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ABSTRACT 

 

 Conventional protein design approaches generally utilize a design space limited to the standard 20 

amino acid alphabet (AAA), restricting the incorporation of unnatural amino acids, and associated 

novel functions. Reducing the standard AAA can free up codon space for the abovementioned 

purpose along with accelerating in silico protein design. However, previously designed reduced 

AAA protein variants have shown little to no activity relative to their wild-type counterparts. The 

overarching goal of this thesis was to identify and employ the protein design rules observed in 

nature for the development of a generalizable RAP design pipeline. Since dynamics are integral to 

maintaining protein function, data presented in this thesis investigates the structural dynamics of 

proteins using Molecular Dynamics simulations. This insight into the structural dynamics of proteins 

assisted in designing RAPs and in the characterization of a receptor targeted by a virus pathogenic 

to humans, offering potential pharmaceutical and astrobiology applications. 
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CHAPTER 1: INTRODUCTION 
 

“The nature of life on Earth and the search for life elsewhere are two sides of the same 
question—the search for who we are. In the great dark between the stars there are clouds of gas 
and dust and organic matter. Dozens of different kinds of organic molecules have been found there 
by radio telescopes. The abundance of these molecules suggests that the stuff of life is everywhere. 
Perhaps the origin and evolution of life is, given enough time, a cosmic inevitability. On some of 
the billions of planets in the Milky Way Galaxy, life may never arise. On others, it may arise and die 
out, or never evolve beyond its simplest forms. And on some small fraction of worlds there may 
develop intelligences and civilizations more advanced than our own. Occasionally someone 
remarks on what a lucky coincidence it is that the Earth is perfectly suitable for life—moderate 
temperatures, liquid water, oxygen atmosphere, and so on. But this is, at least in part, a confusion 
of cause and effect. We Earthlings are supremely well adapted to the environment of the Earth 
because we grew up here. Those earlier forms of life that were not well adapted died. We are 
descended from the organisms that did well. Organisms that evolve on a quite different world will 
doubtless sing its praises too. All life on Earth is closely related. We have a common organic 
chemistry and a common evolutionary heritage. As a result, our biologists are profoundly limited. 
They study only a single kind of biology, one lonely theme in the music of life. Is this faint and reedy 
tune the only voice for thousands of light-years? Or is there a kind of cosmic fugue, with themes 
and counterpoints, dissonances and harmonies, a billion different voices playing the life music of 
the Galaxy?” 

 
― Carl Sagan, Cosmos 

1.1. Overview 

Most proteins are synthesized in the process of translation from the 20 canonical amino 

acids. Although we have some understanding of the basic biochemistry of cells, there is still little 

to nothing known about how life formed on Earth. This thesis attempts to understand the trajectory 

of evolution of proteins by studying the abundances and distribution of the amino acids in modern 

day proteins. Additionally, this thesis aims to recognize and extract the protein design principles 

in nature that would allow alteration of the amino acid composition of proteins, thereby facilitating 

protein engineering studies. 

 

1.2. Amino Acids 

Amino acids are the building blocks of proteins and are combined together in a specific 

sequence to eventually form a functional protein. All amino acids have a similar general structure 

containing a central carbon atom (the α-carbon) to which an amino group (NH3+ group), a 

carboxylate group (COO- group), a hydrogen atom (H), and a R (side chain) group are attached 

(Figure 1.1). 
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Amino acids that are incorporated into polypeptides during translation are called 

proteinogenic or canonical amino acids (1). These include the standard 20 amino acids encoded 

by the universal genetic code (2) and the non-standard amino acids, selenocysteine (3) and 

pyrrolysine (4) (twenty first and twenty second amino acids, respectively). Unlike the standard 

amino acids that are found in proteins from all domains of life, the non-standard amino acids are 

rarely found in proteins (5, 6). All the amino acids differ from each other in the size, shape, polarity, 

charge and hydrophobicity of the side chains bonded to their α-carbon atoms (Figure 1.2). The 

differences in these side chains give the amino acids distinctive physicochemical properties, 

thereby governing the secondary structure propensities (7) of the amino acids. The diversity 

among proteins is directly related to the combinatorial possibilities of the 20 amino acids, where 

the physicochemical properties of the constituent amino acids influence the structure and function 

of a protein.  

 

Figure 1.1 – General structure of an amino acid. The alpha(α) carbon atom in the center is 
linked to an amino group (blue box), a carboxylate group (red box), and a side chain R group 
(green box).  Figure adapted from (8). 
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Figure 1.2 – A guide to the twenty standard amino acids. Two dimensional representation of 
the chemical structures of the twenty standard amino acids. The color coding corresponds to the 
side chain properties of the amino acids as shown in the key. Figure adapted from (9). 

 

The standard amino acids are incorporated into proteins via a process known as translation 

or protein synthesis, carried out in the presence of mRNA, tRNAs and ribosomes (10). The 

ribosomal subunits assemble to form a functional ribosome and to read the genetic information 

contained in the mRNA. Different tRNAs (in complex with the Elongation Factor Tu) bring specific 

amino acids to the ribosome in the correct order, and with the help of rRNA, peptide bonds are 

formed between adjacent amino acids thereby synthesizing the polypeptide chain. However, a few 

organisms such as bacteria and fungi can also synthesize proteins independently of ribosomes in 

a process known as non-ribosomal peptide synthesis (11). On the other hand, the incorporation 

of nonstandard amino acids into proteins requires unique specialized mechanisms. 

Selenocysteine is encoded using the UGA codon, which usually is a stop codon (12), but is 

recoded for selenocysteine in an intricate process requiring a selenocysteine insertion sequence 

element (SECIS element). The selenocysteine-tRNA is delivered to the ribosome by a dedicated 

elongation factor SelB (13). On the other hand, pyrrolysine found in methanogenic archaea is 
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coded using the UAG codon, which is also a stop codon, however the incorporation of pyrrolysine 

uses the standard elongation factor EF-Tu (5).  

Apart from the proteinogenic amino acids, more than 500 amino acids exist in nature (14), 

such as carnitine, GABA, levothyroxine, hydroxyproline and selenomethionine (Figure 1.3) (15, 

16) and are known as non-proteinogenic amino acids. Although the non-proteinogenic amino acids 

are rarely found in proteins (example: hydroxyproline is incorporated into proteins via post-

translational modification), they play an important role in cellular metabolic pathways or occur as 

intermediates in the metabolic pathways of standard amino acids. For example, gamma-

aminobutyric acid (GABA) is a neurotransmitter (17), whereas ornithine and citrulline occur in the 

urea cycle (18), part of amino acid catabolism. 

 
Figure 1.3 – Non-proteinogenic amino acids. Two dimensional representation of the chemical 
structure of non-proteinogenic amino acids. Figure adapted from (2). 
 

1.3. Proteins 

Proteins are the most abundant biomolecules in any living cell, and they play important 

roles in cellular structure and functions. The term protein is derived from the Greek word πρώτειος 

(proteios), meaning "primary" or "in the lead" (19). As the name suggests, proteins are at the 

forefront of a wide array of cellular functions, such as catalyzing metabolic reactions, DNA 

replication, maintaining cellular structure, and transporting molecules to their target cellular 

locations. The primary structure of a protein is comprised of a linear chain of amino acids where 

the individual amino acids are bonded together by peptide bonds. A peptide bond is formed when 
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the carboxyl group of one amino acid reacts with the amino group of the adjacent amino acid, 

releasing a water molecule in a reaction known as condensation or dehydration (Figure 1.4).  

 
Figure 1.4 – Peptide bond formation. The carboxyl (COOH) group of one amino acid reacts with 
the amino (NH2) group of the adjacent amino acid to eliminate a water molecule resulting in 
formation of peptide bond highlighted in yellow. 
 

Once linked together by peptide bonds, the amino acids are called residues, and the chain 

of amino acids is called the polypeptide chain. The NH2 end with a free amino group is known as 

the amino terminus or N-terminus, whereas the COOH end of the protein with a free carboxy group 

is referred to as the carboxy terminus or C-terminus (the sequence of the protein is read from N-

terminus to C-terminus, left to right) (Figure 1.5). The polypeptide chain, which constitutes the 

primary structure of a protein, plays a crucial role in determining the physical and chemical 

properties of a protein. Additionally, depending on the constituent amino acids, the primary 

structure drives the folding of the polypeptide chain including the formation of intramolecular 

bonds, ultimately determining the three dimensional shape and structure of the protein. 
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Figure 1.5 – General chemical structure of a polypeptide chain. The constituent amino acids 
are joined by peptide bonds by undergoing a condensation reaction involving release of a water 
molecule. Figure adapted from (8). 

 

The secondary structure of a protein comprises local structures stabilized by hydrogen 

bonds. The most common secondary structures found in proteins include the α-helix, β-sheet, 

loops and turns. The next level of structural organization in proteins is known as the tertiary 

structure which includes the overall shape of a single protein molecule, notably the spatial 

relationship of the secondary structures to one another. Tertiary structure of a protein is stabilized 

by interactions such as salt bridges, hydrogen bonds, hydrophobic interactions, disulfide bonds, 

and even post-translational modifications The tertiary structure is the highest level of structural 

organization for a monomeric protein. However, in case of multimeric proteins that are formed by 

several polypeptide chains, the quaternary structure is the final level of organization, where 

multiple tertiary folded structures function together as a single protein complex (Figure 1.6). 
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Figure 1.6 – Structural organization in proteins. The primary structure of proteins consists of 
a linear polypeptide chain in which residues are linked together by peptide bonds. The secondary 
structure of proteins is due to hydrogen bonding between the atoms of the polypeptide backbone. 
The tertiary structure of proteins arises from non-covalent interactions as well as disulphide 
interactions, ionic interactions, etc. The quaternary structure of proteins involves the formation of 
a complex between two or more polypeptide chains. Figure adapted from (20). 

 

1.4. Evolution of the amino acid alphabet of proteins 

The particular set of different amino acids utilized in each protein sequence is referred to 

as the amino acid alphabet (AAA) of the respective protein. Most proteins include all twenty amino 

acids, and therefore their AAA is a standard alphabet. However, several proteins such as keratin 

include only a subset of the twenty standard amino acids and therefore their AAA is smaller than 

the standard alphabet. We refer to these proteins as smaller alphabet proteins (SAPs). On the 

other hand, proteins such as thioredoxin reductases and methyltransferases naturally include the 

twenty first (selenocysteine) and twenty second (pyrrolysine) amino acids respectively, and 

therefore have an AAA larger than the standard alphabet. We refer to such proteins as expanded 
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alphabet proteins (EAPs). There is a wide variety in the AAA sizes of the proteins found in nature 

ranging from as small as a 3 AAA to 21 AAA (see Chapter 2, section 2.5.1). The occurrence of 

such a diverse range of AAA sizes indicates the current AAA is perhaps a product of evolution 

over billions of years (2, 21-24). Several previous studies in the fields of astrobiology, protein 

engineering, bio-evolution, and abiotic chemistry, along with the RNA world hypothesis have 

indicated that the AAA could have included fewer amino acids in the early Earth environment, 

containing only a subset of the current standard amino acids, which gradually evolved and 

expanded into the current AAA (2, 23, 25-27). According to previous evolutionary studies, this 

smaller subset of the standard amino acids including Gly, Ala, Asp, Ile, Val, Ser, Pro, Glu, Leu, 

and Thr constituted the early genetic code, and were the first set of amino acids to form in the 

prebiotic conditions of early Earth (28-30). Therefore, these amino acids are referred as the 

prebiotic amino acids (29). On the other hand, Cys, Met, Tyr, Trp, His, and Phe are believed to 

have been added later on into the genetic code. Additionally, Trp is speculated to be the last amino 

acid to be incorporated into the genetic code (31, 32). However, even after several decades of 

protein evolutionary studies there is no concrete evidence to prove these theories. Furthermore, it 

is unclear whether the structure, function or evolutionary age of a protein is reflected in the 

constituent amino acids and the AAA size. Therefore, studying the AAA will help us in 

understanding not only the evolution of proteins but also the underlying principles of protein design 

applied in nature. This knowledge can be utilized for the forward engineering of proteins to unlock 

additional functions in a near natural manner. 

 

1.5. Tweaking the amino acid alphabet: An approach to protein engineering 

Since a large number of proteins are naturally composed using an AAA smaller than the 

standard 20 AAA, this has inspired protein engineers to artificially reduce the AAA of the proteins 

of interest and to design reduced alphabet proteins (RAPs). Apart from offering an understanding 

of the evolution of proteins, reducing the AAA of proteins offers several other advantages. For 

instance, there is a high degree of overlap in the physicochemical properties of amino acids such 

as there being two acidic amino acids (Asp and Glu), and three aromatic amino acids (Phe, Trp, 
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and Tyr), etc. One or more of such overlapping amino acids can be removed from the AAA to 

obtain RAP variants of those proteins, as done in previous studies (Table 1.1) (33-37). Another 

advantage of reducing the AAA is that in place of the removed amino acid, any unnatural amino 

acid (UAA) of interest can be incorporated by utilizing specially engineered cells (38) to provide 

novel features to a target protein, thus yielding proteins with user-defined functionalities such as 

spectroscopic probes, UV-inducible crosslinkers, and functional groups for posttranslational 

modifications, etc. (39, 40) (Figure 1.7).  

 
Figure 1.7 – Applications of unnatural amino acids with customized side chains. UAAs can 
be used to assign selectively reactive groups, photoreactive crosslinkers, posttranslational 
modifications, or desired probes. Figure adapted from (39). 
 

More than 160 UAAs have been genetically encoded into the proteins to date in different 

organisms for various applications (39). Past studies have identified unnatural chemical groups 

which are uniquely reactive and can be used for site-selective labeling and modification of proteins. 

Such groups are useful in the preparation of protein tags which provide unprecedented control 

over protein labeling sites (41). On the other hand, incorporation of spectroscopic probes allows 

for tracking the protein structure and localization, and to detect any changes in the chemical 

environment of the target protein (42). Furthermore, targeted posttranslational modifications, or 

insertion of structural mimics allow for modification of proteins at the residue level, permitting 

personalized variations in the target protein (43). Lastly, with the insertion of photoreactive groups 
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and crosslinkers, one can extract structural and localization information of the target protein, thus 

providing a powerful tool for biomolecular mapping (44). 

In conventional protein engineering and design, the sequence of the parent protein is 

reorganized to generate variants. For a protein that is 100 amino acids long with a standard 20 

AAA, the total number of variants to be screened would be 10020, which is practically impossible 

(45), whereas for a RAP, limiting the AAA size would reduce the total number of variants to be 

screened, thus accelerating the protein design process. Taking input from the natural SAPs, 

artificially designed RAPs can help us to identify the ‘bare minimum’ required to make functional 

proteins which would find applications in designing bacterial strains to run on reduced alphabet 

proteins. The resulting simplified enzyme components may give rise to more productive enzymatic 

pathways since amino acid flux will be re-directed from self-replication and synthesis of the 

eliminated amino acids to maximal product yield, a feature particularly useful during nutrient 

deficient conditions. Therefore, such organisms may act as the pioneers in setting up life on remote 

planets with hostile conditions where the availability of nutrients is extremely limited. However, we 

acknowledge that to enable the generation of such RAP strains, the elimination of amino acid(s) 

needs to be performed at the cellular level which would in turn affect the homeostasis of the 

resulting strain, a critical characteristic to be addressed when engineering organisms. One of the 

applications of such engineered strains are in vivo systems where the reduced energy requirement 

for cellular metabolism in an engineered strain would allow increased recombinant product yield. 

Such tools can be used for tasks such as bioremediation, point-of-need vaccine production, etc. 

With such a wide range of applications outlined above, RAP design has become an 

increasingly ventured field in the past few years. Several studies have attempted RAP design on 

a range of diverse proteins, where they focused primarily on preserving the structure of the RAP 

variant (Table 1.1). However, of all the previous work on designing RAPs, most have resulted in 

partial/total loss of function (Table 1.1). We attribute this failure to neglecting the protein design 

rules in nature and the failure to preserve protein dynamics while designing RAPs. Since proteins 

are dynamic entities, altering the structure (including the primary structure, i.e., the amino acid 

sequence) would also impact the function of the protein. Therefore, we predict that it is important 
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to preserve both the structure and the dynamics of a protein to improve the chances of designing 

a functional RAP, unlike prior studies where researchers only focus on preserving the structure of 

the RAPs. 

Table 1.1 – Summary of previous work done on reduced alphabet protein design. 

Research 
group Test protein AAA 

size 
Strategy of AAA 

reduction 

RAP 
variant 

function 

Akanuma 
et al. 

Orotate phospho 
ribosyltransferase 

(OPRTase) 
9 

Hydrophobic, Acidic, 
Basic, Aromatic, 

Flexibility, Rigidity, Thr 

Did not test 
function 

Akio et al. 
Green 

Fluorescent 
Protein (GFP) 

19 
Trp is the last amino acid 
to be incorporated during 

evolution 

Complete 
loss of 

function 

Kamtekar 
et. al 

α-helical bundle 
proteins 8 Binary pattern module 

polar:non-polar 
Did not test 

function 

Kimura M. 
& 

Akanuma 
S. 

Nucleoside 
diphosphate 
kinase (NDK) 

13 
Physicochemistry based 

substitution of non-
catalytic residues 

Complete 
loss of 

function 

Kuroda 
and Kim 

bovine pancreatic 
trypsin inhibitor 

(BPTI) 
18 Alanine substitutions Did not test 

function 

Muller et 
al. 

Chorismate 
mutase (cm) 11 Binary pattern module 

polar:non-polar + T, V 
Partial loss 
of function 

Regan and 
DeGrado 

α-helical bundle 
proteins 8 Binary pattern module 

polar:non-polar 
Did not test 

function 

Riddle et 
al. 

SRC homology 3 
domain (SH3) 16 Combinatorial 

mutagenesis 
Did not test 

function 

Walter et 
al. 

Chorismate 
mutase (cm) 14 Binary pattern module 

polar:non-polar 

Kcat 3 fold 
lower, less 

stable 
 

 

1.6. Hypothesis and Objectives 

This thesis aims to understand the amino acid alphabet of proteins in nature and to identify 

the principles of protein design in nature which can be further utilized for the rational reduction of 



  

12 
 

the AAA of proteins to design RAPs. I hypothesize that these principles can be identified by 

interrogating the AAA of natural proteins and extracting the underlying design features that are at 

the heart of biomolecular function including folding, regulatory and enzymatic properties. This 

thesis further theorizes that an in silico molecular dynamics investigation pipeline coupled with 

downstream computational analyses is capable of studying protein structure and dynamics that 

enables efficient design of functional RAPs. 

In Chapter 2, we investigate the AAA of diverse proteins from different organisms belonging 

to various domains of life by performing bioinformatics analysis on protein sequence entries 

available on the UniProt protein sequence database. Our findings showcase the distribution and 

size of AAA of different proteins in nature along with the design rules followed in nature depending 

on the function or evolutionary age of the protein. We show for the first time that the AAA size 

expands with increasing length (in terms of amino acid residues) of proteins and that the amino 

acid compositions are customized to suit different functions of proteins. Chapter 3 demonstrates 

our in-house developed protein dynamics analysis toolkit where molecular dynamics simulations 

coupled with computational analyses techniques help reveal unforeseen dynamics in Nrp2 with 

applications in development of antiviral therapies. Lastly, with the insight into protein design rules 

from chapter 2 and employing the computational protein dynamics assessment approach outlined 

in chapter 3, chapter 4 demonstrates the rational design of RAP variants for proteins with distinct 

structure and function to prove that the AAA size of proteins can be significantly reduced without 

compromising protein structure or dynamics, thereby generating reduced alphabet variants that 

have a higher likelihood of retaining function. We employ molecular dynamics simulations coupled 

with computational analysis techniques to investigate and compare the dynamic properties of the 

RAP variants with respect to the wild-type proteins, followed by ranking the RAP variants. 

Altogether this thesis will provide information on the amino acid alphabets of proteins and how in 

silico techniques can be employed to rationally reduce the alphabet sizes of proteins to design 

functional RAPs. 
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CHAPTER 2: LOOKING BACK IN TIME: COMPLEXITY OF AMINO ACID ALPHABETS REVEAL 

ORIGIN OF NATURE’S PROTEIN DESIGN PRINCIPLES 

 

2.1 Preface 

This is an advanced draft of a manuscript being prepared for publication. This chapter 

showcases our findings on the amino acid alphabet of proteins, particularly the incorporation of 

prebiotic amino acids, to understand the evolution of amino acids as life progressed on Earth and 

to identify the underlying protein design principles utilized in nature. The research was 

conceptualized by Hans-Joachim Wieden and me. I developed the methodology and software, 

performed script writing, data curation and processing, formal analysis, visualization, and figure 

preparation. The manuscript was written by Hans-Joachim Wieden and me. 

 

2.2 Abstract 

The primary structure of proteins, their amino acid sequence, is derived from a common set of 

20 amino acids, referred to as the standard amino acid alphabet (AAA). However, primordial life 

likely was simpler. To investigate if the current 20 AAA evolved from a smaller initial alphabet and 

if traces of it can be found in present-day proteins, we performed a comprehensive bioinformatics 

study of protein entries obtained from the UniProtKB/Swiss-Prot database. Our results reveal that 

proteins with smaller AAAs are still widely found in nature. In agreement with the prebiotic amino 

acid theory our findings show that the prebiotic amino acids are central to the AAA of present-day 

proteins, thus suggesting that the standard alphabet indeed has evolved from a smaller alphabet. 

We also demonstrate that the AAA complexity increases with the length (in terms of constituent 

amino acid residues) of protein sequences, the missing link supporting the theory of gradual 

expansion of AAA size over time. Our data suggests a critical role of the expanded AAA not only 

for diversification of physicochemical properties, but also enabling formation of larger proteins. 

Additionally, analysis of proteins with common functions reveals specific amino acid preferences, 

reflecting the underlying selection mechanisms and driving force for AAA diversification. In 
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summary, the data reported here provides important insight into the evolution of the present-day 

AAA, the genetic code, and previously overlooked origins of design principles in naturally occurring 

proteins. 

 

2.3 Introduction 

Proteins are complex and versatile biomolecular machines that perform a vast array of 

functions in nature, including highly selective chemical catalysis and critical regulatory as well as 

structural roles. This remarkable functional diversity is achieved through differences in the amino 

acid sequence and length (the primary structure) of proteins, which subsequently gives rise to 

different secondary, tertiary, and quaternary structures. Therefore, the amino acids utilized as 

building blocks of proteins play a central role in determining the three-dimensional structure and 

function of the respective protein, and ultimately reflect the evolution of proteins. The particular set 

of different amino acids utilized in each protein sequence is referred to as the amino acid alphabet 

(AAA) of the respective protein. Over the course of evolution, nature arrived at a standard set of 

amino acids with different physicochemical properties which are utilized differentially to derive 

specific protein structure(s) and function(s). For most of the present-day proteins this set consists 

of twenty genetically encoded proteinogenic amino acids (20 AAA). The primordial proteins likely 

consisted, limited by the amino acids available on primordial Earth, of a subset of this alphabet 

(46). This smaller subset of amino acids contains ten amino acids, alanine (A), aspartate (D), 

glutamate (E), glycine (G), isoleucine (I), leucine (L), proline (P), serine (S), threonine (T) and valine 

(V), and are known as the prebiotic amino acids. Although previous studies have demonstrated that 

smaller alphabet proteins consisting solely of prebiotic amino acids are able to form stable 

secondary and tertiary structures, it has been speculated that a progressive expansion of a smaller 

alphabet allowed increased conformational stability, specificity, and functional diversity (47). 

Several theories have been put forward regarding the evolution of the genetic code and the 

evolution of the present day standard amino acids. Theories on the origin and evolution of the 

genetic code suggest that the selection of codons in the genetic code is non-random and governed 

by concepts such as stereochemistry, coevolution and error minimization (48). Other theories such 
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as the Alanine World model propose that the present day standard amino acids are derivatives of 

alanine (49, 50). The RNA world hypothesis on the other hand states that the modern genetic 

system (consisting of DNA, RNA, and proteins) was preceded by a simple RNA-only genetic system 

in the early days, where RNA performed both storage of genetic information and catalytic functions 

(51-56). Alternatively, the frozen accident theory proposed by Francis Crick argued that the codons 

were probably brought into use gradually until all of the twenty standard amino acids were 

incorporated into the genetic code (57-60) and proposed that any change to this code is deleterious. 

Although these theories attempt to address how the present day genetic code may have evolved; 

it is still unclear how only the current twenty standard amino acids became incorporated into the 

proteins and why not others. Further, it is not fully understood if the standard 20 AAA constitutes 

an optimized minimal alphabet required for the functional and structural diversity of current life’s 

protein complement, or whether it contains redundancies, which if identified and removed could 

reduce the AAA complexity without jeopardizing the function of the resulting proteins and ultimately 

life as we know it.  

To address these questions, we performed an in-depth bioinformatics analysis of all protein 

entries from the UniProt/Swiss-Prot database and mapped the AAA complexity of proteins across 

all domains of life. We wanted to know how prevalent small AAAs are today and if a common 

smaller alphabet can be identified between proteins from different life forms. We therefore analyzed 

the distribution of each amino acid in AAAs across different proteins and protein sub-groups. By 

doing so, we shed light on the relation between the amino acid alphabet composition and the 

function of the protein. Furthermore, we identify trends describing the inclusion or exclusion of 

amino acids in the AAA, particularly from a function and species perspective. Lastly, we describe a 

generalizable smaller AAA for specific organisms which could be used for the forward engineering 

of novel proteins. 

 

2.4 Methods 

2.4.1 UniProt/Swiss-Prot derived protein sequence dataset: The Swiss-Prot database 

(release 2021_02) has been chosen as the source of protein sequence information for this work. A 
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combination of Boolean operators was used to extract all protein sequence entries only from the 

Swiss-Prot component of the UniProtKB, which constitutes our raw dataset. The raw dataset 

underwent the cleanup process mentioned below to obtain our final Swiss-Prot derived dataset. In 

this work, all polypeptides with a sequence length of 29 amino acids and longer are classified as 

proteins, although this cutoff is different and lower compared to the cutoff defined by several 

biochemistry authors (61). Our cutoff is based on the reported average length of small proteins in 

bacteria of 23 amino acids (62), and the sequence length of glucagon (smallest functional proteins 

in Eukaryotes) which is 29 residues.  

2.4.2 Scripting for file cleanup and analysis: All the scripts used for this analysis have been 

written in the Perl and Bash programming languages (63, 64). The first Perl script performs the 

initial process of removing duplicates and fragments to eliminate redundant and incomplete entries 

from the raw data (Appendix Figure 2.1). This process called data cleanup eliminated 93,675 

entries as fragments and duplicates. The final Swiss-Prot derived dataset contains 460,602 entries 

corresponding to only unique full length protein sequences, carried forward to the next step for 

analysis. The second Perl script counts the number of occurrences of each amino acid for each 

entry in our dataset. Thus, for each entry, the script returns the amino acids present in the AAA, the 

population of each amino acid and the list of absent amino acids. In the last part, the script compiles 

the list of all protein sequence entries and arranges them according to the AAA size, entries with 

largest alphabet sizes on top and entries with the smallest alphabets at the bottom. We have also 

designed our scripts to returns the UniProt identifier of the entries to make the identification and 

further studies of entries of interest easier. The output generated after the Perl analysis is the input 

to a bash (65) script for clustering the entries based on their AAA size. The bash script takes the 

output file from the previous Perl analysis and bins all the entries corresponding to a given AAA 

size, thus reporting the different AAA sizes and the number of protein entries with that particular 

alphabet size. The above stated combination of scripts is used to study the trends of amino acid 

preferences and exclusions observed in protein entries from different domains of life, functional 

sub-groups, or species. 
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2.4.3 Amino acid binning/grouping: To understand the exclusion trends of different amino 

acids in our overall Swiss-Prot derived dataset, the exclusion fraction values are used to bin the 

amino acids into separate groups (Table 2.2). A conservative cutoff of 0.01 exclusion fraction value 

(equal to 1%) is deemed appropriate to segregate the core amino acids from the rest. Since the 

total number of entries in our Swiss-Prot derived dataset is 460,602, one percent of the dataset 

would include 4,606 sequence entries. For any given amino acid this means that the given amino 

acid would need to be absent/present in 4,606 entries to change its amino acid exclusion fraction 

value by 0.01. Because the chances of such a large change happening at random is negligible, 

0.01 is established as the cutoff to segregate the core amino acids from other amino acids with 

higher exclusion fraction values. Subsequently, as the exclusion fraction values increase, the 

cutoffs between different groups starts becoming clearer with more drastic differences in the 

exclusion fraction values of the amino acids. 

 

 

2.5 Results 

As a starting point for studying the conservation and utilization of differentially complex amino 

acid alphabets in present-day proteins, we opted for the UniProtKB/Swiss-Prot database (66) as 

our source of protein sequences. Swiss-Prot (67) is the curated component of the UniProt database 

and contains high quality manually annotated protein sequence entries. Therefore, all protein 

sequence entries deposited in Swiss-Prot were included in our raw dataset (Appendix Figure 1). 

After removing the duplicates and fragments, our Swiss-Prot derived dataset contained a total of 

460,602 unique sequence entries which constitutes 82% of all Swiss-Prot entries. Subsets of these 

sequences were extracted for different protein classes to analyze the distribution of AAAs in 

proteins from different organisms and functional classes. 

 

2.5.1 Small alphabet proteins are widely found in nature: In order to investigate the utilization 

of various AAA sizes in present-day proteins, we performed a comparative analysis of the AAA 

variability across all proteins in the Swiss-Prot derived dataset (n=460,602) using in-house 
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developed scripts for the analysis (see Methods). We found that 11% (n=31,703) of all proteins are 

smaller alphabet proteins or SAPs (with a reduction of the AAA size by at least 2 amino acids, from 

20 AAA to 18 AAA) (Figure 2.1.A). The smallest AAA for any protein in our Swiss-Prot derived 

dataset is a 3 AAA (sperm protamine P3 from Murex brandaris (eukaryote, UniProt ID: P83213) 

where the 54 amino-acid protein is composed of only glycine, lysine, and arginine). 

 
Figure 2.1 – Amino acid alphabet distribution in protein sequence entries in the Swiss-Prot 
derived dataset (n=460602). A. The x axis shows the amino acid alphabet, and the y axis shows 
the population of proteins corresponding to the given amino acid alphabet. B. Bull’s eye plot 
showing the exclusion fraction (Ef) values for different amino acids. The amino acids with highest 
Ef values are shown in the outermost circle and vice versa. The core amino acids (with Ef value ≤ 
0.01) are shown on the innermost circle (prebiotic amino acids are underlined). 

 

2.5.2 Smallest alphabet sizes vary between domains of life: To identify the smallest alphabet 

size utilized by proteins, we analyzed the SAPs from different domains of life (Table 2.1). The 

smallest alphabet size among archaeal proteins in our dataset is 10 AAA (50S ribosomal protein 

L41e from Pyrococcus furiosus (Q8U232)). Similarly, the smallest alphabet size among the 

bacterial proteins in our dataset is 10 AAA (found in twelve proteins across nine different species 

of bacteria). For viruses, the smallest alphabet size is 8 AAA (DNA-binding protein from Autographa 

californica nuclear polyhedrosis virus (P06545)). Surprisingly, in our dataset the corresponding AAA 

size for a eukaryotic protein is 3 AAA, found in sperm protamine P3 from Murex brandaris (P83213).  
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Table 2.1 – Proteins with smallest AAA sizes across different domains of life. The size of the 
smallest alphabet is accompanied by the name of the protein(s), length of the protein sequence(s), 
and the parent organism(s)/species. 

 

Domain 
Smallest 
Alphabet 

Size 
Protein name Sequence 

length Organism 

Archaea 10 50S ribosomal protein L41e 37 Pyrococcus furiosus 
Bacteria 10 50S ribosomal protein L34 45 Prochlorococcus marinus 

  Cytochrome b6-f complex 
subunit 6 32 Mastigocladus laminosus 

  Lantibiotic paenibacillin 30 Paenibacillus polymyxa 
  Small toxic protein TisB 29 Escherichia coli 
  SPBc2 prophage-derived 

membrane protein YosA 39 Bacillus subtilis 
  Spore coat protein C 66 Bacillus subtilis 
  Uncharacterized membrane 

protein YczM 29 Bacillus subtilis 

  Uncharacterized membrane 
protein YuzJ 43 Bacillus subtilis 

  UPF0391 membrane protein 
GbCGDNIH1_2123 59 Granulibacter bethesdensis 

  UPF0391 membrane protein 
Pnap_0032 61 Polaromonas 

naphthalenivorans 
  UPF0391 membrane protein 

XC_2938 57 Xanthomonas campestris 

  UPF0391 membrane protein 
XOO1885 57 Xanthomonas oryzae 

Eukaryota 3 Sperm protamine P3 54 Murex brandaris 

Virus 8 DNA-binding protein 55 Autographa californica 
nuclear polyhedrosis virus 

 

 

2.5.3 Amino acid exclusion hierarchy reveals a ‘core’ set of amino acids: Based on the 

observation that smaller AAAs are frequently found in nature, we wanted to know if preferences 

exist with respect to which of the 20 proteinogenic amino acids are not included in the smaller 

alphabet proteins. If the amino acids are not excluded randomly but based on their, for example, 

biochemical and biophysical equivalency, a hierarchy should be identifiable in which certain amino 

acids are more likely to be excluded from a protein’s AAA than others. To this end, we analyzed the 

amino acid alphabets of the proteins in our dataset and calculated the probability for a particular 
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amino acid to be absent in smaller AAAs (18 AAA and smaller) and termed this value exclusion 

fraction (Ef). The exclusion fraction is defined as the fraction of protein sequences that do not 

contain that particular amino acid in their AAA. For example: in a dataset of 100 proteins, if a certain 

amino acid is absent in 45 proteins, its exclusion fraction would be 0.45. Our results show that every 

amino acid has a different exclusion fraction value (Table 2.2). Interestingly, these fall into 5 major 

classes when grouping amino acids with similar Ef values. The bull’s eye plot in Figure 2.1.B 

representing these 5 classes illustrates that the amino acids tryptophan (W) and cysteine (C) have 

the highest exclusion fraction values (Ef,W = 0.54 and Ef,C = 0.22, respectively) by placing them at 

the periphery of the plot. On the other hand, some amino acids are highly unlikely to be excluded 

from a smaller AAA, i.e., these amino acids are almost always present in proteins and have 

corresponding Ef values of less than 0.01 and are therefore located in the center of the bull’s eye 

plot (Figure 2.1.B). We describe this set of amino acids as the ‘core’ amino acids. In our Swiss-Prot 

derived dataset, this set of ten core amino acids includes alanine, glycine, isoleucine, lysine, 

leucine, proline, arginine, serine, threonine, and valine, representing a diverse range of 

physicochemical properties including aliphatic, charged, neutral, and non-polar. It is also interesting 

to note that out of the ten core amino acids, eight are prebiotic amino acids (indicated in bold in the 

list above), the set of amino acids presumed to be present on early Earth (47). It is surprising that 

the negatively charged prebiotic amino acids aspartate and glutamate are not found in this core 

group. The fact that the core set includes positively charged amino acids lysine and arginine (Ef,K = 

0.009 and Ef,R = 0.003, respectively), but no negatively charged amino acids might indicate an 

underlying requirement of the core set to facilitate interactions with negatively charged 

environments or interaction partners such as RNA. The latter would be consistent with the RNA-

world hypothesis (52, 68). Thus, our analysis shows that a general set of core amino acids can be 

identified in present-day proteins that contains amino acids with diverse physicochemical 

properties, most of which are prebiotic amino acids. Our results therefore strongly support the 

hypothesis that the present-day standard amino acid alphabet has evolved from the expansion of 

a smaller AAA that existed on early Earth. 
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Table 2.2 – Exclusion fraction (Ef) values of the twenty proteinogenic amino acids for the 
protein sequence entries in the Swiss-Prot derived dataset. The color coding of the amino acids 
and Ef values corresponds to the bull’s eye plot in Figure 2.1.B. 

 
Amino acid Exclusion fraction value 

W 0.54 
C 0.22 
H 0.067 
Y 0.038 
Q 0.023 
F 0.019 
N 0.017 
D 0.015 
E 0.012 
M 0.011 
K 0.0093 
P 0.0079 
I 0.0048 
T 0.0033 
R 0.0031 
A 0.0023 
G 0.0021 
V 0.0018 
L 0.0011 
S 0.0011 

 

2.5.4 The centrality of prebiotic amino acids is conserved across all domains of life: We 

subsequently wanted to investigate if the centrality of prebiotic amino acids as core amino acids 

identified above is a common feature of present-day proteins or is dependent on the evolutionary 

lineage. Therefore, we assessed the distribution of prebiotic amino acids in proteins from different 

domains of life (69, 70). For this, protein sequence entries from archaea, bacteria, and eukaryotes 

were analyzed with respect to their AAA exclusion fraction values. Because it has been argued that 

viruses represent the fourth domain of life (71), we also included sequence entries of viral proteins. 

Independently of the sequence origin (archaea, bacteria, eukaryote or viral), prebiotic amino acids 

have some of the lowest Ef values of ≤0.0052, ≤0.0071, ≤0.0066, ≤0.0088 in archaea, bacteria, 

eukaryotes, and viruses, respectively (Appendix Table 2.1, Figure 2.2). This suggests that the 

prebiotic amino acids indeed hold a central role in facilitating the structure and/or function of 

present-day proteins. We further investigated the distribution of prebiotic amino acids in smaller 



  

22 
 

alphabet proteins and observed that prebiotic amino acids are present even in proteins with the 

smallest alphabets of 3 AAA and 4 AAA (Appendix Figure 2). This indicates that prebiotic amino 

acids are likely foundational for protein folding and function even for present-day proteins with the 

smallest AAAs. Consistently with this and to add additional functionality to a protein, as the alphabet 

size increases, more prebiotic amino acids are included into the AAA of proteins (Appendix Figure 

2.2). It is interesting to note that all ten prebiotic amino acids become part of the AAA pool already 

when the alphabet expands from 3 AAA to only 6 AAA, which further supports their critical role for 

maintaining protein structure and/or function and suggests a certain degree of redundancy of 

biophysical properties that give rise to their utilization in different combinations. It is only when the 

AAA reaches a size of 13 that all ten prebiotic amino acids appear together in a single protein, 

further supporting the hypothesis of redundancy and the central role of the prebiotic amino acids 

for present-day proteins, regardless of the size of the AAA.  

Figure 2.2 – Exclusion fraction (Ef) values of the standard twenty amino acids in proteins 
from different domains of life. A. Archaea B. Bacteria C. Eukaryota D. Virus. The amino acids on 
the x axis are arranged in order of the general exclusion trend observed for the Swiss-Prot derived 
dataset (Table 2.2), with the prebiotic amino acids underlined. The core amino acids are highlighted 
on the x axis. The y axis shows the Ef values of different amino acids on a log scale. 

A B 

C D 
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2.5.5 Exclusion fraction trends identify methionine’s unique role in protein synthesis: In 

order to investigate if the observed trends in Ef values reported above represent general trends in 

protein evolution or are just the result of the aggregation of subsets with vastly different underlying 

trends (for example, organisms with different evolutionary origins), we calculated the amino acid 

exclusion fraction values for proteins from archaeal, bacterial, eukaryotic, and viral origins 

independently. Regardless of their origin, all proteins maintain comparable Ef values for individual 

amino acids (e.g. Glutamine: bacteria, Ef,Q = 0.010; archaea, Ef,Q = 0.012; eukaryotes, Ef,Q = 0.027; 

viruses, Ef,Q = 0.022) (Figure 2.2). The only exception to this trend is the amino acid methionine 

which is one of the most invariant amino acids in archaeal, bacterial, and viral sequences with Ef 

values of ≤0.001 (archaea and bacteria) and 0.004 (viruses) (Appendix Table 2.2). However, in 

eukaryotes, methionine has a roughly 40 times higher exclusion fraction value (Ef,M = 0.04) and is 

only the 16th most invariant amino acid. These Ef,M values are consistent with the unique role that 

the amino acid methionine plays for translation initiation (72, 73), as the corresponding amino acid 

to the canonical start codon. Although translation of a bacterial (and archaeal) mRNA commonly 

requires a methionine as the start codon, other start codons are also utilized (74-76) which is 

reflected in the fact that methionine is not completely conserved in the AAAs of archaeal and 

bacterial proteins (Ef,M = 1×10-4 in archaea and Ef,M = 7×10-4 in bacteria). Given the sensitivity of 

the Ef,M value to biases due to the translation initiation mechanisms, the reduced retention (reflected 

in a 40-fold higher exclusion fraction value) of methionine in the AAA of eukaryotic proteins suggests 

that non-standard initiation is even more common than previously suggested (77). On this 

background the observation that the exclusion fraction value of methionine in viral sequences in 

our data set, which contain only approximately 10% sequences of bacteriophages, is low 

suggesting that viral proteins primarily utilize methionine start codons for translation initiation by the 

host translation machinery. 

 

2.5.6 Exclusion fraction values as a measure of AAA complexity is sensitive to the functional 

sub-group of a protein: Previous studies have suggested that the present-day AAA complexity 

has evolved to facilitate the diversity of functions performed by proteins (2, 16, 78). Therefore, we 
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wanted to investigate if the Ef values of amino acids in proteins with different functions and from 

different domains of life shared similar amino acid exclusion trends. To this end, we extracted sub-

groups of proteins from our dataset based on specific function (Appendix Figure 2.3), such as 

proteins with enzymatic activity, ribosomal proteins, single domain antibodies (sdAbs), 

transmembrane proteins, flavoproteins, and nucleotide-binding (nt-binding) proteins to determine 

the amino acid exclusion frequencies within each sub-group. To compare these values, we then 

calculated the normalized exclusion fraction (EfN) of amino acids (normalized exclusion fraction is 

the exclusion fraction of each amino acid in the given protein sub-group divided by the exclusion 

fraction value of that amino acid in the overall dataset) (Figure 2.3). Results reveals that proteins 

with different functions roughly follow the general trend of amino acid exclusion observed for the 

overall Swiss-Prot derived dataset, with predominantly low EfN values for the core and prebiotic 

amino acids (Table 2.3).  However, each sub-group has a specific set of amino acids with high EfN 

values such as arginine in transmembrane proteins (EfN,R = 2.6), consistent with their corresponding 

specialized function (Table 2.4). For the sub-group containing proteins with enzymatic activity, the 

EfN values show a tendency to preserve a set of amino acids with diverse physicochemical 

properties. Ribosomal proteins are the only sub-group that does not contain aromatic amino acid 

in their core set. Interestingly, their core set comprises methionine, lysine, and arginine which, 

although they are not prebiotic amino acids, have normalized exclusion fraction values (EfN ≲ 0.1) 

so small that they are almost completely conserved across all ribosomal proteins (EfN,M = 0.0027, 

EfN,K = 0.0044, EfN,R = 0.14). 

In summary, we identified that the amino acid exclusion trends are similar across different 

functional sub-groups of proteins. However, the EfN values of individual amino acids vary between 

protein functional classes. Investigation of the size and composition of the AAA of proteins from 

different sub-groups analyzed here shows that the preference for selecting and excluding amino 

acids is related to the functional diversity of the respective protein class. 
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Figure 2.3 – Normalized exclusion fraction (EfN) values for the standard twenty amino acids 
in different protein sub-groups. Amino acids are arranged in the order of the EfN values observed 
for all proteins in the Swiss-Prot derived dataset (prebiotic amino acids are underlined). 

 
 
 

Table 2.3 – Normalized exclusion fraction (EfN) values of the twenty proteinogenic amino 
acids in different protein sub-groups. The leftmost column is arranged in the decreasing order 
of exclusion fraction (Ef) values observed for amino acids in the Swiss-Prot derived dataset 
(prebiotic amino acids are shown in orange). An exact value of zero is denoted by 0. 
 

Amino 
acid 

Enzymatic 
proteins 

Ribosomal 
proteins sdAbs Transmembrane 

proteins 
Flavo-

proteins 

nt-
binding 
proteins 

W 1.3 0.96 0.0047 0.54 1.1 1.4 

C 0.99 1.2 0.023 1.3 1.7 1.0 

H 0.40 0.78 13.8 2.0 0.26 0.24 

Y 0.39 1.34 0.034 1.1 0.044 0.21 

Q 0.48 0.88 0 2.0 0.42 0.29 

F 0.22 1.7 0 0.19 0 0.068 

N 0.69 0.56 0.30 2.3 0.13 0.32 

D 0.079 1.4 0.087 3.0 0 0.030 

E 0.024 1.3 0 2.4 0 0.0026 

M 0.077 0.0027 4.4 0.076 0 0 
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Amino 
acid 

Enzymatic 
proteins 

Ribosomal 
proteins sdAbs Transmembrane 

proteins 
Flavo-

proteins 

nt-
binding 
proteins 

K 1.0 0.0044 0.28 4.0 0.42 0.24 

P 0.32 1.2 0 1.7 0.072 0.053 

I 0.15 0.84 1.8 0.34 0.078 0.017 

T 0.15 1.2 0 1.5 0 0.020 

R 0.14 0.14 0 2.6 0.18 0.013 

A 0.11 0.75 0 1.1 0 0.042 

G 0.11 0.53 0 2.1 0 0.10 

V 0.025 0.58 0 0.93 0 0.017 

L 0.0078 1.2 0 0.017 0 0 

S 0.33 1.0 0 2.1 0 0.17 

 

2.5.7 Amino acid alphabet distribution rules are universal for all species: To identify whether 

the evolutionary age affects amino acid distribution, particularly the prebiotic ones, we investigated 

the proteins from four prokaryotic (Escherichia coli, Salmonella, Pseudomonas, Aeromonas) and 

mammalian (Homo sapiens, Pan, Rattus, Macaca) species, two evolutionarily distant lineages in 

the tree of life (Figure 2.4, Appendix Table 2.3, 2.4). We observed that 8±3% of the proteins in the 

prokaryotic set are small alphabet proteins whereas 5±2% of mammalian proteins are SAPs. This 

finding indicates that the AAA complexities are comparable and have not changed over the course 

of evolution. The only difference lies in the Ef values of proline and isoleucine. In E. coli proteins, 

Ef,P = 0.014, whereas in H. sapiens Ef,P = 0.005. Therefore, according to the cutoffs defined in Table 

2.2, proline is a part of the core set in H. sapiens, but not in E. coli. On the other hand, it is interesting 

that isoleucine is highly conserved in E. coli proteins with Ef,I = 0.003. This is probably because 

isoleucine is oddly rich in the number of alternative routes (nine, to be specific) for its biosynthesis 

in E. coli (79). Furthermore, it is also evident that a core set of amino acids is dominated by the 

presence of prebiotic amino acids. Over the course of time and evolution, the AAA size has 



  

27 
 

expanded with the addition of amino acids with specific properties to increase the functional space 

accessible to the resulting protein and ultimately to life, also for evolutionarily old branches of the 

evolutionary tree. The latter suggests that expansion of the AAA predates the emergence of 

modern-day organisms independent of the age of the respective branch in the tree of life. 

 
 

 
 
 
Figure 2.4 – Amino acid alphabet distribution for all proteins in E. coli and H. sapiens. A and 
B: The x axis shows the amino acid alphabet, and the y axis shows the population of proteins 
corresponding to the given amino acid alphabet in E. coli and H. sapiens, respectively. C and D: 
Bull’s eye plots showing the exclusion fraction (Ef) values for different amino acids in E. coli and H. 
sapiens, respectively. The amino acids with highest Ef values are shown on the outermost circle 
and vice versa. The core amino acids (with Ef value ≤ 0.01) are shown on the innermost circle 
(prebiotic amino acids are underlined). 
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2.5.8 AAA size increases with protein length: In order to address the question regarding the 

driving force behind a gradual expansion of the amino acid alphabets (in addition to offering further 

physicochemical features and functional groups to facilitate additional roles, e.g., catalysis), we 

wanted to know if any correlation exists between the AAA complexity and the length of the protein 

utilizing a more complex AAA. To this end we calculated the protein length distributions for a given 

amino acid alphabet size (Figure 2.5). Interestingly, a majority of the proteins utilizing alphabet size 

smaller than 17 AAA rarely exceed protein sequence length of 100 amino acids. When the AAA 

size reaches 17, an increasing number of protein sequences are of length of more than 100 

residues with almost all being above the length of 100 residues in proteins with 20 AAA (46% of 17 

AAA proteins, 74% of 18 AAA proteins, 92% of 19 AAA proteins, and 99.5% of 20 AAA proteins). 

Notably, the distribution of protein sequence length is not smooth for a number of smaller AAA, 

such as the 10 AAA proteins which exhibit a trimodal distribution with the first, second and third 

modes respectively centered at lengths of 35, 53 and 65 residues, respectively. The latter might 

reflect preferences for domain sizes available to proteins based on these alphabets. 

By analogy to the hypotheses that proposed a gradual expansion of the amino acid 

alphabet (16, 47), the observed correlation between AAA complexity and increased protein 

sequence length suggests that the present-day long polypeptide sequences of proteins evolved 

from shorter peptides. This in turn raises the mechanistic question of why larger AAAs (>16) are 

required for this. One possibility is the need for increased availability of amino acids with related 

physico-chemical properties. This would facilitate the synthesis of proteins from a pool of 

“monomers” where these monomers are less likely to be depleted. Such an availability would allow 

for longer sequences and avoid unwanted lag due to stalling or misincorporation. Another possibility 

is that the addition of more functional groups allowed interactions between the secondary structures 

or protein domains within a longer peptide that are conducive to sequential reactions, or for the 

formation of multidomain proteins. 
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Figure 2.5 – Violin plot showing the relation between protein sequence length and amino 
acid alphabet size. The x-axis shows the AAA size of the proteins, and the y-axis shows the 
sequence length of proteins in log scale. For each AAA size, the shape of the violin plot shows the 
distribution of the entries corresponding to different sequence lengths. A wider shape indicates a 
cluster of entries with a similar sequence length, and the dotted lines shows the first, second and 
third modes from bottom to top respectively. 

 

2.6 Discussion 

Even after decades of protein evolution studies, it is still debatable whether the current AAA 

has been present since life first emerged on Earth or whether it is a product of evolution. If it is the 

latter, several theories such as the evolution of the genetic code, the alanine world hypothesis, etc. 

put forward scenarios hypothesizing how the evolution of the genetic code may have occurred (48-

53, 57, 59). Particularly for the evolution of amino acids, it has been argued that the prebiotic amino 

acids made up the primary AAA set to appear on Earth, which gradually expanded to include more 

amino acids and evolved into the present day standard AAA (36, 47, 80). As much as these 

hypotheses and speculations seem correct, there has been little to no evidence to confirm these 

theories. In this work, we have addressed these questions by performing an in-depth bioinformatic 

study on roughly half a million protein sequences, a dataset derived from the UniProt/Swiss-Prot 

database. Analysis of the amino acid alphabets of protein sequences in our dataset puts on display 

the diversity of AAA explored by nature to design proteins, which ranges from AAAs as large as 
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twenty to as small as a three amino acids. The findings reported in this work support the gradual 

evolution of the AAA of proteins. Proteins with smaller AAAs tend to have smaller sequence length, 

which is in accordance with the fact that early proteins likely consisted of short length peptides. 

Moreover, as the length of the protein increases, the AAA size also increases, consistently with 

early proteins having been short sequence peptides which were composed of a smaller amino acid 

alphabet, presumably the prebiotic ones, as proposed by previous studies. Gradually over time, 

the amino acid alphabet pool of the proteins continued getting bigger with the incorporation of 

additional amino acids, perhaps to expand the structural and functional landscape of proteins, 

which also permitted an increase in the sequence length. On that note, it may be theorized that the 

alphabet expansion is perhaps occurring even in the present world where we witness the inclusion 

of the twenty-first and twenty-second amino acids, namely selenocysteine and pyrrolysine, in the 

amino acid alphabets of some present-day proteins (6, 16, 81-83), although further studies need to 

be performed to test such theories.  

In contrast to the frozen code theory which states that the genetic code is universal, and any 

attempt to change it would be lethal, our results show that the AAA of proteins demonstrate a great 

extent of flexibility. Our findings reveal that small alphabet proteins are abundantly found in nature, 

thus proving that the present-day standard alphabet is not the only possible alphabet size and that 

smaller alphabet proteins exist in abundance. Additionally, the exclusion fraction values also show 

that some amino acids such as tryptophan and histidine have higher chances of being absent from 

the alphabet, whereas others such as the prebiotic ones are hightly conserved in the alphabet. 

Such a preferential trend of amino acid exclusion supports the theory of protein evolution facilitated 

by the gradual inclusion of amino acids into the alphabet. The discovery that prebiotic amino acids 

are dominantly conserved in proteins from all domains of life suggests that the prebiotic amino 

acids have always been and continue to be an integral part of all proteins regardless of the 

evolutionary age of the parent organism or species. It is notable that the prebiotic amino acids do 

not include any positively charged amino acid. Since one of the most important functions of the 

positively charged amino acids is to facilitate ribosome activity, it can be speculated that these 

amino acids were not vitally important in the prebiotic scenario because the ribosomes may not 
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have come into existence yet. Such a scenario contradicts the RNA-world hypothesis because if 

RNA came first, then the original peptide-bond catalysis machinery would have been a ribozyme, 

i.e., a primitive ribosome. 

Investigation of the amino acid alphabets of proteins with diverse functions also revealed that 

the amino acid composition is, to an extent, reflected in the function of the protein. Findings such 

as conservation of positively charged amino acids in ribosomal proteins, non-polar amino acids in 

transmembrane proteins etc. establish that specific amino acids are preferred to promote a specific 

function. Additionally, a strong conservation of the prebiotic amino acids in proteins with diverse 

functions emphasizes that the prebiotic amino acids form the core of proteins, which along with 

other amino acids, allow the proteins to explore diverse functions. Lastly, to tie our findings into the 

current trend of designing engineered strains or species, we investigated amino acid distribution 

and their exclusion trends in species that lie on two extremes of the evolutionary scale, to identify 

if the design strategies differ for different species. Results such as similar trends of amino acid 

exclusion, conservation of prebiotic amino acids in the alphabet, and a similar set of core amino 

acids point towards the fact that even over a course of several million years, some amino acids are 

preferred and preserved by nature in all organisms ranging from the most primitive ones to the 

most evolved ones. 

Understanding the evolution of the AAA might help us to design novel proteins as well as to 

reduce the amino acid complexity to facilitate protein engineering. Results also suggest that the 

alphabet design criteria followed by nature is fairly conserved across species and can be utilized 

for protein engineering and synthesizing small alphabet proteins for an organism in a near natural 

manner (Figure 2.6). Subsequently, such SAPs would help design reduced alphabet strains, 

capable of performing cellular functions using SAPs. This will not only reduce the energy and 

resource requirement of the organism but will also facilitate its growth and proliferation in an 

environment where the availability of resources is sparse, such as in space or on a remote planet. 

Taken together, our findings demonstrate that not all proteins require all twenty standard amino 

acids, and possibly the standard alphabet we observe today is required only to facilitate 

protein-function complexity and/or rapid and error-free synthesis. 
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Figure 2.6 – Protein design principles utilized by nature. The three main categories of our 
analysis are shown in three distinct colors and include proteins from different domains of life (84), 
proteins with different functions (green), and proteins from specific species (85). The central 
hexagon represents the prebiotic amino acids (A, D, E, G, I, L, P, S, T, V), which make the core of 
the AAA of all proteins. The outermost circle in black shows the classes analyzed within a category 
and the second circle with brown text show the smallest AAA size possible for the given protein 
sub-group. The lengths of the pink arrows show the evolutionary age of the lineage (small = evolved 
early; long = evolved late). The radially arranged amino acids are the ones important in the AAA of 
the given sub-group apart from the prebiotic AAs, based on their exclusion fraction values. 
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CHAPTER 3: MOLECULAR DYNAMICS GUIDED INVESTIGATION OF NRP2 REVEALS 

LARGE-SCALE MOTIONS REQUIRED FOR HCMV PENTAMER PROTEIN BINDING 

 

3.1 Preface 

This chapter is an advanced draft of a format-neutral manuscript being prepared for publication. 

This chapter showcases our findings on how the structural dynamics of Neuropilin 2 is exploited by 

the Human Cytomegalovirus to gain entry into the host cells. The research was conceptualized by 

Hans-Joachim Wieden, me, and Dustin Smith. I carried out the homology modeling and structure 

validation of the Nrp2-Ca2+ and apo Nrp2 systems, performed MD simulations, subsequent 

trajectory, and principal component analysis, and wrote majority of the manuscript. Dustin Smith 

performed the backbone dihedral angle analysis, wrote associated sections of the manuscript, and 

contributed to the overall development of the manuscript. Hans-Joachim Wieden aided in the 

concept development, data analysis and writing. 

 

3.2 Abstract 

Neuropilins 1 and 2 (Nrp1 and Nrp2) are essential cellular receptors in vertebrates that interact 

with a variety of molecules to facilitate downstream signaling pathways. These receptors can be 

bound and exploited by viruses such as HCMV and SARS-CoV-2, enabling viral entry into a host 

cell and allowing viral propagation. The HCMV pentamer has been shown to form an interaction 

interface with the Ca2+-containing loop of domain a2, as well as a loop region in domain b2 of Nrp2. 

However, in order for the HCMV pentamer-Nrp2 complex to form, a large-scale conformational 

rearrangement to displace domain a1 from the a2b1b2 core in Nrp2 is required. Here we employ 

molecular dynamics simulations to show for the first time an opening motion sampled by the a1 

domain of Nrp2, which exposes the surface required for the HCMV pentamer-Nrp2 complex to 

form. Our findings demonstrate that domain a1 opening is a product of strongly coordinated motion 

of the Nrp2 core formed by the a2b1b2 domains that repel and trigger the a1 domain opening. We 

speculate that the HCMV pentamer can gain access to the open form of Nrp2 via spontaneous 
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displacement of a1, or by “pushing a button” in Nrp2 which facilitates the a1 domain displacement. 

The insights of Nrp2 structural dynamics reported in this work have broad implications for the 

development of antiviral therapies for Nrp2, which are also expandable to homologous Nrp1. 

 

3.3 Introduction 

The Neuropilin (Nrp) family of transmembrane proteins is comprised of essential multifunctional 

cell surface receptors in vertebrates, playing key roles in several signaling pathways (86, 87). 

Sharing 44% sequence similarity, Nrp1 and Nrp2 serve as receptors for a wide range of factors 

and ligands such as Vascular Endothelial Growth Factor (VEGF) receptors, semaphorin ligands, 

and other receptors to promote downstream signaling  (88-91). Recent studies have reported that 

Nrps can be exploited by several viruses such as Human Cytomegalovirus (HCMV), Lujo virus 

(LUJV), and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) to gain entry into 

the host cells (92-94). Additionally, the pleiotropic nature of nrp gene causes dysregulation leading 

to many pathological disorders such as cancer and cardiovascular diseases (95-98). The 

involvement of both Nrp1 and Nrp2 in such a wide range of physiological, pathological and signaling 

roles (88, 98) thereby sparks a great deal of scientific interest as understanding their structure, 

dynamics and function may potentially guide the development of therapeutic strategies. 

The extracellular region of Nrp2 is composed of five domains: the a1 and a2 (a1a2) domains 

essential for semaphorin binding,  b1 and b2 domains (b1b2) necessary for VEGF binding, and 

lastly the c domain required only for receptor dimerization (91). Previous findings have reported 

that the a1a2 domains belong to a family of CUB domains (99, 100), known to contain a conserved 

Ca2+ binding site. Though both a1 and a2 domains belong to the CUB domain family, the Ca2+ 

binding site has only been reported in the a2 domain, a conserved feature that is shared across 

distantly related species (91, 101-104). A recent study has shown that a loop region in the a2 

domain coordinates a Ca2+ ion, which in turn interfaces with the HCMV pentamer protein (105). 

Structural studies on the Nrp2 fragment (a1a2b1b2) in complex with antibodies shows that Nrp2 

undergoes an unexpected domain rearrangement in which the domains a2, b1, and b2 form a 
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tightly packed core and where the a1 domain is displaced away from the core (91). Additionally, 

the interface between the a1 domain and the a2b1b2 core is small, non-conserved and lacks strong 

interactions (91). In summary, the aforementioned studies indicate the a1 domain of Nrp2 is flexible 

and its displacement is required in order to form the HCMV pentamer-Nrp2 complex. It is therefore 

important to understand the conformational dynamics of this motion as it has implications in 

transmembrane signaling and mediating viral cell entry, as previously proposed (92).  

To further understand the role of the underlying conformational dynamics in Nrp2 function with 

respect to the formation of the HCMV pentamer-Nrp2 complex, we employed molecular dynamics  

simulations and downstream computational analyses to study the structural flexibility of Nrp2. To 

produce a comprehensive suite reflecting the conformational flexibility of Nrp2, we examined the 

dynamic properties of the protein in the presence and absence of the Ca2+ ion in the Ca2+-containing 

loop of the a2 domain. Examination of Nrp2 in the presence and absence of Ca2+ allowed 

observation of equilibrium-shifts in the dynamic properties at sites both proximal and distal to the 

Ca2+-binding site upon Ca2+-binding, including in the a1 domain. Revealed for the first time, we 

describe a large-scale opening and rearrangement of the a1 domain with respect to the a2b1b2 

core along a hinge formed by the a1a2 loop, providing a mechanism by which the a1 domain may 

be displaced to form the HCMV pentamer-Nrp2 complex. Together, these results provide insight 

into the dynamic properties of Nrp2 and other homologous receptors, detailing how these dynamic 

motions are critical to their function and may be exploited for viral recognition. 

 

3.4 Methods 

3.4.1 Homology modeling and structure validation: The amino acid sequence for apo Nrp2 

was retrieved from the Universal Protein Resource Knowledgebase (106) from the UniProt entry 

number O60462. The Expasy SWISS-MODEL (107) was used to generate the homology model of 

a1a2b1b2 domains of apo Nrp2 using a crystal structure of Nrp2 a1a2b1b2 domains in complex 

with a semaphorin-blocking Fab (PDB ID: 2QQK) as the template structure obtained from RCSB 

Protein Data Bank (PDB) (108). The four-domain Nrp2 homology model was validated using 

Ramachandran plots (109). The homology model generated for the apo Nrp2 showed a high 
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percentage of residues in the allowed regions of the Ramachandran plot with the Global Mean 

Quality Estimation (GMQE) value of 0.87, reflecting a high-level of confidence in the generated 

model (110, 111). 

 

3.4.2 Ca2+ ion placement in the Ca2+ binding site: According to previous reports, Ca2+ binds in 

the Ca2+-binding loop of the a2 domain of Nrp2 (105) and is coordinated by the side chains of three 

acidic amino acids Glu197, Asp211, and Asp252 and two main chain carbonyl oxygens of Ala254 

and Val255 (91). Using this information, our model structure of Nrp2-Ca2+ system was generated 

using the metal addition protocol in Pymol (112), by strategically placing the Ca2+ ion at the specified 

position in the a2 domain (Figure 3.1.A). The atomic parameters and topology description for the 

Ca2+ ion were prepared using the Ca2+ parameters protocol provided in the AMBER molecular 

dynamics package (113). 
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Figure 3.1. – Overview of the structure of the Nrp2 extracellular domains a1a2b1b2. A. The 
domains have been sequentially colored from blue (domain a1) to red (domain b2). The loop region 
between domain a1 and domain a2 is referred as a1a2 loop and is colored in green. The Ca2+ ion 
is shown as a grey sphere in the Ca2+ binding site of domain a2. The positive charge of the Ca2+ 

ion interacts with the side chain of acidic amino acids and backbone carbonyl oxygens of aliphatic 
amino acids (inset). B. Sequence representation of the a1a2b1b2 domains of human Nrp2. Residue 
numbering is similar to numbering in crystal structures reported previously. Domains are 
represented using colored bars corresponding to the domain colors in panel A. Amino acids are 
color coded based on the secondary structure (blue: sheets, orange: helices, grey: intra-domain or 
inter-domain loops and turns). Amino acids crucial for Ca2+ binding and interaction with the HCMV 
pentamer protein are highlighted in cyan. 
 

A 

B 
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3.4.3 Molecular dynamics simulations: The Nrp2-Ca2+ and apo Nrp2 MD simulation systems 

were prepared using the tLEaP module of the AMBER 16 program package and the FF14SB force 

field (114). The total charges on the systems were neutralized using sodium (Na+) ions and the 

proteins were solvated in an explicit TIP3P cubic water box with periodic boundary conditions, 

ensuring that the edge of the box extends at least 10 Å from the edge of the solute in each direction. 

A nonbonded cut-off of 10 Å was applied and the SHAKE algorithm was used to constrain hydrogen 

atoms. The solvent molecules and ions were initially minimized with 2500 steps of steepest descent 

followed by 2500 steps of conjugate gradient minimization, while the proteins were constrained 

using a 50 kcal mol–1 Å–2 force constant. Both systems were then minimized using 2500 steps of 

unrestrained steepest descent, followed by 2500 steps of unrestrained conjugate gradient 

minimization. Subsequently, the systems were heated from 0 K to 300 K during a 100 ps solute 

restrained (2 kcal mol–1 Å–2) heating phase, with a 2 fs time step. Thereafter, 10 ns unconstrained 

trial MD simulations were performed under NPT conditions using a 2 fs time step. Finally, using the 

conformation of the last frames of the trial MD runs as the starting point, 100 ns MD production 

simulations were performed on 20 replicates of the Nrp2-Ca2+ and apo Nrp2 systems using a time 

step of 2 fs and the pmemd module of the AMBER 16 program package (114). The cpptraj program 

was used to combine the resulting MD data to generate trajectories (115) and to calculate the root 

mean square deviation (RMSD) and root mean square fluctuation (RMSF) values of all replicates 

for both the Nrp2-Ca2+ and apo Nrp2 systems (data not shown). Due to the large size of the systems 

investigated (90,427 atoms including water), only three replicates for each Nrp2-Ca2+ and apo Nrp2 

systems were selected for an extended simulation time of 1 µs, by using the RMSF trends for the 

100 ns simulations as the selection criteria. All replicates of the Nrp2-Ca2+ system demonstrated 

comparable RMSF trends (Appendix Figure 3.1.B), therefore three replicates were selected at 

random to perform extended simulations. On the other hand, one of the apo Nrp2 replicates 

demonstrated significantly higher RMSF values in comparison to the other replicates, and therefore 

was selected, whereas all the other replicates demonstrated similar RMSF trends, so two of these 

replicates were selected at random for further extended simulations. Together, 20 shorter replicates 

and 3 longer extensions resulted in a total of 5 µs of simulation data collected for each of the Nrp2-
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Ca2+ and apo Nrp2 systems. The angle, and axis of rotation describing the predominant opening 

motion of apo Nrp2 was quantified using the DynDom program (116, 117). The degree of “tilting” 

observed in domain a1 during the opening motion (i.e. rotation about an alternative axis) was 

examined via in-house developed algorithms adapted from prior publications (118). RMSF heat 

maps were constructed using Pymol (112). Visual inspection of the MD trajectories was performed 

using the molecular visualization software VMD (119).  

 

3.4.4 Backbone dihedral angle analysis: Backbone amino acid dihedral angles for Ca2+-bound 

and apo Nrp2 simulations were adapted from workflows described previously (120-122). Phi (Φ, 

between atoms C-N-Cα-C) and psi (Ψ, between N-Cα-C-N) angles were calculated using Tcl scripts 

in VMD (122) and transformed into a 180 x 180 matrix for each amino acid position (matrices each 

contained 32,400 bins, each bin 2° × 2°). To calculate the number of dihedral microstates populated 

for a given amino acid position, the number of bins with non-zero occupancy were counted using 

an in-house developed R script. Data reported in Figure 3.3.J is coloured according to percentage 

change in the number of microstates, where ACa indicated number of occupied bins in the Nrp2-

Ca2+, and AApo indicated the number of occupied bins in apo Nrp2 (Equation 1). Changes with 

magnitude less than 10% in the number of dihedral microstates for a given position were coloured 

in grey. As well, amino acid positions where changes in number of dihedral microstates were less 

than the magnitude of the standard deviation between replicates (i.e., a 0% change within error) 

were also coloured grey. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑ℎ𝑃𝑃𝑑𝑑𝑃𝑃𝑒𝑒𝑒𝑒 𝑚𝑚𝑑𝑑𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑚𝑚 = (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝐴𝐴𝐶𝐶𝐶𝐶)
𝐴𝐴𝐶𝐶𝐶𝐶

×  100%          (Equation 1) 

Backbone dihedral populations in Nrp2-Ca2+ vs. apo Nrp2 were further compared by 

quantifying the amount of non-overlapping populations on their respective Ramachandran plots. 

The percentage of non-overlapping Φ/Ψ angle populations between the Nrp2-Ca2+ vs. apo Nrp2 

was calculated using the sum of the absolute difference between the Ca2+-bound [BCa] and the apo 

[BApo] matrices, resulting in a single value for each amino acid position. Values for each amino acid 

position were divided by the theoretical maximum value obtainable (1,000,000) and multiplied by 
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100% to determine the percentage of non-overlapping Φ/Ψ angles (Equation 2). Data reported in 

Figure 3.3.K illustrates colour-coded values for each individual amino acid, where grey values 

represented percentage non-overlapping Φ/Ψ angles <10% or a percentage non-overlapping Φ/Ψ 

angles whose standard deviation between three replicates was larger than the percent non-

overlapping Φ/Ψ angles observed (i.e., 0% within error). 

                  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑎𝑎𝑃𝑃 𝑃𝑃𝑚𝑚𝑃𝑃 − 𝑚𝑚𝑜𝑜𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑑𝑑𝑃𝑃𝑎𝑎 Φ/Ψ 𝑒𝑒𝑃𝑃𝑎𝑎𝑒𝑒𝑃𝑃𝑚𝑚 =
∑�[𝐵𝐵𝐶𝐶𝐶𝐶]−�𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴��

1,000,000
×  100%       (Equation 2) 

 

3.4.5 Principal Component Analysis: Principal component analysis (PCA) (123) was 

employed to detect any correlations (positive or negative) between the movement of the residues 

in the apo and Nrp2-Ca2+ systems. To this aim, we used the protein dynamics (ProDy) interface 

available in the normal mode wizard option under the Extension tab on VMD (119). On the ProDy 

interface window, we selected the PCA calculation option and provided the parameter topology files 

and the combined trajectory (netcdf) files of the two systems as the input. The PCA calculation was 

submitted thereafter for each replicate of both Nrp2-Ca2+ and apo Nrp2 systems. The generated 

output included the residue cross-correlation heatmaps for each replicate of the two systems. 

 

3.5 Results 

3.5.1 Molecular dynamics simulations of apo Nrp2 reveal large-scale hinge-bending 

motion displacing domain a1 from the a2b1b2 core: Previous studies have reported that Nrp2 

can undergo a large-scale rearrangement where domain a1 moves away from the a2b1b2 core 

(91, 124), however, the mechanism by which this motion occurs remained unknown. We 

hypothesized that such a domain rearrangement would likely be rare to observe on the timescale 

of 1 µs MD simulations.  We therefore performed MD simulations on the Nrp2-Ca2+ and apo Nrp2 

to investigate whether the presence or absence of Ca2+ allows for the exploration of additional local 

or/and global motions on the conformational landscape of Nrp2. RMSD and RMSF analysis of both 

the Ca2+-bound and apo Nrp2 simulations revealed that the systems adopted stable conformations 
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throughout, and that domain a1 displayed a high degree of inherent flexibility (Appendix Figures 

3.1-3.4). For the apo Nrp2 system, one simulation replicate displayed an exceptionally large 

increase in RMSD over the course of the simulation in addition to high RMSF values in domain a1 

(Appendix Figures 3.2A,B). Upon further inspection, we noted that the apo Nrp2 simulation sampled 

a large-scale opening motion (hinge-bend motion), whereby domain a1 moved away from the 

a2b1b2 core of Nrp2 (video data not shown). The opening motion described here occurred in 

several discrete “steps,” whereby stable intermediates formed as the simulation trajectory moved 

from the “closed” to “open” state of Nrp2 (Appendix Figures 3.2A, C-F). The aforementioned 

intermediate states showed a stepwise breaking of interactions between domain a1 and the a2b1b2 

core, followed by increased flexibility at the hinge region via disruption of intra-hinge hydrogen 

bonds (Appendix Figures 3.2C-F). Together, these results demonstrate that domain a1 of Nrp2 can 

be spontaneously displaced from the a2b1b2 core in a stepwise fashion via a hinge-bend motion. 

To further quantify the extent of the a1 domain opening motion, the structural file for the 

“open” state of apo Nrp2 was superimposed on the starting structural model of apo Nrp2 (Figure 

3.2). A pair of spatially close residues was selected from the a1 domain (Q53) and b2 domain 

(Y458) in the starting structure, and the distance between the two residues was measured to be 

14 Å in the “closed” state and increased to 63 Å in the “open” state (Figure 3.2). To further quantify 

the angle of rotation upon a1 opening, the DynDom program (116, 117) was employed which 

showed that the a1 domain rotation takes place along a hinge formed by residues of the a1a2 loop. 

The a1 domain is therefore rotated along the hinge by an angle of 89° compared to its starting 

orientation (Figure 3.2). In addition to the domain rotation about the axis defined in Figure 3.2, 

domain a1 also “tilts” about an additional axis by approximately 15 degrees as Nrp2 transitions 

from its closed to open state (Appendix Figures 3.5C, D). These observations illustrate, in atomistic 

detail, the movements required to displace domain a1 from the a2b1b2 core, which is essential to 

the formation of the Nrp2-HCMV pentamer complex. However, in order to uncover further details 

of how such a domain rearrangement could be triggered in nature, we examined the molecular 

determinants required for HCMV binding in our Nrp2 simulations. 
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Figure 3.2 – Visualization of the Nrp2 hinge-bending motion whereby domain a1 “opens” 
away from the a1b1b2 core along the a1a2 loop. A. The open structure for apo Nrp2 Replicate 
3 (purple) is obtained from the MD trajectory frame at 300 ns and is superimposed on the starting 
structure (grey). The distance between Q53 and Y458 of the a1 domain and b2 domain, 
respectively, is measured in the two structures. The black solid arrows show the distances between 
the two residues color coded for the close structure (14 Å) and the open structure (63 Å). For the 
a1 domain opening motion to occur, the a1a2 loop acts as the hinge and forms the axis of rotation 
as shown by the black dashed arrow. The brick-colored arrows show the angle between the a1 
domains of the closed and open structures by taking the difference in the spatial position of Q53 
around the hinge in the two structures. B. Top-down view of the hinge-bending opening motion of 
the a1 domain around the axis of rotation formed by the a1a2 loop, and C. Side view of the hinge-
bending opening motion. 
 

3.5.2 Ca2+ binding alters molecular determinants required for HCMV pentamer binding in 

Nrp2: After examining the flexibility of Nrp2 in both its Ca2+-bound and apo states, we sought to 

further examine the molecular determinants required for HCMV pentamer binding to Nrp2 to gain 

insight into the dynamic properties of these regions and how they may contribute to complex 

formation with the HCMV pentamer. Ca2+ binds Nrp2 through a combination of side chain and 

backbone interactions with amino acids within a loop region of domain a2 (see Section 3.2.2, Figure 

3.1.A). A recent study has shown that Ca2+ is required for Nrp2 binding by the HCMV pentamer, 

and that the Nrp2 Ca2+-containing loop in domain a2 along with a loop in domain b2 (Residues 456-

A B 

C 
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461) form a sizable portion of the binding interface ((105), Figure 3.3.A-C). However, in order for 

the HCMV pentamer-Nrp2 complex to form, the a1 domain of Nrp2 must be displaced from the 

a2b1b2 core to avoid steric clashes (Figure 3.3.D-F). The displacement of domain a1 in our open-

state Nrp2 MD simulations was therefore examined with respect to the orientation of the HCMV 

pentamer in the previously published Nrp2-HCMV pentamer complex (105). Upon overlaying the 

open state of Nrp2 with the Nrp2-HCMV pentamer complex, it was noted that the open state of 

Nrp2 clearly circumvented a number of the aforementioned steric clashes by displacing the a1 

domain towards the N-terminus of HCMV protein UL128 (Figure 3.3.G-I). With this observation in 

mind, it was clear that the a1 domain could be displaced via the opening motion observed in our 

Nrp2 simulations in order to allow the formation of the HCMV pentamer-Nrp2 complex. However, 

several questions remained with respect to the mechanism by which the HCMV pentamer gains 

access to Nrp2 with domain a1 displaced. As a starting point, we asked how does the presence of 

Ca2+ impact the orientation of amino acids in Nrp2 recognized by the HCMV pentamer? Knowledge 

of these molecular determinants of Nrp2 in solution were therefore important in understanding how 

Nrp2 is recognized by the HCMV pentamer, and how the HCMV pentamer alters the conformational 

landscape of Nrp2 upon binding. To this end, we examined amino acid dihedral dynamics in Nrp2 

to both understand the impact of Ca2+ on the dynamic properties of the system and further 

characterize dynamics changes that may serve as molecular determinants for Nrp2 recognition by 

the HCMV pentamer. 

To examine backbone dihedral angle dynamics, Ramachandran plots were generated for 

each amino acid position in Nrp2 for the duration of the MD simulations. At several amino acid 

positions, marked changes in backbone amino acid dihedral dynamics were evident when 

comparing the Nrp2-Ca2+ to apo Nrp2 (Appendix Figure 3.6). To interpret these changes in the 

aforementioned Ramachandran plots, two main analysis metrics were adopted. First, the number 

of unique backbone dihedral angles sampled over the course of the MD simulations were examined 

(i.e., quantification of the number of dihedral microstates sampled by each amino acid position in 

Nrp2-Ca2+ vs. apo Nrp2). Dihedral microstates were defined as 2° × 2° bins on a Ramachandran 

plot, and bins that had non-zero occupancy were counted to determine the number of microstates 
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sampled (see Section 3.2.3). Several amino acids proximal and distal to the bound Ca2+ reported 
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[Figure on previous page] 

Figure 3.3 – Molecular determinants of Nrp2 required for HCMV pentamer binding. A. Surface 
representation of Nrp2 (a2b1b2) in complex with the HCMV pentamer (PDB 7M22, (105)), HCMV 
pentamer is shown in light orange, and Nrp2 in cyan. B. Stick representation of hydrogen bonding 
network in the Ca2+-containing loop of Nrp2 with the HCMV pentamer. C. Stick representation of 
Nrp2 Residues 456-461 in complex with the HCMV pentamer. D. Several regions of Nrp2 were 
unresolved in PDB 7M22, and to highlight these missing features our Nrp2 homology model in the 
“closed” state (grey) was aligned to the previously deposited structure. Steric clashes are observed 
between the HCMV pentamer and domain a1/ Res. 510-515 of Nrp2 upon alignment. E. Side view 
of steric clashes between the HCMV pentamer and domain a1 of Nrp2. F. Top-down view of steric 
clashes between the HCMV pentamer and domain a1 of Nrp2. G. Overlay of the Nrp2-HCMV 
pentamer complex (PDB 7M22, (105)), with the “open” state of Nrp2 identified via our MD 
simulations. H. Side view of the HCMV pentamer and displaced domain a1 of Nrp2. I. Top-down 
view of HCMV pentamer and displaced domain a1 of Nrp2. J. A colour-coded ribbon representation 
of percentage change in dihedral microstates upon removal of Ca2+ from the Nrp2 structure. Amino 
acids with an increase in dihedral microstates upon removal of Ca2+ (those that explored additional 
dihedral conformations) are shown in warm colours, whereas amino acids that explored fewer 
dihedral microstates upon removal of Ca2+ are shown in cool colours. Amino acids with a magnitude 
of change in dihedral microstates <10% are shown in grey (n = 3 simulations for Ca2+-bound and 
apo simulations, averaged values of 3 replicates shown). K. Percentage non-overlapping dihedral 
angle populations in Ca2+-bound vs. apo simulations is shown for each amino acid position. For 
example, a percentage of 100% indicates that there is no overlap between the Φ/Ψ populations 
observed in the Ca2+-bound simulations and the Φ/Ψ populations observed in the apo simulations 
(see Appendix Figure 3.6 for example, n = 3 simulations for Ca2+-bound and apo simulations, 
averaged values of 3 replicates shown, figure generated using Pymol). 
 

drastic changes in the number of dihedral microstates sampled upon removal of the Ca2+ ion, 

including amino acids directly involved in forming interaction interfaces with the HCMV pentamer 

(Figure 3.3.J). We therefore conclude that Ca2+ binding shifts the dynamics of the Nrp2 system by 

causing some amino acids to exhibit either enhanced or reduced conformational flexibility with 

respect to the number of dihedral microstates sampled. Together, these results suggest that 

Ca2+ binding has global impacts on the conformational freedom which may play a vital role in 

modulating the dynamic properties of Nrp2 required for HCMV pentamer recognition.  

To further characterize the differences in dihedral angle populations in the Ca2+-bound vs. 

apo states of Nrp2, previous workflows developed by our group were amended to determine to 

what extent dihedral angle populations overlapped in the Nrp2-Ca2+ vs. apo Nrp2 simulations (120, 

121). Several amino acid positions proximal and distal to the bound Ca2+ had different dihedral 

angle populations upon Ca2+ removal (Figure 3.3.K). The aforementioned changes in amino acid 

dihedral angle dynamics were most evident at inter-domain interfaces within Nrp2, as well as 

regions forming interaction surfaces with the HCMV pentamer. With this data in mind, the amino 
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acid dihedral angles of several key residues in our MD simulations were compared to the dihedral 

angles observed in the Nrp2-HCMV pentamer complex (PDB 7M22, (105)). With Ca2+ bound, 

several amino acid positions displayed dihedral populations shifted towards dihedral angles 

observed in the Nrp2-HCMV pentamer complex (Appendix Figure 3.6.A-D). However, some amino 

acid positions such as V255 and Y210 adopted dihedral conformations drastically different than 

dihedral angles observed in the HCMV pentamer-Nrp2 complex (Appendix Figure 3.6.E-H, Figure 

3.4). Additionally, previous studies have shown that V255 is directly involved in forming an 

interaction interface between the HCMV pentamer and Nrp2 via a hydrogen-bonding network 

(Figure 3.4.A). However, in our Nrp2-Ca2+ simulations, V255 is not involved in hydrogen bonding 

interactions in the Ca2+-containing loop region of Nrp2 (Figure 3.4.B, C). In the case of the HCMV 

pentamer-Nrp2 complex, V255 is involved in a hydrogen bonding interaction with D252, which in 

turn is stabilized by the hydrogen bonding interactions between K47 (of UL128 in the HCMV 

pentamer) and D252. We therefore propose that some amino acid positions in Nrp2 utilize an 

“induced fit” model for HCMV pentamer binding, whereby the HCMV pentamer must reorient 

specific binding site backbone dihedrals in order to form the Nrp2-HCMV pentamer complex. In 

summary, Ca2+ binding results in global alterations in the number of microstates explored by several 

amino acid positions, as well as alterations in the backbone dihedral population distribution at 

regions critical for the binding and recognition of Nrp2 by the HCMV pentamer. As well, we also 

note that the large-scale opening motion observed in our apo Nrp2 simulations represents a path 

that can be used to mitigate steric clashes during the formation of complexes involving Nrp2 and 

the HCMV pentamer. 

  



  

47 
 

Figure 3.4 – Amino acids of the Ca2+-containing loop in Nrp2 adopt altered conformations 
and hydrogen bonding networks when bound by the HCMV pentamer. A. Stick representation 
of the hydrogen bonding of the Ca2+-containing loop in Nrp2 when bound by the HCMV pentamer 
(PDB 7M22). In the Nrp2-HCMV pentamer complex, K47 (of UL128 in the HCMV pentamer) 
stabilizes a hydrogen bonding network involving itself, and D252/V255 in Nrp2. This hydrogen 
bonding network displaces V255 into a unique conformation not observed in our simulations. B. A 
representative hydrogen bonding network of the Ca2+-containing loop in Nrp2-Ca2+ from our MD 
simulations (snapshot at 600 ns) showing V255 is not involved in hydrogen bonding interactions in 
the Ca2+-containing loop region of Nrp2. C. Overlay of snapshots at every 200 ns in our Nrp2-Ca2+ 

MD simulations (blue shades) aligned with the Nrp2-HCMV pentamer complex (Nrp2: black, HCMV 
pentamer: wheat). V255 in the Nrp2-HCMV pentamer complex displays a distinct and unique 
conformation when compared to our Nrp2-Ca2+ simulation data (Figure generated using Pymol). 
 

 

3.5.3 Enhanced conformational flexibility of apo Nrp2 triggers observation of a1 domain 

opening: After examining how Ca2+ impacts the local dynamics of the residues proximal and distal 

to the Ca2+ binding site, we further investigated how Ca2+ binding impacted the local dynamics of 

the residues beyond the Ca2+ binding site, including residues from all four domains. We proposed 

that absence of Ca2+ allows for enhanced conformational flexibility of the residues, consequently 

enabling the exploration of large-scale dynamics such as the a1 domain opening. To characterize 

the aforementioned dynamics and the correlated movements between specific residues and/or 

regions, we performed an empirical comparison between the residue cross-correlations in the Nrp2-

Ca2+ and apo Nrp2 systems. Analysis of the residue cross-correlation heatmaps for the Nrp2-Ca2+ 

replicates show varying intensities of positive cross-correlations among residues within individual 

domains, evident by observing a high positive cross-correlations as “squares” along the diagonal 

from bottom left to top right (Figure 3.5.A-C). It is specifically notable that the a2 domain, where the 

A B C 



  

48 
 

Ca2+ ion is located, shows the least positive cross-correlation tendency among all the four domains. 

This likely indicates that the intra-domain communication and dynamics of the a2 domain may be 

restricted in the presence of a bound Ca2+ ion. It is also interesting to note that the domains a1 and 

b1 show a negative cross-correlation of ≤ -0.6 (Figure 3.5), even though these two domains are 

situated farthest away from each other. This suggests that cross-correlation between amino acids 

is not dependent on their physical proximity, and perhaps propagates as a signal through the global 

structure of Nrp2, irrespective of the distance between the residues. 

 
The apo Nrp2 replicates show positive cross-correlations among residues within individual 

domains, similar to the Nrp2-Ca2+ replicates. However, compared to the a2 domains of apo Nrp2 

replicates that do not explore the domain a1 opening motion (Figure 3.5.D, E), the replicate in which 

the domain a1 opening motion is observed (Figure 3.5.F) shows a distinctly high positive cross-

correlation of ≥0.7 within the a2 domain (yellow box). Furthermore, apo Nrp2 when exploring the 

described opening motion demonstrates cross-correlation values of ≥0.6 between the domains b1 

and b2 (black box), indicating a high positive cross-correlation among the two domains in 

comparison to the other replicates. Overall, a high positive cross-correlation between the residues 

of domains a2b1b2 in apo Nrp2 upon opening may perhaps be an indication of the existence of a 

tighter a2b1b2 core as suggested previously (91), where this core functions together to trigger the 

a1 domain opening motion. Furthermore, apo Nrp2 simulations which do not sample the opening 

motion lack a high positive cross-correlation between the a2b1b2 domains, which is possibly the 

reason why the a1 domain opening motion is not observed in these two replicates. Apart from a 

strong positive cross-correlation, we also observe a strong negative cross-correlation between 

domains a1 and b2 in the opening apo Nrp2 simulation (Figure 3.5.F, green box). Negative cross-

correlation may be indicative of a repulsive communication between the two domains, where the 

two domains move away from each other, further assisting the opening of the a1 domain. 

To summarize, with the Ca2+ ion bound to the Ca2+ containing loop, both the local and global 

dynamics of the Nrp2-Ca2+ system are restricted, as evidenced from low cross-correlation values 

for the residues of the a2 domain and non-appearance of any positive or negative cross-correlation 

between residues of any other domains, respectively. However, in the apo Nrp2 system the a1 
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domain opening is achieved when the a2b1b2 domains function together as a core versus the a1 

domain, evident from a2b1b2 high-positive cross-correlation. This motion is further assisted by 

repulsive interaction between the a1 and b2 domain, evident from the high negative cross-

correlation between the a1 and b2 domains. Correlated dynamics between the a2b1b2 domains is 

therefore required in order to trigger the a1 domain opening motion reported in this study. 

 

Figure 3.5 – Principal component analysis-based residue cross-correlation heatmaps. A-C. 
Residue cross-correlation heatmaps for the Nrp2-Ca2+ system replicates. Panel A also includes a 
2D representation of the different domains along the two axes to help identify which domain the 
given residues belong to. Residues belonging to the four domains show different intensities of 
positive cross-correlations among themselves, evident from the squares along the diagonal from 
bottom left to top right. Of the four domains, the a2 domain, which houses the Ca2+ ion, shows the 
least positive cross-correlation. D-F. Residue cross-correlation heatmaps for apo Nrp2 system 
replicates. Panel F shows a high positive cross-correlation among the residues belonging to 
domain a2, shown in yellow box. Additionally, a high positive cross-correlation of ≥0.6 can be seen 
for most residues of domain b1 and domain b2, shown in black box in panel F. A high negative 
cross-correlation between the residues of domain a1 and domain b2 can be seen in the green box 
in panel F. 
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3.6 Discussion 

Together, the results of our study suggest two possible mechanisms by which the dynamics of 

the conformational landscape of Nrp2 can be exploited by the HCMV pentamer for viral entry 

(Figure 3.6). First, the “Spontaneous opening” mechanism (Figure 3.6.A-D), whereby the domain 

a1 opening motion of Nrp2 spontaneously occurs in vivo, followed by HCMV pentamer binding and 

recognition of the “open” Nrp2 complex. We postulate that such a mechanism is feasible as we 

have observed in our molecular dynamics simulations spontaneous opening of domain a1 in Nrp2 

exposing the majority of the surface required to prevent steric clashes in the HCMV pentamer-Nrp2 

complex. In the spontaneous opening mechanism, the dynamic and flexible nature of the a1 domain 

coupled with coordinated repulsion of the a1 domain by the a2b1b2 core enables sampling of a 

large-scale opening motion. With the a1 domain partially displaced, the HCMV pentamer can 

recognize the partially formed interaction interface and stabilize the remaining amino acids into 

their preferred conformations (i.e., induced fit). A second possible mechanism for the formation of 

the HCMV pentamer-Nrp2 complex is the “pushed-button” mechanism (Figure 3.6), whereby the 

HCMV pentamer interacts with a “closed”-state Nrp2 and elicits a conformational change in Nrp2 

to displace domain a1. A “pushed-button” mechanism would involve interaction of the HCMV 

pentamer (or a component of the pentamer) with a “button” on Nrp2 in order to alter its inherent 

dynamics and facilitate the domain a1 opening motion. In the closed state of Nrp2, several areas 

involved in forming an interaction interface with the HCMV pentamer are solvent exposed 

(Appendix Figure 3.7). It is therefore possible that the HCMV pentamer (or a component of the 

pentamer) could bind and elicit a global conformational change in Nrp2. We speculate that the 

Ca2+-containing loop in Nrp2 is a likely candidate for the “button” region of Nrp2. Upon introduction 

of K47 from UL128 of the HCMV pentamer (“the finger”) the hydrogen bonding network of the Ca2+-

containing loop in Nrp2 is pushed into an altered conformation. Specifically, K47 enables the 

formation of a hydrogen bond network between K47, D252, and V255 which is not observed in the 

absence of the HCMV pentamer (Figure 3.4). We therefore propose that this altered hydrogen 

bonding network could propagate a signal in Nrp2, triggering the domain a1 opening motion. 
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However, further research is required to characterize signal transmission from the “button-pushing” 

step to the domain a1 opening motion. 

The chance occurrence of the a1 domain opening motion in our simulations is an attribute of 

the stochastic nature of MD simulations and witnessing such an opening motion on a 1 µs timescale 

is a rare and exciting result (e.g., as discussed in (91, 105)). Since Nrp2 and Nrp1 share 44% 

sequence similarity (88), similar correlated dynamics likely can be utilized by other viruses that 

target Nrp1 to gain cell entry (125-130). As well, according to previous studies, the interface 

between the a1 domain and the a2b1b2 core of Nrp2 is non-conserved (91). Together with previous 

findings describing the properties of Nrp2 binding by the HCMV pentamer (105, 124), the 

mechanistic details of the domain a1 opening motion reported in this study represent foundational 

knowledge critical for downstream antiviral therapy design for the Neuropilins (e.g. antiviral 

therapies where the coordinated dynamics can be targeted and disrupted to prevent the exploitation 

of the a1 domain opening by the viral proteins). 
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Figure 3.6 – Model of the Nrp2 conformational landscape demonstrating the “spontaneous 
opening” model versus a “pushed-button” model to allow binding of the HCMV pentamer. 
A. Cartoon representation of Nrp2 shown in a “closed” state, whereby domain a1 (85) displays 
inherent local flexibility. B. A co-ordinated motion by a2b1b2 repels and triggers displacement of 
a1. A flexible extension (Res. 510-515, purple) is also displaced outward allowing accessibility to 
regions that will interface with the HCMV pentamer. C. Prior to binding of the HCMV pentamer, 
several amino acid dihedrals involved in forming an interaction interface with the HCMV pentamer 
(PDB 7M22) are oriented in the conformation observed in the Nrp2-HCMV pentamer complex (cyan 
spheres), whereas others are oriented in different conformations (red spheres). Re-orientation of 
some amino acid dihedrals is therefore required (induced fit) to form the Nrp2-HCMV pentamer 
complex. D. Cartoon representation of Nrp2 domain a1 in the “open” conformation observed in our 
study (which must be further displaced) is overlaid onto a previously published Nrp2-HCMV 
pentamer complex (PDB 7M22). The HCMV pentamer is shown in light orange, and as shown 
would require further displacement of domain a1 in order to bind the Ca2+-containing loop of Nrp2. 
E. The HCMV pentamer interacts with a “closed” state Nrp2 and elicits a conformational change in 
Nrp2 via a “pushed-button” mechanism mediated by the K47 residue  to displace domain a1. F. 
Cartoon representation of Nrp2 domain a1 in the “open” conformation observed in our study 
overlaid onto a previously published Nrp2-HCMV pentamer complex (PDB 7M22). 
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CHAPTER 4: MOLECULAR DYNAMICS GUIDED RATIONAL REDUCTION OF AMINO ACID 

ALPHABET REVEALS UNDERLYING PROTEIN DESIGN PRINCIPLES 

 
4.1 Preface 

This chapter is an early draft of a format-neutral manuscript being prepared for publication. In 

this chapter, we report our rational reduced alphabet protein (RAP) design pipeline, an integration 

of molecular dynamics simulations coupled with downstream analysis techniques, employed to 

design RAP variants for proteins with distinct structures and functions using a two-pronged 

approach. The research was conceptualized by Hans-Joachim Wieden and me. I developed the 

methodology and software, performed script writing, data curation and processing, formal analysis, 

visualization, and figure preparation. The manuscript is written by Hans-Joachim Wieden and me. 

 

4.2 Abstract 

Proteins are made up of a common set of 20 amino acids known as the standard amino acid 

alphabet (AAA). Conventional protein design approaches for applications in biofuel production, 

pharmaceuticals and gene therapy generally utilize a design space limited to this standard AAA, 

thus restricting the incorporation of unnatural amino acids and the novel chemical functions that 

can be harnessed from them. Reducing the standard AAA is an approach that could free up the 

codon space for this and accelerate computational-based protein design. A functional protein 

written with a reduced alphabet will cost less to produce in vivo and ex vivo. Previously reported 

reduced alphabet protein (RAP) variants have shown little to no activity relative to their wild-type 

counterparts. We hypothesize that this is due to the over-reliance on substitution rules based on 

the physico-chemical properties of amino acids, neglecting the importance of protein dynamics on 

structure and function. The aim of our research is to develop a generalizable computational 

approach to design RAPs to facilitate efficient forward-engineering of proteins. We combine a set 

of in silico techniques to investigate and validate the dynamic and structural properties of the 

designed RAPs. In our two-pronged approach, we utilize both the distinct conservation scores of 

residues within a protein and the physico-chemical properties of amino acids for designing the 
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reduced alphabet variants (RA-variants) of three proteins with distinct structures and functions. In 

the long run, the developed novel computational framework will enable development of a 

generalizable computational approach to design RAPs, thus facilitating forward-engineering of 

proteins with applications in understanding and modifying disease-causing protein variants and 

widening the accessibility of individualized therapies and personalized medications. 

 

4.3 Introduction 

The primary structure of proteins consists of a linear sequence of amino acids, and the variety 

of amino acids in each protein is referred to as the amino acid alphabet (AAA) of the respective 

protein. The canonical AAA of most proteins usually encompasses twenty genetically encoded 

amino acids, referred to as the standard AAA. The amino acid composition of proteins differs in 

terms of the variety and population of individual amino acids included in them, where proteins may 

naturally comprise only a subset of the standard set. Such proteins that naturally consist of an 

alphabet smaller than the 20 AAA can be called small alphabet proteins (SAPs). SAPs are widely 

found in nature and have been proposed to be the only proteins present on early Earth, thus giving 

rise to theories that early life began with a 10 AAA which later expanded (131) to the current 

standard alphabet. The existence of SAPs in nature has inspired engineering and design of protein 

variants with smaller AAAs, and since that involves reducing the size of the AAA, the resultant 

proteins with a reduced AAA can be termed reduced alphabet proteins (RAPs). A previous study 

has shown that the prebiotic alphabet has near-optimal encoding of modern single domain folds 

and that designing RAPs using the prebiotic alphabet can create stable thermophilic structures (33) 

(47).  

Aside from understanding natural and ancestral protein folding, rationally artificially reducing 

the alphabet size of proteins has several other advantages. In conventional protein design, the 

sequence space of a wild-type protein is probed and reorganised to generate multiple variants, 

which are then screened to identify highly optimal mutants that meet the criteria set by the designer. 

For every amino acid in the part of the protein that is being re-engineered, there are 20 possible 

substitutions so that the search space grows polynomially fast, potentially with an exponent as 
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large as 20 if we want to try all possibilities, the more amino acids we consider for substitution. 

While this leaves ample room for natural evolution to provide diverse protein structures and 

functions, the entire sequence space is not explored in nature, and is also practically impossible to 

explore using current laboratory processes (45, 132). Reducing the size of the AAA would reduce 

the sequence space to a subset of the total possible variants for a standard AAA. The 20 AAA is 

somewhat redundant in terms of physicochemical properties of the amino acids. For example, more 

than one amino acid has aliphatic side chains, similarly there are multiple amino acids with aromatic 

side chains, etc. We propose that this redundancy can be used as the starting point for reducing 

the amino acid alphabet, which will provide a basis for understanding general protein design rules 

for different classes of proteins. Another advantage of a reduced alphabet is that, once the non-

essential amino acids are removed, their associated codons, which become unassigned, could 

then be used for introducing non-canonical amino acids into the target protein’s AAA to introduce 

novel functional capabilities. 

Previous research towards reduced alphabet protein design have focused on generating 

variants that retain wild-type protein folding after alphabet reduction (133, 134). For example, 

demonstration of a stable four α-helix bundle protein with a 5 AAA established that a RAP could 

possess a stable structure (135). Although maintaining structural integrity of a protein is necessary, 

retaining structural features in itself does not ensure protein functionality. Later studies focused on 

preserving both structure and function while designing RAPs. One such work was on the archaeal 

enzyme chorismate mutase, which showed that functional proteins can be designed from an 

alphabet size as small as 9 amino acids (35), however, the results were achieved by employing 

random mutagenesis strategies, an unpredictable and difficult to transfer strategy for 

biotechnology-relevant protein design. Additionally, although the resultant RAP enzyme folded into 

a structure similar to the wild-type protein, it retained only one-third of the wild-type protein activity. 

Together, all these studies indicate that preserving the structure is not enough and does not ensure 

functionality in a RAP. We hypothesize this can be attributed to protein dynamics, a fundamental 

property of the proteins. Proteins are dynamic entities with ever-changing shape and conformation, 

which allows them to interact with various binding partners and perform all sorts of functions. 
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Therefore, we predict that it is important to preserve both the structure and the dynamics of a protein 

to improve the chances of designing a functional RAP, unlike prior studies where researchers only 

examine protein folding predictions. We postulate that protein dynamics serves as the connecting 

link between the structure and function of protein, responsible for conveying a variety of signals 

and communications throughout the protein’s surface, and hence, tweaking the structure of the 

protein would affect the dynamics and ultimately the function. This argument is suggested by the 

findings of the previously mentioned RAP design studies that demonstrated partial or complete loss 

of function in the resultant RAPs (34, 35, 136). The RAP design approach described in this work 

serves as the next level of protein molecular design where we examine the underlying dynamics of 

proteins with different structures and functions, as these dynamic motions are critical to their 

respective functions. 

In this work, we have constructed and reported a systematic framework for designing RA-

variants of proteins with different structures and functions. We employ molecular dynamics 

simulations coupled with computational analysis techniques to study protein dynamics, a 

fundamental property of proteins which is commonly overlooked in protein engineering studies. Our 

test system includes three model proteins with distinct structures and functions. The first model 

protein, chorismate mutase (CM), is an all α-helical enzyme from Methanocaldococcus jannaschii, 

responsible for catalyzing the chemical reaction for the conversion of chorismate to prephenate in 

the shikimate pathway (137). The second model protein is Initiation factor 1 (IF1), a β-pleated 

protein from Escherichia coli, an essential component of prokaryotic protein synthesis (138, 139). 

The third model protein included in our study is the 30S ribosomal protein S10 (rpS10), an α+β 

protein from E. coli, involved in the binding of tRNA to the ribosome (140). Our RAP design strategy 

involves performing amino acid substitutions based on the two most fundamental properties of 

amino acids, the physicochemical properties, and their conservation trends across related species. 

The dynamics of reduced alphabet chorismate mutase (RA-CM), reduced alphabet IF1 (RA-IF1) 

and reduced alphabet rpS10 (RA-rpS10) variants have been assessed using a set of computational 

analysis techniques. Depending on how the variants performed compared to the wild-type protein, 
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the variants were scored and ranked accordingly. The AAA sizes of the RA-variants designed in 

this work range from 17 AAA to as small as 8 AAA. 

Our results show that small changes in the amino acid alphabet can have large implications on 

both the structure and dynamics of the proteins. Furthermore, a correlation between the secondary 

structure content and the amino acid substitution strategy is observed when designing RA-variants 

for a protein. In the case of the α-helical protein chorismate mutase, the conservation-based RA-

CM variants perform better at preserving the wild-type dynamics. On the other hand, in the case of 

β-pleated IF1, physicochemistry-based RA-IF1 variants performed better at retaining wild-type 

dynamics. However, in the case of α+β rpS10, both conservation and physicochemistry-based RA-

rpS10 variants showed comparable trends in preserving wild-type protein dynamics. Furthermore, 

structure prediction results of the 8 AAA variants using AlphaFold shows that even with such a 

small AAA size, the RA-variants designed using our approach preserved a secondary structure 

nearly identical to the wild-type protein. These findings demonstrate that our rational RAP design 

approach can generate reduced alphabet variants with wild-type-like dynamics and structure. 

Moreover, coupled with conservation of structure and dynamics, the RAPs generated using this 

approach have increased possibilities of preserving and displaying wild-type functions. Testing and 

extension of our RAP design pipeline on proteins from other functional and structural classes will 

help our understanding of the protein design rules in nature, thereby guiding the creation of a 

generalizable RAP design system. Ultimately our RAP design pipeline can be used as a basis for 

the forward-engineering of proteins, particularly in designing de novo proteins with novel or 

improved functions with applications in personalized medicine, e.g., for altering disease-causing 

proteins in individualized therapies. 

 

4.4 Methods 

4.4.1 Reduced alphabet design: substitution strategy: To generate RA-variants for the three 

proteins (CM, IF1, and rpS10), we first performed literature studies to identify amino acids critical 

for maintaining the structure or/and function of the proteins. The idea was to avoid substituting such 

important amino acids, at least in the initial substitution rounds, to prevent loss of structure or 
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function associated with these residues. Thereafter, the conservation pattern of the amino acids 

was identified using the Consurf server (described below) and the least conserved amino acids 

were selected first for substitution and vice versa. Our amino acid substitution approach utilized 

two different types of substitution strategies, first based on physicochemical properties of amino 

acids (generates chemistry-based variants) and the second based on conservation trends of amino 

acids (generates conservation-based variants). The chemistry-based substitutions were performed 

using a modified BLOSUM 62 (141, 142) matrix. This matrix was used to define amino acid groups 

based on their physicochemical properties including the charges and secondary structure 

propensities of the amino acids, thus allowing a reduction of the alphabet size while preserving 

amino acid diversity in the RA-variants generated (Appendix Figure 4.1). For the conservation-

based substitutions, a global evolutionary conservation profile of the amino acids for the model 

proteins was constructed using the ConSurf server (143-145). ConSurf generated a multiple 

sequence alignment used to generate a sequence logo chart using the WebLogo server (146, 147) 

that displayed the conservation trends of amino acids. The least conserved amino acids were 

removed first and vice versa. The best substituent for an amino acid to be removed was determined 

by examining the sequence logo and selecting the second most prevalent amino acid at that 

position, thus guiding the conservation-based substitution (Appendix Figures 4.2-4.4). Overall, 

twenty two RA-variants were generated for each of the three model proteins, based on either 

physicochemistry or conservation rules. The generated RA-variants had alphabet sizes ranging 

from 17 AAA to as small as 8 AAA (Figure 4.1). Subsequently, homology modeling using SWISS-

MODEL (148, 149) was performed to generate 3D-folded structures of the RA-variants, where PDB 

structures of the parent or wild-type (wt) proteins were used as the template. The quality of the 

generated 3D structures was assessed using Ramachandran plots (150), to visualize if the 

backbone dihedral angle combinations (Φ-Ψ) of amino acid residues appeared in the energetically 

allowed regions of the Ramachandran plot. (Appendix Figures 4.5-4.7, Appendix Table 4.1). In 

addition, the unfolded linear models of the RA-variants were also generated using the tleap program 

(151) available in the AMBER MD simulation package (114). Each step of AAA reduction utilized a 

two-pronged approach, where specific amino acid(s) were removed from the parent protein. 
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Therefore, the nomenclature of the RA-variants essentially displays the branch number and the 

substitution strategy involved to design the variant. For example, the 16A variant of chorismate 

mutase involves removing alanine and glutamine in the first scheme, and removing cysteine and 

phenylalanine in the second scheme, making the two prongs/branches (Figure 4.1). For each 

branch, both physicochemistry and conservation-based substitutions were performed to replace 

the removed amino acids. Therefore, in total, each AAA size resulted in four different variants 

named as 16_1_chem, 16_1_cons, 16_2_chem, and 16_2_cons, where the initial number denotes 

the AAA size, followed by the branch to which the RA-variant belongs, and lastly the substitution 

strategy used. A few RA-variants have also been designed using uni-pronged approach where only 

one set of physicochemistry and conservation-based substitutions were performed to generate two 

variants, such as IF1-17 AAA variants and 8 AAA variants for all three model proteins (Figure 4.1). 

 

4.4.2 Molecular Dynamics simulations: Protocols mentioned in section 3.4.3 of Chapter 3 

were used to prepare the respective molecular dynamics simulation systems for the RA-variants 

for the three proteins using the AMBER simulation package (114). After performing charge 

neutralization, energy minimization and equilibration of the systems using the protocols from 

section 3.4.3, 1 µs MD production simulations were performed on three replicates of each RA-

variant using a time step of 2 fs and the Particle Mesh Ewald Molecular Dynamics (pmemd) module 

of the AMBER 16 package (114). The resulting MD data was combined to generate trajectories 

using the cpptraj program (115). The cpptraj program was also used to calculate the root mean 

square deviations (RMSD) and root mean square fluctuations (RMSF) for the wild-type proteins 

and their RA-variants. RMSD indicates the overall stability of the protein throughout the simulation 

time compared to the starting structure, whereas the RMSF identifies the residues or regions of 

high flexibility. 
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4.4.3 In silico assessment of RA-variants 

4.4.3.1 Cα covariance analysis and protein network construction: The propensity for two amino 

acids to move in the same direction is termed as the Cα covariance and is described by Equation 3. 

              𝑃𝑃𝑖𝑖𝑖𝑖 =  〈�𝑥𝑥𝑖𝑖,𝑡𝑡−�̅�𝑥𝑖𝑖�•(𝑥𝑥𝑗𝑗,𝑡𝑡−�̅�𝑥𝑗𝑗)〉

���𝑥𝑥𝑖𝑖,𝑡𝑡−�̅�𝑥𝑖𝑖��
2
��𝑥𝑥𝑗𝑗,𝑡𝑡−�̅�𝑥𝑗𝑗��

2
�
1/2                                                       (Equation 3) 

Here 𝑃𝑃𝑑𝑑𝑖𝑖 is the normalized covariance between amino acids i and j, 𝑥𝑥𝑑𝑑,𝑃𝑃 and 𝑥𝑥𝑖𝑖,𝑃𝑃 are the Cartesian 

coordinates of the Cα of amino acids i and j at frame t. �̅�𝑥𝑑𝑑 and �̅�𝑥𝑖𝑖 are the time-averaged Cα Cartesian 

coordinates of amino acids i and j, and 〈 〉 indicate the time-averaging of the quantities inside the 

brackets. The Cα covariance was calculated in the Carma software (152) using an in-house 

approach previously developed by our group (153, 154). The normalized covariance calculated 

from each frame of the MD trajectory was used to plot a histogram where a pair of amino acids 

were defined to have a large covariance if they deviated more than three standard deviations from 

the mean of the histogram. All protein networks were constructed using Gephi-0.9.1 (155), where 

each node represents an amino acid. Edges were drawn between amino acids that demonstrate a 

large covariance and maintain a distance of ≤4.5 Å between their Cα’s for 75% of the simulation 

time, indicating that the residues are in close proximity for a majority of the simulation time. The 

size of each node is determined by its Betweenness Centrality (Bx(n)) value (156) which measures 

the number of times a node lies on the shortest path between other nodes. Nodes with a high 

betweenness centrality are interesting because they control the information flow of the respective 

communication paths. These nodes can represent important signalling pathways within a protein 

and can form targets for drug discovery. The Bx(n) value is calculated using Equation 4, where 𝜎𝜎𝑚𝑚𝑃𝑃 

is the number of shortest paths from node 𝑚𝑚 to 𝑃𝑃 and 𝜎𝜎𝑚𝑚𝑃𝑃(𝑃𝑃) is the number of shortest paths from 

node 𝑚𝑚 to 𝑃𝑃 that pass through node 𝑃𝑃. 

 

                                                                             (Equation 4) 

 

4.4.3.2 Principal component analysis: Principal component analysis (PCA) (157) was employed to 

detect correlations (positive or negative) between the Cα carbons due to the residue motions in the 

𝐵𝐵𝑥𝑥(𝑃𝑃) = �
𝜎𝜎𝑚𝑚𝑃𝑃(𝑃𝑃)
𝜎𝜎𝑚𝑚𝑃𝑃𝑚𝑚≠𝑃𝑃

𝑃𝑃≠{𝑃𝑃 ,𝑚𝑚}
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RA-variants and compare them to the wt protein. PCA was measured using the protein dynamics 

(ProDy) interface available in the normal mode wizard option under the Extension tab on VMD. The 

parameter topology file and the trajectory file were provided as the input. The generated output 

included separate residue cross-correlation heatmaps for wt proteins and RA-variants. A scree plot 

(158) was also generated which shows different motions sampled by the protein system and the 

amount of time the system spends sampling each motion. 

4.4.3.3 Structure based modeling of protein folding: The protein folding pathways were studied 

using the SMOG2 (159) software package, installed and used with the GROMACS simulation suite. 

A symmetric matrix defining the interactions between residues, known as a contact map, was 

defined for the folded structures. Subsequently, linear polypeptide chains were allowed to fold 

where the contact maps of the folded structure served as a guide to the folding pathway. One 

hundred folding simulations were performed for each wt protein and the RA-variant. The generated 

output included averaged residue contact maps for the wt proteins and the RA-variants. 

 

4.4.4 RA-variants scoring and ranking: After assessing the dynamic properties of the RA-

variants, a scoring strategy was employed to create a hierarchy of the variants (Figure 4.2). All the 

variants were assigned a starting score of zero. For every type of computational analysis 

performed, a quantitative assessment was employed to compare the dynamic properties of the 

RA-variant triplicates to the wt, where if the variant’s behaviour resembled the wt, the score of the 

variant increases by one, and vice versa (Appendix Tables 4.2 - 4.4). For example: RMSD values 

of ≤± 1Å qualified as similar, whereas for RMSF, the flexibilities of individual residues, particularly 

the structurally and/or functionally important residues, were compared to that of the wt to identify 

the variants with similar RMSF trends. For protein structure networks, the overall shape of the 

network and the betweenness centrality (Bx(n)) values were used to identify variants similar to the 

wt. For PCA comparison, trends of strong positive and negative cross-correlation between residues 

and the different motions sampled by the variants were investigated to identify variants similar to 

the wt. Lastly, for SMOG folding, the folding pathway adopted by a polypeptide chain and the 

number of contacts formed between the residues was compared to identify variants similar to the 
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wt. At the end, the total scores of the variants at each substitution step were used for ranking. The 

top two scoring variants for each alphabet size were taken forward to the next step of alphabet 

reduction process (Appendix Tables 4.2 - 4.4).  

Figure 4.2 – Reduced alphabet variants scoring and ranking. Molecular dynamic properties of 
the reduced alphabet variants are compared to that of the wild-type (wt) protein using different 
computational analysis techniques, shown in blue diamonds (see Appendix Tables 4.2 - 4.4). A 
similarity with the wt protein gives a positive score, shown in green rectangles, whereas differences 
from wt-behaviour are penalized with deduction or no increment in scores, shown in red rectangles. 
The final scores of all variants for a given alphabet size are used to rank the variants. Top two 
scoring variants are carried forward for the next step of alphabet reduction. 
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4.5 Results 

4.5.1 Conservation based variants outperform chemistry-based variants in α-helical 

chorismate mutase: Our first model protein chorismate mutase, an enzyme from M. jannaschii, is 

a primarily α-helical protein. 1 µs MD trajectories were examined to determine the impact of AAA 

reduction on the overall dynamics of RA-CM variants in comparison to the wild-type chorismate 

mutase (wt-cm). The RMSD and RMSF analysis of the RA-CM variants served as the first tier of 

selection, where we compared the overall flexibilities of the RA-CM variants to the wt-cm. The 

RMSD time courses of the 16A variants show that both the conservation-based variants have 

RMSD values similar to the wt-cm, whereas both chemistry-based variants demonstrated higher 

RMSD values compared to the wt-cm (Figure 4.3.A). A quantitative comparison of the RMSF values 

of residues, particularly the structurally and/or functionally important residues was performed to 

identify the effect of substitutions on flexibilities of residues (data not shown) in variants compared 

to the wt. We observed that the residue flexibilities of the conservation-based variants were similar 

to the wt-cm and much lower than the chemistry-based variants (Figure 4.3.B, Appendix Table 4.2). 

Amino acid substitutions affect protein network dynamics: Long- and short-range 

interactions between individual amino acids are an important aspect of protein dynamics, 

responsible for transferring information across the protein network. Since proteins are highly 

dynamic entities, introducing too many unsuitable amino acids substitutions can lead to disruption 

of the overall protein network, causing the shape of the network to change. Similarly, an amino acid 

with a high betweenness centrality (Bx(n)) value in a communication path of a protein controls the 

flow of information within the protein (160), implying that replacing such an amino acid with an 

unsuitable substituent may reduce its Bx(n) value and thereby the flow of information in the protein 

network. Therefore, we investigated the protein networks of the wt-cm and the RA-CM variants for 

the preservation of edges and nodes in the networks, and the Bx(n) values of the key residues. 

Comparison of the wt-cm network structure along with the 16A network structures demonstrated 

that the shape of the networks for three of the four 16A variants was similar to the wt-cm (Figure 

4.3.C, Appendix Table 4.2). However, the shape of the network structure of the 16_2_chem variant 

was completely different compared to the wt-cm network, demonstrating that unsuitable amino acid 
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substitutions can impact the overall shape of the protein network (Figure 4.3.C). To further 

understand the impact of substitutions on individual amino acid dynamics, we selected the amino  
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[Figure on previous page] 

Figure 4.3 – In silico assessment of RA-CM variants. A-B. RMSD and RMSF results for wt-cm 
and 16A variants. Both conservation-based variants show trends similar to the wt-cm, whereas the 
chemistry-based variants show higher RMSDs and RMSFs. C. Representative results for network 
structures of wt-cm followed by results of selected variants which demonstrate a noticeable 
similarity or difference with respect to the wt-cm, in this case, 16A_1_cons, and 16_2_cons variants, 
respectively. Residues are shown as circular nodes and labeled according to the residue 
numbering. Residues are coloured based on the domain they belong to, and the size of the node 
represents the Bx(n) value of the residue. D. PCA derived residue cross-correlation heatmaps of 
wt_cm, followed by results of selected variants which demonstrate a noticeable similarity or 
difference with respect to the wt-cm, in this case, 16_1_cons, and 16_2_chem variants, 
respectively. High positive cross-correlations are shown with higher intensity of red and high 
negative cross-correlations are shown with higher intensity of blue, whereas white shows no 
correlation. E. PCA derived scree plot for wt-cm. The x-axis shows the top ten motions sampled, 
and the y-axis shows the time (as a percentage) that the system spends sampling each motion. 
The star symbol shows the scree point. The sampling times for 16A variants are shown in the table. 
F. SMOG derived folding pathway analysis of wt-cm and 16A variants. The x-axis shows the time 
in picoseconds and the y-axis shows the number of native residue contacts formed. The folding 
pathway adopted by all 16A variants is similar to the wt-cm. 
 

acids with the top ten Bx(n) values in the wt-cm network and compared to the 16A variants’ network 

(Appendix Table 4.5). Our results show that six of ten residues with the highest Bx(n) values in the 

wt-cm were also among the top ten residues for both conservation-based variants. The 16_1_chem 

variant preserved only four of the top ten wt-cm Bx(n) residues, whereas the 16_2_chem variant 

preserved only three of the high Bx(n) residues from the wt-cm. Our findings therefore suggest that 

amino acid substitutions can affect the overall shape of the protein network, and assessment of 

network shape can be used to categorize and rank the dynamic properties of the RA-variants 

designed using different substitution strategies. Additionally, it was observed that both 

conservation-based 16A variants outperform the chemistry-based 16A variants in preserving the 

high Bx(n) values of the highly central amino acids in the wt-cm, thereby establishing that Bx(n) 

values of the amino acids proves to be an important technique to rank the RA-variants. 

Subsequently, we extended the use of network structure analysis to rank other RA-variants with 

alphabet sizes ranging from 14A to 8A, the results for which have been compiled in Appendix 

Table 4.2. 

Conservation based variants preserve wt-cm dynamics: Several studies have established 

the role of motions such as side chain rotations in active sites, backbone motions during protein 

folding, major domain motions, etc. as governing factors of protein function (161, 162). Therefore, 
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we analyzed the effect of amino acid substitutions on the motions sampled by the wt-cm versus the 

RA-CM variants using PCA generated residue cross-correlation heatmaps and scree plots. Upon 

comparing the residue cross-correlation heatmaps, we observed that the overall residue cross-

correlation trends for the 16_1_chem, 16_1_cons and 16_2_cons variants were similar to the 

residue cross-correlation trends of the wt-cm. However, the 16_2_chem variant shows increased 

positive cross-correlations between several residues compared to the wt-cm heatmap, perhaps 

indicating that the amino acids in the 16_2_chem variant experience increased interactions due to 

higher flexibility, as witnessed by high RMSD and RMSF values of the 16_2_chem variant. A key 

step while studying protein motions is to quantify the different motions sampled by the target 

proteins. To that end, we employed the PCA derived scree plots which provides a 2D 

representation of the major motions sampled by a system and the relative sampling times for each 

motion (158, 163). A scree plot identifies the dominant motion(s), identified by their eigenvalue 

ranks and their respective sampling times, and differentiates them from the remaining sampling 

noise shown by a “kink” in the plot, referred to as the scree point. Therefore, a scree plot indicates 

how many major motions are sampled by any system for a given time, indicating the tendency of 

the system to explore the conformational landscape, a measure of system’s flexibility. In the case 

of wt-cm, we observed that four of the top ten motions sampled by the wt-cm were above the scree 

point. Quantitatively, the four motions make up 75 percent of the sampling time which means that 

the wt-cm spends 75 percent of the simulation time sampling four different motions (Figure 4.3.E). 

However, sampling times of different motions for the 16A variants shows a different trend. The 

chemistry-based variants sample two and three motions above the scree point, for 16_1_chem and 

16_2_chem variant respectively, appearing to be more rigid compared to the wt-cm. However, the 

conservation-based variants sample four motions above the scree point, suggesting that the 

conservation-based variants have a flexibility similar to the wt-cm, where they sample four different 

motions for the majority of the simulation time. Subsequent analysis of the other RA-CM variants 

showed similar results where most of the conservation-based variants showed similar flexibility to 

the wt-cm whereas most of the chemistry-based variants appeared more rigid (Appendix Table 

4.2). 
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Conservation based variants strongly preserve residue contacts: Protein folding in nature 

may involve formation of more than one transition state during the course of folding. Computational 

analysis of folding of a linear polypeptide chain into the 3D folded structure describes the folding 

pathway it adopts and the number of native contacts it forms during the folding process. Adopting 

a folding pathway similar to the parent protein and preserving the native contacts between residues 

increases the variant’s chances to be functionally active. We therefore wanted to examine the 

folding pathway with respect to the number of native contacts formed by each variant compared to 

wt-cm. To do so we used the SMOG folding analysis which identifies the folding pathway adopted 

by a polypeptide chain to fold into the target folded structure and the number of contacts formed 

between the residues.  In case of the wt-cm, the polypeptide chain folds completely in the first 100 

ps and forms 155 residue contacts (Figure 4.3.F). Although all the 16A variants adopt a folding 

pathway similar to the wt-cm and fold completely within 100 ps, the total number of residue contacts 

formed differs among the variants. With 151 and 148 contacts formed by 16_1_cons and 

16_2_cons variants respectively, the conservation-based variants form more residue contacts 

compared to the chemistry-based contacts, 142 and 140 contacts in 16_1_chem and 16_2_chem 

variants, respectively. With a higher number of native contacts preserved compared to the 

chemistry-based variants, it can be suggested that the conservation-based variants are more likely 

to preserve the properties of wt-cm. Consequently, we extended the folding analysis to the other 

RA-CM variants and identified that the conservation-based variants preserve more contacts than 

the chemistry-based variants (Appendix Table 4.2). 

To summarize, analysis of the dynamic properties of the RA-CM variants using diverse 

computational analysis techniques revealed that changes in amino acid alphabet of a protein affect 

its dynamics. Of the two strategies employed for amino acid substitutions, chemistry and 

conservation, the conservation-based RA-CM variants outperform the chemistry-based variants 

and score higher on the scoring matrix at every step of alphabet reduction: eight out of the ten 

times, conservation-based variants were taken forward to the next level of alphabet reduction 

(Appendix Table 4.2). 
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4.5.2 Chemistry based variants outperform conservation-based variants in β-pleated IF1: 

IF1, a protein essential in E. coli protein synthesis, constituted our second model protein, due to its 

small size and a predominantly β-pleated secondary structure. To understand the impact of amino 

acid substitutions on the overall dynamics, we studied 1µs MD trajectories of the wild-type IF1 (wt-

IF1) and the reduced alphabet IF1 (RA-IF1) variants. The RMSD graphs of the 16A variants reveal 

that both chemistry-based variants have RMSD values similar to the wt-cm (Figure 4.4.A). The 

RMSDs of both conservation-based variants however were significantly higher than the wt-IF1. 

Upon further investigation of the RMSF values, we observed a similar trend (Figure 4.4.B), where 

the overall RMSF of the 16_1_chem variant was similar to the wt-IF1, and the RMSF of the 

16_2_chem was lower than the wt-IF1. The RMSFs of both conservation-based variants were 

higher than the wt-IF1 and the chemistry-based variants. Comparable results were obtained for 

most of the RA-IF1 variants with alphabet sizes range from 14A to as small as 8A (Appendix Table 

4.3). Based on these findings, we speculated that the chemistry-based variants perhaps preserve 

wt-IF1 dynamics better than the conservation-based variants and therefore we further examined 

the dynamic properties of the RA-IF1 variants by investigating their network structures. 

To obtain a detailed understanding of the differences between the RA-IF1 variants and the 

wt-IF1, we analyzed and compared the network structure shapes and the Bx(n) values of the 

residues of the 16A IF1 variants to that of the wt-IF1. Interestingly the shapes of all four 16A variants 

networks were similar to the shape of the wt-IF1 network (Figure 4.4.C). However, the Bx(n) values 

of the residues segregates the variants that are similar to the wt-IF1 from the others. Of the top ten 

residues with highest Bx(n) values in the wt-IF1, seven and six of these residues appear in the top 

ten Bx(n) scorers of the 16_1_chem variant and the 16_2_chem variant, respectively. Both 

conservation-based variants preserve only four of the top ten central residues of the wt-IF1 

(Appendix Table 4.6). The results for other RA-IF1 variants have been compiled into a table 

(Appendix Table 4.3). To summarize, most RA-IF1 variants preserved the overall shape of the 

network. However, the differences in how a signal travels through the network could be observed 

by changes in the nodes/edges of the networks, particularly, the identities of residues with  
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[Figure on previous page] 

Figure 4.4 – In silico assessment of RA-IF1 variants. A-B. RMSD and RMSF results for wt-IF1 
and 16A variants. Both chemistry-based variants show trends similar to the wt-IF1, whereas the 
conservation-based variants show higher RMSDs and RMSFs. C. Representative results for 
network structure of wt-IF1 followed by results of selected variants which demonstrate a noticeable 
similarity or difference with respect to wt-IF1, in this case, 16A_1_chem, and 10_2_chem variants, 
respectively. Residues are shown as circular nodes and labeled according to the residue 
numbering. Residues are coloured based on the domain they belong to, and the size of the node 
represents the Bx(n) value of the residue. D. PCA derived residue cross-correlation heatmaps  of 
wt_IF1, followed by results of selected variants which demonstrate a noticeable similarity or 
difference with respect to wt-IF1, in this case, 16_1_chem, and 10_2_chem variants, respectively. 
High positive cross-correlations are shown with higher intensity of red and high negative cross-
correlations are shown with higher intensity of blue, whereas white shows no correlation. E. PCA 
derived scree plot for wt-IF1. The x-axis shows the top ten motions sampled, and the y-axis shows 
the time (as a percentage) that the system spends sampling each motion. The star symbol shows 
the scree point. The sampling times for 16A variants are shown in the table. F. SMOG derived 
folding pathway analysis of wt-IF1 and 16A variants. The x-axis shows the time in picoseconds and 
the y-axis shows the number of native residue contacts formed. The folding pathway adopted by 
the 16_1_cons variant is different from that of the wt-IF1, whereas the other variants adopt a folding 
pathway similar to wt-IF1. 
 

high Bx(n) values, thereby establishing the importance of comparison of the Bx(n) values of amino 

acids to rank the variants. 

The backbone motions and amino acid side chain motions are an integral part of protein 

dynamics, and therefore it was critical to investigate the motions sampled by the RA-IF1 variants 

in comparison to the wt-IF1. A comparison of residue cross-correlation heatmaps showed that apart 

from subtle differences, the residue cross-correlation trends in all 16A IF1 variants were similar to 

those for wt-IF1 (Figure 4.4.D). We further examined the various motions sampled by wt-IF1 and 

compared them to the motions sampled by the 16A IF1 variants (Figure 4.4.E) using scree plots. 

The wt-IF1 samples four motions above the scree point, where the system spends 60 percent of 

simulation time sampling these four motions. Among the 16A variants, both chemistry-based 

variants demonstrate nearly identical behaviour to the wt-IF1 and to each other, where both 

systems sample four motions above the scree point, spending 63 percent of simulation time 

sampling the four motions. The conservation-based variants however, sample only three motions 

above the scree point and spend roughly 60 percent of the time sampling only the three motions. 

Together these findings suggest that the chemistry-based 16A IF1 variants preserve motions and 

sampling times similar to wt-IF1, thus demonstrating that chemistry-based variants perform better 

at preserving wt-IF1-like dynamics, compared to the conservation-based variants which 
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demonstrate a loss of dynamics (Appendix Table 4.3). Together the results for the 16 variants and 

other RA-IF1 variants show that the chemistry-based variants perform better at preserving wt-like 

dynamics in IF1 (Appendix Table 4.3). 

Lastly, to study the in silico folding pathway adopted by the 16A IF1 variants and the native 

residue contacts preserved in the resulting folded states compared to the wt-IF1, we employed 

SMOG folding analysis coupled with the study of residue contacts. Our results show that both 

chemistry-based 16A variants adopt folding pathways similar to wt-IF1 and preserve almost all 

native residue contacts (Figure 4.4.F). Compared to the 185 residue contacts formed in the wt-IF1, 

the 16_1_chem variant preserves 177 contacts and the 16_2_chem variant preserves 176 

contacts. Conversely, the 16_1_cons variant not only adopts a different folding pathway compared 

to wt-IF1 but also preserves the least number of native residue contacts (167) among all the 16A 

variants. Perhaps employing a folding pathway different from wt-IF1 restricts the 16_1_cons variant 

from folding completely, as evidenced by the lesser number of contacts formed. The 16_2_cons 

variant scores the second lowest in preserving 174 residue contacts, although it takes the same 

folding pathway as adopted by wt-IF1. Results for the folding pathways and contacts formed during 

folding of the other RA-IF1 variants are summarized in Appendix Table 4.3. 

In conclusion, among all the RA-IF1 variants, the chemistry-based variants outperformed 

the conservation-based variants and scored higher on the scoring matrix at every step of alphabet 

reduction. In total, eight out of the nine times, chemistry-based variants performed better and were 

taken forward to the next level of alphabet reduction for IF1 (Appendix Table 4.3). 

 

4.5.3 Chemistry- and conservation-based variants perform equally in α+β rpS10: After 

investigating the effect of amino acid substitution strategies on purely α-helical (chorismate mutase) 

or β-pleated (IF1) protein systems, we were interested in comparing these to a protein with a mix 

of α+β secondary structure. To this end, we selected the 30S ribosomal protein S10 (rpS10), an 

α+β structured protein from E. coli as the third model protein in this work. Taking a route similar to 

the previous protein systems, we first studied the impact of amino acid substitution on the overall 

dynamics of the reduced alphabet rpS10 (RA-rpS10) variants in comparison to the wt-rpS10 
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dynamics. We analyzed 1µs trajectories of the variants and compared their RMSD and RMSF 

trends to the wt-rpS10. The overall RMSD trends of all 12A variants were similar to wt-rpS10 (Figure 

4.5.A). Quantitatively, the RMSD of the wt-rpS10 was 5.9 Å, whereas the RMSDs of the 12A 

variants were 5.8 Å, 6.6 Å, 6.7 Å, and 7.4 Å, for 12_1_chem, 12_1_cons, 12_2_chem, and 

12_2_cons variants, respectively. A comparable trend was observed for the RMSF values of the 

12A variants (Figure 4.5.B), where the RMSFs of the 12A variants were 2.2 Å, 2.2 Å, 2.1 Å, and 

2.6 Å, compared to the RMSF of 2.3 Å for the wt-rpS10. The extended loop region is the most 

flexible region in the wt-rpS10 as well as all the RA-rpS10 variants. Since the function of the 

extended loop is to protrude into the 30S subunit and interact with other ribosomal proteins and the 

16S rRNA, preserving the dynamics of the extended loop served as an important criterion for 

ranking the RA-rpS10 variants. Subsequent analysis of RMSD and RMSF values of the other RA-

rpS10 variants also showed comparable behaviours of both chemistry and conservation-based 

variants (Appendix Table 4.4). 

The network structures and amino acid Bx(n) values of the 12A variants were compared 

with those of the wt-rpS10. The overall network shapes (Figure 4.5.C) of all 12A variants were 

similar to the wt-rpS10 network shape. Additionally, of the top ten residues with the highest Bx(n) 

values, all 12A variants preserved at least five residues in their respective networks (Appendix 

Table 4.7). Interestingly, four residues from the extended loop qualify into the top ten residues with 

the highest Bx(n) values in the wt-rpS10 and are also preserved by the 12A rpS10 variants. We 

also analyzed the network properties of other RA-rpS10 variants and found that both chemistry and 

conservation-based variants show similar network structures and Bx(n) values of residues at each 

step of alphabet reduction (Appendix Table 4.4). 

We further investigated the motions sampled by the RA-rpS10 variants and the cross-

correlations between the residues. A close inspection of the heatmaps demonstrates a near 

identical behaviour among the 12A variants and with the wt-rpS10 (Figure 4.5.D), a similarity which 

is further noticed in the sampling time of different motions in the 12A variants. The scree plot of the 

wt-rpS10 samples three motions above the scree point, for a total of 75 percent of simulation time.  
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[Figure on previous page] 

Figure 4.5 – In silico assessment of RA-rpS10 variants. A-B. RMSD and RMSF results for wt-
rpS10 and 12A variants. Both chemistry and conservation-based variants show similar RMSDs and 
RMSFs as those of wt-rpS10. C. Representative results for network structure of wt-rpS10 followed 
by results of selected variants which demonstrate a noticeable similarity or difference with respect 
to wt-rpS10, in this case, 12_1_chem, and 14_1_chem variants, respectively. Residues are shown 
as circular nodes and labeled according to the residue numbering. Residues are coloured based 
on the domain they belong to, and the size of the node represents the Bx(n) value of the residue. 
D. PCA derived residue cross-correlation heatmaps  of wt_rpS10 followed by results of selected 
variants which demonstrate a noticeable similarity or difference with respect to wt-rpS10, in this 
case, 12_1_chem, and 14_1_chem variants, respectively. High positive cross-correlations are 
shown with higher intensity of red and high negative cross-correlations are shown with higher 
intensity of blue, whereas white shows no correlation. E. PCA derived scree plot for wt-rpS10. The 
x-axis shows the top ten motions sampled, and the y-axis shows the time (as a percentage) that 
the system spends sampling each motion. The star symbol shows the scree point. The sampling 
times for 12A variants are shown in the table. F. SMOG derived folding pathway analysis of wt-
rpS10 and 12A variants. The x-axis shows the time in picoseconds and the y-axis shows the 
number of native residue contacts formed. The folding pathway adopted by all the 12A variant are 
different from that of wt-rpS10, although the 12A variants preserve almost all of the native residue 
contacts after folding. 

 

The 12A variants also sample three motions above the scree point, for 65 percent, 72 percent, 63 

percent, and 70 percent of simulation times for 12_1_chem, 12_1_cons, 12_2_chem, and 

12_2_cons variants, respectively (Figure 4.5.E). Similar results were observed for all other RA-

rpS10 variants, and the data has been compiled into a table (Appendix Table 4.4). Altogether, the 

PCA results for 12A variants and other RA-rpS10 variants established that the RA-rpS10 variants 

designed using both conservation and chemistry-based substitutions behave similarly with respect 

to wt-rpS10. 

To study another critical property of protein dynamics, which is the folding of the 

polypeptide chain into the final 3D folded structure, we employed SMOG analysis and studied the 

folding pathway taken by the linear chains of the 12A rpS10 variants, compared to that of the wt-

rpS10, along with the number of residue contacts formed (Figure 4.5.F). Results reveal that all of 

the 12A variants adopted folding pathways different from the wt-rpS10. However, it is surprising 

that even after going through different folding pathways, the variants were able to preserve almost 

all the residue contacts. For a total of 62 contacts formed in wt-rpS10, the 12A variants were able 

to form 60, 61, 59, and 60 contacts in 12_1_chem, 12_1_cons, 12_2_chem, and 12_2_cons 

variants, respectively. Similar results were obtained for other RA-rpS10 variants, where we 
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witnessed the linear chains of variants taking different folding pathways, but eventually, they all 

converged to a similar structure and preserved almost all native residue contacts (Appendix Table 

4.4). 

In summary, both chemistry and conservation-based RA-rpS10 variants performed equally 

in preserving molecular dynamics of the wt-rpS10 at each step of alphabet reduction. The scores 

obtained by the variants were extremely close to each other, thereby making the ranking process 

a bit challenging. Nevertheless, based on the scores of the variants, five out of the ten times, 

chemistry-based variants were taken forward to the next level of alphabet reduction, whereas 

conservation-based variants were selected the other five times. Together, these results underline 

the importance of the RAP scoring and ranking strategy designed and implemented in this work 

towards identifying the sometimes small differences in the dynamic properties of the RA-variants. 

Such differences can be used to rank the RA-variants, thereby generating a hierarchy of the best 

RA-variants which closely resemble the wt-protein dynamics, thus having higher chances of 

preserving the wt-protein functions, an advantage not offered by other RAP design approaches 

reported previously. 

 

4.6 Discussion 

Previous attempts to design reduced alphabet proteins using strategies such as random 

mutagenesis (136) or binary pattern module of polar and non-polar amino acids (35) have resulted 

in a loss of function even while completely preserving the structure. We attribute this failure to the 

lack of screening for preservation of the dynamic properties of the proteins. Additionally, reliance 

on stringent amino acid substitution criteria such as mentioned above can also be the cause for 

hampering the preservation of parent protein properties. In this work, we employ a combination of 

MD simulations coupled with downstream computational analysis to investigate how altering the 

primary structure of the protein affects its dynamics. Targeting the two most important properties 

of amino acids, physicochemistry and conservation, we employ a substitution principle with a 

broader basis. Testing our pipeline on three different proteins, we show for the first time that RAP 

design seems to vary with secondary structural composition of proteins. Our results show that in a 
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protein with dominant α-helical secondary structure composition, such as chorismate mutase, the 

conservation-based reduced alphabet variants outperform chemistry-based variants in preserving 

native protein dynamics (Figure 4.6.A). However, in a protein with dominantly β-pleated 

composition, such as IF1, the chemistry-based variants preserve native dynamics better than the 

conservation-based variants (Figure 4.6.B). Lastly, our finding for an α+β mix composition of a 

protein, such as rpS10, show that both chemistry and conservation-based variants perform equally 

in maintaining native protein dynamics (Figure 4.6.C). Together these findings suggest that the 

secondary structure composition of a protein plays a key role in determining which substitution 

strategy would be preferred for designing reduced alphabet variants for the protein, while 

preserving dynamics of the parent protein. 

 
Figure 4.6 – Final scores of RA-variants of the three model proteins. A. Chorismate mutase, 
B. Initiation Factor 1 (IF1), C. 30S ribosomal protein 10 (rpS10). The x-axis shows the AAA sizes, 
and the y-axis shows the final scores of the variants based on their performance in individual 
computational analyses. The highest and lowest scores obtained by the RA-variants are denoted 
by dashed grey lines. Consistently with the color scheme shown in the RAP design flowchart 
(Figure 4.1), blue dots represent the chemistry-based variants and green dots represent the 
conservation-based variants. 
 
 

To emphasize the significance of preserving native dynamics for designing functional 

RAPs, we employed a set of techniques to study different aspects of protein dynamics. Our findings 

demonstrate that reduced alphabet variants based on different substitution strategies behave 

differently compared to the parent protein. Analysis of the RMSD and RMSF of the MD trajectories 

of the RA-variants provided insight into the overall behaviour of the variants, and therefore was 

used as the first tier of assessing the RA-variants. A visual analysis of the MD trajectories of RA-

variants such as the 9_2_chem variant of chorismate mutase (Appendix Table 4.2) and 14_2_cons 

variants of IF1 (Appendix Table 4.3) reveal that the disruption of secondary structure of the protein 

A B C 
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is coupled with high RMSD and RMSF values. These findings prove that insertion of unsuitable 

amino acids can severely impact both the structure and dynamics of the RA-variants. Subsequent 

analysis of the protein networks, motions, and folding of the RA-variants served as more stringent 

criteria to differentiate between the dynamic behaviour of the variants compared to the parent 

proteins. The difference in network shape of the 10_2_chem variant of IF1 (Figure 4.4.C), and 

major differences in the residue cross-correlation heatmaps (Figure 4.4.D), further showcase how 

slight differences in amino acid composition (e.g., replacing phenylalanine with tyrosine at two 

positions in a 91-residue chorismate mutase, a 2% change in the amino acid composition of the 

RAP variant versus the wt-cm) can have large-scale impact on protein dynamics. Collectively, the 

computational techniques employed in this work to study protein dynamics served as sequential 

tiers for scoring the RA-variants and thereby facilitating the identification of the best RA-variants for 

each protein. Together, our findings confirm that altering the amino acid composition of proteins 

can have large-scale implications on protein dynamics, which can be studied using a combination 

of protein dynamic analysis techniques. Finally, we employed AlphaFold (164) to predict the 

structures of the 8A variants designed for the three model proteins. The structures predicted by 

AlphaFold were nearly identical to the structures of the parent proteins (Appendix Figure 4.8), with 

RMSD of 1 Å between the predicted structures and the parent protein structures. Therefore, it can 

be concluded that our RAP design pipeline can generate variants that preserve both the structure 

and dynamics of the parent protein, providing confidence and reliability to our RAP design pipeline. 

To summarize these findings in the context of the relationship between the structure, dynamics and 

function of proteins, it can be established that reduced alphabet proteins that preserve the structure 

and dynamics of the parent protein are perhaps more likely to preserve function as well, compared 

to the variants that preserve only structure or dynamics. 

The biggest drawbacks of the previous works on RAP design were the lack of rational 

substitution criteria such as combination of polar and nonpolar residues, random mutagenesis, etc., 

however, we utilized a more rational and unbiased approach where the least conserved amino 

acids were substituted first. This approach allowed for reducing the AAA size while preserving the 

key amino acids which are conserved due to their important role in maintaining either the structure 
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or function of the protein. Following this approach, we were able to reduce the AAA of our model 

proteins to 8 AAA, the smallest AAA designed in this work. Starting from the 18 AAA for all three 

model proteins, 8 AAA variants include only 44% of the initial alphabet size, which is a drastic drop 

in AAA size. These results suggest that as long as a rational AAA substitution strategy is employed 

along with an attempt to preserve key structural or functional residues, the AAA of a protein can be 

reduced to a great extent without losing structure or function. Furthermore, as a measure of the 

efficiency and robustness of the RAP design pipeline, having several scoring criteria such as 

RMSD, RMSF, network structures, Bx(n) values of residues, folding pathways, residue cross-

correlations, etc., served as a comprehensive testing matrix of the RAP variants, thereby increasing 

our confidence in the identification of the best RAP. In the future, this RAP design pipeline can be 

expanded for testing other proteins with diverse structures and functions for a more thorough 

testing of our substitution strategies and providing feedback to our RAP design pipeline to make it 

more robust for a wide range of proteins. 

With a goal of the rational design of reduced alphabet proteins, in this work we have 

showcased a rational RAP design pipeline that can efficiently generate reduced alphabet variants 

which preserve both structure and dynamics of the parent protein in silico. Highlights of our RAP 

design pipeline include performing amino acid substitution based on more than one rationale, in-

depth evaluation of protein dynamics using multiple analyses, and robust scoring and ranking 

criteria enabling the identification of the best RAP variants. Furthermore, preliminary in vivo testing 

has been performed for 12A-rpS10 variants. E. coli knockdown strains of rpS10 were transformed 

with plasmids carrying RAP-rpS10 coding sequences. Downstream analysis of the RAP-strains 

shows growth phenotype of the E. coli cells containing the 12A-rpS10 variant (data not shown). 

However, additional testing of the 12A-rpS10 and other RAP variants needs to be performed to 

validate our findings. Additionally, preliminary protein overexpression and purification studies have 

been performed on multiple RA-IF1 variants. The coding sequences of the wt and the RA-IF1 

variants were cloned into the pET28b plasmid using restriction enzymes Nde1 and EcoR1. The 

plasmids were then transformed into DH5α competent cells, followed by overexpression of the 

proteins in BL21(DE3) cells where protein production was induced using IPTG. Subsequently, the 
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wt and the RA-IF1 variants were purified using nickel affinity chromatography and were tested for 

solubility where all tested proteins precipitated out of the solution (data not shown). Therefore, 

future directions could involve optimizing protein expression, cell lysis, and purification conditions 

to promote protein solubility. 

One of the main arguments for pursuing reduced alphabet protein design is the quest to 

understand the origin of life. While this is important, reducing protein alphabet complexity will also 

provide a basis for understanding general protein design rules for different classes of proteins, 

offering several biotechnological implications. It can provide a basis for the forward-engineering of 

proteins on a reduced alphabet scaffold leading to the generation of functional de novo proteins 

(165-167) such as enzymes with novel or enhanced catalytic activities. A reduced alphabet protein 

that functions optimally will allow full rationality in protein design and will open up the sequence 

space for the incorporation of non-native amino acids. The design of an E. coli strain that runs on 

reduced alphabet proteins, although a far-reaching objective, could enable significant strain 

orthogonality, preventing crosstalk with natural cellular systems and eliminating the challenges of 

using genetically modified organisms in bioproduction and other bio-applications.  

Additionally, our RAP design pipeline can also be extended to eukaryotic proteins with 

biomedical and pharmaceutical applications. Proteins such as eIF4E (eukaryotic Translation 

Initiation Factor 4E) are essential for eukaryotic translation initiation but are also upregulated in 

multiple cancer types (168) in humans. Therefore, targeted substitution of amino acid residues that 

interact with oncogenic partners such as PI3K/AKT/mTOR can be performed to disrupt their 

interaction. Such a result can be achieved by either introducing amino acid substituents that would 

either modify the shape of the binding site (due to a different preferred secondary structure of the 

introduced amino acid) or would disrupt the interaction between the protein partners (due to 

different physicochemical properties of the side chain of the introduced amino acid), thereby 

abolishing the progression of the oncogenic signaling downwards. Using RAPs for such an 

application is particularly useful because mass substitutions of amino acids can allow a single RAP 

to abolish interactions with multiple partners thus eliminating the tedious task of repeated 

identification and mutation of specific residues in target proteins. However, prior to that, ways for 
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targeted delivery of RAPs, in this case RA-eIF4E needs to be determined. Since eIF4E plays an 

essential role in eukaryotic translation initiation, downstream experimental testing can be 

performed using either in vitro transcription/translation kits or by using in vivo survival phenotype 

assays performed in yeast. Overall, the expansion of our test set of proteins (currently consisting 

of archaeal and bacterial proteins) to include eukaryotic proteins will help us to understand protein 

design rules from all the different domains of life, thus offering an understanding of the evolution of 

proteins while guiding protein engineering studies in various life forms. 

With ex vivo systems (e.g., PURE system), RAPs might provide the springboard for the 

generation of self-replicating in vitro transcription/translation kits. Self-replicating protein expression 

kits that have RAP-enzyme components might have increased activity as amino acid flux will be 

directed from self-replication/maintenance to maximal product yield. In fact, this is applicable to in 

vivo systems as well; the reduced energy requirement for cellular metabolism in a ‘reduced 

complexity strain’ can allow increased recombinant product yield. Such tools (reduced alphabet in 

vivo and ex vivo systems) can then be used for tasks such as bioremediation, point-of-need vaccine 

production and even for establishing life on remote planets (since reduced complexity protein 

modules for ex vivo systems would ensure reduced payload from Earth). 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

 

Proteins, composed of long amino acid chains, are the most abundant biomolecules in a 

cell and are at the forefront of the majority of cellular functions. In the present world where protein 

engineering lies at the epicentre of bioengineering, it is essential to understand the protein design 

rules that exist in nature to enable modification of proteins and unlock novel structure and functions. 

Moreover, given the overlap in physicochemical properties of the standard amino acids, one or 

more of such possibly redundant amino acids can be removed to artificially design a reduced amino 

acid alphabet and give rise to reduced alphabet proteins (RAPs). Although several researchers 

have attempted to design RAPs in the past, most have resulted in partial or complete loss of 

function in the resultant RAPs, without a clear understanding of what caused the loss of activity. 

This research thesis was designed to understand the protein design rules that exist in nature to be 

utilized for efficient forward engineering of proteins, particularly to design RAPs. This chapter 

serves to conclude the thesis by summarizing the key findings with respect to the research aims 

and will also discuss the value and contribution of this thesis in the field of protein engineering. This 

chapter will also review the limitations of this research along with proposing possible opportunities 

for future research. 

 

5.1 Evolution of the Standard Amino Acid Alphabet and Identification of Protein Design 

Principles 

The AAA size and composition varies for different proteins, thereby sparking curiosity whether the 

current AAA is the only alphabet to have existed on planet Earth since the beginning of time or 

whether it is a product of gradual evolution from a smaller subset known as the prebiotic amino 

acids (29, 30, 36). Moreover, the difference in the amino acid composition in proteins with different 

functions suggests the existence of underlying protein design principles where amino acids are 

selected differentially for various functions. Even after several decades of extensive research, little 

is known about the evolution of the standard amino acid set, or the underlying protein 

design principles. 
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In Chapter 2, an extensive bioinformatics analysis was performed to shed light on the 

complexity of the AAA and nature’s protein design principles. Results indicated that small alphabet 

proteins (with less than 20 amino acids in their AAA) commonly exist in nature with an alphabet 

size as small as a 3 AAA. With respect to smaller alphabets, we observed a trend of amino acid 

exclusion where some amino acids are removed from the AAA more often, whereas certain amino 

acids are tightly preserved. Prebiotic amino acids (believed to be the first set of amino acids to be 

found on early Earth), make up majority of the highly preserved amino acids in proteins from diverse 

domains of life and with distinct functions. Additionally, for the first time, our results demonstrated 

the existence of a direct correlation between the protein sequence length and AAA size, implying 

that the increase in protein sequence length led to incorporation of additional amino acids into the 

AAA, or vice versa. Altogether, these findings strongly indicate that the modern-day standard AAA 

has gradually evolved from an initial smaller subset comprised mostly of prebiotic amino acids, in 

agreement with previous theories including the RNA world hypothesis (68). With respect to the 

protein design principles utilized in nature, our findings revealed that the amino acid composition 

of a protein is customized according to the function, and cellular localization of a protein. 

Cumulatively, these findings can serve as a foundation to facilitate and benefit the field of 

protein engineering. With the understanding of the AAA evolution trends along with the design rules 

essential for allowing diverse functions, the AAA complexity of a protein can be altered to 

synthesize novel protein variants in a near-natural manner. In chapter 4, the design principles have 

been utilized to rationally reduce the AAA size of multiple proteins to generate RAP variants. It is 

crucial to highlight that the findings of this study were limited by the availability of protein sequence 

entries in the UniProt/Swiss-Prot database. Our Swiss-Prot derived dataset comprising of roughly 

half a million protein sequence entries was used as the input to our bioinformatics pipeline. Given 

the size of our dataset, one of the future directions is to expand on this initial dataset as more 

sequences become available, to further establish the accuracy of our bioinformatics pipeline as 

well as the results. Additionally, an inherent bias exists with respect to the representation of the 

different domains of life on the UniProt database, where the number of sequence entries deposited 

for bacterial and eukaryotic proteins is much higher than the number of entries deposited for 
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archaeal and viral proteins. The bias in the representation of the domains of life may result in a bias 

in the results, particularly when making interpretations for protein design rules for each of the 

domains of life. This bias can be eliminated by incorporating additional archaeal and viral proteins 

into the UniProt database. Furthermore, this work can be easily expanded to investigate  specific 

properties of proteins such as pathological roles, various post-translational modifications, proteins 

with diverse domains and motifs, and proteins with different coding sequence variants. 

 

5.2 Structural Dynamics of Nrp2 Reveals Motions Required for HCMV Proteins Binding 

Nrp2 serves as an essential cell surface receptor and plays a central role in a wide range 

of physiological and signaling processes. Viruses such as HCMV and SARS-CoV-2 exploit Nrp2 to 

gain entry into the host cells. Several previous studies have suggested that a major conformational 

change is required, particularly of the a1 domain of Nrp2, for the viral proteins to bind. However, 

the details pertaining to the conformational landscape of Nrp2 prior to and during the viral protein 

binding still remain elusive, since little is known about the structural dynamics and conformational 

flexibility of Nrp2, particularly with respect to the presence and absence of the Ca2+ ion in the Ca2+-

binding site of the a2 domain of Nrp2. Chapter 3 employed in-house developed molecular dynamics 

guided computational assessment of the structural dynamics of Nrp2, and how it is exploited by 

HCMV to gain entry into the host cells. Additionally, Chapter 3 served as a biological benchmark 

for the validation of our computational protein dynamics analysis methodology which is aimed at 

studying different aspects of biomolecular dynamics which are often neglected while performing 

structural or functional studies. The dynamic properties of a protein can include distinct motions 

adopted by the protein backbone or side chain in simulated environments, backbone torsion angles, 

communication between different residues in the protein, folding of the linear polypeptide chain into 

the folded three-dimensional structure of the protein. The biomolecular dynamics analysis 

methodology developed and benchmarked in Chapter 3 has been subsequently implemented to 

examine the structural dynamics of reduced alphabet protein variants designed in Chapter 4. 

For the first time, our results reveal that a large-scale conformational change takes place 

in the absence of Ca2+ ion, where the a1 domain samples an opening motion with respect to the 
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core domains (a2b1b2) of Nrp2, which is likely exploited by the viral proteins to bind to the HCMV 

pentamer binding sites. This opening motion is further triggered when the core domains strongly 

repel the a1 domain in a highly coordinated fashion as demonstrated by the residue cross-

correlation results. Furthermore, we demonstrate that the backbone torsion angles of residues in 

the Ca2+ binding site are altered, in the absence of the Ca2+ ion, thereby suggesting that Ca2+ binding 

reorients and restricts the backbone of specific residues into conformations that capriciously favour 

HCMV pentamer binding. Lastly, based on our findings, we propose a model suggesting the 

possible mechanism pertaining to how the structural dynamics and inherent conformational 

landscape of Nrp2 is exploited by the HCMV pentamer proteins to gain entry into the host cells. 

The mechanistic details of Nrp2 dynamics identified in Chapter 3 can prove beneficial for the 

development of antiviral therapies for Nrp2. 

Altogether, Chapter 3 provides unprecedented insight into the mechanistic details of the 

conformational landscape of Nrp2 using our in-house developed biomolecular dynamics analysis 

approach. Although we observed the a1 domain opening only in the absence of Ca2+, we speculate 

it is equally possible for the Nrp2-Ca2+ holo-protein to sample the domain a1 opening. Therefore, 

future directions include performing extended simulations of the Nrp2-Ca2+ system to investigate 

whether the a1 domain opening motion is witnessed in the presence of Ca2+. Additional replicates 

of both apo Nrp2 and Nrp2-Ca2+ systems can be subjected to MD simulation coupled with 

downstream analysis to increase the sample size and to witness the opening motion in additional 

replicates. Furthermore, in view of the recent studies showing the interaction between the HCMV 

pentamer protein and Nrp2 (91, 105), the next step includes the MD simulation and analysis of the 

HCMV pentamer-Nrp2 complex to identify the mechanistic details of interaction between the two 

proteins. As a long-term goal, downstream investigation of the HCMV pentamer-Nrp2 complex can 

be performed in the presence of potential drugs that disrupt the interaction between the two, 

thereby facilitating the development of an HCMV vaccine targeting the pentamer complex. On the 

experimental side, future studies will involve investigating the in vivo mechanism of the receptor 

operation, since the biological role of the a1 domain opening motion still remains unknown. 
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5.3 Rational Design of Reduced Alphabet Proteins 

In conventional protein design, the natural sequence space of a protein comprising the 

twenty standard amino acids is probed and reorganised to generate multiple variants. However, 

the standard amino acid alphabet (AAA) is not only redundant in terms of physicochemical 

properties of the twenty amino acids, but also restricts exploration of novel structures and functions 

that can be unlocked using unnatural amino acids. Reducing the AAA size of existing proteins is 

an approach where the overlap between the standard amino acids can be used to design reduced 

alphabet proteins (RAPs) with several downstream applications. On one hand, RAPs can identify 

the ‘bare minimum’ number of amino acids required to sustain a functional protein, whereas on the 

other hand, the “freed-up spaces” after removing overlapping amino acids can be utilized to insert 

unnatural amino acids to assign novel properties to desired proteins. Several previous studies have 

attempted to design RAPs with little to no success, which we speculate to have happened because 

the focus was only on retaining the structure of the parent protein. Since proteins are dynamic 

entities, the structural dynamics serve as the connecting link between the structure and function of 

the protein, and thus a failure of preserving the dynamics may lead to partial or total loss of function. 

Chapter 4 reports a generalizable and systematic RAP design framework which utilizes two 

fundamental properties of amino acids to generate RAP variants: physicochemical properties and 

conservation trends. We utilized the biomolecular dynamics analysis methodology benchmarked 

in Chapter 3 to design RAP variants and to identify the best variants at each step of alphabet 

reduction. Our RAP design framework has been tested on three different model protein systems 

with distinct structures and functions to identify the design principles utilized in nature which can 

be subsequently applied to achieve forward engineering of proteins. 

For the three model protein systems represented by chorismate mutase (α-helical archaeal 

enzyme), IF1 (β-pleated translation initiation factor) and rpS10 (α+β ribosomal protein), our results 

show that altering the amino acid composition significantly impacts the structure and dynamics of 

the RAP variants. Additionally, for the first time, we reveal that the secondary structure content of 

a protein plays a determining role as to which substitution strategy (physicochemistry-based vs. 

conservation-based) can generate RAP variants that can closely resemble parent protein 
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dynamics. Conservation-based RAP variants outperform the chemistry-based variants in α-helical 

chorismate mutase, whereas chemistry-based variants performed better at preserving parent 

protein dynamics in β-pleated IF1. In the case of α+β rpS10, both conservation- and chemistry-

based RAP variants demonstrate similar efficiency in conserving parent protein dynamics. 

Together these findings reveal that there is a direct relation between the secondary structural 

organization of a protein and the substitution strategy of RAP design, thereby generating RAP 

variants with increased likelihood of preserving parent protein dynamics. Furthermore, the 

combination of protein dynamics analysis techniques used in this work teased out the miniscule 

differences in the structural dynamic properties of the different RAP variants, which facilitated the 

ranking of the RAP variants and assisted with selecting the best ones going forward. Lastly, as a 

proof of concept that our RAP design pipeline works well in preserving the similarity in structure 

and dynamics of the RAP variants relative to the parent protein, we employed AlphaFold, a 

revolutionary protein structure prediction server, to predict the structure of our 8 AAA variants. Our 

results show that the 8 AAA variants for all three model systems were nearly identical to the parent 

protein structures with an RMSD of ≤1Å. 

Altogether our findings demonstrate that our RAP design framework can identify the protein 

design principles employed in nature and can use them to significantly reduce the complexity of 

the AAA of proteins without compromising the structural and dynamic properties of the system. 

Such RAP variants may show higher likelihood of preserving native function as opposed to RAP 

variants that preserve only the structure. As a future-direction, the biochemical properties of the 

three model proteins can be tested experimentally to validate our findings. Additionally, this RAP 

design framework can be tested on other proteins with more complex structures and functions to 

make this pipeline more generalizable and robust. 
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5.4 Final Remarks 

The overarching goal of this thesis was to investigate the amino acid alphabets of natural 

proteins in order to identify the principles of protein design in nature with an aim of utilizing those 

principles for the rational reduction of the AAAs of proteins to design RAPs. 

This thesis provides valuable insight into the protein design principles in nature with 

pioneering evidence that the AAA size is directly proportional to the length of proteins and that the 

amino acid compositions are customized to suit the function and cellular location of proteins. 

Furthermore, highlighting the importance of protein dynamics, this thesis develops and benchmarks 

a protein dynamics analysis toolkit where MD simulations coupled with downstream computational 

investigation techniques reveals unforeseen motions in Nrp2, offering applications in development 

of antiviral therapies. Lastly, using the above-mentioned pipeline, this thesis demonstrates that the 

AAA of proteins can be significantly reduced without compromising protein structure or dynamics, 

allowing generation of RAP variants with increased likelihood of preserving parent protein function. 

Altogether this thesis extensively studies the amino acid alphabets of proteins to address some of 

the key unanswered questions in the field of protein evolution and protein engineering. 
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Appendix Figure 2.1 – Data mining and bioinformatic analysis pipeline. Protein sequence 
entries from the UniProtKB/Swiss-Prot database constitute the raw dataset. In-house developed 
Perl scripts are employed for data cleanup to remove fragments and duplicate entries from the raw 
dataset. Post cleanup, the final Swiss-Prot derived dataset is used for AAA analysis, consisting of 
counting the amino acid alphabet for each entry and binning them based on their alphabet size. 
Data standardization includes codon assignment correction and normalization for all amino acids. 
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Appendix Figure 2.2 – Distribution of prebiotic amino acids in small alphabet proteins. The 
amino acids have been color coded based on their side chain properties. Glycine is the first prebiotic 
amino acid to be included in the smallest alphabet proteins of size 3 AAA. Gradually other prebiotic 
amino acids are included as the AAA size increases. All ten prebiotic amino acids become 
incorporated while the alphabet expands from 3 AAA to 6 AAA, however all the prebiotic amino 
acids appear together for the first time in a 13 AAA protein.  
 

 

Appendix Figure 2.3 – Hierarchical overlap between the different protein sub-groups. The 
first tier based on cytosolic vs. membrane localization of proteins. The second tier is based on 
enzymatic and non-enzymatic proteins. 
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Appendix Table 2.1 – Exclusion fraction (Ef) values of amino acids in proteins from the four 
domains of life- Archaea, Bacteria, Eukaryota and Virus. The amino acids (columns colored 
in grey) have been arranged in decreasing order of exclusion fraction trends observed for each 
domain of life. The Ef values have been colored using the coloring scheme from Table 2.2 
(prebiotic amino acids are shown in orange). 

Amino 
acid 

Archaea 
(n=18442) 

Amino 
acid 

Bacteria 
(n=255063) 

Amino 
acid 

Eukaryota 
(n=171523) 

Amino 
acid 

Virus 
(n=15574) 

W 0.53 W 0.58 W 0.47 W 0.46 

C 0.25 C 0.25 C 0.14 C 0.17 

H 0.08 H 0.053 H 0.098 H 0.097 

Q 0.05 Y 0.036 Y 0.049 Q 0.040 

F 0.019 F 0.017 M 0.038 Y 0.039 

Y 0.019 Q 0.014 Q 0.037 F 0.034 

N 0.019 N 0.014 D 0.027 E 0.028 

D 0.012 D 0.010 F 0.025 N 0.023 

E 0.0052 E 0.0071 E 0.025 D 0.022 

P 0.0044 P 0.0068 N 0.024 K 0.022 

T 0.0034 K 0.0061 K 0.018 P 0.019 

K 0.0028 T 0.0023 I 0.012 G 0.011 

S 0.0019 I 0.0022 P 0.010 A 0.0088 

I 0.0018 R 0.0017 R 0.0066 I 0.0062 

R 0.0012 G 0.0010 T 0.0057 R 0.0061 

A 0.0012 S 0.00090 A 0.0056 M 0.0044 

G 0.0010 A 0.00080 V 0.0051 T 0.0040 

V 0.00075 M 0.00075 G 0.0041 V 0.0037 

L 0.00060 V 0.00056 L 0.0027 S 0.0012 

M 0.00011 L 0.00054 S 0.0012 L 0.0010 
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Appendix Table 2.2 – Exclusion fraction (Ef) values of methionine in proteins from the four 
domains of life. 

 

 

 

 

 

Appendix Table 2.3 – Exclusion fraction (Ef) values of amino acids in proteins from 
Escherichia coli and Homo sapiens. The amino acids have been arranged in decreasing order 
of Ef trends observed for amino acids in the overall Swiss-Prot derived dataset. The Ef values have 
been colored using the coloring scheme from Table 2.2 (prebiotic amino acids are shown in 
orange). 

Amino 
acid 

E. coli 
n=4371 

H. sapiens 
n=20322 

W 0.43 0.50 

C 0.27 0.11 

H 0.08 0.09 

Y 0.05 0.08 

Q 0.03 0.01 

F 0.02 0.04 

N 0.02 0.05 

D 0.02 0.03 

E 0.02 0.02 

M 0.00 0.00 

K 0.01 0.02 

P 0.01 0.01 

I 0.00 0.02 

T 0.01 0.01 

R 0.01 0.00 

A 0.00 0.01 

G 0.01 0.00 

V 0.00 0.00 

L 0.00 0.00 

S 0.00 0.00 
 

Domain of life Exclusion fraction 
value for methionine 

Archaea 0.001 
Bacteria 0.0007 
Eukaryota 0.04 
Virus 0.004 



  

104 
 

 

Appendix Table 2.4 – Small alphabet proteins (SAPs) population in different prokaryotic and 
eukaryotic genera. Left column indicates the AAA sizes and corresponding values demonstrate 
the total number of proteins that constitute the given AAA size. 

AAA E. coli 
n=4371 

Salmonella 
n=5954 

Pseudomonas 
n=9268 

Aeromonas 
n=978 

H. 
sapiens 
n=20322 

Pan 
n=678 

Rattus 
n=7571 

Macaca 
n=1401 

20 3176 4873 6879 692 17917 585 6821 1197 
19 776 831 1642 177 1578 47 524 121 
18 238 148 505 73 464 29 160 56 
17 98 63 168 25 158 11 37 12 
16 43 24 37 7 78 1 14 5 
15 13 5 26 2 30 3 6 0 
14 13 4 2 2 35 0 6 3 
13 4 5 2  25 0 1 3 
12 7 0 7  18 0 1 1 
11 2 1   9 1 0 2 
10 1    6 1 0 0 
9     1  1 0 
8     0   1 
7     2    
% 

SAPs 9.59 4.20 8.06 11.15 4.06 6.78 2.99 5.92 
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Appendix Figure 3.1 – RMSD and RMSF plots of the Nrp2-Ca2+ system replicates for 1 µs MD 
simulation. A. RMSD: Stable trajectories are observed for all replicates during the entire simulation 
period after a brief equilibration phase, with a mean RMSD of ~5 Å. B. RMSF: The color bars at the 
bottom denote the domains as described in Figure 3.1.A. All replicates show comparable RMSFs, 
where residues belonging to the inter-domain or intra-domain secondary structural loop elements 
demonstrate a comparatively higher flexibility (i.e., “spikes” in the RSMF plots). 

  

A B 
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Appendix Figure 3.2 – RMSD and RMSF plots of the apo Nrp2 system replicates for 1 µs MD 
simulation. A. RMSD: The plots show higher RMSD during the initial equilibration relative to the 
starting structures and remain stable for the remainder of simulation. Replicate 3 shows a 
significantly higher RMSD than the other replicates due to a domain a1 opening motion. Along the 
trajectory of the observed opening of apo Nrp2, several intermediates which remain stable for 
>20ns are observed (indicated with arrows, letters correspond with the structures shown in panels 
below). B. RMSF: The color bars at the bottom denote the domains as described in Figure 3.1.A. 
C. Surface representation of apo Nrp2 15ns timepoint in simulation. Domain a1 forms interactions 
with both domain b2/a2, and the hinge region is compact. D. Surface representation of apo Nrp2 at 
50ns timepoint in simulation. Domain a1 interactions with domain b2/a2 are broken compared to 
those observed at the 15ns timepoint. However, the hinge region remains compact (rigidified by 
intra-hinge H-bonds). E. Surface representation of apo Nrp2 simulation at 80ns timepoint in 
simulation. Domain a1 interacts with domain a2, and the hinge region remains rigidified. F. Surface 
representation of apo Nrp2 at 425ns timepoint in simulation. Domain a1 is displaced from the 
a1b1b2 core, and the hinge region is extended (intra-hinge H-bonds broken relative to previous 
panels). 
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Appendix Figure 3.3 – Sausage plots displaying RMSF values reveal molecular dynamics 
“hotspots” of individual residues. Nrp2-Ca2+ replicates 1, 2, and 3 are shown in Panel A, B, and 
C, respectively. The RMSF values are plotted on the model structure of Nrp2-Ca2+ using Pymol. 
The scale (left to right) at the bottom represents the lowest RMSF of 0 Å in blue to highest RMSF 
of 9 Å in red. 

 

 

 

Appendix Figure 3.4 – Sausage plots displaying RMSF values reveal molecular dynamics 
“hotspots” of individual residues. apo Nrp2 replicates 1, 2, and 3 are shown in panel A, B, and 
C, respectively. The RMSF values are plotted on the model structure of apo Nrp2 using Pymol. The 
scale (left to right) at the bottom represents the lowest RMSF of 0 Å in blue to highest RMSF of 9 Å 
in red. Replicate 3 explores the hinge-bending motion whereby the a1 domain “opens” away from 
the a2b1b2 core. 

 

  

 

 

A B C 

A B C 



  

109 
 

 

Appendix Figure 3.5 – Quantitative details about the a1 domain opening motion. A. Two 
spatially close amino acids from the a1 and b2 domains (Q53 and Y458 respectively) were selected 
to measure the distance domain a1 was displaced upon opening. B. Distance between Q53 and 
Y458 from b2 domain measured as a function of simulation time. C. The a1 domain “tilts” about an 
alternative axis in addition to the axis described in Figure 3.2. A plane was drawn through three 
amino acids (I88, Y121, F124) and a cross vector (perpendicular to this plane) was calculated for 
each frame for the duration of the simulation. The angle (θ) between each cross vector and the 
reference plane over time was determined, informing the degree to which the Nrp2 a1 domain 
“tilted” during the simulation. D. Plot of θ as a function of simulation time, demonstrating an initial 
“tilt” of approximately 15° as domain a1 opens, followed by oscillation as a1 remains in its open 
state. 
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Appendix Figure 3.6 – Representative Ramachandran plots for D252, M253, V255, and Y210 
in Ca2+-bound and apo Nrp2 simulations. Each Ramachandran plot depicts dihedral angles 
explored for the duration of the 1 µs MD simulation, where the frequency of a certain population 
being explored is expressed as heat maps. The black “x” on each plot reflects the dihedral angles 
observed in the Nrp2-HCMV pentamer complex PDB 7M22 (105). A. In the presence of bound 
Ca2+, D252 exhibits a single population of dihedral angles which overlaps with the dihedrals 
observed in the Nrp2-HCMV pentamer complex. B. In the apo Nrp2 simulations, D252 adopts 
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multiple dihedral angle populations not observed in the Ca2+-bound state of Nrp2 and has some 
population of dihedrals overlap with those observed in the Nrp2-HCMV pentamer complex. 
Compared to the Ca2+-bound state, the apo state exhibits a 100% increase in the number of 
dihedral microstates (bins) occupied, and the percentage of non-overlapping Φ/Ψ angles is 80%. 
C. In the presence of bound Ca2+, M253 exhibits a single population of dihedral angles which 
overlaps with the dihedrals observed in the Nrp2-HCMV pentamer complex. D. In the apo Nrp2 
simulations, M253 adopts multiple dihedral angle populations not observed in the Ca2+-bound state 
of Nrp2 and has some population of dihedrals overlap with those observed in the Nrp2-HCMV 
pentamer complex. Compared to the Ca2+-bound state, the apo state exhibits a 104% increase in 
the number of dihedral microstates (bins) occupied, and the percentage of non-overlapping Φ/Ψ 
angles is 70%. E. In the presence of bound Ca2+, V255 exhibits a single population of dihedral 
angles which does not overlap with the dihedrals observed in the Nrp2-HCMV pentamer complex. 
F. In the apo Nrp2 simulations, V255 adopts multiple dihedral angle populations not observed in 
the Ca2+-bound state of Nrp2 and has some population of dihedrals overlap with those observed in 
the Nrp2-HCMV pentamer complex. Compared to the Ca2+-bound state, the apo state exhibits a 
102% increase in the number of dihedral microstates (bins) occupied, and the percentage of non-
overlapping Φ/Ψ angles is 80%. G. Representative Ramachandran plot of Y210 in the Nrp2-Ca2+ 

simulation, where the amino acid position appears to be flexible and may sample the conformation 
observed in PDB 7M22 – however this is not the preferred conformation in our simulations. H. 
Representative Ramachandran plot of Y210 in the apo Nrp2 simulation. 

 

 

 

Appendix Figure 3.7 – Sphere representation of the “closed” state of Nrp2 showing solvent 
accessibility of the interaction interface on Nrp2 accessible for binding. The Ca2+-containing 
loop is shown in pink, the domain b2 loop (Residues 456-459) is shown in green, domain a1 is 
shown in blue, and the remaining regions of Nrp2 are shown in grey. K47 of protein UL128 in the 
HCMV pentamer is shown in tint and is superimposed into the cavity formed by the Ca2+-containing 
loop (i.e., its binding site as shown in PDB 7M22). A. Top-down view of closed form of Nrp2 
(snapshot at 200ns of Nrp2-Ca2+ simulation), and B. Side view of closed form of Nrp2. 
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Appendix Figure 4.1 – Matrix employed to perform physicochemistry-based amino acid 
substitutions in chorismate mutase. Top panel shows the classification of amino acids based on 
their physicochemical properties. The amino acid alphabet of the wild-type chorismate mutase 
followed by the alphabets of the reduced alphabet variants is shown. Hyphens represent absent or 
removed amino acids. Similar matrices were employed to perform physicochemistry-based amino 
acid substitutions in the other two model proteins, IF1 and rpS10. 

 

 

Appendix Figure 4.2 – WebLogo of the global evolutionary conservation profile of 
chorismate mutase. Weblogo is constructed using the multiple sequence alignment results of 150 
chorismate mutase sequences generated by the ConSurf server (144, 147) for. Amino acids 
conservation trends at each position are identified by performing a multiple sequence alignment of 
homologous proteins from other organisms. For any given position, the amino acid on top shows 
the amino acid present at that position in the current protein sequence, followed by others in 
decreasing order of conservation trends observed in all other species and organisms. 
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Appendix Figure 4.3 – WebLogo of the global evolutionary conservation profile of IF1. 
WebLogo is constructed using the multiple sequence alignment results of 150 IF1 sequences 
generated by the ConSurf server (144, 147). Amino acids conservation trends at each position are 
identified by performing a multiple sequence alignment of homologous proteins from other 
organisms. For any given position, the amino acid on top shows the amino acid present at that 
position in the current protein sequence, followed by others in decreasing order of conservation 
trends observed in all other species and organisms. 

 

 

Appendix Figure 4.4 – WebLogo of the global evolutionary conservation profile of rpS10. 
Weblogo is constructed using the multiple sequence alignment results of 150 rps10 sequences 
generated by the ConSurf server (144, 147). Amino acids conservation trends at each position are 
identified by performing a multiple sequence alignment of homologous proteins from other 
organisms. For any given position, the amino acid on top shows the amino acid present at that 
position in the current protein sequence, followed by others in decreasing order of conservation 
trends observed in all other species and organisms. 
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Appendix Figure 4.5 – Ramachandran plot analysis for the wt-CM and RA-CM variant. A. 
Ramachandran plot for the wild-type chorismate mutase. The x- and y-axis show the phi (Φ) and 
psi (Ψ) torsional angles respectively, and the individual amino acids are shown as circles. B. 
Ramachandran plot for the SWISS-MODEL generated structure for the 16_1_chem variant. The 
percentages of allowed Φ-Ψ dihedral angle combinations are 98% and 97% for the wt-CM and the 
16_1_chem variant, respectively. The Ramachandran analysis results for other RA-CM variants 
are provided in Appendix Table 4.1 A. 

 

 

Appendix Figure 4.6 – Ramachandran plot analysis for the wt-IF1 and RA-IF1 variant. A. 
Ramachandran plot for the wild-type IF1. The x- and y-axis show the phi (Φ) and psi (Ψ) torsional 
angles respectively, and the individual amino acids are shown as circles. B. Ramachandran plot for 
the SWISS-MODEL generated structure for the 17_chem variant. The percentages of allowed Φ-
Ψ dihedral angle combinations are 79% and 76% for the wt-IF1 and the 17_chem variant, 
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respectively. The Ramachandran analysis results for other RA-IF1 variants are provided in 
Appendix Table 4.1 B. 

 

 

Appendix Figure 4.7 – Ramachandran plot analysis for the wt-rpS10 and RA-rpS10 variant. 
A. Ramachandran plot for the wild-type rpS10. The x- and y-axis show the phi (Φ) and psi (Ψ) 
torsional angles respectively, and the individual amino acids are shown as circles. B. 
Ramachandran plot for the SWISS-MODEL generated structure for the 16_chem variant. The 
percentages of allowed Φ-Ψ dihedral angle combinations are 98% and 95% for the wt-rpS10 and 
the 17_chem variant, respectively. The Ramachandran analysis results for other RA-rpS10 variants 
are provided in Appendix Table 4.1 C. 
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Appendix Figure 4.8 – AlphaFold structure predictions for the 8A alphabet variants of the 
three model proteins. A. Chorismate mutase, B. IF1, C. rpS10. The structure prediction is 
performed using the AlphaFold plugin in ChimeraX. The structures predicted by AlphaFold are 
shown in cyan, and the homology modeled structure of the 8A variants are shown in golden. For 
each protein, both the structures have been superimposed to calculate the RMSDs, which is 1 Å 
for all the three proteins. 
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Appendix Table 4.1 – Ramachandran analysis for the RA-variants of the three test proteins. 
The percentages of favourable Φ-Ψ dihedral angle combinations for the amino acids in the RAP 
variants of the test proteins chorismate mutase, IF1, and rpS10 are shown in tables A, B, and C, 
respectively. 
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A
ppendix Table 4.2 – Scoring and ranking of R

A
-chorism

ate m
utase variants. The left colum

n show
s the alphabet sizes of the 

variants, and the top row
 show

s the com
putational analysis techniques em

ployed to study the dynam
ic and structural properties of the 

variants. Perform
ance of all variants is com

pared to the w
ild-type protein for each analysis and scores are assigned based on the scoring 

algorithm
 show

n in Figure 4.2. The final scores of the variant are used to select the best variants for each alphabet size. 
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A
ppendix Table 4.3 – Scoring and ranking of R

A
-IF1 variants. The left colum

n show
s the alphabet sizes of the variants, and the top 

row
 show

s the com
putational analysis techniques em

ployed to study the dynam
ic and structural properties of the variants. Perform

ance 
of all variants is com

pared to the w
ild-type protein for each analysis and scores are assigned based on the scoring algorithm

 show
n in 

Figure 4.2. The final scores of the variant are used to select the best variants for each alphabet size. 
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A
ppendix Table 4.4 – Scoring and ranking of R

A
-rpS10 variants. The left colum

n show
s the alphabet sizes of the variants, and the 

top row
 show

s the com
putational analysis techniques em

ployed to study the dynam
ic and structural properties of the variants. 

Perform
ance of all variants is com

pared to the w
ild-type protein for each analysis and scores are assigned based on the scoring algorithm

 
show

n in Figure 4.2. The final scores of the variant are used to select the best variants for each alphabet size. 
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Appendix Table 4.5 – Bx(n) values of the top ten residues in wt-cm and the 16A variants. 
Blue columns show the top ten amino acids and their Bx(n) values for wt-cm. Columns 3-10 show 
the Bx(n) values of top ten residues in the 16A variants. Highlighted in green are the residues 
that have high betweenness centrality in wt-cm and the respective variant. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Res.ID wt-CM Res.ID 
16- 
1-

chem 
Res.ID 

16- 
1-

cons 
Res.ID 

16- 
2-

chem 
Res.ID 

16- 
2-

cons 

22 72.2 16 84.1 9 83.6 15 101.2 16 90.0 

23 103.8 23 93.4 20 85.9 16 73.3 20 114.1 

24 108.3 24 84.2 23 89.6 20 124.4 22 74.9 

35 96.2 28 77.3 24 122.8 23 77.9 23 76.0 

37 98.4 39 80.6 26 78.3 25 73.9 24 99.5 

47 68.9 47 113.0 35 93.5 35 74.0 35 82.4 

72 80.0 50 81.4 47 116.1 72 78.3 70 85.4 

75 131.2 71 100.2 58 77.0 76 75.1 72 78.5 

79 112.7 72 87.9 72 111.5 77 78.0 75 76.4 

86 78.5 73 71.7 86 86.5 78 79.7 76 97.2 
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Appendix Table 4.6 – Bx(n) values of the top ten residues in wt-IF1 and the 16A variants. 
Blue columns show the top ten amino acids and their Bx(n) values for wt-IF1. Columns 3-10 show 
the Bx(n) values of top ten residues in the 16A variants. The residues highlighted in green are 
the ones that have high betweenness centrality in wt-IF1 and the respective variant. 

 
 

 

 

  

Res.ID wt-IF1 Res.ID 
16- 
1-
chem 

Res.ID 
16- 
1-
cons 

Res.ID 
16- 
2-
chem 

Res.ID 
16- 
2-
cons 

8 163.5 8 189.9 12 202.5 8 307.5 12 263.9 

12 226.1 12 220.2 19 208.8 12 353.5 20 196.3 

20 165.3 21 250.5 21 209.6 31 220.2 23 173.3 

21 235.8 23 177.5 35 271.8 34 207.8 25 169.8 

31 183.3 31 195.4 52 333.3 43 291.1 52 323.3 

34 168.4 36 177.0 53 229.0 52 366.7 53 246.2 

36 167.7 52 304.6 54 297.8 53 303.9 54 271.8 

52 266.5 54 200.2 55 222.1 54 288.1 55 169.8 

54 162.3 56 235.4 66 246.8 66 231.7 66 226.3 

71 236.2 66 225.7 69 235.8 69 185.8 67 221.0 
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Appendix Table 4.7 – Bx(n) values of the top ten residues in wt-rpS10 and the 12A variants. 
Blue columns show the top ten amino acids and their Bx(n) values for wt-rpS10. Columns 3-10 
show the Bx(n) values of top ten residues in the 12A variants. The residues highlighted in green 
are the ones that have high betweenness centrality in wt-rpS10 and the respective variant. 

 
 

 

 

Res.ID wt-
rpS10 Res.ID 

12- 
1-
chem 

Res.ID 
12- 
1-
cons 

Res.ID 
12- 
2-
chem 

Res.ID 12- 
2-cons 

5 1047.6 5 1006.2 5 513.8 5 1032.9 5 1100.3 

7 1182.1 7 789.1 7 998.1 7 865.6 6 773.7 

22 583.2 44 692.0 22 713.8 46 805.5 7 599.9 

44 969.2 46 860.4 44 610.3 61 648.6 10 721.6 

46 867.3 47 555.4 46 957.6 64 1244.5 15 512.4 

48 749.2 61 572.9 49 537.5 66 754.6 22 498.0 

62 403.1 64 793.0 64 890.4 67 488.6 42 825.0 

66 736.6 66 1311.3 66 720.7 68 758.9 46 976.7 

67 715.9 67 498.6 67 563.3 69 540.2 48 679.5 

68 630.2 68 745.0 68 961.8 84 495.5 73 490.5 


