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INTRODUCTION 

Agricultural water use in Egypt consumes about 85% of 

the total national available water. Therefore, efficient 

irrigation water use estimates are essential to ensure 

an efficient water resources management, especially 

under the current water scarcity (Ezz and Abdelwares, 

2020). Especially with the increased population and 

under the fixed limited water resources of Egypt, which 

is mainly the Nile River and with the predicted climate 

changes, it is expected that the water resources will 

become scarcer. Moreover, efficient irrigation water use 

for different crops requires the estimation of evapotran-

spiration (Rawata et al., 2019). 

Higher resolution satellite images, with modern sensors 

that measure additional variables, provide an increas-

ingly popular approach for spatio-temporal estimation of 

Actual evapotranspiration (ETa). This resulted in many 

attempts to develop algorithms to estimate Eta using 

remote sensing data. However, the scarcity of ground-

based measured data makes validation of such algo-

rithms a remarkable challenge.  Validation of such algo-

rithms will enable the decision-makers to use remote 

sensing information to enhance water use efficiency 

(Ayyad et al., 2019). 

Since the early 1970’s, many studies have shown the 

importance of remote sensing data for providing spatio-

temporal information on actual evapotranspiration (Li et 

al., 2009). Furthermore, recent satellite images with 

higher temporal and spectral resolutions have been 

introduced in the past few decades. Much of this data 

became more available at no cost, making it possible to 

estimate actual evapotranspiration (ETa) (Kumar et al., 

2020).  Improvements in the methodologies for estimat-

ing ETa from satellite data were developed over recent 

decades, which reduced the need for intensive ground-

based measurements (Senay et al., 2013). 

Many studies were conducted to develop methods that 

used remote sensing data to estimate crop evapotran-

spiration (ET). Complicated models such as SEBAL 

(Surface Energy Balance Algorithm for Land) and its 

deviations, such as METRIC (Mapping Evapotranspira-

tion at High Resolution with Internalized Calibration), 

have been used intensively. Reyes-González et al.
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(2019) utilized data from Landsat 7 and Landsat 8 with 

the METRIC model and reached r2 = 0.89 and RMSE = 

0.71 mm/day compared with in-situ measurements. 

Similar results were obtained by Mondal et al. (2022) 

with Landsat-8 data and they also recommended ex-

ploring the application of the methodology with finer 

temporal resolution satellites such as MODIS 

(Moderate Resolution Imaging Spectro-radiometer) to 

reproduce accurate estimates of ET. Bezerra et al. 

(2015) evaluated the accuracy of estimation of daily 

actual evapotranspiration (ETa) obtained by TM Land-

sat-5 images acquired with both the SEBAL (Surface 

Energy Balance Algorithm for Land) and SSEB 

(Simplified Surface Energy Balance) algorithms. Their 

results showed acceptable accuracy between ET esti-

mates obtained from remote sensing and in-situ data.  

In addition, they showed that SSEB algorithm is an im-

portant tool for ET analysis in semi-arid regions be-

cause it only needs an average temperature of the “hot” 

and “cold” pixels.  Moreover, they reported that SSEB is 

a simpler algorithm, unlike SEBAL algorithm that is 

more complex and needs an iterative process for solv-

ing the sensible heat flux values. Abdel Kader et al. 

(2015) estimated ET values using the Surface Energy 

Balance System (SEBS model) for various crops using 

Landsat ETM+7 images on the farm scale.  They stated 

that the main advantage of using the SEBS is the possi-

bility of producing water balance maps for the study 

area for the farm scale and even for smaller areas and 

tracking water use in the study area over time. Further-

more, Kumar et al.(2020) used Landsat-8 and the Sim-

plified Surface Energy Balance Index (S-SEBI) to esti-

mate ET. The results showed that the S-SEBI per-

formed well compared to in-situ data (r2 = 0.90). Their 

results revealed the applicability and accuracy of using 

the S-SEBI method with remote sensing-based ET data 

for water resources management in a command area 

with scarcedata. Hence, the present research aimed to 

evaluate the use of this method in estimating ET over a 

selected area in Egypt utilizing Landsat-8 data.  

MATERIALS AND METHODS 

Study area 

An area was selected for method application that co-

vers about 116700 feddans (1 feddan = 4200 m2) and 

is located about 84 km to the north-west of Cairo, in El-

Beheira governorate, Egypt. This area is considered a 

newly reclaimed area (about 20 years) and cultivated 

mostly vegetables and orchards, in addition to wheat 

and Egyptian clover in winter. Nevertheless, a smaller 

area was selected for method validation within the ap-

plication area and covers about 228.5 feddans (Fig. 1). 

This area was irrigated from groundwater via a drip 

irrigation system. The area is mostly covered by citrus 

and olive, in addition to a small area of field crops; the 

rest are bare soils. The meteorological normal were 

acquired for 2020 of the study area from the National 

Aeronautics and Space and Administration Prediction 

of Worldwide Energy Resource (NASA POWER) (Table 

1). The data were available for a resolution of 0.5◦ lati-

tude by 0.5◦ longitude globally (Rodrigues and Braga, 

2021) at  NASA POW ER ’s website (https://

power.larc.nasa.gov/). 

The data revealed that the mean annual maximum tem-

perature was 33.8oC and mean annual minimum tem-

Fig. 1. Location of the studied area within El-Beheira governorate, Egypt 
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perature was 18.3oC. The hottest month was June 

(41.1oC) and the coldest was January (12.0oC).  The 

mean annual relative humidity is 56 %. The area re-

ceives a total amount of rainfall of approximately 39.4 

mm/year. The rainy months extend mainly from Octo-

ber to April. The annual monthly total rainfall varies 

between 0.0 mm in August and 6.3 mm in December. 

The annual mean wind speed is 254 km/day and the 

highest value was recorded in June (286 km/day), while 

the lowest was in November (229 km/day). The sun-

shine hours ranged from 10.4 to 10.7, with an average 

of 10.5 hours. 

Remotely sensed data 

According to the United States Geological Survey 

(United States Geological Survey, 2019), Landsat-8 is 

stationed at a Sun-synchronous orbit at 705 km, with a 

revisit cycle of 16 day. This satellite has two sensors: 

the Operational Land Imager (OLI) and the Thermal 

Infrared Sensor (TIRS) and consists of nine bands. 

There were OLI deliver images of 30 meters spatial 

resolution (visible, NIR, SWIR); and one high-resolution 

panchromatic band at 15 meters’ resolution, while the 

TIRS delivered two thermal bands at 100 m resolution. 

The area is located on Landsat-8 Path 177 and row 39. 

A scene was selected for each month in 2020 except 

for January, March and November; nocloud clear imag-

es were available for the study area (Table 2). Accord-

ingly, nine Landsat 8 images were selected to evaluate 

the potentiality and efficiency of the S-SEBI in estimat-

ing ET for selected crops in the study area. Landsat-8 

data used in the present study were acquired as Level 

1 data products in GeoTIFF data format from the Unit-

ed States Geological Survey (USGS) website (https://

earthexplorer.usgs.gov/).  

Moreover, the Digital Elevation Model (DEM) produced 

from Shuttle Radar Topography Mission (SRTM) with 

one Arc-Second resolution (approximately 30 meters) 

was downloaded from the United States Geological 

Survey (USGS) website (https://earthexplorer.usgs. 

gov) and used in this research. The data revealed that 

most of the north western part of the study area was 

almost flat and ranged between -6 and 10 m while the 

southeastern part ranged from 10-50 m (Fig. 2). 

 

Simplified surface energy balance index (S-SEBI)  

The S-SEBI is a remote sensing energy balance model 

to estimate surface energy fluxes from remote sensing 

measurements (Basit et al., 2018). The model was de-

veloped by Roerink et al. (2000) that estimates ET by 

using surface reflectance and the land surface temper-

ature(LST) from dry and wet pixels (Bezerra et al., 

2015, Basit et al., 2018, Kumar et al., 2020 and Kumar 

et al., 2021). In the S-SEBI approach, the actual ET 

(mm/day) can be estimated as follows (Kumar et al., 

2020). 

                                        

Eq. 1

 

where λ = latent heat of vaporization (J/kg), Λ = evapo-

rative fraction, and ρw= the density of water (kg/m3) and 

Rn is the net radiation flux (Wm−2).On the other hand, 

Rn was adopted from Sobrino et al. (2021) as follows 

Rn = (1 – α) Rg+ ε Ra -ε σ Ts
4                                  Eq. 2 

Rg and Ra is the incident solar radiation and the long-

wave radiation in Wm-2, respectively, α is the surface 

albedo; ε is the surface emissivity; Ts is the land sur-

face temperature; and σ is the Stefan–Boltzmann con-

stant. Rg, Ra and Ts have been obtained using the met-

rological data from the NASA POWER website. 

Λ was calculated according to Roerink et al. (2000) 

which used two extreme surface reflectance to surface 

temperature relationships acquired from plotting two-

dimensional scatter plot of surface reflectance (albedo) 

against the land surface temperature (LST) (Fig. 3). In 

this approach, two extreme pixels (wet and dry pixel) 

were used and     is calculated as:  

                                                    
Eq. 3

 

Month 
Temperature °C Humidity 

(%) 

Wind     (km/

day) 

Precipitation 

 (mm) 
Sunshine hours 

Tmax Tmin 

Jan. 23.4 12.0 65 240 6.1 10.4 
Feb. 26.8 12.1 61 243 5.4 10.4 

Mar. 31.9 14.8 56 256 6.9 10.5 
Apr. 37.1 18.3 49 269 7.6 10.5 
May 33.5 16.0 54 259 0.5 10.5 

Jun. 41.1 22.4 47 286 0.5 10.5 
Jul. 40.9 23.7 50 279 0.2 10.5 
Aug. 39.8 23.9 52 259 0.0 10.6 
Sep. 38.8 23.1 54 252 0.2 10.6 

Oct. 36.1 21.4 58 237 2.4 10.6 
Nov. 30.7 17.9 61 229 6.3 10.6 
Dec. 25.4 14.5 65 236 3.3 10.7 

Average/ 33.8 18.3 56 254 39.4 10.5 

Table 1. Meteorological data of the studied area (1991-2020) 

1329 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov


 

Maker, R.S. and Faisal, M. / J. Appl. & Nat. Sci. 14(4), 1327 - 1336 (2022) 

where TH is the maximum LST on hot edge tempera-

ture, controlled by the radiation as a linear function of 

the surface albedo, Ts is the LST, and TC is the mini-

mum LST on cold edge, controlled by evaporation as a 

function of surface albedo. 

 

Landsat-8 data processing 

Data pre-processing 

A radiometric correction was done by transforming the 

Digital Number (DN) values to radiance or reflectance 

values using the methodology suggested by USGS. 

The level-1 DN values are converted into top of atmos-

phere (TOA) reflectance using Equations 4 and 5 and 

only Landsat-8 bands 2-7 were used. 

                                           Eq. 4 

ρre

                                                     
Eq. 5

 

Where, ρre is the TOA reflectance, Mre is the band mul-

tiplicative value, Are is the band additive value, Q is the 

digital numbers (DN) of the Landsat satellite bands, 

ρre׳ is the TOA planetary reflectance and θSE is the 

sun elevation angle.  

The brightness temperature was calculated using the 

digital numbers (DNs) of the first thermal infrared 

bands, namely Landsat-8 band 10, as suggested by the 

USGS. Firstly, the DNs were converted to TOA spectral 

radiance as in equation 6. Then, the brightness temper-

ature was computed using spectral radiance as in 

equation 7. 

                                      
Eq. 6

 

                                       

Eq. 7    

 

Where ρra= TOA spectral radiance, M ra=Band multipli-

cative factor, T = Top of atmosphere brightness tem-

perature, Ara=Band additive factor, Q =   pixel digital 

numbers (DN),andK1and K2   are both Band-specific 

thermal conversion constants. Mre, Are, θSE, Mra,Ara, K1, 

and K2 were acquired from the documents enclosed 

with the downloaded Landsat-8 data. 

 

Model variable preparation from remote  

sensing data 

Surface albedo  

Surface albedo can be defined as the property of the 

body causing it to reflect and emit a specific portion of 

the incident radiation in a broad spectral range (Kukla, 

1981). It is also defined as the ratio of the reflected so-

lar radiation to the incident solar short-wave radiation at 

the surface. The surface albedo was calculated by inte-

grating band reflectance within the short-wave spec-

trum using a weighting function (Allen et al., 2007). 

                                                 

Eq. 8

 

Where αis the surface albedo, αAtm is the portion of so-

lar radiation reflected by the atmosphere and it was 

adopted to 0.03 according to Bastiaanssen (2000), αTOA 

is the top of the atmosphere’s albedo. On the other 

hand, τsw is the transmissivity of atmosphere and was 

calculated according to Sobrino et al. (2003) for any 

clear sky day. 

          
Eq. 9

 

where h is the surface height above sea level (m). 

The top of the atmosphere’s albedo (αTOA) is calculated 

according to Alves et al. (2017) as follows:  

                                   
Eq. 10

 

Where ρre' is the TOA planetary reflectance of band n 

and       are the weigh coefficient of the different Land-

sat-8 bands (n) (Table 3) (https://www.usgs.gov/landsat

-missions/using-usgs-landsat-level-1-data-product). 

 

Surface emissivity  

Land surface emissivity (ε) is a proportionality factor 

that scales blackbody radiance to predict emitted radi-

ance, and it is the efficiency of transmitting thermal en-

ergy across the surface into the atmosphere (Sobrino et 

al., 2008). Various methods were developed to produce 

surface emissivity among which is the NDVITHM, which 

was introduced by Sobrino and Raissouni (2000). This 

method uses certain NDVI values (thresholds) to calcu-

late the surface emissivity. The present study applied 

the S-NDVITHM (Simplified-NDVITHM) which is a simpli-

fied version of the NDVITHM as proposed by Sobrino et 

al. (2008).  

   

Eq.11

 

where εs and εv are soil and vegetation emissivities of 

the thermal bands, respectively, Pv is the proportion of 

vegetation. The land surface emissivity of band 10 is 

0.964 and 0.984 for the soil and vegetation, respective-

ly (Sobrino et al., 2001).  

Month Day Month Day Month Day 

February 3-2-2020 June 10-6-2020 September 30-9-2020 

April 23-4-2020 July 28-7-2020 October 16-10-2020 

May 25-5-2020 August 29-8-2020 December 3-12-2020 

Table 2. Dates of the selected Landsat-8 data 
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NDVI is the most often used vegetation index and has 

been used in monitoring global vegetation coverage 

over the past two decades (Jiang et al., 2006). NDVI 

was calculated according to Rouse et al. (1974). 

                                        

Eq.12

 

Where       is the near-infrared reflectance and ρRED 

refers to the red reflectance NDVIs and NDVIv are, the 

NDVI for soil and vegetation, respectively. These val-

ues were suggested by (Sobrino and Raissouni, 2000) 

as NDVIs = 0.2 and NDVIv = 0.5. Pv is the proportion 

of vegetation ranging between 0 and 1 and was calcu-

lated using the NDVI according to Carlson and Ripley 

(1997).  

                                
Eq. 13

 

 

Performance evaluation of S-SEBI 

To evaluate the effectiveness of the S-SEBI method, 

the CROPWAT-8 model was used. CROPWAT model 

is an empirical process-based crop model used to cal-

culate crop water and irrigation requirements and per-

mits the development of irrigation schedules under dif-

ferent management conditions (Food and Agriculture 

Organization, 2009). The model uses Penman–

Monteith method as a base for calculating evapotran-

spiration and irrigation water requirements for separate 

crops and croprotations (Vozhehovaet al., 2018). For 

the calculation of the ET the model requires the metro-

logical data of the studied area as well as specific crop 

data. The Meteorological data were acquired from 

NASA POWER, as mentioned before.On the other 

hand, the crop data such as Kc, growth stages, root 

depth etc. were collected according to Allen et al. 

(1998). 

Two performance indicators were used in this research 

namely; the coefficient of determination (r2), and root-

mean-squared error (RMSE). Therefore, the mean ET 

values were calculated from S-SEBI for both citrus and 

olive in the study area (as they covered most of the 

validation area) and compared with the values pro-

duced from the CROPWAT-8 model.  

RESULTS AND DISCUSSION 

Development of the land cover map for the model 

validation area 

Specific crops must be identified in the study area to 

evaluate the ET produced from the S-SEBI using the 

CROPWAT model. Therefore, a smaller area was se-

lected and the land cover class (LC) was identified ac-

cording to the method suggested by Makar et al. 

(2022). The method recommended using two types of 

principle component analysis (PCA) on a series of re-

mote sensing images and using only the first and sec-

ond resulting PCA for classification to ensure high clas-

sification accuracy.Four Landsat-8 images were select-

ed for land cover (LC) map development which were 

acquired on 03/02/2020, 23/04/2020, 28/07/2020 and 

16/10/2020.  

To validate the suggested method, the correlation ma-

trix was first developed to investigate the correlation 

between the different Landsat-8 bands (from 2-7). All 

the images showed the same trend and examples of 

the results of the two images are shown in Tables 4 

Fig. 2. DEM of the study area Fig. 3. Scatter plot of the surface temperature and surface 

reflectance (modified after Roerink et al., 2000) 

Bands Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

 
0.301 0.276 0.234 0.142 0.036 0.012 

Table 3. Weigh coefficient (       ) to the planetary albedo for LANDSAT-8 images 
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and 5 for dates 23/04/2020 and 16/10/2020, respective-

ly. Within this matrix, the correlation coefficient between 

the reflectance of each pair of satellite bands is com-

puted for each pixel in the images. In the studied imag-

es, all band pairs had strong correlation with each other 

except band five (the near-infrared band), which 

showed moderate to strong correlation with the other 

bands. Based on field work, four LC classes were dis-

tinguished. These classes included citrus, olive, bare 

soils and vegetables. Within the study area, 10 training 

sets (locations) were selected for the land use/ cover 

classification. Accordingly, a PCA was performed on 

the four used images (Table 6).The results revealed 

that the first PCA represented most of the data variabil-

ity (89.33 – 95.25%). Then, a second PCA was per-

formed on the six images from stacking the matching 

bands of the four selected dates to enhance the classi-

fication accuracy further and utilize the effect of the 

different characteristics of the vegetation cover 

throughout the growing season (Table 7). The first PCA 

account was for about 87.23-97.05 % of the data varia-

bility. Therefore, instead of using the first two PCAs as 

Band B2 B3 B4 B5 B6 B7 

B2 1.000      

B3 0.983 1.000     

B4 0.959 0.984 1.000    

B5 0.577 0.622 0.545 1.000   

B6 0.903 0.933 0.951 0.542 1.000  

B7 0.905 0.937 0.955 0.482 0.984 1.000 

Table 4. Correlation matrix between the Landsat 8 bands 

acquired on 23rd of April 

Band B2 B3 B4 B5 B6 B7 

B2 1.000      

B3 0.990 1.000     

B4 0.972 0.991 1.000    

B5 0.813 0.847 0.834 1.000   

B6 0.918 0.943 0.961 0.845 1.000  

B7 0.933 0.956 0.970 0.805 0.984 1.000 

Table 5. Correlation matrix between the Landsat 8 bands 

acquired on 16th of October 

Fig. 4. Land cover of S-SEBI validation area 

Fig. 5. Sequential average NDVI values of the studied 

crops 
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Fig. 6. NDVI maps of the studied area (A. 3rd February, B. 10th June and C. 16th October) 

Fig. 7.Example surface albedo maps of the studied area (A. 3rd February, B. 10th June and C. 16th October)  

Fig. 8. Example LST maps of the studied area (A. 3rd February, B. 10th June and C. 16th October)  

Fig. 9. ET map of the studied area (A. 3rd Feb., B. 23rd Apr., C. 25th May, D. 10th Jun., E. 28th Jul., F. 28th Aug., G. 30th 

Sep., H. 16th Oct., 3rd Dec.)  
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recommended by Makar et al. (2022), only the first 

PCA resulting from the two types of PCAs was used 

and stacked together to build up a TEM band image. 

The resulting ten PCA bands image was used in the 

land cover classification using the maximum likelihood 

classifier (MLC) method and the resulting overall classi-

fication accuracy was 97.5% (Fig. 4). The classification 

results revealed that olive covered more than third of 

the studied area (36.4%), followed by the bare soils 

and citrus, which covered 26.08 and 24.67 % of the 

studied area, respectively. Lastly, the vegetables cov-

ered 12.85 %of the studied area (Table 8). Accordingly, 

only citrus and olive were selected for evaluation of ET 

map production using S-SEBI.  

 

Normalized difference vegetation index (NDVI)  

The NDVI values of the validation area reported 

throughout the year are shown in Fig. 5. Citrus and 

olive reached maximum NDVI values (0.58 and 0.47, 

respectively) in October, while both reached the mini-

mum NDVI values (0.41 and 0.32, respectively) in 

June. The spatial distribution of the NDVI at the peak 

(October), dip (June) and average (February) are 

shown in Fig. 6. 

 

Calculation of the evaporative fraction Λ 

The evaporative fraction was calculated using the sur-

face albedo (Fig. 7) and the land surface temperature 

LST (Fig. 8). Both the surface albedo and LST for each 

date have been stacked into one image. Thereafter, the 

space plot was generated from surface albedo versus 

LST for the nine Landsat-8 images. Data from the cold 

edge represented by water locations and from the hot 

edge from uncultivated dry areas have been collected. 

These data were used as suggested by Roerinket al. 

(2000) for the calculation of Λ. 

 

Evapotranspiration  

Fig. 9 shows the ET value maps in the selected dates 

in the study area while Fig. 10 shows the averaged ET 

of citrus and olive throughout the growing season of 

2020 calculated from Landsat-8 images.  The data re-

vealed that both citrus and olive reached their highest 

ET in summer and lowest in winter. The average ET for 

citrus ranged from 2.87 mm/day in February to 7.30 

mm/ day in June, while olive ET ranged from 3.22 mm/

day in December to 6.18 in May.  

 

Performance evaluation of S-SEBI 

The ET values produced from the CROPWAT-8 model 

are shown in Fig. 11. The data revealed that both citrus 

and olive reached their higher ET values in summer 

and lowest in winter. Nevertheless, the citrus highest 

ET value was in July (7.45 mm/day) and the lowest in 

October (2.23 mm/day) and olive reached its highest 

Date PCA1 PCA2 PCA 3-6 

3/2/2020 89.33 8.35 2.32 

23/04/2020 94.27 3.25 2.48 

28/7/2020 92.36 5.06 2.57 

16/10/2020 95.25 2.76 1.99 

Table 6. Eigenvectors of the covariance matrix of the four 

Landsat images  

Fig. 10. Average ET values of citrus and olive in 2020 

from the S-SEBI 

Fig. 11. Monthly ET values of citrus and olive from CROP-

WAT model 

Band\PCA PCA1 PCA2 PCA 3-4 

B2 97.05 2.26 0.68 

B3 94.61 4.33 1.06 

B4 91.55 6.57 1.89 

B5 97.04 2.34 0.62 

B6 92.06 5.95 1.98 

B7 87.23 9.84 2.93 

Table 7. Eigenvectors of the covariance matrix of the nine 

bands images 

Class Feddan % 

Citrus 56.36 24.67 

Olive 83.14 36.40 

Vegetables 29.36 12.85 

Bare soil 59.57 26.08 

Total 228.43 100.00 

Table 7. Acreage of the LC classes 
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value in July (7.07 mm/day) and lowest in December 

(3.22 mm/day).  

The linear regression analysis between the S-SEBI-ET 

and the CROPWAT-ET for both citrus and olive collec-

tively revealed that the data reached r2 of 0.82 and 

RMSE of 0.53 mm/day. On the other hand, processing 

each crop individually revealed that citrus had r2 of 

0.87 while olive only reached r2 of 0.77. The same 

trend was observed when calculating the RMSE. The 

RMSE was 0.48 mm/day for citrus and 0.58 mm/day 

for olive. It is worth mentioning that while the area is 

considered homogenous, the southern part of this area 

where olive is cultivated, based on field observation, 

was unproductive in some areas and consequently 

was leading to the removal of some of the trees and 

replacing them with field crops. Such a change will 

affect the ET values calculated from both S-SEBI and 

CROPWAT.  

Conclusion 

The present study revealed that the ET estimated using 

the Landsat-8 and S-SEBI showed a high correlation 

coefficient (r2 = 0.82) and relatively low RMSE (0.53 

mm/day) compared to CROPWAT-ET data. Further-

more, theS-SEBI could easily and effectively document 

the temporal and spectral ET changes within the study 

area. It will be easier for decision-makers to utilize the 

proposed methodology to set up efficient water man-

agement for the crop in a selected area with only satel-

lite data and limited meteorological data. The study 

also recommends in situ studies for validation of the 

proposed methodology.  
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