the path network, minimizes the completion time and also satisfies the capacity budget

condition x⋆ · 1 = c, where 1 is the vector with all elements equal to 1. We recall the

definition of evacuation functions θi(xi) for the case when the sink is located on point vn+1,

the right endpoint of the network

θi(xi) =
W [1, i]
x(vi,s)

+ τL[i], (3.29)

where W [1, i] = ∑
i
j=1 w j and L[i] = ∑

n
j=i l j. We also let L[1, i] = ∑

i
j=1 l j.

The first property of the optimal solution is the monotonicity property given in Theo-

rem 3.2. We have exploited and employed this property in Illustration 3.1.0.2 and 3.1.0.3.

We present the proof below.

Proof of Theorem 3.2. Let us assume that the optimal solution, x⋆ is not monotonic in-
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creasing towards the sink at vn+1. Then there exist xi > xi+1 in the ordering of x⋆. Let x′ be

another vector with the same elements as x⋆, except that x′i+1 = xi and x′i = xi+1. We notice

that θ j(x′) = θ j(x⋆) for all j ≤ i and j ≥ i+2. We observe that

θi+1(x⋆) =
W [1, i+1]

min{xi+1,x(vi+2,s)}
+ τL[i+1], (3.30)

and

θi+1(x′) =
W [1, i+1]

min{x′i+1,x(vi+2,s)}
+ τL[i+1]

=
W [1, i+1]

min{xi,x(vi+2,s)}
+ τL[i+1].

(3.31)

Since xi > xi+1, then min{xi,x(vi+2,s)} ≥ min{xi+1,x(vi+2,s)} and θi+1(x′) ≤ θi+1(x⋆).

Therefore, it is either the cost is the same and x′ is OPT or cost decreases which is a

contradiction that x⋆ is OPT.

Based on Theorem 3.2, we have the following definition which redefines the evacuation

time for any index i in terms of the discovered minimum capacity and therefore definition

in Eq.(3.2) changes.

Definition 3.6. Given an instance of a capacity provisioning problem on a path network

with a sink located at the right end, the associated evacuation time for an index i is given by

θi(xi) =
W [1, i]

xi
+ τL[i]. (3.32)

The second theorem gives us an adjustment to the monotonicity property and shows

the possibility of assigning equal capacity to adjacent edges. The theorem also gives us a

candidate of the optimal cost amongst many of the time functions.

Theorem 3.7. Let P be a path network with n+ 1 vertices, with the sink located at the

(n+1)th vertex. Let h⋆ be the largest index defining the optimal cost z⋆, i.e.,

z⋆ = θh⋆ =
W [1,h⋆]

xh⋆
+ τL[h⋆].
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Then the optimal capacity vector has the following properties

(i) x⋆h⋆ = x⋆h⋆+1 = . . .= x⋆n

(ii) Let i1, i2, i3 . . . , ik be the indices that define z⋆, enumerated in increasing order, i.e. i1 <

i2 < i3 . . . < ik and θi1 = θi2 = θi3 . . . = θik = θh⋆ . Then, i1 = 1. Moreover, if i j+1 >

i j +1 for some 1≤ j < k, then xi j = xi j+1 = . . .= xi j+1−1 for all j ∈ {1, . . .k−1}.

This theorem states two important properties of the optimal edge capacity vector. First,

the evacuation time is always determined by the evacuation function θ1. Second, if other

evacuation functions are equal in value with θ1, namely θi2, . . . ,θik , then these indices de-

termine the only increasing sequence of elements in the optimal capacity vector.

Proof. Suppose there exists an index j ≥ h⋆ such that x j+1 > x j. By definition, θ j > θ j+1.

Therefore, we can write

W [1, j]
x j

+ τL[ j]>
W [1, j+1]

x j+1
+ τL[ j+1]

W [1, j]
x j

+ τl j >
W [1, j+1]

x j+1
.

(3.33)

This means that we can decrease the capacity x j+1 by an appropriate value ε > 0 in such

a way that inequality θ j+1 < θ j is maintained. We then distribute the extra capacity ε to

all the other edges on the path, namely to x1, . . . ,x j and to x j+2, . . .xn, in such a way as to

maintain the monotonicity property of the vector of capacities. As a consequence, all of the

evacuation functions θ1, . . .θ j and θ j+2 . . .θn decrease. Therefore z⋆ decreases which is a

contradiction.

To prove the second part of the theorem, we use the diagram in Fig. 3.5.
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a+ 2a+ 1ij a

wa+2
wij+1−1

ij+1 − 1 ij+1

xa xa+1

Distribute the ε capacity
Distribute the ε ca-
pacity

Decrease by ε capacity

la+1la

wa wa+1

Figure 3.5: Illustration for the proof of part (ii) from Theorem 3.7.

Suppose xa < xa+1 for some i j ≤ a < i j+1−1. Then we can take an appropriate amount

ε > 0 of capacity from xa+1,xa+2, . . . ,xi j+1−1 and distribute it uniformly to all of the other

edges, namely x1, . . .xa and xi+1, . . .xn without violating the monotonicity property. As a

consequence, θp for all p∈ {a+1, . . . , i j+1−1} increase while the other values of θp for all

p /∈{a+1, . . . , i j+1−1} decrease. If ε is appropriately chosen, z⋆ decreases, a contradiction.

Moreover, if θ1 < θi1 , then we can take an ε > 0 capacity from x1 and add it uniformly to all

other capacities so that θ1 ≤ θp and θp decreases for all p≥ 2. Consequently z⋆ decreases,

which is also a contradiction. Therefore i1 = 1.

3.3 Capacity provisioning for an arbitrary path network with the sink

fixed at an endpoint

We first consider the path illustrated in Fig. 3.6, where we have three vertices with

evacuees and the sink is located at the right endpoint.

v3

l2
x2

w2

v2

w1

v1 x1

l1 w3

s
l3
x3

Figure 3.6: Example to illustrate longer path network with sink at the end.
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Just as before, we need to minimize the following objective function

z(x) = max{θ1,θ2,θ3}, (3.34)

where

θ1 =
w1

x1
+ τL[1]

θ2 =
W [1,2]

x2
+ τL[2]

θ3 =
W [1,3]

x3
+ τl3.

Based on Theorem 3.2, we require x3 ≥ x2 ≥ x1.

We can formulate our problem as a convex, non-linear program, with variables Z,x1,x2,x3

and use a general purpose solver to find the optimal solution:

minZ, subject to:

Z ≥ w1

x1
+ τL[1]

Z ≥ W [1,2]
x2

+ τL[2]

Z ≥ W [1,3]
x3

+ τl3.

x1 + x2 + x3 = c

0≤ x1 ≤ x2 ≤ x3.

However, we can avoid solving this non-linear program by exploiting Theorem 3.7. We

propose a combinatorial algorithm for an arbitrary path with the sink fixed at an endpoint,

that will output an optimal parametric capacity assignment to the edges of the path. More

precisely, we obtain the solutions x∗2(x1), . . . ,x∗n(x1) as function of the parameter x1, the

capacity assigned to the first edge. We then determine the optimal value for x1 by solving
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numerically the budget capacity equation,

x1 + x2(x1)+ . . .+ xn(x1) = c. (3.35)

Moreover, we also obtain specific conditions for Eq. (3.35), which allow us to determine x1

to the desired precision, by binary search.

According to Theorem 3.7, θ1 must be a candidate that determines the optimal cost. If

θ2 is also a candidate then we can write, after some basic algebraic manipulations,

θ1 = θ2 =⇒
1
x2

=
w1

w1 +w2

1
x1

+
τl1

w1 +w2
. (3.36)

We can substitute 1
xi
= yi so that Eq. (3.36) becomes

y2 =
w1

w1 +w2
y1 +

τl1
w1 +w2

. (3.37)

Since Theorem 3.2 requires x1 ≤ x2, this implies y2 ≤ y1. Thus, we have

w1

w1 +w2
y1 +

τl1
w1 +w2

≤ y1 =⇒ y1 ≥
τl1
w2

. (3.38)

The above implies x1 ≤ w2
τl1

and as long as this is true, we can always use Eq. (3.36) to solve

for x2. Therefore we have following:

y2 =


y1 if y1 <

τl1
w2

w1
w1+w2

y1 +
τl1

w1+w2
if y1 ≥ τl1

w2

(3.39)

We illustrate the parametric solution y2 in Fig. 3.7
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y1
y2

yj

y1α2 =
τ l1
w2

Figure 3.7: Graph illustrating the optimal computation of x2.

For example, let us recall the two nodes network discussed in Illustration 3.1.0.2. If y1

is in the region below α2, then we just need to solve for y1 in 2
y1

= c. Otherwise, we need

to solve for y1 in w1+w2
y1(2w1+w2)+τl1

= 1
c , since 1

x1+x2
= 1

c .

We notice that y2 is a concave piece-wise linear function of y1. In general, we can

compute yi for all i ≥ 2 as a function of y1 using Theorems 3.7 and 3.2 as follows. We

consider two possible cases:

Case 1: If θi is dominated, that is θi < θ1, then xi = xi−1, according to Theorem 3.7.

Case 2: If θi = θ1, then θi is a candidate of the optimal cost. From the relation θi = θ1 and

with xi substituted by 1
yi

, we obtain

y′i =
w1

W [1, i]
y1 + τ

L[1, i−1]
W [1, i]

. (3.40)
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Putting the two cases together, we have the following:

Lemma 3.8. Capacity for each edge ei for i≥ 2 can be computed using

yi =


w1

W [1,i]y1 + τ
L[1,i−1]
W [1,i] , if y1 ≥ αi

yi−1, otherwise,
(3.41)

where αi is the value of y1 for which yi = yi−1.

y′i

yi−1

α′1 α′j αi α′t

yj

y1

α′
j+1

. . . . . .

p′t
p′j

p′0

Figure 3.8: Explanation of how αi is computed. We let α′1, . . . ,α
′
t be the breakpoints of yi−1

and p′0, . . . , p′t the corresponding linear pieces. Only the line segment [αi,∞) is stored in the
segment tree.

To construct an efficient data structure for the solution of our problem, we exploit the

property of the linear function derived in Case 2 above (see Eq. (3.40)). Let α′1, . . . ,α
′
t be

the breakpoints of yi−1 and let p′0, . . . , p′t be the corresponding linear pieces (see Fig. 3.8).

We denote by αi the value of y1 for which y′i = yi−1 (the intersection point between y′i and

yi−1). First, we argue that this intersection point is unique, because the slope of the linear

function y′i,
w1

W [1,i] is smaller than the slope of the last linear piece of yi−1, w1
W [1,i−1] . This

property is crucial for the computation of all intersection points as well as the development

of our data structure as we shall see later in Subsection 3.3.1
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Once we have the relation (3.41) for all yi with 2≤ i≤ n, all we need is to numerically

solve the following equation in y1:

1
y1

+
1
y2

+ . . .+
1
yn

= c. (3.42)

We now only have to discuss the procedure to compute αi and how we store the yi functions

so that Eq. (3.42) can be solved efficiently.

3.3.1 Implementation details and data structure

Suppose the piece-wise linear function yi−1 is known and its linear pieces are available

in order. We will compute yi from yi−1 using Eq. (3.41). To find the intersection point αi,

we first test the intersection with linear piece p′t (see Fig. 3.8). There are two cases. (a)

Function y′i intersects linear piece p′t at a point smaller than breakpoint α′t , and (b) y′i and

p′t intersect at a point greater than or equal to breakpoint α′t . Since the slope of function

y′i is smaller that that of p′t , case (a) means that y′i < p′t (y′i dominates yi−1) and thus p′t is

not part of function yi. We repeat the test with linear piece p′t−1, and so on, until we find

the linear piece p′j whose intersection with y′i falls in case (b). That last intersection point

is breakpoint αi we needed to compute. We remark that computing breakpoint αi takes

amortized O(1) time since any linear piece whose intersection falls in case (a) is tested at

most once for all i ∈ {1, . . . ,n}.

The procedure illustrated above will compute the parametric solution yi for all i ∈

{2, . . . ,n} in total time O(n), however, we must be careful how we store this parametric

solution. The trivial approach of storing yi functions separately has O(n2) time and space

complexity. We propose to store the parametric solutions in a segment tree [28] (see Illus-

tration 3.3.1.1). The data structure has O(n) space complexity and can be easily constructed

in time O(n logn), as described next.

1) Compute all of the breakpoints αi, i = 2, . . .n associated with functions yi. We note

that these values may not be obtained in order. This step takes O(n) time as previously
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explained.

2) To construct the segment tree, we sort the elements αi, say in increasing order. For each

element αi sorted, we make sure to retain the corresponding value of the index i. This

step takes O(n logn) time.

3) We construct the segment tree over the αi sorted elements, in O(n) time.

4) For each i ∈ {2, . . . ,n}, we insert interval [αi,∞) in the segment tree, in total O(n logn)

time (see Fig. 3.8 for an example).

We can now explain how we can use this segment tree to evaluate the sum 1
y1
+ 1

y2
+ . . .+

1
yn

at some fixed value y1 = α′, in O(logn+n) = O(n) time (see Eq. (3.42)). For simplicity,

consider the example in Fig. 3.9 and Fig. 3.10.

In this example, the query value α′ is between breakpoints α4 and α3 and the vertical

query line through α′ intersects the intervals in the segment tree corresponding to indices

2, 4, and 7. This means that y2 and y3 are evaluated using linear function y′2; y4, y5, y6 are

evaluated using linear function y′4; and y7 is evaluated using linear function y′7.

In general, we describe the following procedure to evaluate the sum of reciprocals of

the parametric solutions yi:

a) Given query value α′, identify two consecutive breakpoints αi < α′ <= α j in the seg-

ment tree. Total time, O(logn).

b) Traverse the segment tree from the leaf node of α j to the root and collect the indices of

all intersected intervals. Total time: O(logn+n) = O(n). Let i1 < i2 < .. . < ik be these

indices in order.

c) We note that the list of indices of intersected intervals may not be obtained in the desired

order from the segment tree. We can sort these indices using counting sort in total time

O(n) [14].
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d) If there are two or more indices: for any two consecutive indices i j and i j+1, evalu-

ate yi j , . . . ,yi j+1−1 using linear function y′i j
. If there are one or more indices: evaluate

y1, . . .yi1−1 using y1. If i1 does not exist: then evaluate all yi parametric solutions using

y1.

Illustration 3.3.1.1. We show below (see Fig. 3.9) an example for arbitrary seven y′i func-

tions together with their breakpoints.

yj

y1

y1 y2
y3
y4
y5
y6

y7

α7

α2 α4

α3

α5
α6

Figure 3.9: Seven arbitrary y′i functions with their corresponding breakpoints. Only one-
sided line segments [αi,∞] are stored in the segment tree.
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0 α7 α2 α4 α3 α5 α6 y′2(y1)

y′3(y1)

y′4(y1)

y′5(y1)

y′6(y1)

y′7(y1)

y1 = α′

Figure 3.10: Stored line segments [αi,∞) for yi functions in Fig. 3.9. The vertical line
shows an arbitrary query point y1 = α′ that cuts through only 3 line segments.

Fig. 3.10 shows the line segments stored in the segment tree together with a vertical line

that shows how an arbitrary query point y1 = α′ goes through just 3 line segments. From

Fig. 3.10, we notice that segment y′2 and y′3 share the same segment of y′2 and segments

y′4, y′5 and y′6 share the same line segment of y′4 based on the query point y1 = α′. For this

example, we resolve Eq. (3.42) in the binary search as follow:

1
α′

+
2

y′2(α
′)
+

3
y′4(α

′)
+

1
y′7(α

′)
≤ (≥)c (3.43)

Using our segment tree, we can now proceed with binary search to identify a single

interval for y1 that contains the optimal value y∗1 in such a way that all yi functions are linear

in this interval. Thus, Eq. (3.42) consists of a sum of O(n) reciprocals of linear functions.

With the segment tree, this binary search procedure takes O(n logn) time.

We present the algorithm in Algorithm 5. In the algorithm, we let W be the sorted

vector of weights on the vertices and L denotes the vector of edge lengths.
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Algorithm 5: Capacity allocation algorithm for an arbitrary path network with a

sink at its end
Result: Output the optimal cost and vector of edge capacities for an arbitrary path

network with the sink at its end

Inputs: W, L, c, τ;

Compute all breakpoints αi of y′i, for i = 2, . . .n and store them in a stack ;

Sort the n−1 breakpoints and construct a segment tree on them ;

Store only the needed n−1 intervals [αi,∞) at the nodes of the tree in the usual

way;

Execute Binary Search to find the interval I∗ for y∗1 and obtain the reciprocal

functions for yi ;

Solve Eq. 3.42 numerically by binary search over interval I∗ and obtain y∗1;

Output the solutions 1
yi(y∗1)

;

Output the cost z = θ1(x⋆1)

We now summarize the time complexity of algorithm 5 in the following theorem:

Theorem 3.9. The optimal capacities vector x⋆ for a path network of n+1 vertices with a

sink at its end can be obtained in O(n logn+n log(c/ξ)) time, where ξ is the precision for

parameter y∗1.

Proof. The first term in the complexity of the algorithm follows from the earlier discussion.

For the second term, we argue that each binary search iteration is resolved by evaluating

1
y′ +

1
y2(y′)

+ · · ·+ 1
yn(y′)

≤ (≥)c for some value y′ in interval I∗. Alternatively, a numerical

scheme (e.g., Newton method) or binary search procedure can be employed to determine

y⋆1 to some chosen precision ξ. Note that the range for I∗ is of order of c, hence we can run

the search operation at a cost of O(log(c/ξ)) rounds. Since it takes O(n) to evaluate all the

linear functions yi, it follows that the whole operation takes O(n log(c/ξ)).
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3.4 Capacity provisioning for evacuation of an arbitrary path with one

arbitrary sink fixed

We can extend Algorithm 5 to solve the general case. First, we compute, independently

of each other, the segment trees for each sub-path on either side of the sink. Let AL and AR

be the list of α values for the left and right sub-paths respectively. Let θL
1(x1) and θR

1 (u1) be

the corresponding candidates of the costs for both subnetworks according to Theorem 3.7,

so that zL(X⋆) = θL
1(x

⋆
1) and zR(U⋆) = θR

1 (u
⋆
1), where X⋆ (resp. U⋆) is the sum of optimal

capacities for the left (resp. right) subpath. If we choose a query value x1 =
1
y1

for the left

subpath, we can easily solve for u1 using θL
1(

1
y1
) = θR

1 (
1
u1
). That is, for a fixed sink s, we

have
1
u1

=
wL

1y1

wR
1

+
τ

wR
1
(LL[1]−LR[1]), (3.44)

where wL
1 (resp. wR

1 ) is the weight on the first vertex vL
1 (resp. vR

1 ) on the left (resp. right)

subpath, LL[1] = d(vL
1 ,s) and LR[1] = d(vR

1 ,s). Now, we can execute Algorithm 5 on the left

subpath with query 1
y1

, compute the total capacity U of the right subpath using Eq. (3.41)

and u1 given by Eq. (3.44). The addition of assigned capacities for both left and right is

then compared with c and the binary search procedure continues based on the comparison.

This procedure takes O(n logn+n log(c/ξ)) time.
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v1 vnv2 vn−1

w1 wn
w2 wn−1

l1

x1 = 1
y1

xn−1 = 1
u1

ln−1S

θ1(
1
y1
) θn−1(

1
u1

)

θ1
(
1
y1

)
= θn−1

(
1
u1

)

X

UX + U ≤ (≥)c

Figure 3.11: Illustration of the application of Algorithm 5 to an arbitrary path network with
a fixed sink.
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Chapter 4

Capacity provisioning on star networks

The vital idea we learnt from allocating capacity on path networks is that, if we can find the

optimal allocation for the furthest edge from the sink, we can find the optimal allocation for

all other edges in the network using the parametric equation given in (3.40). In this chapter,

we shall look at how we can extend this idea to star networks where the sink is located in

the middle of the star. We shall also investigate a complicated case where the sink is located

on a leaf node. For the latter case, we shall exploit the flow theorem idea of Klinz employed

in [10] to tackle the complicated case. We restrict our studies for the latter case to a star

network with three links (or edges), as more properties are required to tackle the general

case. The next section presents the case where the sink is located in the centre of the star

graph.

4.1 Star network with a sink in the middle

We investigate the problem of optimal allocation of capacities in star topology (see

Figure 4.1), where the sink is located at the centre. This can be linked in reality to a group

of scattered communities linked together by a star topology with individual edges linked to

a safe-haven at the centre
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v1v2v3

v4

v5
v6

vn

s

x1l1

xn
ln

l4

x4

Figure 4.1: Simple star graph with sink in the middle.

We observe that the monotonicity property in 3.2 does not apply here as each vertex has

a direct link to the sink. It is however easy to construct the model for the time functions

associated with the edges of the network. That is, the cost functions for all 1 ≤ i ≤ n is

given by

θi(xi) =
wi

xi
+ τli. (4.1)

Unlike in the path network studied earlier where the time function associated with the fur-

thest edge always dominate other cost functions at optimality, this case is different as given

below in Theorem 4.1

Theorem 4.1. When the capacity allocation is optimal, θ1(x1) = θ2(x2) = · · ·= θn(xn).

We present the proof below.

Proof. Suppose there is an optimal allocation for which θ j(x j)< θi for some indices i and j.

Then we can take an appropriately small amount ε > 0 from the capacity x j and distribute it

equally to the other edges of the star graph, thus decreasing θi(xi) and all θ functions other

than θ j. Therefore max1≤i≤n θi(xi) decreases and so the evacuation time also decreases,

which is a contradiction.
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4.1.1 Algorithm for star networks with a sink in the middle

Without loss of generality, we consider the leaf nodes of the star network in Figure 4.1

labelled in non-increasing order of their edge length, so l1 ≥ l2 ≥ . . .≥ ln. From the relation

θi(xi) = θ1(x1), we have the following linear function:

yi =
w1

wi
y1 + τ

l1− li
wi

, ∀1≤ i≤ n, (4.2)

where we denote yi =
1
xi

for all 1 ≤ i ≤ n. Notice that the second term in Eq.(4.2) is

nonnegative and that is the reason for the edge length ordering. These equations describe

an optimal parametric solution to the capacity allocation problem when the sink is located

at the central vertex. We can obtain the optimal value for y1 using Eq. (3.42) and the

technique discussed in Subsection 3.3.1. We let L be the sorted edge length according to

the labelling described above, and W be the corresponding weight vector. We present the

algorithm below:
Algorithm 6: Capacity allocation algorithm for star networks (Figure 4.1) with a

sink at its centre.
Result: Output the optimal cost and vector of edge capacities for the star network

4.1

Inputs: W, L, c, τ;

Employ the technique discussed in Subsection 3.3.1 ;

Output the solutions 1
yi(y∗1)

;

Output the cost z = θ1(x⋆1)

4.2 Star networks with more edges and a sink located at the centre

We extend our study to a more complex star network which have more edges in its links

but the sink is still fixed at the centre (see Figure 4.2)

81



4.2. STAR NETWORKS WITH MORE EDGES AND A SINK LOCATED AT THE
CENTRE

S

v11

v21

vm−1
1

vm1

v1n

v2n

vm−1
n

vmn

l11

l1n

l21 l2n

lm−1
1

lm−1
n

lm1

lmn

x1
1

x1
n

x2
1 x2

n

xm−1
1

xm−1
n

xm
1

xm
n

Figure 4.2: Regular star network with more edges and sink at the centre

To solve the above problem, we realise that the balancing algorithm discussed in Illus-

tration 3.1.0.3 must come into play. Let us assume that v1
1 is the furthest node to the sink

amongst all the leaf nodes, then at optimal solution, we require θ1
1 = θ

j
1 for j = 2, . . . ,m.

We also understand that θ1
1 = θ

j
n for j = 2, . . . ,m at optimal solution. Therefore, we can

write

θ
1
1 = θ

2
1 = · · ·= θ

m
1 = θ

1
n = θ

2
n = · · ·= θ

m
n . (4.3)

More to the properties of the optimal solution, and precisely for the interior edges, we

understand that the monotonicity property (see 3.2) must be observed toward the sink. The

above equation helps us to employ the same idea of restricting the problem to finding the

optimal allocation to the furthest edge provided we can compute all other edge capacities

using this optimal value. Let y j
i = 1

x j
i

and from Eq.(4.3), we can write y1
n,y

2
n, . . . ,y

m
n as
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functions of y1
1,y

2
1, . . . ,y

m
1 . That is,

y1
n = g1(y1

1)

y2
n = g2(y2

1)

... · · · ...

ym
n = gm(ym

1 ).

(4.4)

With θ1
1 being the function associated with the furthest edge to the sink, we can compute

x j
1 =

1
y j

1
and x j

n =
1
y j

n
, j = 2,3, . . . ,m as functions of y1

1. That is

y2
1 = h1(x1

1)

y3
1 = h2(x1

1)

... · · · ...

ym
1 = hm−1(y1

1)

(4.5)

and
y2

n = q1(x1
1)

y3
n = q2(x1

1)

... · · · ...

ym
n = qm−1(y1

1).

(4.6)

Note also that the interior edge capacities y1
2, . . . ,y

1
n−1 can be written as functions of y1

1,

y2
2, . . . ,y

2
n−1 as functions of y2

1 and ym
2 , . . . ,y

m
n−1 as functions of ym

1 . That is,

y1
2 = r1

1(y
1
1) y2

2 = r2
1(y

1
1) · · ·ym

2 = rm
1 (y

m
1 )

y1
3 = r1

2(y
1
1) y2

3 = r2
2(y

2
1) · · · ym

3 = rm
2 (y

m
1 )

... · · · ...

y1
n−1 = rn−2(y1

1) y2
n−1 = r2

n−2(y
2
1) · · · ym

n−1 = rm
n−2(y

m
1 ).

(4.7)
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Thus all unknown edge capacities can be written as functions of the furthest edge capacity

y1
1 and we can write

y1
1 +h1(y1

1)+ · · ·+hm−1(y1
1)+q1(y1

1)+ · · ·+qm−1(y1
1)

+ r1
1(y

1
1)+ · · ·+ r1

n−1(y
1
1)+ r2

1(h1(y1
1))+ · · ·+ r2

n−2(h1(y1
1))

+ · · ·+ r2
n−2(h1(y1

1))+ · · ·+ rm
1 (hn−1(y1

1))+ · · ·+ rm
n−2(hn−1(x1

1))+ · · ·+ rm
n−2(hm−1(x1

1)) = c,
(4.8)

and the binary search of the previous chapter (see 3.3.1) can employed.

4.3 Three edged star network with the sink located on a leaf

We extend our study of capacity provisioning on star networks, where in this case the

sink is located on a leaf node (see Figure 4.3)

S

l0 x0

w0
v0

w1

v1 w2

v2

l1
x1

l2 x2

Figure 4.3: Three-edged tree network with a sink at its leaf

This case is more difficult compared to the cases of the star networks considered earlier

as it was easy to compute all other edge capacities in term of the furthest edge capacity, and

the binary search technique discussed in Subsection 3.3.1 can be employed to search for

the optimal value of the furthest edge capacity that solves the allocation problem and such

that the addition of the capacity is equal to the budgeted capacity c.

Before we proceed, we present the following theorem called the Klinz theorem em-
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ployed in [10] for the quickest transshipment problem. This is because the evacuation

problem is a special case of the quickest transshipment problem [10, 25]. The theorem

gives us an idea of computing the optimal cost of flow:

Theorem 4.2 (Klinz theorem [10, 26]). Let S be the set of terminals (set of supply sources

and sink) and let A be a subset of S. Let o(A) denote the maximum amount of flow that the

sources (of supply) in A can send to the sink in S \A in time θ without considering other

terminals and let v(A) be the total supply in A. Then an evacuation problem is feasible if

and only if o(A)≥ v(A).

Therefore given a dynamic tree network with evacuees on vertices, the optimal cost of

flow is determined by the largest evacuation time when all the subsets that constitute the

powerset of evacuees vertices are considered. From the tree network above, the powerset

consists of 7 elements given by {v0,v1,v2,{v1,v2},{v1,v0},{v2,v0},{v1,v2,v0}}. How-

ever, some of them can be discarded as they are dominated by obvious ones. We note

that the flow from {v1,v0},{v2,v0} and v0 are dominated by the flow from v1,v2 and

{v1,v2,v0} = v012 respectively. Therefore, we need to consider the flow dictated by the

following subsets {v1,v2,v12,v012} and the one with the maximum evacuation time is taken

as the optimal cost. In addition to the property of the optimal solution and cost, the follow-

ing lemma emphasizes a monotone allocation from the edges associated with the leaves to

the sink:

Lemma 4.3. Capacity allocation is monotone non-decreasing from the leave edges to the

sink.

Proof. The flow from v1 and v2 to the sink s can be seen as two path networks and therefore

the same argument of Theorem 3.2 of a path network applies.

Let us denote by f1 (resp. f2) the amount of flow from v1 (resp. v2) that the network can

allow to the sink within time t. According to Klinz theorem, we let θ1 (resp. θ2) to denote

the evacuation time that matches up with the flow from v1 (resp. v2) and the corresponding
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unknown edge capacity is denoted by x1 (resp. x2). Let us assume that v1 is the furthest

to the sink. The flow dictated by {v1,v2} denoted by f1,2 starts with capacity x2 because

the first evacuee arrives from v2 and at τ(l0 + l1), we have evacuees arriving from v1 and

thus more flow. However, the rate of this flow is limited by the capacity x0 of the link e0

or x1 + x2. Using Klinz theorem, we look at the weights w1 and w2 and check the time for

which the flow f12 equals w1 +w2. We denote this evacuation time by θ12.

4.3.1 Algorithm strategy

We note by Lemma 4.3 that c
3 ≤ x0 < c. We fix a value for x0 in its range so that x1+x2 =

c− x0. Then we look for the best way to determine x1 and x2 such that max{θ1,θ2,θ12} is

minimized. We then use this approach as a subroutine to determine x0 in such a way that

the optimal solution or cost is attained.

Observation. If x0 is large such that x0 > x1 + x2 then x0 > c
2 . Then the best assignment

is the one in which θ0 = θ1 = θ2 = θ12. Any solution that deviates from this equal cost

will make one of the evacuation time higher and such evacuation time can be reduced by

adjusting the capacities appropriately.

Note that it is possible to have x0 >
c
2 because of the possibility of a large weight at v0

and it is reasonable to assign a large capacity to the link e0 so that many evacuees can be

evacuated and also reduce congestion at v0.

Case 1: Based on the observation if x0 is fixed in [ c
2 ,c), then x1 + x2 is constant. Let θ

be the time for which all evacuation time θ2 = θ1 = θ12. Suppose we have θ1 and θ2 such

that θ does not exist, we can consider the addition of x1 and x2 and construct the solution

that gives θ.
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w2

w1 + w2

τ(l0 + l2) τ(l0 + l1)

W

t

f1

f2

f12

w1

θ2 = θ1 = θ12 = θ

Figure 4.4: Graph illustrating the case when x0 ∈ ( c
2 ,c)

Let X = c−x0, where x1+x2 = X , then from the above graph (from flow f1 and f2) we

have
w1

θ− τ(l0 + l1)
= x1

w2

θ− τ(l0 + l2)
= x2.

(4.9)

Then adding the two equations above gives

w1

θ− τ(l0 + l1)
+

w2

θ− τ(l0 + l2)
= X . (4.10)

From the above we can solve for θ in term of X to have θ = g(X) = g(c− x0). We only

need to compare g(c− x0) with θ0 which gives us the idea of binary search to find x0 such

that

θ0 =
w1 +w2 +w3

x0
+ τl0 = g(c− x0). (4.11)

With x0 fixed, we can compare θ0 with g(c−x0) and if θ0 > g(c−x0) then we can increase

x0 otherwise we decrease x0. If x0 =X and θ0 < g(c−x0), then we have the optimal solution
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already because we cannot increase or decrease x0 anymore.

Case 2: Now suppose x0 ∈ ( c
3 ,

c
2) and we still maintain x1+x2 =X . We note that X ∈ ( c

2 ,
2c
3 )

and θ1 dominates θ2 and θ12. This is because if θ2 or θ12 dominates, x1 can be reduce by

ε > 0 capacity which increases x2. We can continue to decrease x1 until θ1 dominates. We

must also remember that the value assigned to x1 and x2 are limited by x0. Let us examine

the dynamic of the flow f12 in relation to the flow f2 using the graph below

w2

w1 + w2

τ(l0 + l2) τ(l0 + l1)

WX

W

t

f1

f2

f12

Figure 4.5: Graph illustrating the case when x0 ∈ ( c
3 ,

c
2). Note that the slope of f12 is not

smaller than the larger of x1 and x2 but limited by x0.

The slope of f12 is not smaller than the larger of the slope of f1 and f2 but not greater

than x0. If we increase x1 and decrease x2 then θ1 decreases while θ2 increases and also θ12

increases because the parallel line f2 decreases. Now if x2 is increased to its upper bound

c− x0 then θ12 > θ2, however, x2 must not be greater than x0. Geometrically we derive θ12

as follow: From the line f2 and f1 we have

w1

τ(l1− l2)
= x2 =⇒ w1 = x2τ(l1− l2). (4.12)
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Considering the starting point of line f12 and its slope we have

w2 +w1−w1

θ12− τ(l0 + l1)
= x1 =⇒ w2 = θ12x1− x1τ(l0 + l1). (4.13)

Adding Eq. (4.12) and Eq.(4.13) and solving for θ12 gives

θ12 =
w1 +w2− x2τ(l1− l2)

x1
+ τ(l0 + l1). (4.14)

When x2 is closer to zero, θ2 dominates θ12 and therefore there is a point for x2 where

θ2 = θ12. Therefore if we can determine the point x2 such that θ12 = θ2, then we can

compare with θ1. If θ1 is larger then we can decrease x2 and from there we know that

θ2 > θ12 and we can always compare θ1 and θ2. On the other hand if θ1 < θ12 = θ2 at the

critical point x2, then we can increase x2 and we know that θ12 > θ2. Therefore we can

compare θ1 and θ12 to search for the optimal solution by binary search by comparing θ1

and θ12. When the best x1 and x2 are computed after the binary search, the maximum cost

dictated by θ1 and θ2 or θ2 and θ12 is compared with θ0 using binary search.

Now let us look at the following graph to analyse the weight wX such that θ2 = θ12

given x0 fixed.
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w2

w1 + w2

τ(l0 + l2) τ(l0 + l1)

θ2

θ1,2

WX

W

t

Slope x0

Figure 4.6: Graph showing the critical weight WX at which θ2 = θ12.

Using the slope of f2 together with the similar triangle in the graph we have

w2

θ2− τ(l0 + l2)
=

wX

τ(l1− l2)
. (4.15)

Using the line f12 we have
w1 +w2−wX

θ2− τ(l0 + l1)
= x0. (4.16)

With Eq. (4.15) and Eq. (4.16) we have a quadratic equation in θ2 when wX is eliminated:

x0θ
2
2−θ2(x0τ(l0 + l2)+ x0τ(l0 + l1)+(w1 +w2))

+ x0τ
2(l0 + l1)(l0 + l2)+(w1 +w2)τ(l0 + l2)+w1τ(l1− l2) = 0.

(4.17)

Once θ2 is computed, x2 can be computed and we know that θ2 = θ12 at the computed x2.

Then we can compare with θ1 to know which direction to go. Thus the quadratic equation

gives us the critical value of θ2 (or x2) before the comparison (by binary search) procedure.

The case of an extended star network with the sink located at a leaf node is more com-
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plicated as there are many flow of the form fi j whose influence in the set of optimal cost

need to be tracked or considered.
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Chapter 5

Minsum capacity provisioning on path
networks

In this chapter, we turn attention to capacity provisioning problem on path networks, with

the objective of minimizing the total evacuation time of all evacuees in the topology. We

call this problem the minsum capacity provisioning problem in relation to the traditional

minsum sink location problem [24, 37]. Recall that the minsum sink location is more

difficult in any topology of interest compared to the minmax problem (see Section 1.2),

and in fact the study of the problem is limited to path topology in literature (see the survey

paper [25]). However, the minsum problems are more attractive when considering the

psychological duress that may be suffered by the evacuees on their way to safe-haven.

As we have learnt in Chapter 3, the traditional idea of sink location algorithms is based

on the possible evacuation by foot, which is effective in when considering dense commu-

nities. As for remote or sparse communities, evacuation procedure surely require some

adjustments to the traditional model. Just as in in Chapter 3, we shall view the budgeted

capacity as resource to be allocated optimally to the edges of the network in a way that the

evacuation total time is minimized, and we require the sum of the allocated capacities to

be no more than the budgeted capacity. The next section present the former definition of

the problem, as well as the model formulation. We shall spend more time in the section to

properly investigate and establish the problem with some examples.
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5.1 Preliminaries and model formulation for the minsum capacity pro-

visioning concept

Let P = (V,E) represents a path graph with a vertex set V = {v1,v2, . . . ,vn+1} and an

edge set E = {ei = (vi,vi+1), i = 1, . . . ,n} . Each vertex vi has a non-negative weight wi

which represents the number of evacuees situated at vi, and each edge ei has a fixed length

li but unknown capacity xi, which represents the upper limit on the number of evacuees

that can be evacuated through the edge ei in a unit time. The parameter c denotes a given

budgeted capacity to be shared optimally between all the edge lengths and τ denotes the

transit time per unit distance. We define the minsum capacity provisioning formerly as

follow:

Problem 5.1. Given a dynamic path network N = (P,c,τ,w), a fixed sink S ∈ P, and a total

capacity budget c. Let z(x) denote the sum of the evacuation times of all evacuees on P

given the capacity vector x = (x1,x2, . . . ,xn) where xi represents the capacity assigned to

edge ei on the path. Find the optimal capacity vector x⋆ such that z(x⋆) is minimum and

∑
n
i=1 xi = c.

Let us investigate the problem on the following simple two-edged network (Figure 5.1),

where the sink is fixed at the right end of the network and evacuees from v1 and v2 have to

move at the same time to the sink. We let x2 = x so that x1 = c− x.

v1 v2 S
w1 w2l1 l2

x1 x2

Figure 5.1: Illustration of capacities allocation on a path network with two edges. The sink
is assumed to be located at the end vertex on the right.

There are two cases to consider:

[Case 1 (No Congestion):] Let us assume that there is no congestion. That is, the first

set of evacuees from v1 gets to v2 and moves forward to the sink without any delay at v2.
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Mathematically, this implies that τl1 ≥ w2
x or x ≥ w2

τl1
. We can derive the objective function

by adding the areas of the two trapeziums in Figure 5.2. Thus we have

z(x) =
w2

1
2(c− x)

+
w2

2
2x

+w1τ(l1 + l2)+ τl2w2. (5.1)

Figure 5.2: Time-weight graph of Figure 5.1. There is no congestion and evacuees get to
the sink with their starting rates

From the objective function, if x < c
2 then the cost becomes

z(x) =
w2

1 +w2
2

2x
+ τl2w2 + τ(l1 + l2)w1, (5.2)

which we can easily improve by allocating equal capacity to both edges. Thus trivially, the
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cost

z(x) =
w2

1 +w2
2

c
+ τl2w2 + τ(l1 + l2)w1 (5.3)

is better (lesser) than the cost in (5.2) since 2x < c. Can we say we have reached the optimal

cost and solution with the above? This will be clarified with the analysis below.

First, we observe that the objective function can be re-written as

z(x) = w1τ(l1 + l2)+ τl2w2 + min
x∈[ c

2 ,c)
g(x), (5.4)

where

g(x) =
w2

1
2(c− x)

+
w2

2
2x

. (5.5)

Since the first two terms of (5.4) are constant, only the function g(x) is needed to be anal-

ysed. We also observe that the function g(x) is convex for x ∈ [c/2,c] and hence must

have one local minimum (correspondingly global minimum in the specified interval). To

check this, we use the second derivative test for the roots of g′(x) = 0 as follow. Computing

g′(x) = 0 leads to the following quadratic equation

x2(w2
1−w2

2)+w2
2cx−w2

2c2 = 0, (5.6)

whose roots are

xa,b =
−2w2

2c
2(w2

1−w2
2)
±

√
4w4

2c2 +4(w2
1−w2

2)w
2
2c2

4(w2
1−w2

2)
2

. (5.7)

Further simplification yields

[
xa =

−w2c
w1−w2

, xb =
w2c

w1 +w2

]
. (5.8)

Now using the second derivative test to examine the nature of each root derived, we first
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discover that

g′′(x) =
w2

1
(c− x)3 +

w2
2

x3 (5.9)

is positive for any value of x in [c/2,c). Now for the first root, we have

g′′(xa) =
−(w1−w2)

4

c3w1w2
, (5.10)

which is obviously negative and hence xa corresponds to a local maximum of g(x). The

second test gives

g′′(xb) =
(w1 +w2)

4

c3w1w2
, (5.11)

which is non-negative and therefore xb corresponds to a local minimum. Furthermore, since

g(x) is convex, xb also corresponds to its global minimum point (and global minimum of z)

in the interval [c/2,c].

Therefore for the problem at hand if c ≥ 2w2
τl1

, the optimal solution is max
{

c
2 ,

w2c
w1+w2

}
.

[Case 2:] Let us now consider the case when c < 2w2
τl1

. In this case, the optimal solution

may be in congestion case or out of congestion as we shall soon find out. First let us draw

the graph of the scenario.

τ l2

τ(l2 + l1)

w2 η2,1 w1 + w2

T

W

θ2(x,w)

θ1(x,w)

0

Figure 5.3: Congestion scenario for the path network in Figure 5.1. The intersection of the
two straight lines indicate the time at which θ2(x2,η) = θ1(x1,η)
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At x = c/2, the two lines θ1 and θ2 are parallel since they both have the same slope

and the cost can be computed using the dominant of the two functions. However, the cost

can be improved by increasing x to a point where the two lines intersect as shown in Fig-

ure 5.3. Moreover, there is a possibility that the optimal solution vector is in non-congestion

configuration, which is case 1.From the graph we have the following time functions which

represent the time for the last evacuees at v2 and v1 to get to the sink:

θ2(x,w) = τl2 +
w
x
, w≥ 0

θ1(x,w) = τ(l1 + l2)+
w−w2

min{c− x,x}
, w > w2,

(5.12)

however because of monotonicity property (which will be discussed later in Section 5.2) of

the optimal solution and the geometric picture above, we define θ1 as follow:

θ1(x,w) = τ(l1 + l2)+
w−w2

c− x
, w > w2. (5.13)

To find the value of η as a function of x, we need to minimize the following time

Θ(x,η) = max{θ1(x,η),θ2(x,η)}, (5.14)

that is, we need to solve for η in

τ(l1 + l2)+
η−w2

c− x
− τl2−

η

x
= 0. (5.15)

Solving the above gives

η =
w2x− τl1(c− x)x

2x− c
. (5.16)

Now equation (5.16) also verify that the two lines are parallel at x = c
2 as η does not exist at

this point. Using Figure 5.3, we derive the objective function geometrically by adding the

97



5.1. PRELIMINARIES AND MODEL FORMULATION FOR THE MINSUM
CAPACITY PROVISIONING CONCEPT

areas of the two trapeziums featured in the graph. We have

z(x) =
1
2
(θ2(x,0)+θ2(x,η))η+

1
2
(θ1(x,η)+θ1(x,w1 +w2))(w1 +w2−η), (5.17)

where we have put x1 = c− x2 and x2 = x. Expanding (5.17) with η defined in (5.16) gives

z(x) =
1
2

(
2τl2 +

w2x−τl1(c−x)x
(2x−c)x

)
(w2x− τl1(c− x)x)

2x− c
+

1
2

(
τl2 +

w2x− τl1(c− x)x
(2x− c)x

+ τ(l1 + l2)+
w1

c− x

)
×(

w1 +w2−
w2x− τl1(c− x)x

2x− c

)
.

(5.18)

Now we compute z′(x) = 0 to have

z′(x) =−2τ
2l2

1x4 +6cτ
2l2

1x3 +(−7c2
τ

2l2
1 +2cτw2l1 +4w2

1−2w2
2)x

2

+(4c3
τ

2l2
1−4c2

τw2l1−4cw2
1 +4cw2

2)x−

− c4
τ

2l2
1 +2c3

τw2l1 + c2w2
1−2c2w2

2 = 0.

(5.19)

Compactly,

Ax4 +Bx3 +Cx2 +Dx+E = 0, (5.20)

where A,B,C,D,E are the coefficients in the polynomial (5.19).

The roots of (5.20) that lies in ( c
2 ,c) can only be found numerically as the closed form

analytical method does not exist. However, we note that if z(x) is convex in the interval

(c/2,x), then one of the roots of z′(x) (which corresponds to the local minimum) lies in the

interval.

Lemma 5.2. Given a path network with two edges and a sink located at its end. The

minsum capacity objective functions associated with the network for both congestion and

non-congestion cases are convex.
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Proof. Note that monotonicity implies x2 ≥ x1. The Hessian matrix associated with the

non-congestion case is

HNon =

w2
1

x3
1

0

0 w2
2

x3
2
.

 (5.21)

The determinant of k× k, k = 1,2 submatrix of HNon are non-negative, hence H is positive

definite. For the congestion case, we have the determinant of its 1×1 matrix to be

l2
1τ2x3

1x2
2−2l1τw2x3

1x2−w2
1x3

1 +3w2
1x2

1x2−3w2
1x1x2

2 +w2
1x3

2 +w2
2x3

1

x3
1(x2− x1)3

. (5.22)

The denominator is non-negative since x2 ≥ x1. The numerator simplifies to

x3
1(w2− l1τx2)

2 +w2
1(x2− x1)

3 (5.23)

and also non-negative. The determinant of its 2by2 submatrix gives

w2
1(w2− τl1x1)

2

x3
1(x2− x1)3

(5.24)

which is non-negative. Therefore the Hessian matrices associated with the two-edged net-

work are positive definite.

Let us further examine the problem with some examples.

Example 5.3. Let the budgeted capacity c be equal to 10, weights w1 and w2 be equal to

10 and 18 respectively. Let the transit time per unit length τ be equal to 1, and edge lengths

l1 and l2 be 3 and 4 respectively. Clearly, c < 2w2
τl1

. If we directly assume that the optimal

solution would be in congestion case, then the objective function computed from (5.17)
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gives

z =
1
2

x(−12+3x)2

(2x−10)2 +
4x(−12+3x)

2x−10

+
1
2

(
28− x(−12+3x)

2x−10

)(
11+

−12+3x
2x−10

+
10

10− x

)
.

(5.25)

Now z′(x) = 0 gives

−18x4 +540x3−5468x2 +23360x−36800 = 0 (5.26)

The zero of (5.26) that lies in (5,10) is a single value x = 6.2825. The second derivative test

shows that this value corresponds to a local minimum. The cost at this point is z(6.2825) =

181.3187. If the optimal solution is in a congestion scenario, then the value of η at this point

must be between w2 = 18 and w1 +w2 = 28. The value of η at this point gives 16.7760

which contradicts our analysis. In fact if the optimal solution lies in a congestion case as we

have assumed, then this point must lie between xmin and xmax which correspond to when η

is equal to ηmax = w1 +w2 and ηmin = w2 respectively. To further verify this, we compute

xmin as follow:

w1 +w2 =
w2x− τl1(c− x)x

2x− c

28 =
18x−3(10− x)x

2x−10

0 = 3x2−68x+280.

(5.27)

Solution to the quadratic equation above is x = 17.25 or x = 5.40. Since the first solution is

above the budgeted capacity, we can discard it, hence xmin = 5.40. To compute the cost at

xmin, we need the following objective function

z(xmin,ηmax) = τl2ηmax +
η2

max
2xmin

(5.28)
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which is derived when the two lines intersect at w1 + w2. Thus the cost at xmin gives

z(xmin) = 184.5925. In similar way, we can compute xmax as follow:

w2 =
w2x−3(c− x)x

2x− c

18 =
18x−30x+3x2

2x−10

0 = 3x2−48x+180.

(5.29)

Solving the quadratic equation above gives x = 10 or x = 6. We discard the first as it is

equal to the budgeted capacity and xmax = 6. We can derive the corresponding objective

function from Figure 5.4 by adding the areas of the two trapeziums in the figure. Thus we

have

z(xmax,ηmin) =
1
2

(
2τl2 +

ηmin

xmax

)
w2 +

1
2

(
2τl2 + τl1 +

ηmin

xmax
+

w1

c− xmax

)
w1. (5.30)

τ l2

τ(l1 + l2)

w2 = η w1 + w2 W

T

θ1(x,w)

θ2(x,w)

Figure 5.4: The case when η = ηmin which corresponds to maximum value of x if the
optimal solution is in congestion scenario
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Now at xmax = 6, z(xmax,w2) = 181.50. We discover that the cost derived when x =

6.2825 is better than the cost when x is equal to xmin and xmax. However, this value is not

between xmin and xmax. Note that we have congestion when x ∈ (5,6]. Can we find a value

of x in this interval that gives a better cost? This means we need to minimize

z(x) =
1
2

(
4+

12−3x
10−2x

+7+
10

10− x

)(
28− 12x−3x2

10−2x

)
+

1
2

(
4+4+

12−3x
10−2x

)(
12x−3x2

10−2x

) (5.31)

with x ∈ [5,6]. Unfortunately the equation Z′(x) = 0 has no zero in [5,6]. Now as we

increase x beyond 6, we move away from congestion and the line θ1(x) goes beyond the

line θ2(x). The objective function in this case is (the no congestion case)

z(x) =
1
2
(τl2 + f2(x,w2))w2 +

1
2
(τ(l1 + l2)+ f1(x,w1 +w2))(w1 +w2−w2)

= 142+
162

x
+

50
10− x

.

(5.32)

Minimizing the above function with x∈ [6,10] gives x = 6.4287 with the cost 181.20. Since

this solution gives a better cost compared to others derived previously, we can write (the

optimal solution vector) x⋆ = [3.57,6.43].

The above example shows that the initial situation or configuration may be a congestion

scenario but the optimal solution may not. We can easily verify the no congestion scenario

by checking the inequality τl1 > w2
x⋆ . The next example shows that the optimal solution may

remain in congestion configuration.

Example 5.4. Let c= 20, τ= 1, w1 = 100, w2 = 125, l1 = 10 and l2 = 8. Then the objective

function gives

z(x) =−25
4

4x3−708x2 +19215x−125100
(x−10)(−20+ x)

. (5.33)
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Computing z′(x) = 0 leads to

−200x4 +12000x3−221250x2 +1650000x−4500000 = 0. (5.34)

The zero of the polynomial (5.34) that lies in (10,20) is derived uniquely (numerically)

as x = 11.7843 with the cost z(x = 11.784) = 4076.5527. The value of η at this point

is 141.4764. Since w2 < η(x) < w1 +w2, the solution is in congestion case. To further

verify that the above solution is the best, we compute xmin = 10.7884 (corresponding to

ηmax = 225) and xmax = 12.5 (corresponding to ηmin = 125 ). Now z(xmax) = 4091.6666

and z(xmin) = 4146.2801. Since x = 11.784 gives the best cost, we write x⋆ = 11.784. We

do not need to search for solution in [12.5,20] because the corresponding ”no congestion”

objective function has no zero in the specified interval.

We present the algorithm for the two-edged minsum capacity provisioning below. Note

that from the analysis above, the candidate solution for x2 are xhalf =
c
2 , xb = w2c

w1+w2
,

xmax = w2
τl1

and the root xnum of the order 4 polynomial (5.19) that lies in (c/2,xmax).

Algorithm 7: Capacity allocation algorithm for two-edged network with sink lo-

cated at its end.
Result: Output optimal cost and vector of edge capacities for the network in

Fig. 5.1

Inputs: w1, w2, c, τ, l1, l2;

Compute the candidate vector for x2 that is, x2 = {xhalf,xb,xmax,xnum} ;

Compute the corresponding x1, that is x1 = c ·1− x2 ;

Compute the corresponding values of objective functions z(x) ;

Output the vector x = [x1,x2] that gives the minimum cost.

5.2 Properties of the optimal solution vector and cost

From the classical sink location problem we understand that the sink must be on a vertex

(see [24] and Section 1.2), we repeat the property here as a lemma:

103



5.2. PROPERTIES OF THE OPTIMAL SOLUTION VECTOR AND COST

Lemma 5.5. The optimal location of the sink s must be a vertex.

Now for capacity allocation problem, we have the following properties:

Theorem 5.6. Given a path P with n+ 1 vertices where v1, . . .vn are occupied by evac-

uees w1, . . . ,wn and the sink is located at vn+1. Let x⋆ = (x⋆1, . . . ,x
⋆
n) be the optimal edge-

capacities vector and z(x⋆) denotes the total evacuation time, then x⋆i ≥ x⋆j if i > j.

Proof. Let us first assume that the flow is congestion free. WLG let us consider flow from

indexes vi and vi+1 We have the following evacuation times at vi and vi+1 respectively:

θi =
wi

min{xi,xi+1}
+ τd(vi,s)

θi+1 =
wi+1

xi+1
+ τd(vi+1,s),

(5.35)

and individual contributions to z(x⋆) gives

zi =
w2

i
2min{xi+1,xi}

+ τd(vi,s)wi

zi+1 =
w2

i+1

2xi+1
+ τd(vi+1,s)wi+1.

(5.36)

Since we can reduce zi+1 ( or overall reduce z(x⋆)) by making xi+1 ≥ xi then x⋆i+1 > x⋆i in

x⋆.

Now suppose there is a congestion at vi+1, where some evacuees from vi encounter a

delay at vi+1 due to backlog of evacuees waiting to depart vi+1, then there exist some supply

ηi+1 that constitutes part of supply from vi that merge with some supply at vi+1. Therefore

we have the following time functions:

θi =
wi

min{xi+1,xi}
+ τd(vi,s)

θi+1 =
ηi+1

xi+1
+ τd(vi+1,s),

(5.37)
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and contribution to z(x⋆) gives

zi,i+1 =
η2

i+1

2xi+1
+ τd(vi+1,s)ηi+1

+
1
2

(
τli +2τd(vi+1,s)+

ηi+1

xi+1
+

wi

min{xi+1,xi}

)
(wi+1 +wi−ηi+1)

(5.38)

Obviously the above contributions can be reduced by making xi+1 greater than xi in x⋆.

Theorem 5.7. The minsum objective function z for the capacity provisioning problem is

convex.

Proof. Since the components of z can be broken down to set of convex functions, therefore

their addition is convex.

5.3 Extension to longer path networks

We have seen in the above section that the objective function for the minsum capacity

provisioning is convex. However, it configuration could change during the optimization

process. For simplicity, we shall focus on the objective function that defines the flow to the

right zLx and assume that the objective function for flow to the left is zero, i.e., zR(x) = 0.

The flow to the right can be analysed symmetrically. Thus, if the sink is located on any

interior vertex of the path, then

z(x) = zL(x)+ zR(x). (5.39)

We also define for j > i, W [i, j] = ∑
j
k=i wk, L[i, j] = ∑

j
k=i lk and for j ≥ 1, W [ j] = ∑

j
k=1 wk

and L[ j] = ∑
j
k=1 l j. Let us consider the three edged network shown below:

v1 v2 v3 S
w1 w2 w3x1 x2 x3

l1 l2 l3

Figure 5.5: Path network with three edges and sink located on the right end.

Four possible initial configurations for z can be derived for this network:
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Case 1: When we have congestion free scenario, that is, η1,2 ≤ w3 and η2,1 ≤ w3 +w2,

then the objective function is

z(x) =
1
2
(τl3 +θ3(x3,w3))w3 +

1
2
(τL[2,3]+θ2(x2,W [2,3]))w2

+
1
2
(τL[1,3]+θ1(x1,W [1,3]))w1.

(5.40)

w3 W [2, 3] W [1, 3]

T

W

τ l3

τL[2, 3]

τL[1, 3]

θ3

θ2

θ1

Figure 5.6: Congestion free scenario where η3,2 ≤ w3 and η2,1 ≤W [2,3]

Case 2: When we have Congestion only at v3 but not at v2. That is, w3 < η3,2 ≤W [2,3]

and η2,1 ≤W [2,3].
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w3 W [2, 3] W [1, 3]

T

W

τ l3

τL[2, 3]

τL[1, 3]

η3,2

θ3

θ2

θ1

Figure 5.7: Congestion only at v3

Note that if η3,2 <W [2,3], then we have

z(x) =
1
2
(τl3 +θ3(x3,η3,2))η3,2 +

1
2
(θ2(x2,η3,2)+θ2(x2,W [2,3]))(W [2,3]−η3,2)

+
1
2
(τL[1,3]+θ1(x1,W [1,3]))w1.

(5.41)

When η3,2 =W [2,3] and η2,1 ≤W [2,3], then

z(x) =
1
2
(τl3 +θ3(x3,η3,2))η3,2 +

1
2
(τL[1,3])+θ1(x1,W [1,3]))w1, (5.42)

which is covered by (5.41).

Case 3: When we have congestion only at v2 and not at v3. That is, W [2,3]<η2,1≤W [1,3]

and η3,2 ≤ w3. If η2,1 <W [1,3], then
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T

W

τ l3

τL[2, 3]

τL[1, 3]

w3 η2,1 W [1, 3]W [2, 3]

f3

f2

f1

Figure 5.8: Congestion only at v2

z(x) =
1
2
(τl3 +θ3(x3,w3))w3 +

1
2
(τL[2,3]+θ2(x2,η2,1))(η2,1−w3)

+
1
2
(θ2(x2,η2,1)+θ1(x1,W [1,3]))(W [1,3]−η2,1).

(5.43)

When η2,1 =W [1,3], then

z(x) =
1
2
(τl3 +θ3(x3,w3))w3 +

1
2
(τL[2,3]+θ2(x2,η2,1))(η2,1−w3), (5.44)

which is covered by (5.43).

Case 4: If there is congestion at v3 and v2. That is, w3 < η3,2 ≤W [2,3] and W [2,3] <

η2,1 ≤W [1,3]. Then we have
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T

WW [3]η2,1η3,2w3

τl3

τL[2, 3]

τL[3]

W [2, 3]

θ3

θ2

θ1

Figure 5.9: Congestion at both vertices

z(x) =
1
2
(τl3 +θ3(x3,η3,2))η3,2 +

1
2
(θ3(x3,η3,2)+θ2(x2,η2,1))(η2,1−η3,2)

+
1
2
(θ2(x2,η2,1)+θ1(x1,W [3]))(W [3]−η2,1).

(5.45)

The above objective function also covers the cases η3,2 =W [2,3], η2,1 =W [3].

Therefore in general, given any path network of n+1 vertices where the sink is located

on (n+ 1)th vertex, the minsum objective function for the capacity provisioning can be
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written as:

z(x,β) =
1
2
(θn(xn,0)+θn(xn,βn,n−1))βn,n−1

+
1
2
(θn−1(xn−1,βn,n−1)+θn−1(xn−1,βn−1,n−2))(βn−1,n−2−βn,n−1)

+ · · ·+1
2
(θ2(x2,β3,2)+θ2(x2,β2,1))(β3,2−β2,1)+

1
2
(θ1(x1,β2,1)+θ1(x1,W [n]))(W [n]−β2,1),

(5.46)

where

βn,n−1 =


wn if τln−1≥ wn

xn

ηn,n−1, otherwise,
(5.47)

and for 2≤ j < n, we have

β j, j−1 =


W [ j,n] if τl j−1 ≥

w j
x j

η j, j−1, otherwise.
(5.48)

Note again that η j, j−1 is computed by solving for the weight in θ j(x j,w)−θ j−1(x j−1,w) =

0, for 2 ≤ j ≤ n. With the objective function defined, we need an algorithm that can ac-

commodate the changing nature of the function given an initial configuration. We also

need the algorithm to seamlessly accommodate the associated constraints, which include

the positive capacity allocation, monotone capacity allocation, and the sum of the allocated

capacity must be equal to the given budget c. We discuss our approach in the next section.

5.4 Solution by sequential quadratic programming

The sequential quadratic programming SQP is an iterative numerical method often em-

ployed to solve difficult optimization problems with constraints [19, 16]. The method incor-

porates the idea of Lagrange multiplier method to incorporate the constraints and then uses

the idea of quadratic programming to make the numerical method faster (see Chapter 2).

One important advantage of the SQP is that the initial solution vector can be made arbitrary.
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However, because we understand that the optimal solution vector must be monotone, we

incorporate a monotone initial solution vector into the SQP methods.

For our problem, we focus on the flow from left to right zL(x) and assume zR(x) = 0.

We redefine the problem as follow:

min z(x)

S.t. x1 + x2 + · · ·+ xn = c (5.49)

xi− xi+1 ≤ 0, ∀1≤ i≤ n−1. (5.50)

5.4.1 The SQP model and algorithm formulation

We employed the Newton SQP discussed in Chapter 2 . The Lagrangian objective

function which incorporate the constraints with the objective function is given by

L = z(x)+λ0(x1 + x2 + · · ·+ xn− c)+
Cineq

∑
j=1

λ j(xi− xi+1 + s2
j), (5.51)

where s j 1 ≤ j ≤ Cineq, (Cineq = 1+ (|E| − 2)) are slack variables added to convert the

inequality constraints to equality constraints, λ0 is the Lagrange multiplier for the equality

constraint in Eq.(5.49) and λ j, 1≤ j ≤Cineq are the Lagrange multipliers for the converted

inequality constraints.

Let ∆x= (x−xk,s− sk)
′ and let g be the vector of constraints, then the Taylor expan-

sion of the Lagrangian function at the optimal solution gives

L(x⋆,λ⋆)+∇L(x⋆,λ⋆)∆x+
1
2
∆x′B(x⋆,λ⋆)∆x, (5.52)

where we have included the Lagrangian multiplier λ0 in λ and B denotes the approximation

of the Hessian of the Lagrangian L . Now, linearizing the constraint vector at iterate xk gives

g(xk)+∇g(xk)
′∆x+ sk +∆ = 0. (5.53)
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We now have the quadratic subproblem (see Chapter 2)

min
∆x

∇L(xk,λk)∆x+
1
2
∆x′B(xk,λk)∆x (5.54)

S.t. ∇g(xk)
′∆x+∇g(xk) = 0. (5.55)

The iterative method to be derive follows the same approach as the Newton’s method

as we shall see. Recall that the first order condition condition stipulates that ∇L(x,λ) = 0

(see Subsection 2.5.1). Differentiating the objective function in Eq.(5.54) with respect to

∆x gives

∇z+∇g(xk)λ
⋆+∆x′Bk = 0. (5.56)

The above equation can be rearranged to have

λ⋆′
∇g(xk)+Bk∆x=−∇z. (5.57)

Setting λ⋆ = λk+1 = λk +∆λ and substituting in Eq.(5.57) give

−∇z−λ′k∇g(xk) =∆λ′∇g(xk)+Bk∆x

−∇L(xk,∆k) =∆λ′∇g(xk)+Bk∆x.

(5.58)

Using Eq.(5.58) and the linearized constraint vector Eq.(5.53), we have the system

−∇L(xk,∆k) =∆λ′∇g(xk)+Bk∆x

−g(xk) = ∇g(xk)
′∆x,

(5.59)

which can be arranged in matrix form as

B(xk,λk) JT
g (xk)

Jg(xk) 0


∆x

∆λ

=−

∇z(xk)+λ′k∇g(xk)

g(xk)

 (5.60)
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and compactly as

JL

∆x

∆λ

=−∇x,λL(x,λ), (5.61)

where Jg denotes the Jacobian of the constraint vector g and ∇x,λ denotes the Jacobian of

L with respect to x and λ. The matrix on the right is the KKT or Jacobian matrix for the

problem. The one-step iterates are then computed using:

xk+1 = xk +∆x

λk+1 = λk +∆λ,

(5.62)

where we have merged the solutions for the slack variables to xk+1. That is xk+1 = [xk+1,sk+1].

We choose the initial Lagrangian multiplier vector λ0 to follow the first order optimality

conditions or Karush-Kuhn-Tucker (KKT) conditions (see Eq.(2.54)):

λ0 = [Jg(x0,s0)J′g(x0,s0)]
−1(Jg(x0,s0)J′z(x0,s0)), (5.63)

and the initial slack variable vector to be a set of ones. More importantly, we define our

merit function to be the augmented function

φ(x,γ) = z(x)+g(x)λ′+
γ

2
∥g(x)∥2

2 (5.64)

(where γ is a positive real number) to track the convergence of the objective function. Note

that as the configuration of z changes, the merit function also changes too. The algorithm

follows a Newton optimization idea.
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Algorithm 8: Capacity allocation algorithm for an arbitrary path network in min-

sum criterion
Result: Output the optimal cost and vector of edge capacities for the minsum

problem

Inputs: W, L, c, τ;

Allocate equal capacities to determine the initial z configuration;

Construct the associated Lagrangian function L(x,s,λ) ;

Compute the Jacobian matrix JL of L ;

Compute the right hand side vector ∇x,λL ;

Initialize a monotone initial condition;

while ∇L(y)> ε do

Compute ∆x =−J−1
L ×∇L ;

Compute the next solution yi+1 = yi +∆x ;

Check if z(yi) has changed the configuration and compute the new z function ;

end

Stop iteration when tolerance is met.
From the theory of quadratic programming problem (see [33]), we understand that when

the number of constraints m is greater than or equal to 1, the KKT matrix in (5.60) is

indefinite. To circumvent this problem and have effective direct method, we employ a

symmetric indefinite factorization to decompose the KKT matrix. This factorization in this

context is given by

P′JLP = LdBdL′d, (5.65)

where P is a permutation matrix, Ld is a unit lower triangular matrix, and Bd is a block

diagonal matrix with either 1× 1 or 2× 2 blocks. This allows us to solve for [∆x ∆λ]′

systematically as follows: Solve

Ld∆y =−P′∇x,λL(x,λ) (5.66)
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for unknown ∆y, solve

Bd∆̂y = ∆y (5.67)

for unknown ∆̂y, and solve

L′d∆y = ∆̂y (5.68)

for unknown ∆y. Finally, set ∆x

∆λ

= P∆̂y. (5.69)

Also for some specific problems, if B(x,λ) in (5.60) is positive definite and well condi-

tioned, then the Schur-Complement method can be employed (see [33] for details). How-

ever, B(x,λ) cannot be assumed to be positive definite in general.

The algorithm 8 begins by allocating equal capacities to construct initial z configuration

for the problem. It then goes further to construct the associated Lagrangian function. Due to

the possible congestion parameter η, the algorithm employs initial solution vector that has

no equal elements while ensuring a monotone allocation towards the sink. The algorithm

also incorporates a template to monitor the change in the configuration of z at each iteration.

5.4.2 The Hessian approximation

The basic Newton SQP may encounter convergence difficulty if the initial solution x0

is chosen too far from the true solution. Moreover, when x0 is far from x⋆, the sequence

of Hessian approximations of the Lagrangian may not be positive definite on the required

subspace which may hinder the existence of solutions of the quadratic subproblems. Based

on the above reasons, the class of Hessian approximations discussed in Subsection 2.5.6

and Subsection 2.5.7 are employed. This class of approximations is referred to as secant

approximation and has been found efficient for unconstrained non-linear problems. Basi-

cally, the Hessian approximations satisfy the secant equation, which is a version of bounded

deterioration property and have some attractive convergence properties. We describe the se-
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cant approximation below. Recall from Taylor’s theorem that if the objective function L is

continuously differentiable and given p ∈ Rn, then we have (see for example [33])

L(x+p) = L(x)+∇L(x+ tp)′p, (5.70)

for some t ∈ (0,1). And if L is twice differentiable and continuous, we have

∇L(x+p) = ∇L(x)+
∫ 1

0
∇

2L(x+ tp)pdt. (5.71)

Now, adding and subtracting ∇2L(x)p in Eq.(5.71), we have

∇L(x+p) = ∇L(x)+∇
2L(x)p+

∫ 1

0
[∇2L(x+p)−∇

2L(x)]pdt. (5.72)

The above equation reduces to

∇L(x+p) = ∇L(x)+∇
2L(x)p+O(∥p∥) (5.73)

due to the continuity of ∇L . Letting x = xk and p = xk+1−xk, we have

∇L(xk+1) = ∇L(xk)+∇
2L(xk)(xk+1−xk)+O(∥xk+1−xk∥), (5.74)

and with the assumption that the iterates are close to the solution, we have the secant equa-

tion

∇L(xk+1)−∇L(xk)≃ ∇
2L(xk)(xk+1−xk). (5.75)

Note that ∇2L = HL the Hessian of the Lagrangian. The secant approximations now find

Bk that satisfies

Bk+1(xk+1−xk) = ∇L(xk+1,λk+1)−∇L(xk,λk+1). (5.76)
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5.4.3 Numerical experiment

We show the results of our algorithm on 2-edge length, 3-edge length and 4-edge length

path networks. We discovered that the results satisfy the monotone allocation condition

even when the sink is located in the middle. The last rows of the tables present the optimal

costs and solution vectors.

S
w1 = 10 w2 = 18

v1 v2

x1

l1 = 3

x2

l2 = 4

Figure 5.10: Path network with two edges.

z-value x1 x2

161.65 6.6667 13.333

161.62 7.4287 12.571

161.6 7.2103 12.79

161.6 7.144 12.856

161.6 7.1429 12.857

Table 5.1: Table showing the solution for 2-edged network with fixed budgeted capacity
c = 20 and 4 iterations.

z-value x1 x2

181.6 3.3333 6.6667

181.34 3.815 6.185

181.2 3.5622 6.4378

181.2 3.5714 6.4286

181.2 3.5714 6.4286

Table 5.2: Table showing the solution for 2-edged network with fixed budgeted capacity
c = 10. We reduce the budgeted capacity to let the initial z indicate a congestion scenario.
The optimal solution however indicate no congestion. The algorithm takes 4 iterations to
complete.
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w1 = 10 w2 = 18 w3 = 15

l1 = 3 l2 = 4 l3 = 3v1 v2 v3

x1 x2 x3
S

Figure 5.11: Path network with three edges. Fixed capacity at c = 20.

z-value x1 x2 x3

321.55 3.3333 6.6667 10

317.23 4.7522 8.3469 6.9009

317.53 4.8909 7.5867 7.5224

317.52 4.6281 7.6863 7.6856

317.52 4.6365 7.6818 7.6818

317.52 4.6365 7.6818 7.6818

Table 5.3: Table showing the solution for 3-edge network with 5 iterations.

S
w1 = 10 w2 = 18 w3 = 15 w4 = 10

l1 = 3 l2 = 4 l3 = 3 l4 = 2
x1 x2 x3 x4

v1 v2 v3 v4

Figure 5.12: Path network with four edges.
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z-value x1 x2 x3 x4

472 2 4 6 8

448.36 3.4176 5.8985 6.4379 4.246

448.32 3.9184 6.4114 5.0478 4.6224

449.37 3.7532 5.7909 5.2318 5.2241

450.03 3.5245 5.6524 5.4125 5.4106

450.44 3.4614 5.5617 5.4885 5.4884

450.63 3.4264 5.5256 5.524 5.524

450.63 3.4255 5.5248 5.5248 5.5248

450.63 3.4255 5.5248 5.5248 5.5248

Table 5.4: Table showing the solution for 4-edged network with c = 20. The algorithm
takes 8 iterations to complete.

v1 v2 S v3 v4

w1 = 10 w2 = 18 w3 = 15 w4 = 10

l1 = 3 l2 = 4 l3 = 3 l4 = 2

x1 x2 x3 x4

Figure 5.13: Path network with four edges and a sink in the middle.

z-value x1 x2 x3 x4

308.68 3.3333 6.6667 6.6667 3.3333

308.31 3.7691 6.1067 6.4399 3.6843

308.13 3.6199 6.494 6.3946 3.4915

308.13 3.6163 6.5093 6.389 3.4853

308.13 3.6163 6.5094 6.389 3.4853

Table 5.5: Solution for the case where the sink is in the middle of the path. The solutions
are monotone from either sides. The algorithm takes 4 iterations to complete.
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Chapter 6

Conclusion and future work

In this thesis we have developed and analysed novel algorithms and datastructure suitable

for the evacuation planning process of sparse or remote communities. We first of all focus

on the algorithm that allocates capacities optimally with the objective of minimizing the

minmax (or completion time) objective function. When the topology is a path network, we

are able to reduce the problem to finding an optimal allocation to the furthest edge network,

and with an efficient binary search query through our constructed parametric equation and

segment tree datastructure to compute the optimal capacities for other edges efficiently.

We extend the same idea to the case when the topology is a star network and the sink is

located at the centre of the network. However, when the sink is located at a leaf of the star

network, different approach proposed in [10] called the Klinz theorem is employed, only

for a star network with three edges. For an extended star network with a sink on the leaf,

the problem becomes too complex and require further investigation of hidden combinatorial

properties.

In Chapter 5, we proceed to developing algorithm that allocates capacities optimally to

the edges of path networks with the objective of minimizing the total evacuation time of all

evacuees on the networks. We notice that the problem is more difficult than the minmax

problem. We discover that the associated objective function is convex and monotone allo-

cation in the optimal solution vector applies. We also discover that the objective function

may change configuration from a congestion scenario to a non-congestion scenario during

the optimization process. We are able to solve the problem by incorporating the idea of
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sequential quadratic programming (SQP), together with monotone intial solution vector.

The SQP allows us to incorporate the associated constraints and also helps in tracking the

changing configuration of the objective function.

The extension of the sink location algorithms studied in this thesis can be taken as

foundation for studying the problems on complex topologies such as trees. We are excited

to have published the developed algorithms for capacity provisioning problems for path

networks (minmax criterion) in the networks journals. We also added the idea discussed

for star networks with a sink in the middle in the same publication. We were able to submit

our results for the minsum problem to the EAMMO conference at the time of writing this

thesis. We plan to have the results published in a reputable journal.

One could pose a question to know how the capacity provisioning problems could help

emergency responders with logistics for an effective evacuation of a remote region. We

consider the following steps:

(i) identify the location of sites of interest and the number of evacuees at each site

(ii) compute a steiner tree spanning the sites. This tree becomes our network. Any exist-

ing roads can also be added to the network.

(iii) decide and fix location of evacuation sink or sinks based on various logistical needs

(iv) solve a capacity provisioning problem over the designed network.

The computed capacities can then inform emergency responders in making strategic deci-

sions concerning the allocation of emergency vehicles or aircraft. We envision that solving

the problem on path and star networks seem relevant for practice, and we believe that the

extension to tree topologies will offer more in reality.

We propose to embark on the following work in future:

(i) Multiple sinks capacity provisioning problems: We have an idea that when there are

multiple sinks on path networks, then there exist some optimal split edges which need

to be discovered for efficient algorithms.
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(ii) Minmax capacity provisioning on extended star network with the sink on one of its

leaf nodes: The application of the Klinz theorem gives us some ideas as we have

noticed for the case of three-edged star network. However, the influence of multiple

flow functions encountered in the extended star topology need a further investigation

(iii) Capacity provisioning on tree network in minmax criterion: We hope to extend our

study of the minmax capacity provisioning to tree topologies. We understand that

the traditional minsum sink location problem is limited to path network in literature,

while the minmax problems have been extended to general graph through approxima-

tion algorithm techniques in [35]. We hope our ideas for star networks would show

some light to hidden properties in tree networks.
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