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Abstract

Motivated by the transportation needs of modern-day retailers, we consider a variant of the

vehicle routing problem with time windows in which each truck has a variable capacity. In

our model, each vehicle can bring one or more wagons. The clients are visited within spec-

ified time windows, and the vehicles can also make multiple trips. We give a mathematical

formulation for the problem and a branch and price algorithm is used to solve the model.

In each iteration of branch and price, column generation is applied. Based on the different

capacities, different subproblems are created to find the best column. We extend Solomon’s

instances to evaluate our approach. We report on the computational results using CPLEX.

Ours is the first such study to the best of our knowledge. For the second part of the the-

sis, we study the sharing of spectrum in the device-to-device (D2D) communications in an

underlay cellular network. Our model maximizes the total sum-rate such that i) each D2D

link is assigned at most one sub-channel, ii) the total interference is at most the required

maximum. Our model can also minimize the interference subject to i) the total sum-rate be-

ing bounded by some required amount. We give a branch-n-cut algorithm for solving both

models. We give a Lagrangian relaxation which is solved optimally and combinatorially for

the minimization objective. We give an iterative rounding algorithm that achieves at least a

quarter of the optimal sum rate and no more than the required maximum of the total inter-

ference when the objective is to maximize sum-rate. Detailed experiments are performed

on synthetic as well as network simulator data. Our experiments establish the effectiveness

of the branch-n-cut and the iterative rounding approach for channel assignment.

This thesis is a study on the use of branch and cut, branch and price, and iterative

rounding for solving two real world optimization problems.
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Chapter 1

Introduction

The Vehicle Routing Problem (V RP) initially emerged, when Dantzig and Ramser formu-

lated and resolved the problem of supplying fuel to service stations about the end of the

fifties of the last century [7].

The V RP definition states that n customers with discrete quantities of goods must be

served by m vehicles initially located at a depot. A V RP is to determine the optimal routes

taken by a group of vehicles while serving a group of users. The objective is to minimize

the overall transportation cost. The solution to the classical V RP problem is a set of routes

that all begin and end in the depot while satisfying the constraint that all customers must be

visited only once. The transportation cost can be improved by reducing the total travelled

distance [8].

The majority of the real-world problems are often much more complex than the clas-

sical V RP. Therefore, in practice, the classical V RP problem is augmented by constraints,

such as vehicle capacity or time interval in which each customer has to be served, revealing

the Capacitated Vehicle Routing Problem (CV RP) and the Vehicle Routing Problem with

Time Windows (V RPTW ), respectively. In the last fifty years, many real-world problems

have required extended formulation that resulted in the multiple depot V RP, periodic V RP,

split delivery V RP, stochastic V RP, V RP with backhauls, V RP with pickup and delivery

and many others [8].

1



1.3. DEVICE TO DEVICE COMMUNICATIONS

V RP is an NP hard combinatorial optimization problem that can be exactly solved only

for small instances of the problem. Although the heuristic approach does not guarantee

optimality, it yields the best results in practice. In the last twenty years the meta-heuristics

approach has emerged as the most promising direction of research for the V RP family of

problems [8].

1.1 Multi-trip V RP with time windows (TW )

The Multi-Trip Vehicle Routing Problem with Time Windows (MTV RPTW ) is a type

of the classical Vehicle Routing Problem with Time Windows (V RPTW ) with more than

one trip for a vehicle during a workday. A trip is a timed route in a context such that

more than one route can be assigned to a vehicle. The multi-trip feature is needed when

the vehicle fleet size is limited. In this case, a benefit is a reduced number of drivers and

vehicles besides, in practice, industries can’t provide an unlimited number of vehicles to

serve all customers and they tend to prefer a limited number of vehicles to do more than

one trip. Despite its apparent practical relevance, this variant of the classical VRP has not

been the subject of a large number of studies.

1.2 Multi-trip V RP with a variable number of wagons and TW

Multi-trip vehicle routing problem with a variable number of wagons and time windows

defines a variant of the classical vehicle problem in which the capacity of vehicles can be

determined given the total demand of the route when a vehicle is prepared to leave the

depot. In this situation, one, two, or three wagons can be attached to make a vehicle ready to

service the customers. The number of wagons and vehicles is limited and the configuration

of the vehicle will stay the same during all trips of the vehicle. This new methodology

is suitable to decrease time and cost by reducing the number of vehicles, drivers, and fuel

consumption which is specifically more important in distributing goods over large distances

like two different cities or from large cities to rural areas.

2



1.4. LITERATURE REVIEW

1.3 Device to Device communications

D2D communication enables two devices to communicate without needing a base sta-

tion. By using direct links, nearby devices can interact with one another. This allows for

power savings in the network due to the proximity of D2D users. It enhances energy effi-

ciency and decreases delays and offloads traffic from the base station [9].

The number of smart handheld devices has increased exponentially in recent years. So,

applications and services needed by devices nearby are growing in popularity. These appli-

cations include communication between emergency vehicles and location-based services.

D2D communication can be a crucial enabling technology in case of an emergency like a

natural disaster where the traditional network may experience problems, then using D2D; a

wireless network can be established [9].

1.4 Literature review

Multi trip vehicle routing problem (MTV RP) is an important type of vehicle routing

problem in the real world that is studied less compared to other versions of vehicle routing

problem, specifically, for exact methods. In 1990, Fleischmann [10] proposed a modifica-

tion of the savings heuristic and used a Bin Packing Problem heuristic to assign the routes

to vehicles with multiple uses of vehicles. Taillard, Laporte, and Gendreau [11] (1996) pre-

sented a tabu search algorithm with three phases to solve the problem. Brando and Mercer

[12] (1997) proposed another tabu search algorithm with a variable neighborhood to find a

solution with the least cost. The algorithm is a three-phase algorithm that creates an initial

solution by a heuristic and then uses tabu search (reinsertion and exchange of customers)

to improve the solution and finally restore feasibility. Brandão and Mercer (1998) [13]

also presented a more complex type of problem when mixed fleets and maximum overtime

constraints are allowed. Salhi [14] (1998) proposed the many-to-many location-routing

problem. In (2004), Campbell and Savelsbergh [15] described insertion heuristics that can

be used effectively when time windows constraints are added to the problem as well. Petch

3



1.4. LITERATURE REVIEW

and Salhi [16] (2004) developed a multi-phase constructive heuristic for the MTV RP which

in phase one generates a V RP solution using a savings approach and phase 3 generates a

V RP solution by route population approach. Phase 2 is a V RPM construction and im-

provement stage in which an MTV RP solution is constructed using bin-packing with the

minimization of the overtime as the objective. In 2007, Salhi and Petch [17] improved their

previous method to a hybrid Genetic Algorithm with the same objective. Olivera and Viera

[18] presented an adaptive memory approach to minimize total routing cost. Cattaruzza et

al. [19] (2014) used a hybrid genetic algorithm with a new local search operator that is a

combination of standard V RP moves and swaps between trips to minimize total travelling

time. Naveed et al. [20] (2017) proposed a two level variable Neighborhood Search to gen-

erate an MT −V RPB initial solution to minimize the total cost. More heuristic approaches

are in [21] (2018), [22] (2019), [23] (2020), and [24] (2020), in which a hybrid genetic

algorithm, a simulated annealing, and a hybrid particle swarm optimization algorithm, and

a hybrid genetic algorithm are used respectively.

There are a limited number of papers on the exact methods for MTV RP. We describe

some of them. Desrosiers and Solomon (1992) [25] were the first to use column gener-

ation in a Dantzig-Wolfe decomposition framework. Halse (1992) [26] implemented La-

grangean decomposition. After that, Kohl and Madsen (1997) [27] extended Lagrangean

relaxation. These approaches were further developed using Dantzing-Wolfe decomposi-

tion including cutting planes or parallel platforms in Kohl, Desrosiers, Madsen, Solomon,

and Soumis (1999) [28]; Larsen (1999) [29]; Cook and Rich (1999) [30]. A hybrid al-

gorithm, a combination of Lagrangean relaxation and Dantzig-Wolfe decomposition was

presented by Kallehauge (2000) [31]. Chabrier, Danna and Le Pape (2002) [32]; Feillet,

Dejax, Gendreau and Gueguen (2004) [33]; Rousseau, Gendreau and Pesant (2004) [34];

Larsen (2004) [29]; Chabrier (2005) [35]; Irnich and Villeneuve (2005) [36]; Danna and Le

Pape (2005) [37] presented algorithms based on the subproblem methods. Hernandez et al.

4



1.4. LITERATURE REVIEW

[38] and Nabila Azi et al. [1] suggested the branch and price algorithm with two phases,

in the first phase, all paths are generated and in the second phase, the problem is solved by

column generation. Macedo et al. [39] proposed an approach using a pseudo-polynomial

model. More recent works are [40] which presented a branch price cut for multi-trip vehicle

routing problem; [41] has two integer programs for the open vehicle routing problem and

uses column generation to solve them; [42] gave column generation embedded in branch

and price algorithm to solve multi trip vehicle routing problem with time windows using

dynamic programming to generate all non-dominated paths by label correcting algorithm

which are used in the sub-problem; [43] presented a branch and price algorithm to solve the

multi trip vehicle routing problem with time windows and driver work hours.

A heterogeneous fleet vehicle routing problem (HV RP) is a variant of V RP. The vehi-

cles are of different capacities located at the depot, and a fixed cost is associated with each

vehicle. Many heuristics have been proposed for HV RP, like [44], which takes into account

the three-dimensional (3D) loading constraints that must be satisfied given the vehicle’s ca-

pacity. They used a local search and simulated annealing to find a solution. Gendreau et al.

[45] proposed a tabu search for heterogeneous fleet vehicle routing problem. Berghida and

Boukra [46] developed a quantum-inspired algorithm for a VRP with heterogeneous fleet

mixed backhauls and time windows. Penna et al. [47] solved the problem using a hybrid

heuristic that mixed a local search with a variable neighbourhood search. An updated ver-

sion of the Green Vehicle Routing Problem with time windows is presented in [48]. To

optimize the routing of a mixed vehicle fleet made up of electric and conventional vehicles,

they suggest an iterative local search algorithm. [49] is a survey on heterogeneous vehicle

routing problem and its variants. Additionally, the paper compares the metaheuristic algo-

rithms that have been suggested. We can find only a small number of exact algorithms for

HV RP. A column generation approach for the heterogeneous fleet vehicle routing prob-

lem was proposed in [50]. Pessoa et al. [51] studied a branch-cut-and-price algorithm for
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HV RP. Another branch-cut-and-price algorithm for multi depot HV RP is in [52] in which

different cuts and pricing strategies are proposed and implemented. Sundar and Rathinam

[53] presented a branch and cut for multi-depot heterogeneous vehicle routing problem

that customers are divided into two distinct subsets: those that must be visited by partic-

ular vehicles and those that can be reached by any vehicle. Bettinelli et al. [54] provided

a branch-cut-and-price algorithm for multi-depot heterogeneous-fleet pickup and delivery

problems with soft time windows. Later, Pessoa et al. [55] improved the branch-cut-and-

price algorithm for heterogeneous fleet vehicle routing problems. HV RP assumes that each

can make only one trip during a work day, and it has not been studied in the context of

multiple trips. All these exact methods used a set covering formulation. In the case of

cut or column generation, the vehicle capacity is affected given a new column which is a

solution to the sub-problem. Next, we comment on how the problem in this thesis is dif-

ferent from HV RP. In our problem, there are a limited number of trailers and wagons. The

only budget is an existing number of wagons, so there is no extra cost for a trailer when

wagons are attached to it. These wagons are attached to trailers based on the routes. This

gives vehicles three different capacities. No extra cost is incurred to have a vehicle with a

different capacity. In this work, a trailer has the possibility of having various capacities. To

the best of our knowledge, a mathematical model for our problem has not been studied in

the past. Past heuristic and exact methods on related problems use vehicle capacities when

constructing routes, not in the mathematical model. The problem in this thesis allows the

vehicle to change configuration (different capacities) daily. Our work is a new variant for

MTV RP.

In addition to the multi-trip VRP, we present the vehicle routing problem with dynamic

capacity in this thesis. We are not aware of any work on exact methods for the multi trip

vehicle routing problem with time windows and with the flexibility of having different

wagons attached to service customers as in this thesis.

The second part of the thesis is on device-to-device communication and approaches
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such as iterative rounding and branch and cut to solve the problem. Device to device (D2D)

communication occurs when neighboring cellular devices communicate directly with each

other typically over a shared spectrum. D2D communication improves the transmission

rate, frequency reuse, and reduces the hop count. But can lead to interference with a cel-

lular user, and even stronger interference with another D2D pair in a neighboring cell.

Therefore new approaches are needed for radio resource allocation [56]. The approaches

should increase the system sum rate without too much deterioration in the signal, and the

total interference should be limited.

With the emergence of 4G and 5G networks, resource allocation for D2D communica-

tion underlaying cellular networks has been studied extensively. These studies deal with

various aspects such as minimization of interference, maximization of sum-rate, fair allo-

cation of resources, restricted allocation of resources, improving run-time, uniform graph,

exact or heuristic algorithms, etc.

One of the early papers in the area is [57] which proposed a mechanism for session setup

and management for D2D communications in LTE-A networks. Islam et al. [58] proposed

a minimum knapsack-based resource allocation for D2D communication (MIKIRA) under-

laying cellular networks. This algorithm which takes (O(n2log(n)) time, is a knapsack-

based approach aimed at maintaining a target sum rate while minimizing interference. This

approach wasn’t fair as the algorithm stopped assigning resources when the sum rate was

met. Islam et al. [59] addressed the fairness issue with a two-phase auction-based fair re-

source allocation algorithm (TAFIRA). The algorithm starts with a minimum interference

solution and tries to gain a better sum rate via an auction. Hassan et al. [6] showed that

MIKIRA doesn’t provide a feasible solution in most cases and that TAFIRA has an un-

bounded integrality gap. They gave a two-phase algorithm, a maximum weight matching is

found in phase one using the Hungarian method, and a local search algorithm improves this

matching in phase two. Saha et al. [5] proposed a two-phase polynomial-time algorithm

when interferences are uniform when the objective is to minimize the interferences while
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satisfying a target sum rate. Phase one is similar to the first phase in [6] and phase two

improves on phase one by iteratively finding special triples.

Hussain et al. [60] studied one-to-many and many-to-many sharing of resources. Zhang

et al. [61] formulated the interference relationships among different D2D and cellular com-

munication links into a novel interference graph with newly defined attributes and proposed

the InGRA algorithm that can effectively lead to a near-optimal solution with low compu-

tational complexity. They showed that D2D communication increases the total throughput.

Janis et al. [62] gave a scheme to monitor interference between cellular users and D2D

pairs, and use it to minimize interference. Their simulations demonstrate substantial gains

in sum-rate. Xu et al. [63] developed a second price auction for the allocation of spec-

trum resources. The D2D pairs bid in sequence. Their method shows an improved sum

rate and fairness in simulations. A reverse iterative combinatorial auction in which spec-

trum resources are auctioned off as good was proposed by [64]. They prove that auction is

cheat-proof and converges. Simulations show that the method yields a good sum-rate. An

admissibility-based approach was developed by [65]. The scheme has three phases. Admis-

sible D2D pairs are identified based on the distance from the base station in the first phase.

This ensures that sum-rate requirement is not violated. In the second stage, power is allo-

cated to each D2D pair and cellular user. The third stage identifies the resource allocation

by solving a weighted matching problem.

In the next chapter, we describe the methodology and present the work that we build on

in this thesis.

1.5 Original contributions in this thesis

A list of the original contributions in this thesis is as follows:

1. We give the definition and mathematical model for MTVRP-VW-TW in section 2.4

and 2.5.

2. Column generation for MTVRP-VW-TW is presented in section 4.3.
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3. MTVRP-VW-TW is solved using the branch and price algorithm in section 5.2.

4. We provide a branch and cut algorithm to solve D2D communication to maximize

the total sum-rates in section 6.2.

5. We describe a Lagrangian relaxation for solving D2D in section 6.3.

6. An iterative rounding algorithm for solving D2D and a proof of the performance ratio

is given in section 6.4.

7. A branch and price algorithm is implemented to solve MTVRP-VW-TW. We used

Solomon’s instances to test the algorithm. It is the first time that the model is pre-

sented and solved with exact methods. We could find the optimal solution for types

R1, R2, RC1, and RC2 of Solomon’s instances in section 7.1.

8. Detailed experiments for D2D are performed on synthetic as well as network sim-

ulator data. We evaluated the performance of the branch and cut algorithm and the

iterative rounding algorithm on both simulated network instances, and computation-

ally hard instances in section 7.2.
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Chapter 2

Vehicle Routing Problem

About seventy years ago, Dantzig and Ramser gave the mathematical formulation and an

algorithm to solve the problem of distributing gasoline to a set of stations [7]. That was

the beginning of research on the Vehicle Routing Problem (V RP). Later, more research

emerged to meet the diverse demand of clients.

2.1 Vehicle Routing Problem

This section is the study of the distribution of goods between depots and customers,

which have some requests and requirements that need to be satisfied. Vehicles have pre-

scribed capacities, and all start working from the depot, visiting customers, and returning

to the depot again. Several variants of vehicle routing problems arise from this basic setup

in the real world. Below we explain some of them and the methods to solve them.

2.2 Basic Model

2.3 Vehicle Routing Problem and its variants

Vehicle Routing Problem is an extension of the traveling salesman (T SP) problem

where a set of tours must be determined to visit all the customers instead of one tour as

in T SP. In T SP there is one vehicle with unlimited capacity that must visit all the cus-

tomers using a tour of minimum cost. An example of T SP and its solution is shown in Fig.

2.1. The costs of traversing the edges are given on each edge. There is zero demand at

customers.
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Figure 2.1: Example with one vehicle

If there are demands at the customers, then it may not be possible to serve all customers

by one vehicle with fixed capacity, and a fleet of vehicles is required. After explaining the

Capacitated Vehicle Routing Problem below, we will provide one example to illustrate the

differences between T SP and V RP.

In the classical version of V RP, any tour starts at the depot, services several customers,

and returns to the depot again. Each customer is visited exactly once.

2.3.1 Capacitated Vehicle Routing Problem

The most simple and basic type of V RP is the Capacitated Vehicle Routing Problem

(CV RP). In this case, each vehicle has a specific capacity (Q). The vehicles are all ho-

mogeneous and can perform at most one route per day. Each customer has a deterministic

demand that must be satisfied exactly once, which means the demand can not be split, and

everything is determined in advance; therefore, none of these conditions can change.

The problem is specified as a complete directed graph G= (N,A) where N= {0, . . . ,n+

1} is a set of nodes, 0 and n+ 1 are the depot and C= {1, . . . ,n} is the set of customers,

there are edges between all customers as well as depot defined as A= {(i, j) : i, j ∈N, i 6= j}

and a set of vehicles V . It must be noted that there are no arcs ending at vertex 0 or

originating from vertex n+1. The distance between every two customers is the cost of the

edge (ti j), and each customer has a demand (di). Each vehicle can perform at most one
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route, starting at vertex 0, ending at vertex n+1, and visiting each customer at most once.

Decision variable xi jk is one if vehicle k, visits customer j immediately after customer i,

zero otherwise. The aim is to design a set of routes to minimize the total distance traveled

by all vehicles while visiting every customer. One simple mathematical model is presented

below:

min ∑
i∈N

∑
j∈N

∑
k∈V

ti jxi jk (2.1)

s.t.

∑
k∈V

∑
i∈N

xi jk = 1 ∀ j ∈C (2.2)

∑
i∈C

∑
j∈N

dixi jk ≤ Q ∀k ∈V (2.3)

∑
j∈N

x0 jk = 1 ∀k ∈V (2.4)

∑
i∈N

xihk− ∑
j∈N

xh jk = 0 ∀h ∈C, k ∈V (2.5)

∑
i∈N

xi,n+1,k = 1 ∀k ∈V (2.6)

xi jk ∈ {0,1} ∀i, j ∈ N, k ∈V (2.7)

Constraints (2.2) indicate that each customer must be visited exactly once, and each trip

starts and ends at the depot (2.4), (2.6). The sum of the demand of customers visited by

a vehicle must not exceed the vehicle capacity (2.3). Finally, the flow constraints assert

that the vehicle must not stop on customers (2.5). Fig. 2.1 is an instance of a CV RP with

demands on customers. Several vehicles with a capacity of 6 will serve the customers.

The optimal solution to the problem is in Fig. 2.3. Four vehicles are needed to serve each

customer in one trip as they cannot serve any pair of customers due to the vehicle capacity

and customer demands.
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Figure 2.2: Vehicles with Q = 6

Figure 2.3: 4 tours with cost=18

After getting familiar with CV RP, we study more variants of the problem.

2.3.2 Vehicle Routing Problem with Time Windows (V RPTW )

Solomon and Desrosiers [66], in 1988, proposed V RPTW for the first time. There is an

interval of time for each customer that the goods must be delivered and each vehicle has a

fixed capacity. This kind of problem usually is of two different types: soft time windows, in

that customers, will accept the delivery, even late, hard time windows when the customers

don’t accept the products that arrive outside of their time window.

2.3.3 Multi-Depot Vehicle Routing Problem (MDV RP)

The classic V RP has a unique warehouse for all routes and vehicles, while multiple

depot VRP that Laporte [67] develops says that vehicles can depart from and return to multi

warehouses. Therefore, the depot that a customer will be visited from must be decided in

addition to the decisions for V RP.
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2.3.4 Split Delivery Vehicle Routing Problem (SDV RP)

The only assumption in V RP that will change for the split delivery V RP is that a cus-

tomer may be visited more than once as the demand may be serviced over multiple visits.

An optimal solution to SDV RP always uses a minimum number of vehicles.

Fig. 2.4 shows an example SDV RP, and its optimal solution.

Figure 2.4: 3 Vehicles of capacity 6 with cost=17

One of the customers is visited two times, and each vehicle served two units of four

unit demands that the customer requested. Ultimately, All four customers are satisfied.

Therefore, three vehicles could serve all customers instead of four as explained in Fig. 2.3

with less cost.

2.3.5 Dynamic Vehicle Routing Problem (DV RP) and Vehicle Routing Problem with

Static Demand (V RPSD)

Dynamic Vehicle Routing Problem is one of the important classes of VRP in which

new orders can arrive during the execution of the routes. In the static routing problem, all

customers are known a priori, while new customers can request service once the vehicles

start the routes in a dynamic VRP [68]. In contrast to the classical definition of the problem,

real-world problems have other dimensions like revolution and quality of information [69].

Revolution of information means that the information that the planer has access to can

change when the vehicles are executing the tours like a new customer can request to be

served. Quality of information relates to the uncertainty of the available data; in this case, all
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customers are known. Still, their demands are not certain. The planer has an estimation of

the demands. V RP with static demand can be planned for and solved statically to determine

all routes apriori. So based on these characteristics we have Fig. 2.5 to show the different

cases.

Figure 2.5: Vehicle Routing Problem by evolution and quality information

2.3.6 Vehicle Routing Problem with pickups and deliveries (PDP)

PDP is required when we have multiple origins and destinations. A customer location

can either be for pickup or delivery (or both). Other aspects of the problem, like whether

the customer location is the origin and destination of the commodity or if a product is being

transshipped, whether pick up and delivery points are paired or unpaired, can arise. Any

of these situations can make the problem a little bit different in modeling and solving. For

paired locations, the problem definition from [70] is a directed graph G = (V,A) where the

set of vertices is V , and A is the set of arcs connecting pairs of vertices. Set P⊂V is the set

of pickup locations, whereas D⊂V is the set of delivery locations, and vertex 0 ∈V is the

depot where all routes start and end. Every arc (i, j) ∈ A, i, j ∈V has an associated cost ci j,

and time ti j to travel from location i to j.

A customer has a demand and a pair of locations. The vehicle must pick up and deliver

from this pair. The vehicles have capacities as usual. One example and its solution from
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[71] is in Fig. 2.6.

Figure 2.6: Vehicle Routing Problem with Pickup and Deliveries

Figure 2.7: Routes for Vehicle Routing Problem with Pickup and Deliveries

2.3.7 Periodic Vehicle Routing Problem (PV RP)

In PV RP, schedules are created for T-days to service customers and satisfy their de-

mands. Each customer has a certain daily demand and a frequency that specifies how often

the customer must be visited during these T-days. The solution is to have T-sets of routes

by considering a customer’s daily demand, frequency, and the capacity of the vehicles.
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2.3.8 Heterogeneous fleet vehicle routing problem (HV RP)

HV RP is a variant of the vehicle routing problem in that there is a heterogeneous fleet of

vehicles to service customers. In contrast, each vehicle has a different cost, and the number

of each type of vehicle is assumed to be unlimited. The problem is to find a set of routes to

visit all customers while minimizing the cost [72].

2.3.9 Multi-Trip Vehicle Routing Problem (MTV RP)

In V RP, each vehicle is able to perform a trip during a workday which is extended to a

number of trips in MTV RP. Therefore, the vehicle can return to the depot after servicing

a number of customers and start a new trip after reloading the goods. The number of trips

may be fixed at the beginning of the workday. MTV RP is the model studied in this thesis.

2.3.10 Vehicle Routing Problem with Variable Number of Wagons

This thesis introduces this model. This is the first study that uses a variable number of

wagons to build different capacities for a vehicle. In this way, the capacity is adjustable, and

the vehicle can even have a new capacity the day after. Three different capacities are used to

configure the vehicles. It is supposed that a number of wagons exist, and the wagons can be

hitched to the vehicle for the workday. In this study, one, two, or three wagons are attached,

and the mathematical formulation in section 2.5 is written based on this assumption.

2.3.11 Multi-trip Vehicle Routing Problem with a Variable Number of Wagons and

Time Windows

Our study is on Multi-trip vehicle routing problem with a variable number of wagons

and time windows. Vehicle routing problem with a variable number of wagons is illustrated

next. The model we are interested in is a combination of all these variants listed below. At

the beginning of the workday, the vehicle is configured. During different trips, the capacity

of the vehicles remains the same, either one wagon, two wagons, or three for the day. Each

vehicle can make a few trips during the workday to service clients during a day. The clients
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must be visited in time windows. A mathematical model will be described in section 2.5.

Fig. 2.8 shows an instance of the problem.

Figure 2.8: Multi-trip Vehicle Routing Problem with a Variable Number of Wagons and
Time Windows

2.4 Multi-trip Vehicle Routing Problem with a Variable Number of

Wagons and Time Windows

An instance of this problem is defined by a set of customers C = {1,2, · · · ,n} and the

depot is represented by the vertices 0 and n+1. Depot 0 is the start depot, and n+1 is the

return depot. The set {0,1, . . . ,n+1} is denoted N in a complete directed graph G= (N,A),

where A is a set of arcs {(i, j) : i 6= j, i, j ∈ N}. A traveling time of ti j is associated with

each arc (i, j) ∈ A which we consider as the distance of two vertices i and j, where i, j ∈ N.

A fleet of wagons W , with identical capacities q which can be connected as one wagon, two

wagons or three wagons to organize a set of vehicles V . Vehicles in V are used to serve the

customers. Then, |V | and |W | are the number of vehicles and wagons, respectively. The

set of arcs A represents all the connections between customers and the depot. There are no

arcs ending at vertex 0 or originating from vertex n+1. Any customer i ∈C has a demand

di, a service time si, and a time window [ai,bi], which means that a vehicle must arrive

at the customer before bi. If it arrives before the time window opens, it has to wait until
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ai to service the customer. The time windows for both depots are assumed to be [a0,b0],

representing the scheduling horizon. The vehicles may not leave the depot before a0 and

must return at the latest time b0. A route of a vehicle is a closed path that the vehicle starts

from the depot, visits a number of customers based on the left capacity of the vehicle and

the demand of a customer in addition to the time windows requested for a customer, and

comes back to the depot again. The workday of each vehicle is a sequence of routes where

each route starts and ends at the depot and we call it a tour. These routes are denoted by the

set R and |R| is a fixed number for all vehicles in our problem.

Each vehicle can have a configuration of attaching one wagon or two wagons or three

ones. The configuration of each vehicle must stay the same on all routes. Next, we define

some of the mathematical model’s decision variables. The decision variable sk
ir denotes

the time that the vehicle k starts to service customer i in route r. If the vehicle k does

not service customer i in route r, sk
ir has no meaning; consequently, its value is considered

irrelevant. Variable xk
i jr is one if vehicle k drives directly from customer i to customer j

and zero otherwise in route r. Variable zk
n is used to determine how many wagons vehicle k

needs, where n is in {1,2,3}. If z3
2 = 1, vehicle 3 has 2 wagons. Therefore, z3

1 and z3
3 must

be 0, which means vehicle 3 does not have 1 or 3 wagons. Moreover, finally, qk is the kth

vehicle’s capacity, depending on the number of wagons attached.

xk
i jr =

1 if vehicle k drives directly from vertex i to vertex j on route r

0 otherwise

zk
n =

1 if the n wagons are attached for vehicle k

0 otherwise

We assume a0 = 0 and therefore sk
0r = 0, for all k and r. The goal is to design a set of

routes that minimizes the total distances of all routes such that
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• Each customer is serviced exactly once;

• Every route starts at vertex 0 and ends at vertex n+1;

• The time windows of the customers are satisfied;

• The total demand on a route can not exceed the capacity of the vehicle, which depends

on the number of wagons attached to it (1, 2 or 3);

• Total number of the wagons used should be less than W ;

• A vehicle is assigned only one configuration;

• Each vehicle must leave the depot 0 ;

• All vehicles must return to the depot n+1;

• The start time of the next route by the same vehicle should be after the finishing time

of its previous route;

An unused vehicle is modeled by driving the ”empty” route (0,n+ 1). We consider

di j= ti j in this problem and M is a big number.
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2.5 Mathematical Model

The mathematical model is described next.

min ∑
k∈V

∑
r∈R

∑
i∈N

∑
j∈N

dk
i jrx

k
i jr (2.8)

s.t.

∑
k∈V

∑
r∈R

∑
j∈N

xk
i jr = 1 ∀i ∈C (2.9)

∑
i∈C

di(∑
j∈N

xk
i jr)≤ qk ∀k ∈V, ∀r ∈ R (2.10)

qk =
3

∑
n=1

nqzk
n ∀k ∈V (2.11)

3

∑
n=1

∑
k∈V

nzk
n ≤ |W | (2.12)

3

∑
n=1

zk
n = 1 ∀k ∈V (2.13)

∑
j∈N\{0}

xk
0 jr = 1 ∀k ∈V, ∀r ∈ R (2.14)

∑
i∈N

xk
ihr− ∑

j∈N
xk

h jr = 0 ∀h ∈C, ∀k ∈V, ∀r ∈ R (2.15)

∑
i∈N\{n+1}

xk
i,n+1,r = 1 ∀k ∈V, ∀r ∈ R (2.16)

sk
ir + si + ti j−M(1− xk

i jr)≤ sk
jr ∀i ∈ N \{n+1}, ∀ j ∈ N \{0}, ∀k ∈V, ∀r ∈ R (2.17)

ai ∑
j∈N−{0}

xk
i jr ≤ sk

ir ≤ bi ∑
j∈N−{0}

xk
i jr ∀i ∈C, ∀k ∈V, ∀r ∈ R (2.18)

sk
0r ≥ sk

n+1,r−1 ∀r ∈ R, ∀k ∈V (2.19)

xk
i jr ∈ {0,1} ∀i, j ∈ N, ∀k ∈V, ∀r ∈ R (2.20)

zk
n ∈ {0,1} ∀k ∈V, n ∈ {1,2,3} (2.21)

sk
ir ≥ 0 ∀i ∈C, ∀k ∈V, ∀r ∈ R (2.22)

qk ≥ 0 ∀k ∈V (2.23)
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The objective function (2.8) minimizes the total distances of tours. The constraints (2.9)

ensure that each customer is visited exactly once. Equations (2.10) and (2.11) state that the

total demand on a route can not exceed the capacity of each vehicle which depends on the

number of wagons attached to it. The constraint in (2.12) shows the number of wagons in

total. Constraints (2.13) ensure that a vehicle is assigned only one configuration. Equations

(2.14), (2.15), and (2.16) indicate that each vehicle must leave the depot 0; flow conserva-

tion constraints; and finally, all vehicles must return to the depot n+ 1. The inequalities

(2.17) establish the relationship between the vehicle departure time from a customer and its

immediate successor. Constraints (2.18) assert that the time windows are observed. Con-

straints (2.19) ensure a proper trip sequencing for the workday of a vehicle that the starting

time of the next trip of the vehicle must be after the finishing time of its previous trip.

Equations (2.20) and (2.21) are integer variables.

2.6 Solution Methods

A huge range of exact and approximate solution methods exist to solve V RPs. While

exact methods provide optimal solutions, approximate methods, usually heuristic and meta-

heuristic approaches, yield a solution near to the optimal solution but not optimal. Exact

methods for V RP can be applied to small instances of up to 50 customers, whereas approx-

imate algorithms are applicable to any number of customers. Sometimes a combination of

both methods can obtain a better and faster solution. [73] is a good review of the variety of

approaches. Fig 2.9 presents a number of approaches to solving V RP.

2.6.1 Exact Methods

An exact method obtains an optimal solution. One of the main approaches used to

solve variants of V RP is Branch and X, where X can be bound, cut, or price. Branch and

X model V RP as an integer or mixed-integer problem and solves it using a tree search

method. At each node in the search tree, an LP relaxation is solved to obtain a bound. Cuts
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Figure 2.9: V RP solution methods

may be added at each node, and columns may also be added in case the number of variables

is exponential, to begin with. Some of these works are Dell’Amico et al. [74] which is

a branch and price approach to V RP, Fukasawa et al. [75] describes branch and cut and

price for CV RP, Lysgaard et al. [76] is about branch and cut algorithm for CV RP, Fischetti

et al. [77] presents a branch and bound algorithm for V RP and another branch and bound

algorithm is in Laporte and Nobert [78].

An optimal solution of the linear problem is computed in the first iteration and gradually

in each iteration, we improve to get closer to an integer solution, and ultimately an integer

solution which is optimal for the V RP is obtained.

For other exact approaches, we mention Dynamic programming [79] and Column gen-

eration [80]. Dynamic programming is used for variants of V RPs. The idea is to break the

problem into simpler sub-problems and solve them separately, then combine the solutions

to sub-problems to get an overall solution.

Column generation solves the problem by starting from a feasible solution to a restricted

problem where a limited number of columns are considered. The columns are gradually

added to the problem and solved again until achieving an optimal solution.
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Constraint programming (CP) [81] is another popular method for solving V RP. CP at

heart tries to infer new constraints given the relationships between the variables and uses

these constraints to reduce the search space.

2.6.2 Approximate Methods

Whereas exact methods cannot solve V RPs with more than 50-100 customers in a rea-

sonable time, approximate methods can give a solution near the optimal one, fast. Construc-

tive heuristics and local search are two approximate methods that are commonly used. A

constructive heuristic is applied to a large number of start points to generate good solutions

in a short time efficiently. The way they work is usually to start with an empty trip and add

customers one by one. Finally, customers are embedded in various trips. In [82], we can

find good examples of heuristics for VRP. On the other hand, local search can be combined

with a heuristic to give a more efficient solution. They are lots of local search methods

[83, 84] that usually move or exchange the clients to find a better solution. There are sev-

eral neighborhood change operators like Relocate, Split-to-single, 2-opt, Cross Exchange,

Combine operators, etc.

Meta-heuristic is another common approximate approach where the local search opera-

tors and a construction heuristic are combined to obtain a solution for a large search space.

Other meta-heuristic methods for V RP are Simulated Annealing (SA) [85, 86], Determinis-

tic Annealing (DA) [87], Tabu Search (TS) [88, 89, 90], Genetic Algorithms (GA) [91, 92],

Ant Systems (AS) [93, 94], and Neural Networks (NN) [95]. The first three algorithms

start from an initial solution x1 and move at each iteration t from xt to a solution xt+1 in

the neighborhood N(xt) of xt , until a stopping condition is satisfied. If f (x) denotes the

cost of x, then f (xt+1) is not necessarily less than f (xt). As a result, care must be taken

to avoid cycling. GA examines at each step a population of solutions. Each population is

derived from the preceding one by combining its best elements and discarding the worst.

24



2.6. SOLUTION METHODS

Ant systems is a constructive approach in which several new solutions are created at each

iteration using some of the information gathered at previous iterations. Tabu search, genetic

algorithms, and ant systems are methods that record, as the search proceeds, information

on solutions encountered and use it to obtain improved solutions. Neural networks is a

learning mechanism that gradually adjusts a set of weights until an acceptable solution is

reached [96]. Usually, a few of them will be used together to obtain a better solution. This

increases the calculation time, and the result is more effective.
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Chapter 3

Elementary Shortest Path Problem with
Resource Constraints

To generate all tours needed to solve the subproblem in column generation, we need to

know the shortest path problem and elementary shortest path problem. In this section, we

describe the shortest path problem. Label correcting algorithm is then described which is

an approach to generating elementary shortest paths in section 3.2.

Elementary Shortest Path Problem: Find a path of minimum cost in a weighted di-

rected graph G = (V,A) from a source node s to a destination node t, each node on the path

is visited only once. In shortest path problem, nodes can be visited more than once.

Shortest Path Problem with Resource Constraint: Find the shortest path from a source

to a destination that meets a number of constraints defined based on some resources.

Elementary Shortest Path Problem with Resource Constraint: (ESPPRC)

Let G = (V,A) be a directed network, where A is the set of arcs and V = {v1, . . . ,vn} is the

set of nodes, including an origin node p and a destination node d. A cost ci j is associated

with each arc (vi,v j) ∈ A. Let L be the number of resources and dl
i j≥ 0 be the consumption

of resource l ∈ L along arc (vi,v j). Values dl
i j are assumed to satisfy the triangle inequality

for each resource l. With each node vi and each resource l are associated two nonnegative

values al
i and bl

i , such that the total consumption (t l
i ) of resource l along a path from p to vi

is constrained to the interval [al
i,b

l
i]. If the consumption of resource l is lower than al

i when

the path reaches vi, it is set to al
i . Note that this notation is natural for the time resource, but

also allows us to represent capacity constraints by defining intervals [0,Q] on nodes, where
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3.1. DYNAMIC PROGRAMMING ALGORITHMS

Q is the capacity limit. The objective is to generate a minimum cost elementary path from

p to d that satisfies all the resource constraints. ESPPRC is NP-complete and can be solved

by dynamic programming.

The following is a mathematical model for ESPPRC:

min ∑
(vi,v j)∈A

ci jxi j (3.1)

s.t.

∑
(vi,v j)∈A

xi j− ∑
(v j,vi)∈A

x ji = 0 ∀v j ∈V \{p,d} (3.2)

∑
(p,v j)∈A

xp j = 1 (3.3)

∑
(v j,d)∈A

x jd = 1 (3.4)

t l
i +dl

i j− t l
j +Mxi j ≤M ∀l ∈ {1, . . . ,L},(vi,v j) ∈ A (3.5)

al
i ≤ t l

i ≤ bl
i ∀l ∈ {1, . . . ,L},vi ∈V (3.6)

xi j ∈ {0,1} ∀(vi,v j) ∈ A (3.7)

t l
i ≥ 0 ∀l ∈ {1, . . . ,L},vi ∈V (3.8)

Where xi j and t l
j are variables representing flow and resource consumption respectively

and M is a big number.

The objective function (3.1) is to minimize the total cost. Constraints (3.2) ensure that

the vehicle leaves each customer after visiting. Equations (3.3) and (3.4) state that the

vehicle starts from the origin p and returns to the destination d. The constraints (3.5) show

that the starting time of visiting a customer must be after its immediate successor. Equations

(3.7) and (3.8) are the bounds on the variables.
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3.1 Dynamic Programming Algorithms

Dynamic Programming is a technique for solving complex problems by dividing them

into simpler sub-problems in such a way that the optimal solution of smaller ones can be

used to get the optimal solution of the overall problem.

Among various methods presented to solve SPPRC, the Label correcting algorithm is the

only dynamic programming algorithm to solve ESPPRC in a graph with negative costs.

3.2 Label correcting algorithms

Label correcting algorithm is one of the popular algorithms used to find a shortest path

in a weighted directed graph with negative costs (the algorithm doesn’t work when there

are negative cost cycles). The idea is to progressively discover the path from the origin to

every other node. At the start, every node has an overestimate on the length of the path from

the origin to the node, then iteratively those lengths are revised based on a shorter path.

Below we present Bellman-Ford shortest path algorithm first and then Desrochers’ Algo-

rithm [97] for solving the shortest path problem with resource constraints and then an ex-

tension of the algorithm presented in [33] will be explained that can solve the elementary

shortest path problem with resource constraints.

3.2.1 Bellman-Ford Shortest Path Algorithm

The algorithm computes the shortest path from a source to all vertices and works by re-

laxing the edges like Dijkstra’s algorithm. Although the algorithm is slower than Dijkstra’s,

it can be used when the graph has negative edge weights and can also determine negative

cycles if there is one.

Bellman-Ford algorithm [98] overestimates the length of the path from the source vertex to

all other vertices which is infinity for all vertices except the resource at the start and then it

starts relaxing these overestimate of lengths by discovering the new paths which are shorter

than the previous ones. This process is followed for all the vertices V −1 times to find the
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shortest path. The steps of the algorithm are:

• Initialize the distance to the source vertex as 0 and all other vertices are at distance

(d(v)) infinity.

• Run the algorithm for V−1 iterations and in each iteration do the following relaxation

on the edges. For every edge (u,v) with the length of cuv, if d(v) < d(u)+ cuv, then

d(v) = d(u)+ cuv.

• Detecting the negative cycles if there is any update to some d(v) after V−1 iterations.

The negative cycles easily can be detected by one extra round, run the program for

all edges if d(v)> d(u)+ cuv, then the negative cycle is determined.

Algorithm 1 Bellman-Ford Algorithm

Input: Directed Graph G = (V,E); lengths of all edges as cuv; node s as origin
Initialization
d(s)← 0
for all v ∈V −{s} do

d(v)← ∞

end for
for all e ∈ E do

if d(v)< d(u)+ cuv then
d(v)← d(u)+ cuv

end if
end for

An example run of the algorithm with initialization, first iteration, and second iteration

are shown in Fig 3.1, 3.1, and 3.1 respectively :

3.2.2 Desrocher Algorithm for the SPPRC

We briefly explain the algorithm presented by Desrchoer [97]. The algorithm works by

labeling paths from the source to node v j, each label is associated with a path and consists

of the consumption of the resources and the cost of the path. Dominance rules are applied

to avoid generating numerous labels. We need some notation to describe these rules.
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Figure 3.1: Initialization- Bellman-Ford

Figure 3.2: First iteration- Bellman-Ford

Associated with each path Xpi from the origin node p to a node vi, is a label that is denoted

by (Ri,Ci), where

Ri = (T 1
i ,T

2
i , . . . ,T

l
i )

T l
i corresponds to the quantity of resource l used by the path from origin to node i.

The cost is determined by the resource consumption,

Ci =C(T 1
i ,T

2
i , . . . ,T

l
i )

The dominance rules are as follows:

Suppose Xpi and X
′
pi are two distinct paths from origin p to node vi with associated labels
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Figure 3.3: Second iteration- Bellman-Ford

(Ri,Ci) and (R
′
i,C

′
i) respectively, Xpi dominates X

′
pi if and only if

Ci ≤C
′
i, T l

i ≤ T
′l

i ∀l = 1, . . . ,L

The optimal solution of the shortest path problem is determined by the min cost path in

all non-dominated labels.

Fig 3.4 illustrates the first iteration of the algorithm applied on four nodes with one resource

constraint. The resource consumption and the cost of each arc are indicated in brackets on

edges and labels are presented next to each vertex. The label of the origin (node p) is [0,0],

then we start extending paths from node p to all possible nodes. So, the algorithm processes

each node as well as checks the dominance relation at each node as follows:

• Processing of node p: There are edges (p,v2) and (p,v3) directed from the node p

which we can use to extend the label [0,0] of node p. The information on edge (p,v2)

indicates that the consumption of the resource and cost are 3, 3 respectively, so the

label [0,0] can use 3 units of the resource consumption and add 3 units of costs. The

label at node v2 is [3,3]. In the same way, the label [0,0] of the node p is extended to

the node v3 and the label is updated to be [3,3] at the node v3.

• Processing of node v2: There is a label [3,3] at node v2 and there are two edges
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directed from v2, (v2,v3), and (v2,d). The label [3,3] is extended to [4,1] at node v3

given the resource consumption and the cost of the edge (v2,v3). The label is then

[4,4] at node d.

• Processing of node v3: Node v3 can result in an extension to nodes v2 and d. There

are two labels at node v3 that can extend and must be checked to see if we can keep

them at the new node based on the dominance relation. The extension of the label

[3,3] to node v2 is [4,4] which is not kept because of the dominance relation that there

is another label [3,3] which is less in the resource consumption and the cost than the

label [4,4] and label [4,1] is extended to be [5,2] at node v2. So, the two labels at

node v3 are extended to be [4,4] and [5,2] at node d.

Figure 3.4: First iteration of Desrocher’s algorithm

32



3.2. LABEL CORRECTING ALGORITHMS

3.2.3 Label Correcting Algorithm for ESPPRC

Feillet et al. [33] modified Desrocher’s algorithm to obtain an elementary shortest path

with resource constraints in graphs which can have negative cost cycles (the overall sum of

the cycle becomes negative).

A state is associated with each path Xpi from the origin node p to a node vi as

Ri = (T 1
i ,T

2
i , . . . ,T

L
i ,siv,V 1

i ,V
2
i , . . . ,V

n
i )

where,

• T l
i , l = 1, . . . ,L are the quantity of resources used on the path from p to node i.

• n binary indicator, one for each node vk ∈V indicated as V k
i

• siv, is the number of visited nodes on path Xpi.

V k
i = 1 if node i is visited in the path Xpi, 0 otherwise. The label associated with this path

is the same in the previous section (Ri,Ci).

Dominance Relation: If there are two distinct paths, Xpi and X
′
pi from origin p to node

vi, Xpi dominates X
′
pi if and only if

Ci ≤C
′
i, siv ≤ s

′
iv, T l

i ≤ T
′l

i ∀l = 1, . . . ,L, V k
i ≤V

′k
i ∀k = 1, . . . ,n

An illustration of this new algorithm [33] is in Fig. 3.5 for the case of a single resource.

Each edge has a bracketed expression on it that contains the resource and the cost of each

edge. Beside each node, labels can be seen, the first and last numbers in the square brackets

are the resource consumption and cost of the path respectively, and the four intermediate

numbers correspond to four nodes, indicating if the node is visited or not. The element siv

of the label is not shown in Fig. 3.5 for simplicity.

The label of p is [0;1,0,0,0;0] which means the consumption of the resource for the path
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Figure 3.5: First iteration of the new definition of labels and dominance relation

is zero, the second digit which is 1 illustrates that the node p is visited and the third to fifth

digits are for the other three nodes that are not visited in this path yet, and the last zero digit

indicates the cost of the path is 0. This is the initialization step of the algorithm.

Continuing with the iterations, the first node which is p must be processed, so the label on

p will be extended to nodes v2 and v3. For the extension of the path from node p to v2,

the label is updated to be [3;1,1,0,0;3] which means the consumption of the resource is 3,

nodes p and v2 are visited and nodes v3 and d are not visited in this path and the last digit

shows the cost of the path. Similarly, the label on p is extended to v3 and the new label on

v3 is [3;1,0,1,0;3]. We continue this process for all nodes to determine all possible paths

from p to d.

Then, we need to process node v2. There is one label at node v3, [3;1,1,0,0;3] which can

be extended to nodes v3 and d in terms of edges (v2,v3) and (v2,d). The new label at node
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v3 and d are [4;1,1,1,0;1] and [4;1,1,0,1;4] respectively. So, there are two labels at node

v3 which both can be kept since none of them dominates another one.

The last step is to process node v3 and extend its labels to nodes v2 and d. None of

the labels at node v3 can be extended to v2 because of the dominance relation on label

[3;1,0,1,0;3] which is updated to [4;1,1,1,0;4] and all elements of this label are greater

than equal label [3;1,1,0,0;3] that already exists at node v2 and the corresponding value of

node v2 is 1 on label [4;1,1,1,0;1] that can not be extended to v2, as elementary paths are

created. The extension of two labels of node v3 to node d is possible, so the new labels at

node d are [4;1,0,1,1;4] and [5;1,1,1,1;2].

The definition of the labels is improved using the concept of unreachable node next.

Unreachable Node: For each path Xpi from the origin node p to a node vi ∈V , a node

vk is said to be unreachable if it is included in Xpi or if there exists a resource l ∈ 1, ...,L

satisfying T l
i + dl

ik > bl
k (which means that the current value of consumption of l prevents

the path from reaching node vk) [33], where, bl
k is the maximum value of the resource and

dl
ik is the total consumption of the resource in node i from node p in path xpi.

The definition of the label is modified as:

V k
i = 1 if node vk is unreachable if it is already on the path or it can not be visited because

of the violation of the resource constraints, and siv is the number of unreachable nodes, so

siv = ∑
n
k=1V k

i .

The definition of the dominance relation will stay the same and we only keep non-dominated

paths. This labeling scheme is more efficient for dynamic programming. We use this la-

belling scheme in the next chapter in section 4.3.

Description of the Algorithm:

The algorithm finds all non-dominated paths from node p to all other nodes.
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We need the following notation to describe the algorithm:

• Ai: List of labels on node vi

• Succ(vi): Set of successors of node vi.

• E: List of nodes waiting to be processed.

• Extend(Li,v j): Function that returns the label resulting from the extension of label

Li ∈ Ai towards node v j when the extension is possible, nothing otherwise.

• Dominated(A j): Procedure that removes dominated labels in the list of labels A j.

• Fi j: List of labels extended from vi to v j
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Algorithm 2 Label Correcting Algorithm for ESPPRC
Initialization
Ap←{(0, ...,0)}
for all vi ∈V −{p} do

Fi j← /0

end for
E = {p}
while E! = /0 do

Choose vi ∈ E
for all v j ∈ Succ(vi) do

Fi j← /0

for all Li ∈ Ai do
if V j

i = 0 then
Fi j← Fi j∪Extend(Li,Vj)

end if
end for
A j← Dominated(Fi j∪A j)
if A j has changed then

E← E ∪{v j}
end if

end for
E← E−{vi}

end while

For the initialization of the algorithm, label (0, . . . ,0) is assigned to the list of labels of

node p (Ap) and the list of labels is empty for other nodes and node p is added to a set E.

The algorithm continues until set E is empty.

In each iteration, the last node (vi) of the set E is chosen and we check for all labels of

the list Ai to see if we can extend them to each successor (v j) of node vi. If node v j is not

already on the path Li (label on vi), the path Li is extended to v j. After the extension of all

labels on node vi to node v j, the dominance relation is checked to remove dominated labels

between these new labels plus previous ones on node v j, and if the list of labels at node v j

changes, the node is added to the set E. This process should be done for all successors of

node vi, then node vi is deleted from the set E.

This algorithm is used to solve the sub-problem of the column generation in the next
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chapter in section 4.3.
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Chapter 4

Column Generation

Column generation was proposed to solve linear problems where there are many more vari-

ables than constraints. Even, if we were capable of generating all the columns, the simplex

algorithm would still be unable to calculate all the decreased costs of zero (non-basic) vari-

ables due to memory requirements. The benefit of column generation is that by focusing

only on variables that have the potential to improve the objective function, it decreases the

number of variables kept in the memory. Column generation works well on problems like

Vehicle routing, Airline Scheduling, Shift Scheduling, and Job shop Scheduling [2].

Some papers that use column generation for V RP are: LENT [99] uses a column gener-

ation method to solve the time dependent vehicle routing problem with soft time windows

and stochastic travel times, the model allows the travel time distributions to change dur-

ing a day because of traffic congestion; Kallehauge et al. [100] uses column generation

for vehicle routing problem with time windows; Fukasawa et al. [75] is a combination

of branch and cut and Lagrangean relaxation/column generation for Capacitated Vehicle

Routing Problem; Rousseau et al. [101] is about solving small V RPTW s with Constraint

Programming Based Column Generation; Liberatore et al. [102] used column generation

for the vehicle routing problem with soft time windows. For a nice explanation of column

generation, see Rousseau [2].

Column generation for V RP is described in section 4.1 starting with a simple example
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we show how column generation solves it. Section 4.2 presents the column generation

for MTV RP. The column generation is described in section 4.3 for MTV RP−VW −TW

which is an original contribution to this thesis.

4.1 Column Generation for V RP

To solve V RP using column generation, the problem is decomposed into two problems,

the master problem and the sub-problem. Steps can be described as follow:

• The number of columns in the master problem can be large, so they are progressively

introduced to the master problem. We start with the restricted master problem (RMP)

which is an integer program. The linear relaxation programming of the RMP (LRMP)

is solved at the beginning using the simplex method.

• The dual variables associated with the optimal solution of an LRMP are used to define

a pricing sub-problem. The solution to the sub-problem helps determine new routes.

The column with the most negative reduced cost has the most potential to improve

the solution of the master problem and this route is added to the LRMP. Columns are

added until there are no columns with reduced cost. At this point, we have an optimal

solution for the LRMP and a lower bound for RMP.

• Pricing problem is modeled as an Elementary Shortest Path Problem with Resource

Constraints (ESPPRC) and can be solved by dynamic programming given in section

3.2.

• Finally, a lower bound is embedded in a branch and bound algorithm to solve the

master problem.

Fig.4.1 shows the flowchart of the column generation procedure.
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Initial routes

Restricted master problem (RMP)

Pricing problem

found a route with
negative reduced cost

Add route to RMP

master prob-
lem solved

Yes

No

Figure 4.1: Overview of the column generation procedure

4.1.1 Master Problem and Sub-Problem for the V RP

The column generation approach is explained using a simple V RP with four customers

in which each route can have a maximum of two clients. Fig. 4.2 shows a V RP with four

clients that all must be visited and numbers on the edges are distances between customers

and customers with depot as well. The distances on the missing edges are given by the

triangle inequality.

Figure 4.2: VRP Example [2]

To write the RMP, initially we start with a subset of routes from all the possible routes

41



4.1. COLUMN GENERATION FOR V RP

visiting maximum of two clients. There are seven such possible routes and the total distance

of each route can be calculated as:

x1 : Depot→ A→ Depot and d1(distance) = 10+10 = 20

Table 4.1 shows the total distance of each route.

Table 4.1: All tours of VRP

Number of route route Visited customers Distance (dr)
1 x1 Depot−A−Depot 20
2 x2 Depot−B−Depot 20
3 x3 Depot−C−Depot 20
4 x4 Depot−D−Depot 20
5 x5 Depot−A−B−Depot 30
6 x6 Depot−B−C−Depot 35
7 x7 Depot−C−D−Depot 30

The V RP model with these routes can be described as:

min 20x1 +20x2 +20x3 +20x4 +30x5 +35x6 +30x7

A: x1 + x5 = 1 client A is in route x1 and x5

B: x2 + x5 + x7 = 1

C: x3 + x6 + x7 = 1

D: x4 + x6 = 1

xi ∈ {0,1} i = 1,2,3,4,5,6,7

where,

xi =

1 if route i is in the solution

0 if route i is not in the solution.

To do column generation, we start with a subset of these routes, one route for each

customer. so, the master problem is:
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min 20x1 +20x2 +20x3 +20x4

A: x1 = 1

B: x2 = 1

C: x3 = 1

D: x4 = 1

xi ∈ {0,1} i = 1,2,3,4

πA, πB, πC, and πD are dual variables corresponding to each constraint with value 20

each. Given the dual values, therefore we can calculate all reduced costs of routes to see if

there is any route to improve the current solution or not.

If dr is the cost of route r and air is one if customer i is in route r, zero otherwise. The

reduced cost of the routes is:

dr− ∑
i∈{A,B,C,D}

airπi

The reduced costs of the remaining routes are in Table. 4.2

Table 4.2: Reduced costs- First iteration

Number of route route Visited customers Reduced cost
5 x5 Depot−A−B−Depot 30− (20+20) =−10
6 x6 Depot−B−C−Depot -5
7 x7 Depot−C−D−Depot -10

Therefore there are new routes with the potential of improving the master solution given

the negative reduced costs. Route x5 with the reduced cost of −10 is added to the master

problem. The new columns in the basis are x3, x4, and x5, so the total distance of routes is

decreased to 70. With these new routes, the dual values corresponding to each constraint

are 10, 20, 20, and 20 respectively. So, the reduced costs of the remaining routes are:

There are two routes with a negative reduced cost that can improve the solution. The
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Table 4.3: Reduced costs- Second iteration

Number of route route Visited customers Reduced cost
6 x6 Depot−B−C−Depot 35− (20+20) =−5
7 x7 Depot−C−D−Depot 30− (20+20) =−10

route x7 is selected to be added to the master problem. So, the new basis of the master

problem is routes x5 and x7 and the objective function decreases to 60. The new dual values

are 10, 20, 10, and 20 respectively. The reduced cost of the route x6 is 35− (20+10) = 5.

So, there is no new route with the negative reduced cost to improve the master objective

function.

The solution is shown in Fig. 4.3

Figure 4.3: VRP optimal-Solution

Mathematical model of the Master Problem

After this example that shows how the column generation works, we describe the for-

mulation of the master problem and RMP for basic V RP. In chapter one, capacitated vehicle

routing problem was presented, and based on the same problem, the master problem will

be described.

We assume that R is the set of all possible routes, starting from the depot and ending at the

depot. Each route visits customers exactly once. A solution of V RP is a subset of these

feasible routes. We select a number of these routes so that the total distance of the routes is

minimized. To introduce the master problem which is a set covering problem, the following
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notation and variables are used:

• Every column corresponds to a feasible route

• R: Set of all feasible routes

• Cr: The total distance of route r ∈ R

• |V |: The number of the vehicles

We use the following coefficients and decision variables.

yr =

1, if route r is in the solution

0, otherwise
(4.1)

air =

1, if customer i is in route r

0, otherwise
(4.2)

The master problem is:

min ∑
r∈R

Cryr

s.t.

∑
r∈R

airyr ≥ 1 ∀i ∈C

yr ∈ {0,1} ∀r ∈ R

The LP-dual of the master problem is:
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max ∑
i∈C

πi

s.t.

∑
i∈C

airπi ≤Cr ∀r ∈ R

πi ≥ 0 ∀i ∈C

Let π be an optimal solution to the LP-dual. The reduced cost of each route is:

Cr =Cr−∑
i∈C

airπi (4.3)

As long as there is a route with negative reduced cost, the dual problem does not have

an optimal solution, therefore, any route with negative reduced cost can be added to the

restricted master problem, usually, the most negative one is added to improve the primal

solution.

Sub-Problem

To determine the column to be added, we need a sub-problem to find the route with the

most negative reduced cost. The cost of each route which is the sum of the traveling time

of all edges on the route can be calculated as:

Cr = ∑
i∈N

∑
j∈N

ci jxi j

And the reduced cost (Cr) is:

Cr =Cr−∑
i∈C

airπi
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By using this information we can write the pricing sub-problem which gives the column

with the minimum reduced cost. So sub-problem can be expressed as:

min ∑
i∈N

∑
j∈N

ci jxi j−∑
i∈C

airπi (4.4)

s.t.

∑
i∈C

∑
j∈N

dixi j ≤ Q (4.5)

∑
j∈N

x0 j = 1 (4.6)

∑
i∈N

xih− ∑
j∈N

xh j = 0 h ∈C (4.7)

∑
i∈N

xi,n+1 = 1 (4.8)

xi j ∈ {0,1} i, j ∈ N (4.9)

The sub-problem which is a shortest path problem can be solved using dynamic pro-

gramming [33] to find all feasible routes with a negative reduced cost.

Initialization

To start the process we generate one route per customer and these routes will be the

initial input to the master problem.

4.2 Column generation for MTV RPTW

The mathematical model was described in Chapter 2. Now, the column generation

approach is applied to solve the problem.

4.2.1 Master Problem and sub-Problem for the multi-trip vehicle routing problem

Let us summarize the mathematical model for MTV RPTW next.
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min ∑
k∈V

∑
r∈R

∑
i∈N

∑
j∈N

dk
i jrx

k
i jr (4.10)

s.t.

∑
k∈V

∑
r∈R

∑
j∈N

xk
i jr = 1 ∀i ∈C (4.11)

∑
i∈C

di ∑
j∈N

xk
i jr ≤ qk ∀k ∈V, r ∈ R (4.12)

∑
j∈N

xk
0 jr = 1 ∀k ∈V, r ∈ R (4.13)

∑
i∈N

xk
ihr− ∑

j∈N
xk

h jr = 0 ∀h ∈C, k ∈V, r ∈ R (4.14)

∑
i∈N

xk
i,n+1,r = 1 ∀k ∈V, r ∈ R (4.15)

sk
ir + si + ti j−M(1− xk

i jr)≤ sk
jr ∀i ∈ N−{n+1}, j ∈ N−{0}, ∀k ∈V, r ∈ R (4.16)

ai ∑
j∈N−{0}

xk
i jr ≤ sk

ir ≤ bi ∑
j∈N−{0}

xk
i jr ∀i ∈C, k ∈V, r ∈ R (4.17)

sk
0r ≥ sk

n+1,r−1 ∀r ∈ R, k ∈V (4.18)

xk
i jr ∈ {0,1} ∀i, j ∈ N, k ∈V (4.19)

sk
ir ≥ 0 ∀i ∈C, k ∈V, r ∈ R (4.20)

qk ≥ 0 ∀k ∈V (4.21)

The objective function (4.10) is to minimize the total distance of all tours. Constraints state

that each customer must be visited once (4.11), the sum of demands of customers visited

during a route must not exceed the capacity of the vehicle (4.12), all routes must start and

end at the depot (4.13) and (4.16), flow conservation constraint (4.14), the relationship

between the vehicle departure time from a customer and its immediate successor (4.16), the

time window constraints for each customer (4.17), and finally a proper route sequencing for

the workday of a vehicle (4.18).
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For column generation, a few changes are needed when the vehicle can perform more than

one route in a day. In our case, a tour represents all the routes that a vehicle can make

during a workday. So, a tour is a collection of routes.

4.2.2 Master problem for MTV RP

We use the following notation to describe the master problem for MTV RP.

• Tour: all routes a vehicle services during a day

• Every column corresponds to a tour (with multiple routes)

• Ω: The set of all feasible tours

• dw: The total distance of tour w ∈Ω

• |V |: The number of the vehicles

aiw =

1, if customer i is in tour w

0, otherwise
(4.22)

The following decision variables are introduced:

yw =

1, if tour w is in the solution

0, otherwise
(4.23)

The master problem formulation which is set covering formulation is:
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min ∑
w∈Ω

dwyw (4.24)

s.t.

∑
w∈Ω

aiwyw ≥ 1 i ∈C (4.25)

∑
w∈Ω

yw ≤ |V | (4.26)

yw ∈ {0,1} w ∈Ω (4.27)

(4.28)

Here, each column corresponds to a tour and a solution is a subset of Ω. The LP relax-

ation of the master problem is solved by the simplex method and the dual variables asso-

ciated with the constraints of the optimal solution are used to define a pricing subproblem

that can give us the columns with a negative reduced cost as shown next.

4.2.3 Subproblem of the MTV RP

The pricing problem is an elementary shortest path problem with resource constraints

and is constructed using the dual variables of the optimal solution to the master problem

and the constraints that are not used in the master problem. Suppose that πi, i ∈ C are

the dual variables associated with the covering constraints (4.25) and the dual variable µ is

associated with constraint (4.26), then the objective is to find the column with the minimum

reduced cost (dw):

dw−∑
i∈d

aiwπi−µ = dw−µ

where dw = dw−∑i∈d aiwπi.
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4.3 Column generation for MTV RP−VW −TW

Multi-trip vehicle routing problem with a variable number of wagons and time windows

was described in section 2.4 and the mathematical model was presented in section 2.5. In

this section, we solve the problem using column generation. The master problem, pricing

subproblem, and the techniques for solving the pricing subproblem will be explained. This

contribution is new and extends the methodology presented in section 4.2 for MTV RP.

4.3.1 Master problem for MTV RP−VW −TW

We note the following:

• Tour: all routes a vehicle can have during a day;

• Every column corresponds to a tour;

• Ω: the set of all feasible tours;

• dw: the total distance of tour w ∈Ω;

• W : the total number of wagons;

• |V |: the number of the vehicles;

• Numbers of the used wagons should be less than W ;

• nw: the number of wagons used for a vehicle that is used in tour w and nw ∈ {1,2,3};

aiw =

1, if customer i is in tour w

0, otherwise
(4.29)

We use the following decision variables:

yw =

1, if tour w is chosen

0, otherwise
(4.30)
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The master problem is:

min ∑
w∈Ω

dwyw (4.31)

s.t.

∑
w∈Ω

aiwyw ≥ 1 ∀i ∈C (4.32)

∑
w∈Ω

yw ≤ |V | (4.33)

∑
w∈Ω

nwyw ≤ |W | (4.34)

yw ∈ {0,1} ∀w ∈Ω (4.35)

(4.36)

The objective function (4.31) is to minimize the total distances of all tours. Constraints

(4.32) ensure that each customer is visited at least once. The constraint (4.33) states that

the number of all tours must be less than the number of vehicles. Constraint (4.34) states

that the number of wagons used in all the vehicles must be less than the total number of

wagons.

The solution is a subset of Ω. As the number of columns is exponential in the number

of customers, we solve the restricted master problem (RMP) with a limited number of

columns for the initial solution and the columns are progressively added into RMP. The

LP-relaxation of RMP (LRMP) is solved with an LP solver to obtain the dual variables

associated with the optimal solution of the RLMP, these dual values are sent to the sub-

problem to determine new tours with negative reduced cost and these new tours are added

to the master problem, the process will continue until there are no more tours with negative

reduced cost. This guarantees an optimal solution to the RLMP.
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4.3.2 Method for constructing tours/columns

Once the LP relaxation of the restricted master problem is solved, the dual values are

provided to determine the objective function of the sub-problem which is an elementary

shortest path problem with resource constraints from the artificial start node to the artifi-

cial end node in the route graph. The route graph is constructed using a label correcting

algorithm which is explained in the following sections. The label correcting algorithm is

applied to the route graph to generate all non-dominated tours. Therefore the solution of

the sub-problem is determined, once we have all non-dominated tours in the route graph. If

there is a new tour with the negative reduced cost from three sub-problems with different

capacities which are made from three route graphs, it is added to the master problem. The

algorithm iterates until no new tour with the negative reduced cost can be generated.

The following flowchart shows the process of generating all non-dominated tours for

three different capacities separately.

Input Graph

Apply Label Correct-
ing Algorithm (4.3.3)

Generate All Non-
dominated paths (4.3.3)

Calculate the Departure
and Arrival Times (4.3.4)

Generate Route
Graph (4.3.4)

Apply Label Correct-
ing Algorithm on the
Route Graph (4.3.6)
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4.3.3 Generating all non-dominated paths

To solve the subproblem, all non-dominated routes must be generated, and the label

correcting algorithm is used to create all these routes.

We need to generate elementary paths, so we keep track of previously visited nodes. A path

p from an origin node o to a node j is labeled with Rp = (Cp, t1
p, ..., t

l
p,spv,V 1

p , ...,V
n
p ), where

L= {1, ..., l} is the set of resources and we have two resources t1
p and t2

p. Time consumption,

t1
p is the time used in the path till customer v j which is calculated as t1

p = t1
p + ti j + s j, where

vi and v j are two adjacent customers on the route and s j represents the service time for

the customer v j. Load consumption, t2
p is the capacity used for the path and is given by

t2
p = t2

p + d j where d j is the quantity that must be delivered to the customer v j. A time

interval [ai,bi] representing the time window is associated with each customer vi and a load

interval [0,Q], where Q is the capacity of the vehicle. Cp is the length of the path and is made

negative by replacing the distance ti j of each arc with ti j− a, such that a > max(i, j)∈Ati j.

We make the distances negative so that vehicles leave the depot otherwise, it would be

optimal to stay at the depot, spv is the number of unreachable nodes and V i
p = 1 if node i

is unreachable, 0 otherwise. The following dominance relation is used to determine non-

dominated routes:

Dominance relation: If there are two paths from origin o to node j, p and p′, with labels

Rp and Rp′, respectively, then path p dominates p′ if and only if Cp ≤Cp′,spv ≤ sp′v, tk
p ≤

tk
p′,∀k = 1, ..., l,V i

p ≤V i
p′,∀i = 1, ...,n [1].

That is, path p dominates p′ if (a) it is no longer, (b) it does not consume more resources

for every resource considered and (c) every unreachable node is also unreachable for path

p′ [1].

Using this relation will keep only the labels that are for non-dominated elementary paths.

To implement the label correcting algorithm for our problem, we need to create a label

(Cp, t1
p, t

2
p,spv,V 1

p , ...,V
n
p ) which represents a path p from the depot to the customer j. Using

these labels all feasible non-dominated routes will be generated.
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During the extension of the path, we need to see if the current time consumption (t1
p) plus the

distance di j is less than ai, then t1
p is replaced by ai and the extension of the path continues.

Each time that we extend one node or the node is unreachable, spv increases by one. We

also eliminate the partial routes when we are extending the paths. So, at the end of the

algorithm, we will have all non-dominated routes.

4.3.4 Creation of the route graph

After creating all non-dominated routes, each of them can be looked at as a node in a

new graph that we call the route graph. The route graph includes these routes as the nodes

and two artificial nodes for the start and end of the vehicle workday. To create the route

graph, the following rules must be applied to determine if there is an edge between nodes r

and r′ :

• Route r and r′ must not visit the same customer.

• The feasibility of servicing route r′ after route r is determined through departure time

windows as explained below.

To satisfy the second condition, the latest departure and arrival times and the earliest

departure and arrival times need to be calculated. To have an edge (r,r′) the latest departure

of route r′ must be greater than the latest arrival of route r. There are edges between the

artificial start node and all routes and from all routes to the artificial end node.

There are two time windows for each route node r which are the earliest and latest

departure times [tr
0,tr

0 ] and earliest and latest arrival times [tr
n+1,tr

n+1 ]. Routes must be

started and completed in these intervals. These time windows are determined as shown

below.

Latest departure and arrival times

If the route r is shown as a sequence (0 = i0, i1, i2, . . . , inr , inr+1 = n+1) where the first

and last points are the depot as well as other customers (nr ones) in the middle, first the
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latest feasible time tr
i j

of each customer must be calculated using a back-ward sweep of

route r starting from inr+1 to i0. Therefore:

t inr+1 ← binr+1

tr
i j
←min{tr

i j+1
− ti ji j+1− si j ,bi j}, ∀ j = inr , . . . , i0

Finally, we will have tr
i0 which is the latest departure of the route r and again in a similar

way we obtain the latest arrival time of the route as well as the latest feasible schedules (tr
i j

)

at each customer using a forward sweep, so each tr
i j

can be calculated as:

tr
i j
←max{tr

i j−1
+ ti j−1i j + si j ,ai j}, ∀ j = i1, . . . , inr+1

Earliest departure and arrival times

Suppose we calculated the latest departure time (tr
0), the earliest departure time(tr

n+1)

and the latest feasible schedules to begin service at each customer(tr
i j

) in the route r, two

cases can happen:

Case 1: there is no waiting time (vehicle doesn’t arrive before time windows) in the

latest feasible time of customers, then we can shift the latest times by the minimum of (tr
i j

)

and ai j , so we can calculate it for each route as:

δ
r = min j=0,...,nr+1(t

r
i j
−ai j)

By deducting these units of the latest departure and arrival times, the earliest departure and

arrival can be obtained. So, we have:

tr
0 = tr

0−δ
r
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and,

tr
n+1 = tr

n+1−δ
r

Having all the latest departure and arrival times as well as the earliest departure and

arrival times, it is possible to write the time windows for all routes as: [tr
0, t

r
0] and [tr

n+1, t
r
n+1].

Case 2: If there are some waiting times in the latest feasible time for customers. Then,

we can not leave the depot earlier, when the latest arrival times are before the time windows.

So, the earliest departure and arrival times will be the same as the latest departure and

arrival times respectively.

tr
0 = tr

0

and,

tr
n+1 = tr

n+1

In case 2, the time windows for departure and arrival will be a single point. So, the route

r′ can be served after route r if tr
n+1 +δr′ ≤ tr′

0

Given all this information, now to create the route graph, we must note that there must

not be any common customer between routes r and r′ and the latest arrival time of the route

r must be less than the latest departure time of the next route r′. If both the conditions are

met, then there is an edge from r to r′. Below we show the route graph for a small example

problem from [1].

Example

A simple instance of five customers and two nodes 0 and 6 associated with the depot

is in Table 4.4. Indices 1 to 5 are the five customers. There are the coordinates and time

windows associated with each customer, listed in the same row. Travel time between any

two nodes is the same as the distances and servicing time of all customers is s = 10.

The label correcting algorithm is applied on this instance and all the non-dominated
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Table 4.4: Customers with time windows [1]

Node x y Time window

0 40 50 [0,∞]

1 25 85 [591,874]

2 22 75 [73,350]

3 22 85 [473,588]

4 20 80 [418,913]

5 20 85 [40,390]

6 40 50 [0,∞]

routes are shown in Table 4.6. The calculation of the latest and earliest departure and

arrival times for the first route (0,3,1,6) is as follows:

r = (0,3,1,6)

i0 = 0, i1 = 3, i2 = 1, i3 = 6

t03 = 39.55, t31 = 3, t16 = 38.07

s3 = 10,s1 = 10

Next, we calculate the latest departure and arrival times. Table (4.5) shows the calcula-

tion of the latest departure.

Table 4.5: Latest departure calculation

t1
6 t1

1 t1
3 t1

0

∞ min(t1
6 − t16 − s1,b1)

=min(∞ − 38.07 −
10,874) =874

min(t1
1− t13− s3,b3) =

min(874 − 3 −
10,588) = 588

min(t1
3− t30− s1,b0) =

min(588 − 39.55 −
0,∞) = 548.65

The backward sweep gave us the latest departure time t1
0 = 548.65, a forward sweep

gives the latest arrival time:

t1
0 = 548.65

t1
3 = max{548.65+39.35,473}= 588

t1
1 = max{588+3.00+10,591}= 601
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Table 4.6: Time windows and cost of each route [1]

Route Departure Arrival Cost

0, 3, 1, 6 [538.65,548.65] [639.07,649.07] -82.82

0, 4, 3, 6 [421.57,522.35] [536.57,637.35] -82.46

0, 4, 1, 6 [537.88,639.07] [820.88,922.07] -82.05

0, 2, 5, 6 [42.20,143.50] [319.20,420.50] -81.94

0, 2, 6 [42.20,113.80] [319.20,390.80] -20.02

0, 4, 6 [381.95,464.05] [876.95,959.05] -9.52

0, 1, 6 [552.93,639.07] [35.93,922.07] -5.48

0, 3, 6 [433.65,522.35] [548.65,637.35] -2.92

0, 5, 6 [0.00,90.62] [349.69,440.31] -1.00

t1
6 = max{601+38.07+10,0}= 649.07

The calculations for the other tours are done similarly, so we have the latest departure

and arrival times of all tours which are in Table 4.6, the second column.

Now, we need to calculate the earliest departure and arrival times. Observing the latest

feasible schedule, we see that there is no waiting time in this schedule, so case 1 arises and

the minimum shift must be calculated. For the first tour r1, we have:

δ
1 = min{548.65−0,588−473,601−591,649.07−0}= 10

We know, tr
0 = tr

0−δr, and we have t1
0 = t1

0−δ1 = 548.65−10 = 538.65. In the same

way, t1
6 = t1

6−δ1 = 649.07−10 = 639.07. So, the time windows of tour one for departure

and arrival at the depot are:

[t1
0, t

1
0] = [538.65,548.65]
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and,

[t1
6, t

1
6] = [639.07,649.07]

The same calculation is done for all tours to get the earliest departure and arrival time.

The third column of Table 4.6 displays these numbers.

Using this information, the route graph is constructed. We also check whether there are no

common customers between the two routes and if two consequent routes are feasible based

on the departure time windows, an edge is then drawn between these two routes. Fig.4.4

shows the route graph for this example. Each node indicates a route and numbers in the

circle are customers visited in the route, numbers on each edge are the cost of the route, a

tour must be found for a vehicle by visiting these routes, then the tour is a multi trip for the

vehicle. The elementary shortest path obtained is shown with a dotted line.

Figure 4.4: Route graph
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4.3.5 Sub-problem for MTV RP−VW −TW

The subproblem is defined on the route graph GT = (V T ,AT ) where V T is the set of all

non-dominated routes generated by the label correcting algorithm [33] plus two artificial

nodes for the start and end of the tour. AT is the set of edges in the route graph with the

time windows on each route, [tr
0, t

r
0] and [tr

n+1, t
r
n+1].

To formulate the subproblem on the route graph, dual variables associated with the mas-

ter problem constraints are needed. Let πi be dual the variables associated with constraints

(4.32) in the master problem and µ0 and µ1 are the dual variables associated with (4.33) and

(4.34) constraints respectively.

Let crs = ds, where ds is the total distance of route s, the reduced cost of arc (r,s) is:

crs = crs−∑
i∈Vs

πi

Using the binary variable Xrs which is one if the route (r,s) is used and zero otherwise

and the continuous variable Tr which is the departure time of the route r, we formulate the

subproblem as follows:
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min ∑
(r,s)∈AT

crsXrs−µ0−µ1 (4.37)

s.t.

∑
(r,h)∈AT

Xrh− ∑
(h,s)∈AT

Xhs = 0 ∀h ∈V T (4.38)

∑
r∈AT

X0r = 1 (4.39)

∑
r∈AT

Xr,n+1 = 1 (4.40)

Tr +(tr
n+1− tr

0)−M(1−Xrs)≤ Ts ∀(r,s) ∈ AT (4.41)

tr
0 ≤ Tr ≤ tr

0 ∀r ∈V T (4.42)

Xrs ∈ {0,1} ∀(r,s) ∈ AT (4.43)

Tr ≥ 0 ∀(r,s) ∈ AT (4.44)

(4.45)

The objective function (4.37) is the reduced cost of the tour. Constraint (4.38) indicates

that the vehicle must leave a route and go to the next one. Constraints (4.39) and (4.40)

ensure that the tour starts and ends at the depot. The inequalities (4.41) establish the re-

lationship between the vehicle departure time from a route and its immediate successor.

Constraints (4.42) assert that the time windows of routes are observed.

4.3.6 Solving the pricing subproblem

For three different capacities of the vehicles, we have three route graphs. Consequently,

three subproblems will be solved. The label correcting algorithm can be applied to each of

them again to find the new tour with the negative reduced cost to be added to the master

problem.
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Now, the label correcting algorithm can be implemented to determine all non-dominated

tours of the route graph.

To implement the label correcting algorithm on the route graph, a label Lp which is asso-

ciated with a path p from the start node in the route graph to a route node r needs to be

created :

Lp = (Cp,T r
p ,spv,V 1

p , . . . ,V
nT

p )

Cp is the cost of the path p. When a route node is added to the path, the cost of the route

node will be added to the cost of the path.

T r
p is the departure time of route r.

spv is the number of unreachable route nodes.

V r′
p indicates that the route node r′ is unreachable if the value is 1, 0 otherwise.

There is no capacity resource for the label corresponding to each path of the route graph. In

fact, the only resource consumption is the time and the time constraints tr
0 ≤ Tr ≤ tr

0 need

to be checked to see if the path is extendable or not.

To extend a path, an arc (r,s) must be added keeping the feasibility of departing the depot

to service route s before the latest departure time of route node s. If s is added, then the cost

and time consumed are added too. A few points must be noted:

• Start of service for route r must be in [tr
0, t

r
0] and be completed in [tr

n+1, t
r
n+1]

• Traveling time is tr
n+1− tr

0

• Service time of route s(ss) is the time that route s needs for preparation and any

waiting time, so ss = δs

• The time consumed on the route s is the duration of route s plus the setup time of

route s plus any waiting time before departure

• Possibility of servicing route s after route r is given by Tr +(tr
n+1− tr

0)≤ Ts
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Using the extend and dominate function in the label correcting algorithm, all non-

dominated tours will be generated. Papers [33], [1] and [42] are used to have an algorithm

to generate all non-dominated tours. The algorithm first generate all non-dominated routes

and then generate the rout graph and finally create all non-dominated tours.The algorithm

is described next.

Description of the Algorithm:

The algorithm finds all non-dominated tours on the route graph from the origin node p

(depot).

We need the following notation to describe the algorithm:

• G = (N,A): The input graph.

• N: Set of customers and vertices 0 and n+1 as the depot.

• A: Set of all edges between vertices in N

• Hi: List of labels on node vi

• Succ(vi): Set of successors of node vi.

• E: List of nodes waiting to be processed.

• Extend(Li,v j): Function that returns the label resulting from the extension of label

Li ∈ Hi towards node v j when the extension is possible, nothing otherwise.

• Dominated(A j): Procedure that removes dominated labels in the list of labels H j.

• Fi j: List of labels extended from vi to v j

• Routes: To save all non-dominated routes.

• (Ld− time)k: latest departure time of Rk ∈ Routes.

• (La− time)k: latest arrival time of Rk ∈ Routes.
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• (Ed− time)k: earliest departure time of Rk ∈ Routes.

• (Ea− time)k: earliest arrival time of Rk ∈ Routes.

• GT = (V T ,AT ): Route graph

• V T : Set of all non-dominated routes which are vertices in the route graph.

• AT : Set of edges in the route graph

• HT
k : List of labels on node Rk

• SuccT (Rk): Set of successors of route Rk.

• ET : List of routes waiting to be processed.

• ExtendT (LT
k ,Rk): Function that returns the label resulting from the extension of label

LT
k ∈ HT

i towards node Rh when the extension is possible, nothing otherwise.

• DominatedT (HT
h ): Procedure that removes dominated labels in the list of labels HT

h .

• FT kh: List of labels extended from Rk to Rh
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Algorithm 3 Generating all non-dominated tours

Input: G(N,A) # All notation used are written above
output: all non-dominated tours
Initialization # Generate all non-dominated routes
Hp←{(0, ...,0)}
for all vi ∈V −{p} do

Fi j← /0

end for
E = {p}
while E! = /0 do

Choose vi ∈ E
for all v j ∈ Succ(vi) do

Fi j← /0

for all Li ∈ Hi do
if V j

i = 0 then
Fi j← Fi j∪Extend(Li,Vj)

end if
end for
H j← Dominated(Fi j∪H j)
if H j has changed then

E← E ∪{v j}
end if

end for
for all Li ∈ Hi do

if Li is not extended to any v j ∈ Succ(vi) then
Routes← Extend(Li,n+1)

end if
end for
E← E−{vi}

end while
for all Rk ∈ Routes do # Generate the route graph

Add Rk to V T

Calculate (Ld− time)k , (La− time)k ,(Ed− time)k, and(Ea− time)k.
end for
for all Rk,Rh ∈ Routes do

if Rk and Rh don’t have common customer and (La− time)k ≤ (Ld− time)h then
Add an edge from vertex Rk to vertex Rh in AT

end if
end for
for all Rk ∈ Routes do

Add an edge from vertex Rk to p and from p to Rk
end for
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Initialization # Generate all non-dominated tours
HT

k ←{(0, ...,0)}
for all Rk ∈V T −{p} do

FT kh← /0

end for
ET = {p}
while ET ! = /0 do

Choose Rk ∈ ET

for all Rh ∈ SuccT (Rk) do
FT kh← /0

for all LT
k ∈ HT

k do
if Rh

k = 0 then
FT kh← FT kh∪ExtendT (LT

k ,Rh)
end if

end for
HT

h ← DominatedT (FT kh∪HT
h )

if HT
h has changed then

ET ← ET ∪{Rh}
end if

end for
ET ← ET −{Rk}

end while

There are three sub-problems based on the various capacity. All tours will be generated

for these three sub-problems using algorithm 3. First, we will see if there is a new tour with

a negative reduced cost in the sub-problem with one wagon, if so, the column will be added

to the master problem, if not, the second sub-problem will be checked. If there is a new

tour with a negative reduced cost to be added to the master problem. If not, we will check

the third sub-problem which uses three wagons. We keep solving the sub-problems until

all tours with the negative reduced cost are found and added to the master problem. The

following flowchart shows the procedure of the algorithm.
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Original problem formulation

Master Prob-

lem (4.3.1)

Restricted master problem (RMP)

Solve relaxation of RMP

Solve subproblem 1 to find column with

negative reduced cost (4.3.2), (4.3.3),

(4.3.4), (4.3.5) and (4.3.6), column found

Add such

column

to RMP

Solve subproblem 2 to find column with

negative reduced cost, (4.3.2), (4.3.3),

(4.3.4), (4.3.5) and (4.3.6), column found

Solve subproblem 3 to find column with

negative reduced cost, (4.3.2), (4.3.3),

(4.3.4), (4.3.5) and (4.3.6), column found

Solution Integral Done

Branch and

price (5.2)

Yes

Yes

Yes

No

No

No
Yes

No

4.3.7 Summary

In this chapter, we describe the column generation for V RP, MTV RPTW , and MTV RP−

VW −TW . The first two are the background material, and for clarity one example of col-
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umn generation for V RP is presented. The novel work in this thesis is column generation

for MTV RP−VW −TW , and the experimental evaluation of it is in chapter 7. To do col-

umn generation for MTV RP−VW − TW , we need to generate all non-dominated paths

using label corrected algorithm (3.2) for three different capacities of vehicles. Then the

route graphs for these three capacities can be constructed. Each node of the route graph

is a route from the generation of non-dominated paths. So each route graph is made of all

possible routes as nodes and the possibility of having two consecutive routes for a vehicle

as edges. Again, the label correcting algorithm is applied on any of these route graphs to

generate all non-dominated paths for this new graph (route graph). The result is multi trips

for a single vehicle and it gives us the solution to the subproblems to determine if a new

tour with the negative reduced cost exists. We check that any of the three subproblems have

a tour with a negative reduced cost. If there is any one, will be added to the master problem.
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Chapter 5

Branch and Price

In the first section, branch and bound is explained and next we explain branch and price and

apply it to our problem MTVRP-VW-TW.

5.1 Branch and Bound

Branch and bound algorithms are methods for global optimization for nonconvex prob-

lems. They are non-heuristic, in the sense that they maintain a provable upper and lower

bound on the (globally) optimal objective value. Branch and bound algorithms can be slow,

however in the worst case, they require effort that grows exponentially with problem size,

but in some cases, the methods converge with much less effort [103].

In the following, we explain the basic idea of branch and bound, how the algorithm

works, flowchart, and examples for the algorithm are from [3].

5.1.1 Basic idea

In fact, the branch and bound break the problem into the smaller sized problems to solve

as illustrated by the following mixed integer linear program (MILP) :

J∗ = min
(x,y)

cT x+dT y

s.t. (x,y) ∈ X
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Where X is feasible solutions of the problem,

X = {(x,y) ∈ Rn
+×Zp

+ : Ax+By≥ b}

Rn
+ and Zp

+ are the space of n dimensional vectors of positive real numbers and the space

of p dimensional vectors of positive integer numbers respectively. X can be decomposed

into smaller sets, X = X1∪X2∪·· ·∪XK , and let

Jk = min{cT x+dT y : (x,y) ∈ Xk} k = 1, . . . ,K

Then, J∗ = maxkJk

5.1.2 Decomposition of the mixed-integer linear problem

Consider the LP-relaxation of the initial problem (MILP) as:

JR = min
(x,y)

cT x+dT y

s.t. (x,y) ∈ P

Where, P = {(x,y) ∈ Rn
+×Rp

+ : Ax+By≥ b}.

Let (xR,yR) ∈ P be a feasible solution of the LP. We check whether all variables of y

are integers, if not, a fractional y j is taken, and then, we decompose the problem based on

bounds on integer variables as shown next.

Let yR
j be a variable with the fractional value, therefore, these two problems must be

solved:

P1 := P∩{y : y j ≤ byR
j c}

P2 := P∩{y : y j ≥ dyR
j e}

The following figure shows how decomposition works.
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5.1. BRANCH AND BOUND

Figure 5.1: Branching at a node

So, two new LP problems for P1 and P2 are solved.

5.1.3 Enumeration

The root of the enumeration tree is the LP solution and the problems obtained from the

decomposition add two new child nodes to the tree, a left branch and a right branch.

5.1.4 Bounds

For the given MILP let (x∗,y∗) be the optimal solution of the problem with objective

value J∗ and let JR be the objective value of the relaxation of MILP, and (x,y) be any integer

feasible solution with the objective value J, we have:

• JR provides a lower bound on J∗, so JR ≤ J∗

• J provides an upper bound on J∗, so J∗ ≤ J

Consequently,

JR ≤ J∗ ≤ J

5.1.5 Pruning

Nodes in the enumeration tree are pruned in the following ways:
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• Pruning by optimality: A solution of the LP is an integer, the decomposition and

adding cuts can not improve the solution. We check if it can improve the best solution

so far, if it improves, update the best lower bound and prune the node.

• Pruning by bound: A solution Ji at a node i is worse than the best upper bound that

we have, Ji ≥ J, then we do not explore node i.

• Pruning by infeasibility: A LP is infeasible at a node, then the node i is not explored.

5.1.6 Choosing a fractional variable to branch

If none of the pruning cases happen which means the LP has a feasible solution, Ji ≤ J

and yi /∈ ZP
+, then we need to branch at the current node. But, which non-integer variable

must be chosen, there are many selection strategies, and few of them are:

• The variable with maximum integer infeasibility: branch on a variable that has the

fractional part close to 0.5.

• The variable with minimum integer infeasibility.

• Strong branching: select the variable that can improve the objective function value

more. One way is to perform a few iterations of the dual simplex to determine which

variable gives the most improvement.

5.1.7 Node selection

Each time a node cannot be pruned, two branches are created and we need to decide

which node must be selected to be solved next. Different search algorithms on trees can be

applied to determine the next node [104]. Some choices are:

• Depth-first search: when children are created, they are added to a list of unexplored

nodes and the last node added to the list is selected to explore.

• Breadth-first search: select the first node added to the list to be explored.
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• Best-bound search: is to select a node whose parent has the best bound.

5.1.8 Pseudocode

The pseudocode for branch and bound is shown in Algorithm 4.

Algorithm 4 Branch and Bound
Initialization
L←{0}
J← ∞

k← 0
while L is not empty do

select node i of L and delete it from L
solve LP-relaxation at node i
k← k+1
if LP-relaxation is infeasible then

if k=1 then
The problem is infeasible

end if
prune node i by infeasibility

else
Let (xi,yi) be the solution and Ji

R objective value of LP-relaxation at node i
if Ji

R ≥ J then
prune the node by bound

else
if all variables of solution are integers, update then

update the upper bound, J← Ji
R

prune node i by optimality
else

generate two branches at node i and add two new nodes to the list L
end if

end if
end if

end while

5.1.9 Example

The branch and bound algorithm is illustrated for the following IP problem:
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J∗ = min
y

−1y1−2y2

s.t

−1
2

y1 + y2 ≤
11
5

4y1 +5y2 ≤ 26

7y1 +3y2 ≤ 32

y ∈ Z2
+

We use the most fractional variable to branch and node is selected using the breadth-first

search. The tree and the solution of each node are in Fig. 5.2

Figure 5.2: Branch and bound example [3]

The first iteration of the algorithm is the root that has the objective value of −9.01

and variables that have fractional values. The only node to branch is the root. The most

fractional variable y2 is chosen and two branches are created. so, node 1 is deleted from the
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list and nodes 2 and 3 are added. The next node to treat is node 2. LP-relaxation is solved

at node 2, the objective value is −8.75 and there is one fractional variable y1. y1 is selected

and two branches are generated, nodes 4 and 5 are added to the list and node 2 is deleted.

Node 3 is infeasible, so it is pruned and the node is deleted from the list. Now, node 4

should be treated that has an integer solution, the best bound is updated. Node 4 is also

deleted, so the only node left in the list is 5 which has a feasible solution and one fractional

variable y2 to branch on. Then, two branches are made and nodes 6 and 7 are added to the

list while node 5 is removed. Solving LP-relaxation at node 6, the objective value is greater

than the best bound that we have so far, so it is pruned by bound and node 6 is removed

from the list. The last node 7 has the LP-relaxation infeasible, that node is deleted from

the list. There is no more node to check. So the algorithm stops and the optimal integer

solution found is (2,3) with the objective value -8.

5.2 Branch and price algorithm

The branch and price algorithm is a combination of the column generation and branch

and bound algorithm in which the column generation is executed at each node of the search

tree. Branch and price is shown in Fig. 5.3. The LP at each node is solved using column

generation.

5.2.1 Branch and price algorithm for MTV RP−VW −TW

We describe initialization, the search strategy, branching strategy, and the upper bound

that we use in our implementation of branch and price for the multi-trip VRP with variable

wagons and time windows.

Initialization

At the root of the search tree, the RLMP is initialized with tours made of a single

customer visit. The number of columns thus corresponds to the number of customers. For

internal nodes in the search tree, the algorithm initializes the RLMP with the set of columns
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Figure 5.3: Branch and price algorithm

in the parent node considered, after removing columns that are infeasible due to branching

[42]. The minimum capacity for all vehicles that service a single customer, is one wagon.

Search strategy

The branch and price tree is explored using depth first search.

Lower and upper bound

The solution to RLMP at the root node gives a lower bound for the problem. We solve

the master problem using CPLEX. The integer solution of the master problem given by the

CPLEX 12.8 is used as the upper bound.
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Branching strategy

Two branching strategies are used. We branch on the number of vehicles and on the

arcs.

Branching on the number of vehicles: We sum the value of variables of the optimal

solution of RLMP, so k = ∑w∈Ω
′ yw, where Ω

′ ⊆ Ω. If k is fractional, two branches are

created. For each branch, one additional constraint is added to the master problem, these

two constraints are:

∑
w∈Ω

′
yw ≤ bkc

and

∑
w∈Ω

′
yw ≥ bk+1c.

The dual variable value corresponding to the new constraint is added to the subproblem

and the column generation is done again for this new child node.

Branching on arcs: The branch on an arc happens when the flow on an arc (i, j) is

fractional. We calculate the flow on any arc that is in some column. The sum of the yw,

w ∈Ω
′
on the columns that include an arc (i, j), will give the flow on the arc. The arc with

fractional value is taken. So, these branches will be:

• Left branch: xi j = 1, which means the customer j must be visited immediately after

customer i in all tours of RLMP and the route graph as well. To enforce it, all columns

in the RLMP and the route graph that contains arc (i,k) with k 6= j and (k, j) with k 6= i

must be deleted. Also, if xi = ∑w∈Ω
′ aiwyw, then the decision variables for vertices i

and j are set to one in RLMP, xi = 1 and x j = 1.

• Right branch: xi j = 0, which means the customer j must not follow the customer i

immediately. So all tours including the arc (i, j) in RLMP and the route graph must

be removed.

78



5.2. BRANCH AND PRICE ALGORITHM

Branch and price process

We start at the root and if RLMP is feasible, all possible columns from three subprob-

lems will be added to the RLMP. The LP solution of the root is set as the lower bound and

also integer solution given by the CPLEX is used as the upper bound. Two branches on the

number of the vehicles are created and we use a stack in implementation DFS, so nodes are

added to the front of the stack. For each node, column generation is used again to find the

LP- solution of RLMP. We check if the node must be pruned or kept, if the node is not

pruned, then we update the upper bound and create two new branches. After processing

all nodes, we see if the sum of the value of variables of the best bound is an integer but

variable values are not, then the branching on nodes is used to generate nodes. Then, we

calculate the flows on all the arcs. In the same way, we continue with the last node added to

the head of the list to see if the node must be pruned or kept after using column generation.

If we keep the node, two branches are created and the upper bound is updated. The process

continues until the stack is empty.
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Chapter 6

Resource management in
device-to-device communications

This chapter is on device to device communication in wireless networks. The system model

is described briefly in section 6.1.1. The branch-n-cut algorithm is described in section

6.2. A combinatorial algorithm for solving the Lagrangian relaxation is in section 6.3. An

iterative rounding algorithm and the proof of the quality of the approximation is in section

6.4.

6.1 Device to device communication

Interference minimization or maximization of sum-rate is a mature research problem in

the field of wireless and cellular communication. In recent days, special attention is given

to this area due to the introduction of a new mode of personal communication known as

device to device (D2D) communication underlay to a cellular network [105].

Here we study the knapsack based model for resource allocation for D2D communica-

tion first proposed in [106]. Given a set of cellular users, and a set of D2D pairs (from the

cellular users), the model allows for radio resource of a cellular user to be used by at most

one D2D pair (1-1 resource). This radio allocation if used will generate some interference

(which can be quantified given the system model) and provide some sum-rate. The model

seeks to find those allocations which simultaneously meet the sum-rate and the interfer-

ence requirements from the systems. For a pair of cellular user and a D2D receiver, the

model specifies the signal interference noise ratio (SINR) at a cellular user when the base
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station transmits, and the SINR at the D2D receiver. The SINR at the cellular user and D2D

receiver is considered as the minimum level of detail needed to examine interference [107].

One can also model the resource allocation problem as a minimum knapsack problem

with side constraints. If a target sum-rate is required then the objective is to minimize the

total interference. The knapsack constraint models the requirement that the target sum-rate

is met, and side constraints model the 1-1 resource requirement, this model was first studied

in [59].

6.1.1 System model

Before an explanation of the system model, we need some definitions, which are given

next.

Channel gain A channel is a link (wired or wireless) between the transmitting and receiv-

ing antennas. Channel gain is the difference between the transmitter’s output power and the

power received at the receiver end.

Interference: interference happens when two or more waves merge to generate one wave.

Interference may be constructive or destructive. Interference can block reception, may re-

sult in a momentary loss of a signal, or may impact the quality of the sound or image that a

piece of equipment produces.

Sum-rate: is the total rate of transmission over several simultaneous transmissions (over

different channels).

SINR: Describes the ratio between the gain of a channel and the total interference and noise

encountered by the channel. The exact formulas are given later.

The system model explained below is from [6, 106]. Let D be the set of D2D pairs and C

the set of cellular users. Gbc is the channel gain between the base station b and cellular user

c ∈C. Gdc is the channel gain between a transmitter for a D2D pair d ∈ D and the cellular

user c ∈ C. Gtr denotes the channel gain between D2D transmitter t and D2D receiver r
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(for D2D pair d). Gbd is the channel gain between the base station b and d’s receiver. The

transmission power of cellular user c and D2D pair d are Pc and Pd respectively. Variable

x(c,d) ∈ {0,1} indicates whether a D2D pair (d) uses radio resources from a cellular user

(c), and s(c,d) represents the sum rate. The total sum rate of the cellular users which share

resources with some D2D pair is given by,

S = ∑
c∈C

∑
d∈D

x(c,d)s(c,d)

The sum rate for a D2D pair (c,d) is given by Shannon’s formula.

s(c,d) = B log2 (1+ γ(c,d))+B log2 (1+ γ(d,b))

where γ(c,d) is the SINR at cellular user with signal transmitting from base station given

by,

γ(c,d) =
PcGbc

T +PdGdc

and γ(d,b) is the SINR at D2D receiver end.

γ(d,b) =
PdGtr

T +PcGbd

The interference for pair (c,d) is given by,

I(c,d) = PdGdc +PcGbd

By assumption, each cellular user can share resources with at most one D2D pair and

vice versa. Therefore,

∑
c∈C

x(c,d) ≤ 1,∀d ∈ D

Similarly,

∑
d∈D

x(c,d) ≤ 1,∀c ∈C.
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If I be the total interference allowed then

∑
c∈C

∑
d∈D

x(c,d)I(c,d) ≤ I.

The model can now be written as,

max ∑
c∈C

∑
d∈D

x(c,d)s(c,d) (6.1)

∑
c∈C

∑
d∈D

x(c,d)I(c,d) ≤ I (6.2)

∑
c∈C

x(c,d) ≤ 1 ∀d ∈ D (6.3)

∑
d∈D

x(c,d) ≤ 1 ∀c ∈C (6.4)

x(c,d) ∈ {0,1} ∀c ∈C,∀d ∈ D (6.5)

The objective function (6.1) maximizes the total sum rate. Constraint (6.2) ensures that the

interference is less than the target interference. Finally, constraints (6.3) and (6.4) indicate

that each D2D and the user cellular can share resources with at most one user cellular and

D2D respectively. We can think of cellular users and D2D pairs as two sides of a bipartite

graph (V,E), and (c,d) as an edge in this graph. Let M be the set of matchings in the

bipartite graph. Then, by a simple change of variable (c,d) = e we can write the above

model as:

max ∑
e∈E

xese (6.6)

∑
e∈E

xeIe ≤ I (6.7)

{xe|xe = 1} ∈M (6.8)

xe ∈ {0,1} ∀e ∈ E (6.9)
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where constraint (6.8) states that the set of edges in {e : xe = 1} form a matching and

constraint (6.7) is the knapsack constraint. Therefore, we say that model is a knapsack with

a matching side constraint. We write constraint (6.8) as ∑e∈δ(v) xe ≤ 1,∀v ∈ V = C∪D at

times where δ(v) is the set of edges incident on v (either a cellular user or a D2D pair).

6.2 Branch and cut

Branch and cut is derived from branch and bound when linear inequalities known as

cuts are added at every search node of search tree [108]. The cuts are satisfied by all the

feasible solutions and reduce the search space. We use linear inequalities known as cover-

cuts [109] that are generated from equation (6.7) and the current LP solution as explained

next.

Cuts need to be generated in each iteration and will be added to the relaxation of our

model at each node of the branch and bound tree which reduces the integrality gap. The

problem is solved again using branch and bound until the solution is an optimal integer

solution of our IP.

6.2.1 Cover Cuts

A cover S is a set of pairs (c,d) where c ∈C,d ∈ D such that the total interference on

the pairs in S is larger than the allowed interference

∑
(c,d)∈S

I(c,d) > I (6.10)

S is a minimal cover if no proper subset of S is also a cover. Any feasible solution can

contain only at most |S|− 1 elements from a minimal cover S. Therefore, for any feasible

solution x,

∑
(c,d)∈S

x(c,d) ≤ |S|−1 (6.11)

Equivalently, for a minimal cover S, and a feasible solution x∗:

84



6.3. LAGRANGIAN RELAXATION

∑
(c,d)∈S

(1− x∗(c,d))≥ 1 (6.12)

For a cut to be valid, the LP solution x∗ must also satisfy the cover condition. Violating the

above condition demonstrates the existence of a cover-cut.

∑
(c,d)∈S

(1− x∗(c,d))< 1 (6.13)

So, given x∗, if there is an S such that

∑
(c,d)∈S

(1− x∗(c,d))< 1 (6.14)

∑
(c,d)∈S

I(c,d) > I (6.15)

Then inequality (6.11) can be added to the node in the search tree during branch and bound.

Existence of a minimal cover S that satisfies equation (6.14) is determined by solving the

following knapsack problem.

max ∑
c∈C

∑
d∈D

y(c,d)I(c,d) (6.16)

∑
c∈C

∑
d∈D

y(c,d)(1− x∗(c,d))< 1 (6.17)

Where, yc,d ∈ {0,1} is the decision variable in the knapsack problem.

If we find a solution to the knapsack problem above, where the optimal value exceeds

the interference capacity I, then we add (6.11) as a new constraint to our MIP.

6.3 Lagrangian relaxation

Let us recall the IP formulation. The input is a bipartite graph B= (V,E) and an

interference-cap I. V (E) is the set of vertices (edges). The two sides of the partition are

the D2D pairs on one side and the cellular users on the other side. Each edge e, has an
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interference Ie and a sum-rate se. The set of edges incident on v ∈ V is denoted δ(v). The

goal is to find a maximum weight matching such that the total sum of the interferences on

the edges in the matching is at most I.

IP = max ∑
e∈E

sexe (6.18)

∑
e∈δ(v)

xe ≤ 1,∀v ∈V (6.19)

∑
e∈E

Iexe ≤ I (6.20)

xe ∈ {0,1},∀e ∈ E. (6.21)

We obtain the following Lagrangian relaxation (LR(λ)) by moving the total interference-

capacity constraint in the objective function.

LR(λ) = max ∑
e∈E

sexe +λ(I−∑
e∈E

Iexe) (6.22)

∑
e∈δ(v)

xe ≤ 1,∀v ∈V (6.23)

xe ∈ {0,1},∀e ∈ E. (6.24)

For a fixed λ≥ 0, an optimal solution to the integer program (IP), gives an objective value

(for LR(λ)) which is an upper bound on the objective function of the IP. But, we do not

know the optimal solution to IP. Fortunately, an optimal solution to LR(λ) for a fixed λ can

be obtained by solving a weighted maximum matching follows. Let us rewrite the objective

function as:

max ∑
e∈E

(se−λIe)xe +λ I (6.25)

Any e for which se− λIe ≤ 0 is not in any optimal solution. So, for a fixed λ we work

with the subgraph B′ with only those edges e : se−λIe > 0. Weight of an edge e is we =
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se−λIe > 0. A maximum weight matching in B′ is an optimal solution to LR(λ) given λ.

Therefore, our goal is to find λ such that the value of the LR(λ) is minimized. This problem

for minimizing over λ is the Lagrangian upper bound problem, LU = minλ≥0 LR(λ).

LU =min
λ>0

(
max ∑

e∈E
(se−λIe)xe

)
+λ I (6.26)

∑
e∈δ(v)

xe ≤ 1,∀v ∈V (6.27)

xe ∈ {0,1},∀e ∈ E. (6.28)

As an example consider the complete bipartite graph over 2n nodes, where a first edge e has

interference of Ie = 1 and a sum-rate of se = 1, every other edge has a interference of 1/n2

and and sum-rate of 0. The total interference requirement I = 1. The integer solution in

which the x1 = 1 and xi>1 = 0 is an optimal solution with objective value 1. The fractional

solution x1 = 1/n2,xi≥2 = 1 is a feasible solution to the LP relaxation with objective value

1/n2. This example has an unbounded integrality gap.

For each edge e, se/Ie ∈ {1,0}. Therefore, interesting values of λ for this example are

0,1. For λ = 0, B′ contains all the edges with weight we = se. A matching of size n, gives

an optimal solution to LR(0) of value 1. For the second case when λ = 1, only the first edge

is in B′, as se− Ie < 0 for all the other edges. A maximum weight matching includes the

edge with sum-rate 1. The optimal solution value to LU is 0+λI = 1. This example also

illustrates that not only do we obtain an integral solution, at times, but this solution also

satisfies the sum-rate constraint. Hence, we obtain a solution to the IP.

Next, we illustrate how to obtain the optimal solution to LU without resorting to gra-

dient descent. The Lagrangian parameter λ can only take values in the set {se/Ie : e ∈ E}.

Suppose λ < se/Ie for all the edges in B′. Increasing λ by a value δ changes the objective

function as δI−∑e e ∈ E ′Ie where E ′ is the set of edges in B′ and the graph has the uniform

interference. For δ > 0 this net gain is negative when I < ∑e e ∈ E ′Ie. State other way, an
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increase in δ reduces the objective function value. Since we want λ that minimizes LR(λ),

it is sufficient to consider λ = se/Ie for some e ∈ E.

For each choice of λ and fixed number of edges we need to solve a weighted matching

problem which for bipartite graph takes O(|E|
√
|V |) [110]. As there are |E| choices for

λ the total running time is O(|E|2
√
|V |). This can be reduced to O(|E|

√
|V | log |E|) by

sorting {se/ce : e ∈ E} and performing a binary search over λ. Therefore, we have the

following Theorem.

Theorem 6.1. Lagrangian upper bound problem LU on a bipartite graph B = (V,E) can be

solved optimally in time O(|E|
√
|V | log |E|) for the uniform interference and fixed number

of edges.

Since a maximum weight matching can be constructed for any graph in polynomial

time, we can also solve the Lagrangian upper bound problem LU optimally on any graph.

6.4 Iterative rounding algorithm

Saha et al. [5] studied the problem of interference minimization when the sum-rates

were arbitrary, and the interference was uniform and gave a polynomial time algorithm.

The computational complexity of the case when the interferences are arbitrary, and the

sum-rates are uniform is not known. In this section, we give an iterative rounding algo-

rithm that in each round will solve an LP and set the value of one of the variables. The

number of rounds is at most the number of edges and the work done in each round is poly-

nomial. The algorithm will work with extreme point solutions of the LP. We will show that

a variable with a value in a prescribed set exists in each round. We will prove a bound on

the approximation ratio.

The input is a bipartite graph B = (V,E) and an interference limit I. V (E) is the set

of vertices (edges). The two sides of the partition are the D2D pairs on one side and the

cellular users on the other side. Each edge e has an interference Ie and a sum-rate se. The set

of edges incident on v ∈V is denoted δ(v). The goal is to find a maximum weight matching
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such that the total sum of the interference on the edges in the matching is at most I. This

gives us the following integer program.

IP = max ∑
e∈E

sexe (6.29)

∑
e∈δ(v)

xe ≤ 1,∀v ∈V (6.30)

∑
e∈E

Iexe ≤ I (6.31)

xe ∈ {0,1},∀e ∈ E. (6.32)

The linear programming relaxation (LP) is:

LP = max ∑
e∈E

sexe (6.33)

∑
e∈δ(v)

xe ≤ 1,∀v ∈V (6.34)

∑
e∈E

Iexe ≤ I (6.35)

xe ≥ 0,∀e ∈ E. (6.36)

6.4.1 Algorithm

We give a procedure (Algorithm 5) that will construct in polynomial time (depending

on the time needed to solve a linear program) an integral solution such that

• the interference is no more than interference capacity I,

• the sum-rate is at least a quarter of the maximum sum-rate in an optimal LP solution.

Algorithm 5 relies on an optimal solution to the LP relaxation and is iterative. Given

an optimal solution, x∗ to the LP, one of the two things happens: in each step a reduced

problem (smaller in size) is obtained, which is solved iteratively. Note that when we remove
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an edge, we delete its endpoints and any edge incident on the endpoints. The algorithm uses

the following cases.

• An edge e exists such that x∗e = 0 is removed from the graph B. This gives a reduced

problem B′.

• If an edge e exists such that x∗e = 1 then e is added to the solution. The edge e

any edges incident on e are removed from B to obtain a reduced problem B′ with

interference bound I′ = I− Ie.

• For all edges 0 < x∗e < 1. In this case, the graph induced by edges in {e | x∗e > 0} is a

”near” cycle. We decompose this graph into two matchings and select the matching

with the larger total sum rate and return the edges selected from algorithm 6 which is

a greedy algorithm for knapsack problem as the solution.

We prove the following Theorem.

Algorithm 5
1: F = {}.
2: Solve the LP relaxation for graph B. If the value of LP optimal solution is 0 then GOTO

END.
3: If there is e such that xe = 0 then remove edge e from B. GOTO 2.
4: If there is e such that xe = 1 then add e to F and remove edge e and edges incident on

e from B and I = I− Ie. GOTO 2.
5: If 0 < xe < 1 for all the edges then decompose the graph into two matching and select

the matching with lager total sum-rate.
6: Use the greedy algorithm 6 on the selected matching, add edges selected from the

algorithm to F and remove those edges and edges incident on them from B and I =
I−∑e∈G Ie. GOTO 2.

7: END

Theorem 6.2. Algorithm 5 computes a solution with the sum-rate at least a quarter of the

sum-rate of the optimal LP solution and the total interference less than equal to the target

interference.
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Proof of Theorem 6.2 relies on the following Lemmas 6.4, 6.5, and 6.6. The proof of

Lemma 6.4 in turn relies on the structure of the extreme point solutions captured by the

following Lemma.

Lemma 6.3 ([111]). [Rank Lemma] Let P = {x | Ax ≥ b,x ≥ 0} and let x be an extreme

point solution to P such that each component xi > 0. If C is any maximal set of linearly

independent tight constraints (A[i, :]x = c[i]) then |C|= |X |.

The intuition behind the rank lemma can be summarized as follows: because x is an

extreme point solution the columns of A are linearly independent. Also, the column rank of

A equals its row rank. Therefore any maximal set of linearly independent tight constraints

equals the number of variables. For a proof of the Rank Lemma, see [111, Chapter 2].

First, we note that in any optimal solution (extreme point or not) to the LP, constraint (6.7) is

satisfied at equality in any optimal solution and may be linearly dependent (or independent).

As a direct application of the rank lemma, we get Lemma 6.4.

Lemma 6.4 ([111]). Let x∗ be a basic feasible solution to the LP such that 0 < x∗e for all

e∈ E and W =V1∪V2 be the set of vertices such that ∑e∈δ(v) x∗e = 1 and ∑e∈E Iex∗e = I, then

1. |W |+ 1 ≥ |E|. If constraint (6.7) is in the maximal set of linearly independent tight

constraints then |W |+1 = |E|. In the other case |W |= |E|.

We now prove if 0 < x∗e < 1 for every edge then the bipartite graph is near a cycle. One

example of such a structure is shown in section 6.4.2.

Lemma 6.5 (Structure). Let x∗ be an optimal solution to the LP defined by the graph B′ =

(V ′,E ′) such that 0 < x∗e < 1 for all e ∈ E ′. Then, the number of vertices of degree ≥ 3 is at

most 2.

Proof. Given an optimal solution x∗, call a constraint in the LP tight if it is satisfied at

equality. Given x∗ an extreme point solution let C be the set of tight constraints. Note that

∑e∈E ′ x∗e = C (is tight), else we can reduce the objective function value. If W is the set
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of vertices at which the matching constraint is tight (∑e∈δ(v) xe = 1) then by Lemma 6.4,

|W |+1≥ |E|.

Let number of vertices in W with degree at least 3 be k. We know

2|W |+2≥ 2|E| ≥ ∑
v∈W

δ(v)≥ 3k+(|W |− k)2 = (2|W |+ k). (6.37)

The first inequality in Equation (6.37) follows i) in Lemma 6.4. The second inequality

follows as W ⊆V. The third inequality is due to the assumption that δ(v)≥ 3 for k vertices

∈W. We infer, k ≤ 2, i.e. there are |W |−2 vertices with degree ≤ 2.

As xe < 1 for all e∈E, every vertex in W has degree at least 2. Therefore there are |W |−

2 vertices with degree 2. There are at most two vertices of degree more than 2. Suppose

there are only degree three vertices (either 0, 1, or 2), then the graph is either a cycle, cycle

plus one edge, or a cycle plus two edges. The set of edges E is nearly a cycle and We call

such a graph a ”near cycle.” We assume that the sum rates are low enough compared to

the value of the optimal solution to LP, so we ignore these extra edges in the analysis in

the next part. There cannot be any vertex of degree four in W else equation (6.37) is not

satisfied.

We focus only on the even cycle in the rest of the section. Next, we see an example of the

structure and then how this structure is used in Algorithm 5. The edges in the cycles can be

partitioned into two sets M1,M2 each of which is a matching such that for e∈M1,x∗e < 1/2.

6.4.2 Structure

As a consequence of lemmas 6.4 and 6.5, we have seen that the edges in any optimal

solution x∗ in which every variable takes on a fractional value form a near cycle. In each

iteration, we make sure that the interference at each edge in the current solution at most the

remaining interference capacity Ir. This is achieved by removing edges e for which Ie > Ir

after step 4 of algorithm 5.
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Figure 6.1: Even Cycle

Figure 6.2: Decomposition into Matchings
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Figure 6.1 shows an example of such a cycle in an optimal solution of the LP. M1,M2

are two matchings that this cycle is decomposed to. The edges in M1 take value x and the

edges in M2 take value 1− x as shown in figure 6.2.

We now prove Theorem 6.2.

6.4.3 Proof of Theorem 6.2

Proof of Theorem 6.2. Let B be the graph at the start of Algorithm 5 and B′ the reduced

graph obtained after the step 3/4/5/6. Let x∗ be the optimal solution to LP for graph B. If x′

is the optimal solution to the LP for B′. We perform induction on the number of iterations.

BASE CASE: If there is only a single iteration then three possibilities arise. The sub-

problem B′ is empty in each case.

• An edge x∗e = 0 is removed. The value of the objective function does not change. The

LHS in the sum-rate constraint does not change.

• An edge x∗e = 1 is added to the solution, I = I− Ie.

• For all the edges 0 < x∗e < 1. By Lemma 6.5 the graph is a near cycle. We decompose

the cycle into two matchings. Select the matching with the larger total sum rate and

use Algorithm (6). This gives the total sum rate at least a quarter of the optimal LP

solution, which is proved in equation (6.46) next, and the total interference is less

than equal to the target interference.

Let S∗ be the optimal solution to the LP problem with the variable values x∗e . Let M1

be the matching that x∗e <
1
2 for all e ∈M1 and, M2 be the matching that x∗e ≥ 1

2 for

all e ∈M2. If S∗ be the optimal solution of LP-relaxation (6.29). By definition, we

have:

S∗ =
2

∑
i=1

S∗(Mi)

We select the matching with the larger total sum rate between S∗(M1) and S∗(M2). If

the matching Mi, i ∈ {1,2} has the highest total sum-rate, then S∗(Mi)≥ S∗
2 .
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We can select a subset of edges from Mi in the solution. This is modeled as the

following knapsack problem

KS = max ∑
e∈M1

sexe (6.38)

∑
e∈M1

Iexe ≤ Ir (6.39)

xe ∈ {0,1},∀e ∈Mi. (6.40)

The LP relaxation of the KS is:

KS−LP = max ∑
e∈M1

sexe (6.41)

∑
e∈M1

Iexe ≤ Ir (6.42)

xe ≥ 0, ∀e ∈Mi. (6.43)

Let S∗o be the optimal solution of KS− LP, therefore S∗o ≥ S∗(Mi) as the optimal

solution for matching Mi is a feasible solution for LP of knapsack. Therefore,

S∗o ≥ S∗(Mi)≥
S∗

2
(6.44)

We use Algorithm 6 which computes an integer solution SOI to maximum knapsack

that is at least half in value of the optimal solution to the LP relaxation (KS-LP). By

Lemma 6.6,

SOI ≥
S∗o
2

(6.45)
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From equations (6.44) and (6.45), we get:

SOI ≥
S∗o
2
≥ S∗(Mi)

2
≥ S∗

4
. (6.46)

INDUCTIVE STEP: The restriction of x∗ to B′ is denoted xr. By induction hypothesis

B′ has a solution x′ which is integral and satisfies i) ∑e∈E ′ sex′e ≥ 1/4∑e∈E sexr
e and ii)

∑e∈E xeIe ≤ I′ where I′ is the interference in B′. We use I(x) to mean ∑e∈E Iexe and s(x) to

mean ∑e∈E xe. We examine the two cases.

• If some e : xe = 0 was removed in B then I′ = I and xr = x∗−{x∗e}. Note that by

induction hypothesis I(x′)≤ I′ = I, s(x′)≥ s(x∗)/4 and x′ is a solution to B.

• If some e : xe = 1 and edges incident on e was removed in B then I′ = I− Ie. The

sum-rate for the solution to B is s(x′)+ se ≥ 1/4s(x∗). The knapsack constraint is

I(x′)+ Ie ≤ I′+ Ie ≤ I.

Greedy algorithm for max knapsack:

What remains is to show that the density ordered greedy returns an integer solution with

an objective value of at least half the value of the optimal solution to the LP relaxation.

For completeness, we provide proof from [112]. The steps in the density ordered greedy

Algorithm 6 are as follows:

• We sort the edges of matching M1 in decreasing order of density where the density of

element i is si
Ii

.

• select edges, one by one with the highest density, until no more edges can be selected

due to the target interference. Add all the selected edges to G.
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• for the first element (a /∈G) with the highest density such that choosing it and adding

it to G violates the interference constraint, a fractional part of a is selected as below:

xa =
Ic−∑ j<a I j

Ia

The optimal solution of LP is

S∗o = S(G)+ xasa (6.47)

Where S(G) = ∑i∈G si.

Let I(G) = ∑i∈G Ii.

The greedy algorithm is as follows:

Algorithm 6 Greedy algorithm for knapsack
G← /0

while I(G∪argmaxi/∈G
si
Ii
)≤ Ic do

G← G∪argmaxi/∈G
si
Ii

end while
a← argmaxi/∈G

si
Ii

G← argmax{S(G),sa}
return G

Lemma 6.6 ([112]). Algorithm 6 computes a solution with the sum-rate at least half the

sum-rate of the optimal knapsack LP solution.

Proof of Lemma 6.6. Let S∗o be the optimal solution of LP which is given in equation (6.47)

and SOI be the IP solution returned by algorithm 6. We have:

S∗o = S(G)+ xasa ≤ S(G)+ sa ≤ 2max{S(G),sa}= 2SOI

Therefore,
S∗o
2
≤ SOI
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6.5 Contributions

Following are the original contributions in this chapter.

• Branch and cut algorithm.

• Lagrangian relaxation and Theorem 6.1.

• Iterative rounding algorithm (algorithm 5), Lemma 6.5, and Theorem 6.2.
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Chapter 7

Computational results

In this chapter, first the computational results of the branch and price algorithm from chap-

ter 5 for the MTV RP−VW − TW are discussed. We also perform a sensitivity analysis

on vehicle capacities. The results of the empirical study of the branch and cut algorithm

and iterative rounding for the resource allocation problem in chapter 6 are presented and

discussed next.

7.1 Experimental Evaluation for MTV RP−VW −TW

7.1.1 Mathematical model test

The mathematical model of MTVRP-VW-TW with the objective function of the dura-

tion of the longest route is solved with CPLEX and C++, using modified Solomon instances

[113]. The algorithm is implemented in C++. The instances are a subset of Solomon set

of CVRPTW test problems. They are type of C1,C2,R1,R2 with 25 customers. We mod-

ify the number of vehicles and capacity in type C1,R1 to 25 vehicles and capacity of 200

changed to 15 vehicles, 30 wagons, 4 trips and capacity of 150 for each wagon. For type

C2, 25 vehicles and capacity of 700 is changed to 15 vehicles, 30 wagons, 4 trips and ca-

pacity of 500 for each wagon. For type R2 with capacity of 1000 changed to 15 vehicles,

30 wagons, 4 trips and capacity of 700 for each wagon. Table 7.1, 7.2, and 7.3 show the

results.
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Table 7.1: 25 Customers

Instance Gap(in %) CPU Time(Sec) Objective Best Bound
C1 66.4 14403 890 450
R1 67.2 14402 665 292
R2 72.5 14382 1033 308

Table 7.2: 50 Customers

Instance Gap(in %) CPU Time(Sec) Objective Best Bound
C1 89 14339 569 408
R1 76 14420 680 408
R2 68 14059 1065 414

Table 7.3: 100 Customers

Instance Gap(in %) CPU Time(Sec) Objective Best Bound
C1 66 14402 1137 630
R1 81 14404 3340 630
R2 68 14402 1562 630

All the instances have a large integrality gap and it takes a lot of time to solve the

mathematical model.

7.1.2 Branch and price test

Instances

Solomon’s (100 customer) instances [113] for Euclidean V RPTW are modified. We

use any the first 10 customers of Solomon’s instances to test the algorithm. The Euclidean

distance between two customer locations determines the travel time for these instances.

The instances that we consider (Solomon, 1987) are of six different types C1,C2,R1,R2,RC1,RC2.

Each data set has eight to twelve, 100-node problems. Sets C1, C2 have clustered customers

whose time windows were generated based on a known solution. Problem sets R1, R2 have

customers location generated uniformly randomly over a square. Sets RC1, RC2 have a

combination of randomly placed and clustered customers. Sets of type 1 have narrow time

windows and small vehicle capacity. Sets of type 2 have large time windows and large
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vehicle capacity. Therefore, the optimal solutions of type 2 problems have very few routes

and significantly more customers per route.

For these types of instances, our algorithm was able to find optimal solutions for R1, R2,

RC1 and RC2. It must be noted that the branch and price algorithm is an exact algorithm

that could not solve more than 40-50 customers so far. In fact, only few instances for 50

customers. We solved for multi trip problem, even less customers can be handled as the

route graph can’t be generated for a larger number of customers. The multi trip problem

with the varying capacity is studied for the first time in this thesis and it’s the first time the

branch and price algorithm is given.

To use Solomon’s instances, we modify them as follows:

• The solution to V RPTW instances are routes with one trip. We need to adjust them

for the multi trip and different capacity use. We use 10 customers of the 25 in the

instance. Instances of type 1 that have the capacity of 200 for each vehicle now have

a capacity of 50 per wagon. Which will be 100 and 150 in case two or three wagons

are attached. Instances of type 2 with the capacity of 1000 per vehicle have modified

capacity of 100 per wagon.

• The number of vehicles is limited to 10.

• The number of wagons is 45. This is large enough to attach up to three wagons for

each vehicle.

• The maximum number of routes in a tour is limited to three for these instances.

Experimental results

In the following, the result of the branch and price algorithm is presented. The program

was implemented in the optimization programming language OPL, using ILOG CPLEX.

CEDAR, the Compute Canada cluster was used for experimentation, with a limit of 4 hours
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on each solve and a maximum memory requirement of 40GB.

The results are in Table (7.4) where the columns are as follows:

• Instance: the type of the instance. For example RC102 is the second instance of type

RC1.

• Gap: is the gap between LP-relaxation value at the root and the optimal integer value

in %.

• CPU time: is calculated as differences between the time recorded at the root and at

the end of the algorithm in seconds.

• Obj: the total distance.

• Iter: number of iterations used to solve RLMP by CPLEX.

• Cols: number of columns generated during the branch and price algorithm.

• Node: number of nodes explored in the search tree.

• Route: max number of routes used in all tours.

• Tour: number of tours used to visit customers.

Table 7.4: Branch and Price for 10 Customers

Instance Gap CPU

time

(sec)

Obj Iter Cols Node Route Tour

RC102 994.364 869.56 563.562 20 17 3 2 2

RC103 994.364 899.163 563.562 20 17 3 2 2

RC105 994.548 398.842 545.237 18 17 1 2 2

Continued on next page
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Table 7.4 – continued from previous page

Instance Gap CPU

time

(sec)

Obj Iter Cols Node Route Tour

RC106 993.178 111.626 682.168 13 12 1 2 3

RC107 994.189 202.428 581.069 11 10 1 2 2

RC108 994.121 670.193 587.86 17 14 3 2 2

RC202 992.434 470.885 756.612 5 4 1 1 2

RC203 992.434 470.885 756.612 5 4 1 1 2

RC204 993.722 872.675 627.785 3 2 1 1 2

RC206 794.258 139.613 724.979 8 7 1 2 1

RC207 991.067 446.75 893.255 15 14 1 2 1

RC208 797.627 800.939 388.128 3 2 1 1 1

R102 993.936 102.048 606.438 7 6 1 2 2

R103 993.936 106 606.438 7 6 1 2 2

R108 993.326 1287.93 667.381 16 13 3 2 2

R110 994.023 171.832 597.728 10 9 1 2 2

R111 993.629 2010.17 637.106 14 12 3 2 2

R202 991.33 455.858 867.046 5 4 1 2 1

R203 991.33 458.102 867.046 5 4 1 2 1

R204 993.722 881.522 627.785 3 2 1 1 2

R205 992.355 102.946 764.518 3 2 1 2 1

R206 993.992 581.478 600.814 3 2 1 1 2

R207 993.992 593.218 600.814 3 2 1 1 2

Continued on next page
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Table 7.4 – continued from previous page

Instance Gap CPU

time

(sec)

Obj Iter Cols Node Route Tour

R208 993.993 612.737 600.683 3 2 1 1 2

R209 992.61 345.444 739.023 8 7 1 1 2

R210 993.672 1068.08 632.814 3 2 1 1 2

R211 996.263 443.173 373.736 2 1 1 1 1

7.1.3 Analysis

The mathematical model was tested and it can take hours, or days to give solutions with

gaps around 60% this is why we need to use a method like the branch and price which is an

exact method to have the optimal solution of the problem.

During experimentation, we notice that the algorithm explores more nodes if similar capac-

ity (one wagon) is used for all tours. Giving the algorithm the option to check more tours

with two wagons and three before starting a new branch makes it faster and explores less

number of nodes. The upper bound that the CPLEX provides us with it is a good upper

bound close to the optimal solution.

The algorithm solves type 2 of instances where the time windows are wide in horizon more.

It is faster and uses fewer iterations. For type C instances branch and price could not find a

solution to the time cut-off limit. All the instances listed in Table 7.4 were solved optimally

within a time limit of four hours.
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7.2 Experimental Evaluation for D2D

7.2.1 Algorithms

We study the performance of four different algorithms in this section. The first one

is the default branch and bound solver in Gurobi. The solution space here is partitioned

into disjoint subsets. These subsets are represented as the nodes of a branching tree. The

algorithm systematically explores this tree’s nodes; it evaluates and discards subtrees where

a better solution cannot be obtained. The second and the third algorithms are the branch

and cut algorithms. In the second algorithm, we study only the cover-cuts described in

Section 6.2 and we disable any cuts introduced by Gurobi. Cuts are added at each node in

the branch and bound search tree. The third algorithm uses cover cuts and the default cuts

that are a part of the Gurobi solver [114]; notably,

• mixed-integer rounding (MIR) cuts: given a constraint, apply integer rounding on the

coefficients of integer variables and the right hand side of a constraint.

• generalized upper bounds (GUB) cover cuts: a GUB constraint for a set of binary

variables is sum of variables less than or equal to one.

• Chvatal-Gomory strong (StrongCG) cuts: given a constraint, divide all coefficients

and right hand side by a positive constant, then truncate coefficients.

Finally, we evaluate the fourth algorithm; the iterative rounding algorithm described in

section 6.4.

7.2.2 Data

We focus on three different types of instances; random instances, instances from net-

work simulator, and computationally hard instances. We start with 50 D2D devices and 50

cellular users and go up to 100 D2D devices and 100 cellular users (CU) for each kind. The

interference capacity is the average of all interferences across D2D pairs and CUs.
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Random Instances: We use the random instances from [5]. Here, the sum rate on edge

is uniformly generated in the range [0-50]. The interference is a constant value across all

D2D and CU pairs from [1-50].

Real Instances: We use the network instances given in Hassan et al. [115]. The sum rate

and the interference values depend on the following parameters. The cell radius is 1000,

the D2D pair distance is 15 meters, the base station transmission power is 46 dBm, additive

white gaussian noise (AWGN) is -174 dBm, bandwidth is 180 kHz, the carrier frequency is

1.7 GHz, and CU/D2D transmit power to 20 dBm.

Hard Instances: We use the profit-ceiling instance from Pisinger [4] to model the knap-

sack constraint. The instances are known to be computationally hard for Knapsack. The

interferences are randomly generated between 1 and 50. The sum-rate is generated by the

formula, se = 3dce/3e for every D2D and CU pair e.

7.2.3 Methodology

We use the JuMP library [116] in Julia [117] to program branch and cut algorithms. We

use Gurobi as the backend, which can be replaced with any other open-source or commer-

cial solver. To evaluate the benefits of adding cover-cuts (from section 6.2), we initialize

the Gurobi solver with the pre-solve reductions turned off. The number of threads is one,

no internal cuts are used (MIR, GUC, strong CG), heuristics, and the generation of equiv-

alent models is also turned off at the start. We implement the iterative rounding algorithm

slightly differently than presented in Section 6.4. We pick a single variable with the largest

value to round each time. It can be proved (we omit the proof here) that Theorem 6.2 still

holds for the modified algorithm. Though it needs more LP iterations, this change leads

to a smaller violation of the knapsack constraint in practice and the bound in Theorem 6.2

holds.

Some of the models that we solve are large (10,000 or more variables). The basic branch

and bound can take hours on these instances, so we use CEDAR, the Compute Canada
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Figure 7.1: Profit Ceiling Instances [4]

cluster, with a limit of 30 hours on each solve and a maximum memory requirement of

12GB.

7.2.4 Results

Figures 7.1, 7.2, and 7.3 show the time it takes to solve the instance optimally for the

first three algorithms for each instance and an algorithm as a function of the problem’s size.

For the iterative rounding algorithm, we get solutions that are very close to the optimal

solution (within a small additive constant). The algorithms are branch and bound, branch

and cut with built-in cuts from Gurobi (MIR, strong CG, GUB), branch and cut (using the

cover cuts discussed in section 6.2), and the iterative rounding algorithms. The branch and

cut with built-in cuts from Gurobi is referred to as Branch and Cut, whereas branch and cut

with cover cuts is referred to as Branch and Cut (User) in the legend.

We see that branch and cut using cover cuts in section 6.2 generally resulted in the

faster discovery of the optimal solution for random and network simulated instances. These

instances are easy and no cuts were added. The optimal solution was found at the root node

(signifying easy instances). The other algorithms took about the same time compared to
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Figure 7.2: Random Instances [5]

Figure 7.3: Real Networks Instances [6]
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Table 7.5: Branch and Cut for Hard Instances

Number
of
Vari-
ables

Gurobi
Config-
uration

Cover
Cuts

Nodes
Ex-
plored

Cutting Planes

2500
1 thread 325 371 User 25

optimized 1966 3262 User 316
MIR 1
GUB 1

3600
1 thread 160 209 User 4

optimized 2362 4239
User 111
CC 1
MIR 4
GUB 2

4900
1 thread 327 1570 User 6

optimized 3773 6940 User 290
MIR 1

6400
1 thread 4763 5816 User 573

optimized 4241 7992 User 233
MIR 2
StrongCG 1

8100
1 thread 5927 6712 User 668

optimized 4104 5596 User 32
MIR 1

10000
1 thread 507 712 User 11

optimized 5617 11492 User 397
GUB 1
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the faster externally added cuts. The times for the profit ceiling instances are plotted on the

log scale since branch and cut (using cover-cuts) resulted in significantly more time when

compared to the other algorithms.

Figure 7.1 shows that for the hard instances from [4], iterative rounding (which finds

”near” optimal solutions) took less time compared to the other algorithms.

Gurobi’s built-in branch and cut (using MIR, strong CG, GUB) computed the optimal

solutions faster than branch and bound with cover-cuts alone on the hard instances.

Branch and cut (using user cover cuts) took a lot of time on hard instances to obtain

the optimal solution. We can infer from this that although there was a reduction in the

integrality gap, more nodes are explored compared to the other algorithms.

Next, we examine the total number of cuts added during the branch and bound process.

We discuss the two cases when only user cover cuts are added and when cover cuts are

added along with the built-in Gurobi cuts. For random and network simulated instances,

the integrality gap is non-existent. Therefore no additional cuts are needed. For compu-

tationally hard instances, the number of cuts added is in Table 7.5. Not all the cover cuts

that the solver discovers are added to the nodes due to design implementation level issues

in JuMP and Gurobi. The third column, labeled cover cuts, lists the total number of cover

cuts discovered during the entire search process, whereas the last column, called Cutting

Planes, lists the number of cuts that the solver actually used.

In summary, iterative rounding is fast and effective on computationally hard instances

from [4], whereas branch and cut using cover cuts (from Section 6.2 is effective on random

instances in [5], and the instances generated from simulated network parameters in [6].

Furthermore, the network instances from [6] are not computationally hard for branch-n-

cut framework when modeled as maximization of the sum-rate subject to a cap on the

interference. The run-time on network instances is less than 200 milliseconds which is

within the limit stated in [118] as the resource allocations have to be computed in real time.
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Chapter 8

Conclusion and future work

In this chapter, we conclude with a summary of the results and future directions for research

are presented.

8.1 Summary

8.1.1 MTVRP-VW-TW

In this thesis, a new type of V RP, multi-trip vehicle routing problem with a variable

number of wagons and time windows, is defined. The problem is to serve demands of

clients in a specific interval of time (time windows) while vehicles can do multiple trips in

a day and the capacity of the vehicle can be set at the beginning of the day by adding up

to three wagons for each vehicle. First, a mathematical model of the problem is developed

and then we develop a branch and price algorithm to solve the problem.

The approach used to solve the problem, is column generation which is embedded in a

branch and bound algorithm. Master problem for the column generation is an LP-relaxation

that can be solved by any LP solver and the dual variables corresponding to the optimal so-

lution of the master problem are used by the subproblem to determine the best new column

to be added to the master problem. As we have three kinds of vehicles to service customers,

three different subproblems have to be solved.

Subproblem itself is an elementary shortest path problem which is solved by dynamic
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programming. To this aim, we use a label correcting algorithm. As we have multiple

trips, the label correcting algorithm is applied twice, the first time for generating all non-

dominated routes and using these routes as new nodes to create a route graph. The route

graph is created from all these non-dominated routes and the time windows for each of these

routes as well as consideration of a few other rules to satisfy time windows and demand of

customers. Again, the label correcting algorithm is used on the route graph to determine all

non-dominated tours. Given the capacity of vehicles, we have three route graphs and all of

these tours are examined in the following order, the first subproblem is checked and if there

is any new tour with a negative reduced cost is added to the master problem, otherwise, the

second and third subproblem are checked respectively.

Column generation is used at each node of the search tree. If there is a better upper

bound, the node is kept, otherwise, it is pruned. We used two different rules for the branch-

ing, one on the number of the vehicles and another one on the arcs.

We implemented the branch and price algorithm for MTV RP−VW − TW on some of

Solomon’s instances to show the effectiveness of the algorithm. It can compute us the

optimal integer solution for limited customers.

8.1.2 D2D resource allocation

In this thesis, we studied the D2D resource allocation model which maximizes the sum-

rate while capping the interference. We gave the first branch and cut algorithm and the first

iterative rounding algorithm. Our technique works for the case when the objective is to min-

imize the interference subject providing a guaranteed sum-rate for D2D communications as

well. We performed a detailed empirical evaluation of the branch and cut algorithm on

instances that simulate small cell, and on computationally hard instances. Our results show

that the branch and cut algorithm is efficient in practice for simulated network instances.

For computationally hard instances the gain is small. We consider the linear program-
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ming relaxation with cover-cuts and give an iterative rounding algorithm. We evaluate the

performance of the iterative rounding algorithm on simulated network instances and com-

putationally hard instances. The results show that iterative rounding computes near optimal

solutions and is fast in practice.

We prove that the iterative rounding method provides a near optimal solution, in the

sense the objective function value is at least a quarter and the knapsack constraint violation

is less than the interference capacity (both are multiplicative factors).

8.2 Future work

We are interested in combining the column generation approach with metaheuristics

to develop a faster solution for MTV RP−VW −TW . We will extend the model for split

delivery with time windows, multiple wagons, and multiple trips per vehicle. The model

can be extended to a multi-objective problem as well. In addition to these two types of the

V RPs, the model can be extended to other variants of the V RPs. We can develop heuristic,

exact and approximate approaches to solve the model.
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