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General abstract 

Understanding how the brain forms representations of structured information distributed in time is 

a challenging neuroscientific endeavour, necessitating computationally and neurobiologically 

informed study. Human neuroimaging evidence demonstrates engagement of a fronto-temporal 

network, including ventrolateral prefrontal cortex (vlPFC), during language comprehension. 

Corresponding regions are engaged when processing dependencies between word-like items in 

Artificial Grammar (AG) paradigms. However, the neurocomputations supporting dependency 

processing and sequential structure-building are poorly understood. This work aimed to clarify these 

processes in humans, integrating behavioural, electrophysiological and computational evidence. 

I devised a novel auditory AG task to assess simultaneous learning of dependencies between adjacent 

and non-adjacent items, incorporating learning aids including prosody, feedback, delineated 

sequence boundaries, staged pre-exposure, and variable intervening items. Behavioural data obtained 

in 50 healthy adults revealed strongly bimodal performance despite these cues. Notably, however, 

reaction times revealed sensitivity to the grammar even in low performers. Behavioural and 

intracranial electrode data was subsequently obtained in 12 neurosurgical patients performing this 

task. Despite chance behavioural performance, time- and time-frequency domain 

electrophysiological analysis revealed selective responsiveness to sequence grammaticality in regions 

including vlPFC. I developed a novel neurocomputational model (VS-BIND: “Vector-symbolic 

Sequencing of Binding INstantiating Dependencies”), triangulating evidence to clarify putative 

mechanisms in the fronto-temporal language network. I then undertook multivariate analyses on the 

AG task neural data, revealing responses compatible with the presence of ordinal codes in vlPFC, 

consistent with VS-BIND. I also developed a novel method of causal analysis on multivariate 

patterns, representational Granger causality, capable of detecting flow of distinct representations 

within the brain. This alluded to top-down transmission of syntactic predictions during the AG task, 

from vlPFC to auditory cortex, largely in the opposite direction to stimulus encodings, consistent 

with predictive coding accounts. It finally suggested roles for the temporoparietal junction and 

frontal operculum during grammaticality processing, congruent with prior literature. 

This work provides novel insights into the neurocomputational basis of cognitive structure-building, 

generating hypotheses for future study, and potentially contributing to AI and translational efforts.  



 
ii 

 

  



 
iii 

 

Dedication 

This thesis is dedicated to my parents, siblings, friends and late grandparents, who 

together encouraged in me the strength, confidence and curiosity required to complete it. 

It is also dedicated to Ralph Vaughan Williams, Gustav Holst, Sergei Rachmaninoff, 

Clara Schumann, Ludwig van Beethoven, Martha Argerich, Wolfgang Amadeus Mozart, 

Edward Elgar, Rachel Portman, James Horner, Sandy Cameron, John Barry, 

John Williams, Jerry Goldsmith, Fleetwood Mac, Billy Joel, Kate Bush, 

Rondò Veneziano and every composer, soloist or ensemble 

whose production of tonal sequences 

sustained me whilst writing 

this. 

  



 
iv 

 

  



 
v 

 

Acknowledgements 

The work in Chapters 1 to 6 was supported by: Wellcome Trust PhD Studentship (RC), Wellcome 

Trust Investigator Award (WT092606AIA), BBSRC (BB/J009849/1), European Research Council 

(ERC CoG, MECHIDENT) and NIH (R01-DC04290). 

Chapter 2: I would like to thank Oana Morteanu for her hard work and immense efficiency in 

behavioural testing. I would also like to thank my academic supervisors for their invaluable assistance 

in discussing the parameters of the paradigm. 

Chapter 3: I would like to thank the wonderful team at Iowa’s Human Brain Research Laboratory, 

including: Zsuzsanna Kocsis, Beau Snoad, Ariane Rhone, Haiming Chen and Phillip Gander for 

illuminating discussions, collecting data, or assisting me during data collection; Christopher Kovach 

and Kirill Nourski for helpful advice; Matt Howard and Hiroto Kawasaki for supporting such a 

vibrant collaboration; and the whole team once again for their friendship, feedback and kindness. I 

would also like to thank all of the other friends and colleagues I made in Iowa, including Alex Billig, 

Araceli Ramírez-Cárdenas and McCall Sarrett, who, like the rest of the lab, shared freely of the 

fountains of their knowledge and made me feel truly welcome. 

Chapter 4: I would like to thank my co-authors, and Elizabeth Buffalo, Pascal Fries, Karl Friston, 

Tim Griffiths, David Poeppel, Mark Stokes and Chris Summerfield for inspiring discussions on 

complex combinatorial binding. 

I would also once again like to thank my supervisors, Christopher I. Petkov, Yukiko Kikuchi and 

Benjamin Wilson, for their boundless optimism, advice, feedback and friendship, as well as my desk- 

and office-mates throughout the ages, including Cassandra Smith, David Hunter, Jennifer Nacef, 

Heather Slater, Gillian Pepper, Alice Milne, Joe Necus, Ross Muers, Holly Jenkins and Cody 

McCants. I could not have hoped for better mentors, colleagues, and friends, and their support 

means more than I can express with mere words. 

Finally, I would like to emphatically thank my parents for still expressing pride in my achievements 

despite my seemingly perpetual studenthood, and for their patience in listening to me witter on 

endlessly about the brain and everything else.  



 
vi 

 

  



 
vii 

 

Table of Contents 

General abstract...................................................................................................................................... i 

Dedication ............................................................................................................................................ iii 

Acknowledgements ............................................................................................................................... v 

Table of Contents ............................................................................................................................... vii 

List of Figures ..................................................................................................................................... xiii 

List of Tables ..................................................................................................................................... xvii 

List of Abbreviations ....................................................................................................................... xviii 

List of Symbols ................................................................................................................................. xviii 

Chapter 1. Introduction ....................................................................................................................... 1 

1.1 The universality of temporal structure....................................................................................... 1 

1.2 The experimental study of sequence learning ............................................................................ 5 

1.2.1 Serial reaction time tasks................................................................................................ 6 

1.2.2 Spatial navigation tasks .................................................................................................. 7 

1.2.3 Natural language and miniature language tasks............................................................ 9 

1.2.4 Artificial grammar learning tasks ................................................................................ 12 

1.3 Anatomical substrates of sequence processing......................................................................... 15 

1.4 Sequences in mind: the neural representation of temporal structure...................................... 18 

1.4.1 Continuous signals, segmentation and discrete items ................................................ 19 

1.4.2 Transition probabilities ............................................................................................... 21 

1.4.3 Ordinal position, movement and restructuring ......................................................... 22 

1.4.4 Hierarchy ..................................................................................................................... 22 

1.4.5 The need for computational unity .............................................................................. 23 

1.5 Conclusion................................................................................................................................ 26 



 
viii 

 

Chapter 2. Behavioural assessment of mixed-dependency artificial grammar learning.....................29 

2.1 Abstract .....................................................................................................................................31  

2.2 Introduction .............................................................................................................................32 

2.2.1 Adjacent and non-adjacent dependency learning abilities in humans .......................34 

2.2.2 Ecologically valid aids to artificial grammar learning ..................................................35 

2.2.3 Aims .............................................................................................................................38 

2.3 Methods ....................................................................................................................................39  

2.3.1 Participant recruitment and ethics ..............................................................................39 

2.3.2 Task design ..................................................................................................................40 

2.3.3 Stimuli ..........................................................................................................................42 

2.3.4 Post-task questionnaire................................................................................................47 

2.3.5 Analysis ........................................................................................................................47 

2.4 Results .......................................................................................................................................48  

2.4.1 Overall performance ....................................................................................................48 

2.4.2 The bimodal distribution of performance ..................................................................51 

2.4.3 Prosodic pitch effects in high and chance performers separately ...............................53 

2.4.4 Correlation of performance under opposing conditions ...........................................55 

2.4.5 Correlations in high and chance performers separately ..............................................56 

2.4.6 Explicitness of the task and impact of wakefulness ....................................................58 

2.4.7 Reaction time differences ............................................................................................60 

2.5 Discussion .................................................................................................................................63 

2.5.1 Overall performance ....................................................................................................63 

2.5.2 The effect of prosody on dependency learning ..........................................................64 

2.5.3 Performance by stimulus condition ............................................................................65 

2.5.4 Implicitness of the task and its measures .....................................................................67 



 
ix 

 

2.5.5 Suitability as an electrophysiological task ................................................................... 68 

2.6 Conclusion................................................................................................................................ 68 

Chapter 3. Electrophysiological signatures of grammaticality in the human brain .......................... 71 

3.1 Abstract ..................................................................................................................................... 73 

3.2 Introduction ............................................................................................................................. 74 

3.3 Methods .................................................................................................................................... 82 

3.3.1 Participant recruitment and ethics .............................................................................. 82 

3.3.2 Task design and stimuli ............................................................................................... 83 

3.3.3 Electrode configuration and acquisition .................................................................... 84 

3.3.4 Pre-processing of channel recordings .......................................................................... 88 

3.3.5 Evoked potential analysis ............................................................................................ 88 

3.3.6 Time-frequency analysis .............................................................................................. 91 

3.4 Results ....................................................................................................................................... 94 

3.4.1 Behavioural analysis ..................................................................................................... 94 

3.4.2 Evoked potential analysis .......................................................................................... 102 

3.4.3 Time-frequency analysis ............................................................................................ 109 

3.5 Discussion ............................................................................................................................... 116 

3.5.1 Behavioural findings .................................................................................................. 116 

3.5.2 Time-domain intracranial responses ......................................................................... 118 

3.5.3 Time-frequency domain intracranial responses ....................................................... 120 

3.6 Conclusion.............................................................................................................................. 122 

Chapter 4. Structured sequence processing and combinatorial binding: neurobiologically and 

computationally informed hypotheses ............................................................................................. 125 

4.1 Abstract ................................................................................................................................... 127 

4.2 Introduction ........................................................................................................................... 128 



 
x 

 

4.3 Foundations of descriptive and computational models of structured sequence processing .130 

4.4 Computationally modelling structured representations in neural systems: A brief overview of 

approaches.....................................................................................................................................133  

4.5 Combinatorial population coding with Vector Symbolic Architectures..............................135 

4.6 Dynamically coordinating combinatorial operations with temporal mechanisms ...............141 

4.7 Network-level mechanistic hypotheses derived from VS-BIND ...........................................145 

4.7.1 Adjacent dependencies ..............................................................................................145 

4.7.2 Nonadjacent dependencies........................................................................................147 

4.7.3 Hierarchical dependencies .........................................................................................147 

4.8 Unifying neurocomputational accounts: extending the serial order code ............................151 

4.8.1 The need for continuous relative position ................................................................151 

4.8.2 Encoding continuous position using fractional binding ..........................................153 

4.8.3 Encoding continuous position using basis functions ...............................................154 

4.8.4 Relative position encodings in accounts of perception and memory ......................159 

4.9 In conclusion: Predictions emerging from the structure of VS-BIND .................................166 

4.10 Data accessibility ...................................................................................................................169 

Chapter 5. The representational dynamics of auditory sequence processing ..................................171 

5.1 Abstract ...................................................................................................................................173 

5.2 Introduction ...........................................................................................................................174 

5.3 Methods ..................................................................................................................................179 

5.3.1 Participant recruitment and ethics ............................................................................179 

5.3.2 Task design ................................................................................................................179 

5.3.3 Electrode configuration and acquisition...................................................................179 

5.3.4 Pre-processing of channel recordings ........................................................................180 

5.3.5 General computation of representational dissimilarity ............................................180 



 
xi 

 

5.3.6 Neural pattern similarity ........................................................................................... 181 

5.3.7 Dissimilarity between responses to syllables across time .......................................... 184 

5.3.8 Dynamic representational dissimilarity .................................................................... 185 

5.3.9 Representational Granger causality .......................................................................... 190 

5.4 Results ..................................................................................................................................... 193 

5.4.1 Neural pattern similarity ........................................................................................... 193 

5.4.2 Dissimilarity between responses to syllables across time .......................................... 195 

5.4.3 Dynamic representational dissimilarity .................................................................... 198 

5.4.4 Representational Granger causality .......................................................................... 205 

5.5 Discussion ............................................................................................................................... 216 

5.5.1 Neural pattern similarity recapitulates existing functional connectivity findings ... 216 

5.5.2 Comparison of syllables across time reveals ordinal coding in selected regions ....... 216 

5.5.3 Dynamic representational dissimilarity reveals peri- and post-stimulus activation . 219 

5.5.4 Representational Granger causality reveals distinct flow patterns for different types 

of dissimilarity wave ................................................................................................................. 221 

5.6 Conclusion.............................................................................................................................. 223 

Chapter 6. General Discussion ......................................................................................................... 225 

6.1 Strengths, limitations and future avenues .............................................................................. 227 

6.1.1 Human performance in a mixed dependency AGL task .......................................... 227 

6.1.2 Electrophysiological signatures of sequence processing in the human brain ........... 228 

6.1.3 Neurocomputational hypotheses on combinatorial binding and sequence processing

 229 

6.1.4 The representational dynamics of auditory sequence processing ............................ 232 

6.2 Conclusion.............................................................................................................................. 233 

Statement of originality .................................................................................................................... 235 



 
xii 

 

Appendix 1: Additional work by the author ....................................................................................237 

Appendix 2: Supplementary figures .................................................................................................239 

Appendix 3: Behavioural questionnaire ...........................................................................................251 

Bibliography ......................................................................................................................................253  

 

 

  



 
xiii 

 

List of Figures 

Figure 1.1: State-transition graphs of first-order (left) and second-order (right) Markov 

models produced by analysing the frequency of transitions in a mixed dependency 

grammar ............................................................................................................................................... 5 

Figure 1.2 Neurobiologically informed heuristic model of structured sequence processing, 

by Wilson, Marslen-Wilson & Petkov .......................................................................................... 17 

Figure 1.3: A plurality of cognitive sequence representations ................................................... 19 

Figure 2.1: Cues that aid non-adjacent dependency learning (see Wilson et al., 2018; reused 

with permission) ............................................................................................................................... 38 

Figure 2.2: AxB task diagram ........................................................................................................... 42 

Figure 2.3: The AxB task grammar and representative mean stimulus spectrogram............. 45 

Figure 2.4: Comparison of scores based on presence of prosodic pitch cues ............................ 49 

Figure 2.5: Mean performance across task runs on grammatical versus ungrammatical 

sequences ............................................................................................................................................ 50 

Figure 2.6: Performance (proportion correct) on both runs of the AxB task ......................... 51 

Figure 2.7: Performance (proportion of correct responses) on the final run of the AxB task 

in healthy controls (N = 50) ........................................................................................................... 52 

Figure 2.8: Comparison of final run scores based on presence of prosodic pitch cues ........... 54 

Figure 2.9: Correlation and comparison of within-subject performance under opposing 

stimulus conditions .......................................................................................................................... 55 

Figure 2.10: Correlation and comparison of within-subject performance (high performers)

 ............................................................................................................................................................. 56 

Figure 2.11: Correlation and comparison of within-subject performance (chance 

performers) ........................................................................................................................................ 57 

Figure 2.12: Spearman rank correlation of overall performance and subjective questionnaire 

responses ............................................................................................................................................ 59 

Figure 2.13: Mean reaction times by structural condition (n = 50) .......................................... 61 

Figure 2.14: Mean reaction times (RTs) for high performers (n = 29) and chance performers 

(n = 21) ............................................................................................................................................... 62 



 
xiv 

 

Figure 3.1: Surface electrode coverage across the implanted cohort (n = 12). .........................86 

Figure 3.2: Distributions of scores by pre- (n = 11) and post-implantation (n = 11) 

neurosurgical patients on the final run of the AxB task ...........................................................97 

Figure 3.3: Sliding window post-implantation performance of n = 12 neurosurgical 

patients on the AxB task, final run ...............................................................................................98 

Figure 3.4: Correlation and comparison of pre- and post-implantation performance by 

condition ............................................................................................................................................99  

Figure 3.5: Post-implantation reaction times on the deterministic task by structural 

condition (n = 11)...........................................................................................................................101 

Figure 3.6: Group mean (n = 12) event-related potentials across all trials .............................105 

Figure 3.7: Overall group mean (n = 12) evoked potential contrasts under “violation” 

minus “consistent” conditions of the AG ...................................................................................106 

Figure 3.8: Group mean (n = 12) evoked potential “violation” minus “consistent” contrasts 

for “non-adjacent” and “adjacent” sequences separately (left hemisphere only) .................107 

Figure 3.9: Cortical projections of group-level (n = 12) grammaticality ERP contrasts .....108 

Figure 3.10: Overall group mean (n = 12) event-related spectral perturbations (ERSPs) ...113 

Figure 3.11: Overall group mean (n = 12) inter-trial phase coherence (ITC) for analysed 

regions of interest (ROIs) .............................................................................................................114 

Figure 3.12: A summary of selected cohort (n = 12) ERSP and high gamma power 

grammaticality contrasts ...............................................................................................................115 

Figure 4.1: Neurobiologically informed heuristic model of structured sequence processing, 

by Wilson, Marslen-Wilson & Petkov ........................................................................................131 

Figure 4.2: Spatial and temporal coding within a spiking model ............................................136 

Figure 4.3: Neurobiologically informed vector symbolic encoding of sequence structure..143 

Figure 4.4 Transforming continuous phase into discrete positional encodings ...................155 

Figure 4.5 Non-uniform basis functions for relative position encoding ................................157 

Figure 4.6 Simulation of primacy and recency effects in free recall, 20 to 40 items ............158 

Figure 4.7 A putative mechanism for deriving ordinal serial encodings from “bottom-up” 

segmentation of auditory input ...................................................................................................161 



 
xv 

 

Figure 4.8 Utilising continuous positional encodings within a model of the hippocampus

 ........................................................................................................................................................... 165 

Figure 5.1: Canonical method for testing RDM correlations (representational similarity 

analysis) ............................................................................................................................................ 181 

Figure 5.2: Time-resolved representational analysis, including Procrustes multidimensional 

scaling (pMDS)................................................................................................................................ 186 

Figure 5.3: Significant neural pattern similarity between regions across cohort (n = 12) .. 193 

Figure 5.4: Dendrogram showing agglomerative hierarchical clustering of neural pattern 

similarities across the cohort ........................................................................................................ 194 

Figure 5.5: Schematics showing predicted MDS layouts under alternative hypotheses ...... 195 

Figure 5.6: MDS on Euclidean distances between syllabic responses across time ................. 196 

Figure 5.7: pMDS results using “whole-brain” aggregation of recordings in an exemplar 

participant ....................................................................................................................................... 199 

Figure 5.8: Dynamic representational dissimilarity (DRD) results for each ROI across the 

cohort (n = 12) ................................................................................................................................ 201 

Figure 5.9: An enlargement of the left Heschl’s gyrus DRD results (A, B, grammaticality)

 ........................................................................................................................................................... 203 

Figure 5.10: Difference waves for grand mean (cohort-level) event-related potentials (ERPs) 

under opposing conditions in left Heschl’s gyrus..................................................................... 203 

Figure 5.11: An enlargement of the left Heschl’s gyrus DRD results (1st, 2nd, 3rd syllables, 

grammaticality)............................................................................................................................... 205 

Figure 5.12: Raw representational GC results (G-causality strength, top, and significance 

masks, bottom) ................................................................................................................................ 208 

Figure 5.13: Representational flow graph, first and second syllables ..................................... 213 

Figure 5.14: Representational flow graph, A and B items ........................................................ 214 

Figure 5.15: Representational flow graph, “grammaticality” .................................................. 215 

Figure 0.1: Required minimum sample size to reach one-tailed group significance versus 

chance performance in a future study ........................................................................................ 239 

Figure 0.2: Cohort (n = 12) ERPs, adjacent grammaticality contrast (violation minus 

consistent, adjacent only, bilateral ROIs) .................................................................................. 240 



 
xvi 

 

Figure 0.3: Cohort (n = 12) ERPs, non-adjacent grammaticality contrast (violation minus 

consistent, non-adjacent only, bilateral ROIs) ..........................................................................241 

Figure 0.4: ERSP contrast (violation minus consistent), pooling electrodes at cohort level (n 

= 12 participants) ...........................................................................................................................242 

Figure 0.5: ERSP contrast (violation minus consistent, adjacent only), pooling electrodes at 

cohort level (n = 12 participants) ................................................................................................243 

Figure 0.6: ERSP contrast (violation minus consistent, non-adjacent only), pooling 

electrodes at cohort level (n = 12 participants) .........................................................................244 

Figure 0.7 High-gamma power (HGP) contrast (violation minus consistent, n = 12 

participants) ....................................................................................................................................245 

Figure 0.8: High-gamma power (HGP) contrast (adjacent violation minus consistent, n = 

12 participants) ...............................................................................................................................246 

Figure 0.9: High-gamma power (HGP) contrast (non-adjacent violation minus consistent, n 

= 12 participants) ...........................................................................................................................247 

Figure 0.10: Screenshot of spiking neural simulation of stimulus-driven speech 

segmentation model .......................................................................................................................248 

Figure 0.11: Multidimensional scaling of Euclidean RDM comparing responses to syllables 

over time (n = 12 participants, right hemisphere) ...................................................................249 

Figure 0.12: Granger causality results computed on ECoG data..............................................250 



xvii 
 

List of Tables 

Table 2.1: Nonsense words used in the AxB task, and IPA transcriptions ............................. 44 

Table 2.2: Testing phase trial breakdown for the 2×2×2 factorial design of the 

deterministic AG task ...................................................................................................................... 46 

Table 3.1: Cohort of neurosurgical participants .......................................................................... 83 

Table 3.2: Analysed regions of interest (ROIs), channel/subject coverage and centroids of 

channels in each region in MNI space across the cohort (n = 12) ............................................ 87 

Table 3.3: Pre-implantation and post-implantation scores on the AxB task (n = 16) ........... 95 

Table 4.1: VS-BIND in the landscape of alternative models .................................................... 168 

 

  



xviii 
 

List of Abbreviations 

AGL Artificial grammar learning 
BA Brodmann area 
CI Confidence interval 
DLPFC Dorsolateral prefrontal cortex 
DRD Dynamic representational dissimilarity 
ECoG Electrocorticography 
EEG Electroencephalography 
fMRI Functional magnetic resonance imaging 
FOP Frontal operculum 
HG Heschl’s gyrus 
IFG Inferior frontal gyrus 
MNI Montreal Neurological Institute 
MRI Magnetic resonance imaging 
pMDS Procrustes multidimensional scaling 
RDM Representational dissimilarity matrix 
ROI Region of interest 
RSA Representational similarity analysis 
STG Superior temporal gyrus 
TP Transition probability 
TPJ Temporoparietal junction 
VLPFC Ventrolateral prefrontal cortex 
VSA Vector symbolic architecture 
VS-BIND Vector-symbolic Sequencing of Binding INstantiating Dependencies 

 

List of Symbols 

⨂ Circular convolution 
¬ Involution 
ℝ The set of all real numbers 
ℝ𝒏𝒏 The set of all 𝑛𝑛-dimensional real-valued vectors 

 



1 
 

Chapter 1. Introduction 

Whatever Nature undertakes, she can only accomplish it in a sequence. 

(Johann Wolfgang von Goethe, wilfully misused.) 

1.1 The universality of temporal structure 

Whilst Johann von Goethe was alluding to the stepwise character of evolution by natural 

selection, there is a broader truth to his words: sequences are everywhere. Earth is filled with 

predictable sequential patterns, from the rising and setting of the sun each day, to the movement of 

the tides and the lifecycles of its lively inhabitants. These sequential patterns can be useful. In 

particular, a species with the luxury of a brain may attempt to minimise risk, and maximise reward, 

by exploiting the sequential statistical structure in its environment, making predictions of the future 

that can modulate arousal and attention (Hansen & Pearce, 2014). 

Humans in particular are adept at manipulating and ancitipating sequence structure, as 

exemplified by our unique ability to communicate using speech and language. We produce and 

comprehend written and spoken streams of words, each of which has meaning (semantics), and 

which are organised according to particular combinatorial rules (syntax) that support the 

transmission of a theoretical infinitude of meaningful sentences (Harris, 1957; Chomsky, 1957). Just 

as an ability to predict the future by learning simple sequencing relationships provides inherent 

rewards (Hansen & Pearce, 2014), it has been theorised by some that linguistic communication is an 

inherently adaptive trait, which may be specialised in humans as a result of evolution by natural 

selection and potentially also as one of the key advantages provided by our relatively large brains 

(Schoenemann, 2009). However, though some of the systems supporting language may be 

completely human-unique specialisations (Hauser et al., 2002), there is evidence that many of its 

neurobiological substrates may constitute advancements on evolutionarily conserved functionality, 

forming part of an ancestral system of domain-general relevance to sequence processing (Kikuchi et 

al., 2018; Wilson, Kikuchi, et al., 2015; Petkov & Wilson, 2012; Hauser et al., 2002). Certainly, our 

ability to communicate using language is but one example of a number of remarkable feats we are 

able to accomplish that seemingly all relate to a general capacity to manipulate sequences. This 
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capacity has been considered relevant to the production and consumption of music (Fitch & 

Martins, 2014; Jeon, 2014; Koelsch et al., 2013; Koelsch & Siebel, 2005); to the undertaking of 

arithmetic operations (Dehaene et al., 2015; Friedrich & Friederici, 2009; Kong et al., 2005; Dehaene 

et al., 2004); and, more generally, to the production of plans and complex action sequences (Rouault 

& Koechlin, 2018; Fitch & Martins, 2014; Bickerton & Szathmáry, 2009; Dehaene & Changeux, 

1997), as well as to cognition in general (Bickerton & Szathmáry, 2009; Jeon, 2014). 

What does it mean to process a sequence, or to learn sequence structure? Here, we can 

appreciate the commonalities between the domains above: critically, even though words, musical 

notes, arithmetic operations and actions may be presented to us as linear sequences that unfold over 

time, we can learn to appreciate in them an innate structure that can differ from a simple linear 

ordering of all the presented items or events. This includes relationships between specific 

neighbouring items (adjacent dependencies); between items separated over time (non-adjacent 

dependencies); and relationships between perceived superordinate and subordinate parts 

(hierarchical dependencies). Such structure might in actuality only be present within the sequence at 

the most abstract conceptual level, but it can nevertheless appear obvious to us. In language syntax, 

complex structure, incorporating adjacent, non-adjacent and hierarchical dependencies, is 

ubiquitous (Deocampo et al., 2019), present even within this single sentence in the form of nested 

phrases. However, not all dependencies are created equal; unifying different kinds of dependencies 

requires different levels of computational ability. By way of an example, we may conceive of a 

sequence as a set of states, between which we may transition with a certain frequency (see Figure 1.1). 

Tabulating these states and the observed frequency of specific transitions produces a graphical 

understanding of the likelihood of transitioning between each pair of items. This is known as a 

Markov model (Rabiner & Juang, 1986). Here, we depict two Markov models as graphs, each 

“trained” on a set of sequences conforming to a set of specific dependencies, where important items 

(A1, A2, B1, B2) may be next to each other (xA1B1 and xA2B2 permitted, which are adjacent 

dependencies) or separated by an uninformative intervening item (X; valid sequences A1xB1 and 

A2xB2; non-adjacent dependencies). A Markov model can take account of a history of multiple items 

when tabulating state transitions. Within Figure 1.1, it can be seen that a simple first-order model, 

which only takes account of a history of one item (left), permits invalid sequence structures to be 

generated (observed by tracing all routes along the graph). By contrast, a second-order model (right) 
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maps all valid sequences and permits no invalid sequences. In this way, we can see that different 

dependency types impose different computational burdens on the brain. By studying the limits of 

dependency processing abilities within and beyond language, we may therefore improve our 

characterisation of the mechanistic constraints of the human structured sequence processing system, 

which may in turn constrain hypotheses on human-unique cognitive abilities (Fitch & Martins, 

2014; Rosenbaum et al., 2007; Hauser et al., 2002; Lashley, 1951). 

As we have seen, the human aptitude for learning and manipulating abstract structure is 

exemplified by our facility with language, but seemingly also of relevance to our performance in an 

array of cognitive domains. In particular, three strongly interrelated abilities may subserve 

performance across these domains. Firstly, we appear to have a particular strength for establishing 

robust encodings of stimulus ordering and category. Relatively recently, it has been argued that the 

robustness of these encodings is potentially human-unique, and could be one of several defining 

features supporting human sequence processing abilities (Ghirlanda et al., 2017). Secondly, we are 

adept at learning covert structure between items on the basis of the statistical relations between them 

(known as statistical learning), especially items unfolding over time (sequence learning, or structured 

sequence learning). We can learn this structure from mere exposure (known as incidental learning; 

Saffran et al., 1997), seemingly without awareness of what we have learned (implicit learning; Reber, 

1967). In particular, we can learn hierarchical sequencing relationships, an ability which has yet to 

be clearly established in other species (ten Cate et al., 2020). Thirdly, during and after learning, and 

presumably supported by robust item encodings, we appear to be able to efficiently transform 

between different mental structures. This includes transforming between linear, sequential 

representations of the world, such as words or actions that unfold serially over time, and complex 

cognitive representations of abstract structure. It also includes combinatorial operations that we may 

use to synthesise an infinitude of new structures. Specifically, this has been posited to involve the 

encoding of abstract mental “trees” of information (Dehaene et al., 2015; Chomsky, 1956). The 

degree to which combination of constituents into trees represents the source of our linguistic abilities 

is debated (Pinker & Jackendoff, 2005; Chomsky, 1995), but a tree-like conceptual structure has 

been mooted as an essential component in theories of language and cognition (Dehaene et al., 2015). 

The study of these three related abilities spans a diverse array of distinct research domains, 

some of which are only recently beginning to be directly reconciled (Christiansen, 2019). As we shall 
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see, sequence learning tasks have informed understanding of human abilities to discern covert 

temporal structure and establish robust serial orderings across domains, and have also supported the 

identification of possible shared neural substrates (Friederici, 2011). However, despite advances in 

the field, we still lack a concrete understanding of the neurocomputational bases of sequence 

processing, a clear understanding of those mechanisms shared between language and non-linguistic 

sequence processing, or indeed a clear picture of those factors that may help or hinder sequence 

learning performance (ten Cate et al., 2020). In this chapter I will discuss how experimental sequence 

learning tasks have provided a window on critical mechanisms relevant to the appreciation of 

sequence structure, and to higher cognition. I will also present existing evidence that structured 

sequence processing evokes a plurality of neural encodings representing orthogonal features. 

Subsequently, I will consider the neurocomputational implications of these and other prior findings, 

reflecting on how we may constrain hypotheses on the mechanisms subserving language and 

cognition in general. Finally, I will summarise the limits of our understanding of human sequence 

processing abilities and representations, and motivate key research goals that must be achieved in 

order to provide clarification of these aspects. 
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1.2 The experimental study of sequence learning 

A great variety of paradigms have indirectly informed our understanding of how sequences 

and sequence items are encoded, including recall tasks (Klein et al., 2005), which assess abilities to 

store and recall sets of ordered or unordered items; cross-situational learning tasks (Kachergis et al., 

2014), which assess abilities to learn the meaning of novel “words” by establishing word-referent 

Figure 1.1: State-transition graphs of first-order (left) and second-order (right) 
Markov models produced by analysing the frequency of transitions in a mixed 
dependency grammar. The graphs depict legal transitions between items in a sequence 
unfolding over time, as detected by two types of Markov model. Nodes represent states, 
which, here, relate to the most recently presented item(s) in the sequence. Edges depict 
non-zero transition probabilities (TPs). Wider edges and warmer colours indicate higher 
TPs. On the left, each node is labelled according to the single most recent item. On the 
right, where the states of the model are more complex, the newly presented item is shown 
as an edge label. The grammar consists of relationships between two important items, A 
and B, which can be adjacent (xAB) or nonadjacent (AxB). X is uninformative, but A 
and B must match (using our notation, A1 must eventually be followed by B1, and A2 by 
B2). The first-order Markov model can only incorporate a history of a single item, 
whereas the second-order model takes account of a history of two items. As a result, the 
first-order model is unable, without the support of additional mechanisms, to 
encapsulate the fact that A1xB1 and A2xB2 are valid sequences, whilst A1xB2 and A2xB1 
are not. The model also supports many other illegal sequences, such as A1xA2xA1xA1, for 
example. However, it correctly rejects all incorrect xAB sequences. By contrast, the 
second-order model correctly allows all valid transitions and rejects all invalid ones, for 
both adjacent and non-adjacent sequences. 
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pairings over time; categorisation tasks (Alfonso-Reese et al., 2002), which assess abilities to categorise 

stimuli, and may inform our understanding of categorical sequence encodings (Dehaene et al., 2015); 

and oddball tasks (Herrmann & Knight, 2001), in which the presentation of repetitive stimuli is 

occasionally interrupted by a deviant stimulus. These more general cognitive tasks can help us to 

constrain hypotheses on sequence encoding. However, a subset of paradigms are able to provide 

more direct evidence of a subject’s ability to acquire structural relationships between elements of 

serially ordered stimuli (that is, they at least partially involve grammar acquisition). 

Below, I restrict further discussion to paradigms in which grammar acquisition is a 

prominent aim or likely outcome of the task: serial reaction time tasks, artificial grammar learning 

tasks, spatial navigation tasks, natural language and miniature language tasks. These tasks vary in 

their complexity, with some assessing learning of complex behaviours using ecologically valid stimuli, 

and others illuminating our understanding of sequence processing through a narrower and even 

deliberately artificial focus. However, all are united in their potential to inform understanding of 

generic principles and mechanisms supporting the acquisition and encoding of structural 

relationships in sequences. 

1.2.1 Seria l reaction time tasks 

The serial reaction time (SRT) task (Nissen & Bullemer, 1987) measures a participant’s 

ability to reproduce a specific presented sequence. In the SRT task, a sequence of stably ordered cues 

is initially presented to the participant (typically visually, on a computer screen, at one of four distinct 

locations), each requiring a response. Generally, the response takes the form of a button press, where 

there are as many buttons as cue locations and the participant must respond as quickly and as 

accurately as possible to the onscreen stimulus by pressing the correspondingly positioned button. 

When the corresponding button is pressed, the sequence continues, requiring another response; and 

so on. Over time, as the participant acquires knowledge of the sequence structure, their reaction 

times will decrease, as they anticipate the upcoming cue position and respond accordingly. The cue 

ordering is subsequently randomised, whilst response times continue to be measured. Analysis of 

overall response times, and comparison of response times between the two key phases of the task 

(ordered and random cues), can yield valuable insights not only into the participant’s ability to learn 

the visuomotor association, but also to learn, and ultimately predict, the structure of the presented 

stable sequences (Robertson, 2007). Along with artificial grammar learning tasks (see below), SRT 
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tasks have been suggested as a means of measuring human implicit learning capabilities (Esser & 

Haider, 2017) as well as providing insights into sequence learning abilities (Sense & Rijn, 2018; 

Schwarb & Schumacher, 2012; Song et al., 2008). Moreover, in addition to the classical visual task, 

auditory SRT tasks have also been devised (Terry et al., 2016; Zhuang et al., 1998). 

As in the case of spatial navigation (see 1.2.2) and artificial grammar learning tasks (see 1.2.4), 

but unlike natural language tasks (see 1.2.3), SRT tasks have the advantage that they are suitable for 

deployment in non-verbal or even infant humans (Koch et al., 2020) as well as non-human species, 

for example rhesus macaques (Procyk et al., 2000; Heimbauer et al., 2012). This makes them one of 

a number of tasks that permit the comparative study of sequence learning abilities. More specifically, 

it allows judicious deployment in certain animal models where it may be possible to use invasive 

methods of neural recording unsuitable for use in humans. This permits the researcher to obtain 

simultaneous recordings that may better elucidate specific neural mechanisms supporting sequence 

processing. 

The SRT task is clearly an elegant and versatile paradigm. However, as few naturalistic 

scenarios impose similar task demands, it can be argued that they lack ecological validity as a means 

of studying sequence learning beyond the laboratory. For example, because the SRT task requires 

subjects to rapidly interleave their responses with sequence item presentation, even auditory versions 

arguably provide an environment somewhat unlike that encountered during the early development 

of language (Saffran et al., 1997). This particular limitation can be overcome by using an artificial 

grammar learning task (see 1.2.4). However, alternatively, to maximise ecological validity, one may 

look to tasks involving fewer constraints or invoking more complex behaviours, such as natural 

language or spatial navigation tasks. 

1.2.2 Spatia l navigation tasks 

Spatial navigation tasks encompass a wide variety of paradigms in which a subject, human or 

non-human, must navigate a spatial environment to reach some defined goal, or undertake self-

guided exploration of a space. Such tasks can require the individual to navigate through naturalistic 

or artificial environments, which the subject might experience either in the real-world or, 

increasingly, through virtual reality. Subjects complete such tasks by engaging a variety of dynamic, 

multisensory cognitive processes, for example by dynamically updating an estimate of their relative 
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position in the environment (egocentric position) using sensory cues generated by the subject’s own 

movements (path integration); by combining distance and directional estimates to render a cognitive 

map of the positions of landmarks in the environment (allocentric position); by using stored 

knowledge of the relative positions of landmarks to orient themselves or make judgements of relative 

direction between them; and by undertaking abstract planning and decision-making on the optimal 

path to take to reach a goal (see Ekstrom et al., 2018). 

Although the demands of spatial navigation tasks may not at first appear to relate to temporal 

sequence structure, it has been proposed that they nevertheless engage key processes relevant to overt 

sequence learning tasks, to the extent that it has even been suggested that navigation and sequence 

parsing are instances of the same generic computation (Bartlett & Kazakov, 2005). For example, 

during spatial navigation, as described above, an individual may instantiate a spatial map of specific 

locations, and navigate with agency between these locations by using knowledge of appropriate 

transitions between them, potentially also encoding and retrieving serially ordered lists of those 

locations that form a path to a goal or subgoal. In a similar way, in order to undertake a sequence 

learning task, one might solve the problem by instantiating an abstract map of specific sequence 

items, and “navigate” between these items by using knowledge of appropriate probabilistic 

transitions, likewise storing serial orderings of items or “chunks” of items as necessary. Taking such 

a view, some have theorised that all complex behaviours, including language, strongly revolve around 

the problem of dynamic navigation through physical or abstract space (Edelman, 2017). 

Empirical evidence also supports the notion that shared neuronal substrates underpin both 

sequence learning and spatial navigation, chief among these being the hippocampus (see 1.3), long 

known to have key roles in both a spatial memory system (O’Keefe, 1976) and the encoding and 

retrieval of episodic memory (Eichenbaum, 2013). The hippocampus is strongly implicated in 

domain-general sequencing computations (Buzsáki & Tingley, 2018; Schuck & Niv, 2019), as well 

as the mapping of both physical and abstract space (Tavares et al., 2015; Park et al., 2020; Nieh et al., 

2021). 

A great variety of spatial navigation tasks have been undertaken in order to illuminate the 

functioning of specific components of the spatial memory system (see Ekstrom et al., 2018), but in 

general, spatial navigation tasks have certain advantages and disadvantages as a means of studying 
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sequence learning. More overt sequence learning tasks, such as SRT tasks (see 1.2.1) and artificial 

grammar learning tasks (see 1.2.4), may have an advantage over spatial navigation tasks in restricting 

stimuli to temporal sequences, typically presented through a specific sensory modality, which 

simplifies analysis and the testing of formal computational hypotheses. Conversely, however, it may 

be argued that spatial navigation tasks have more ecological validity than these non-linguistic 

sequencing tasks, by engaging a host of complex cognitive processes in naturalistic environments. 

Additionally, when compared to natural language tasks, spatial navigation tasks have the advantage 

that they are readily deployed in non-human species. This allows for comparative study, as well as the 

simultaneous collection of rich neural and behavioural data such as that collected by O’Keefe (1976), 

which famously established the existence of hippocampal place cells representing the position of 

freely moving rats in a maze. However, when studying human sequence processing specifically, it is 

difficult to ignore what appears to be the epitome of human-unique temporal sequence learning: 

natural language. 

1.2.3 Natura l language and miniature language tasks 

The study of natural language encompasses an enormous breadth of research within and 

beyond neuroscience that has the potential to shed light on many essential principles of human 

cognition beyond the scope of this discussion. However, as a form of communication rooted in 

sequential structure, language more specifically offers an opportunity to study generic principles of 

human sequence processing using naturalistic, ecologically valid stimuli. 

In theory, there are a number of advantages to using natural language to explore mechanisms 

of sequence processing. Natural language is highly salient to most human subjects; language skills 

represent the culmination of years of development and learning, such that we tend to display an 

innate awareness of synactic correctness and extreme sensitivity to manipulations of sentence 

structure; and natural language includes meaning, or semantics, and complex morphology that 

allows us to study syntax as it interacts with other features. This latter point may be especially 

important, as we do not learn natural language syntax in isolation from semantics, and neither aspect 

is fully subordinate to the other in development, with some combinatorial semantic processes 

seemingly available before the full developmental maturation of syntactic processes (Morgan et al., 

2020). Whilst the relative influences of semantics and syntax on comprehension vary throughout our 

lifetimes (Wu et al., 2016), and under different task demands, the two are demonstrably intertwined 
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when determining the statistical likelihood of specific sequences. For example, the learning of 

previously unseen miniature language syntax (see below) is aided by the inclusion of semantic 

content (Poletiek et al., 2021). Unsurprisingly, therefore, natural language tasks have been used 

extensively to study the neurobiological bases of semantic processing, with many tasks seeking to 

tease apart the interactions of meaning and structure, and their relative contributions to observed 

neural responses (Friederici, 2011; Price et al., 2016; Angrilli et al., 2002; Münte et al., 1993; Kutas 

& Hillyard, 1983). 

However, some of the advantages to natural language tasks listed above are also potential 

disadvantages. Firstly, because a long period of development and learning underpins our linguistic 

abilities, it is not feasible to observe the full trajectory of natural language learning within a small 

number of experimental sessions. To overcome this, miniature language learning studies (see below) 

and non-linguistic sequencing tasks (see 1.2.1 and 1.2.4) theoretically afford the experimenter a view 

of sequence learning from first principles in the relative absence of prior knowledge (although even 

under these tasks the subject cannot be regarded as being a completely “blank slate”; see 1.2.4). 

Secondly, whilst knowledge of language semantics can aid learning of syntax and vice versa, the 

presence of meaning in everyday utterances introduces an unavoidable confound into any task 

specifically exploring responses to sequence structure manipulations. This is likely to be problematic 

for the neuroscientist, because semantic processing engages a host of brain regions, some of which 

may vary considerably with the meaning of the presented words (Hertrich et al., 2020), and others of 

which may also overlap spatially with syntax-sensitive areas (Petersson et al., 2012; Petkov & Wilson, 

2012; Fuji et al., 2016). 

A close alternative to natural language – and one that potentially allows a greater degree of 

control over the subject’s response – is the miniature language or artificial language task. In these 

tasks, subjects are exposed to specially designed novel “languages” that have known syntax and in 

which the vocabulary has meaning (for example, Friederici et al., 2002; Cross et al., 2020; Poletiek et 

al., 2021). Unlike tasks using stimuli in the subject’s first language, however, and more like artificial 

grammar (see below) or serial reaction time tasks (see 1.2.1), miniature language tasks allow the 

researcher to study the learning of meaning and structure from a relatively clear baseline, and/or with 

intentional restrictions. Friederici et al. (2002), for example, used such a paradigm in adults to show 

that an artificial language, BROCANTO, could elicit extremely similar syntactic responses to those 
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provoked by the subjects’ native language, though a body of second-language-learning tasks had 

previously suggested that strongly native-like-responses could only be elicited by languages learned 

in a critical period of childhood development (Weber-Fox & Neville, 1996). Friederici et al. theorised 

that this was achievable because the restricted size of the artificial language both recapitulated 

childhood restrictions on information processing capacity and allowed adults to achieve a high level 

of proficiency on the task (Friederici et al., 2002). 

Natural and miniature language tasks are commonly regarded as boasting substantial 

ecological validity compared to non-linguistic sequence learning tasks (Cross et al., 2020). Like 

spatial navigation tasks, they involve complex behaviours and salient, naturalistic stimuli and task 

demands familiar to us in everyday life. However, it may not necessarily be sensible to assume that 

this is the case in neuroimaging studies. This is because the majority of existing neuroscientific 

natural language studies typically present deliberately over-simplified instances of day-to-day 

constructs, measuring the processing of specific classes of words or sentences, in order to avoid 

confounds and ensure the feasibility of analysis (Hauk & Weiss, 2020). However, this landscape is 

gradually changing as researchers increasingly promote analytical techniques and datasets focussed 

on freeform natural language stimuli (Hamilton & Huth, 2020; Himmelstoss et al., 2020; Kaestner 

et al., 2020).  

As previously described, natural and miniature language tasks are not the only ecologically 

relevant way to study structured sequence learning. Multiple alternative paradigms have been devised 

to help us better understand how we learn sequential representations under controlled conditions, 

whilst eliminating the effects of semantic confounds (see 1.2.1 and Miller, 1958; Reber, 1967; Berry 

& Broadbent, 1984; Nissen & Bullemer, 1987). Lacking meaning, as they do, such paradigms have 

the advantage over natural language tasks that they can also be conducted in non-verbal humans, or 

even non-human species, supporting research that can inform our understanding of the ontogeny or 

phylogeny of specific neural mechanisms. In particular, the use of non-linguistic tasks in humans 

allow us to bridge a gap between humans and animal models, enabling comparisons to be drawn 

between species to inform understanding of potentially shared cognitive capabilities that pre-date 

the human faculty for language (Petkov & ten Cate, 2020). Arguably the most popular of these non-

linguistic sequence learning paradigms is the artificial grammar learning task, which we discuss in the 

following section. 
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1.2.4 Artificia l grammar learning tasks 

The artificial grammar learning (AGL) paradigm (Miller, 1958; Reber, 1967) tests subjects 

on their ability to learn structured sequences that conform to a set of covert ordering rules, known 

as an artificial grammar. This involves initially habituating participants only to sequences that 

conform to this artificial grammar, during an exposure phase. The grammar may be any set of ordering 

rules (for example, “Q must always follow P”), which are then used to generate the set of exposure 

sequences. Subsequently, during a testing phase, participants are assessed on their ability to 

distinguish novel “grammatical” sequences (which also conform to the ordering rules) from 

“ungrammatical” sequences (which do not). Beyond this, there are many variations on the AGL 

paradigm, particularly in terms of the modality of the presented stimuli and the response measures 

used in the testing phase. For example, in terms of modality, the classical AGL task, devised by Reber 

(1967), presented written verbal sequences, but AGL tasks have also been performed using sequences 

of spoken nonsense words (Saffran, Aslin, et al., 1996), tone sequences (Saffran et al., 1999), visual 

shape sequences (Stobbe et al., 2012; Fiser & Aslin, 2002), and even observed dance routines (Opacic 

et al., 2009). Similarly, response measures used to determine learning of the grammar include, for 

example, explicit two-alternative forced-choice responses assessing perceived grammaticality or 

familiarity; implicit reaction time measures, head-turn preferences and other orienting responses; 

neuroimaging effects, or combinations of these (Batterink & Paller, 2017; Attaheri et al., 2015; 

Wilson et al., 2013; Saffran, Aslin, et al., 1996; Reber, 1967). 

Minimal instruction need be provided under an AGL task. This fact, in conjunction with 

the flexibility of the paradigm, means that it has been possible to use AGL tasks to reveal sequence 

learning effects in diverse populations, including healthy or language-impaired human adults (Cope 

et al., 2017; Schiff et al., 2017; Petersson et al., 2012; Gómez, 2002; Saffran et al., 1999) and children 

(Witt & Vinter, 2012; Evans et al., 2009), pre-linguistic infants (Gómez, 2002; Saffran et al., 1999; 

Saffran, Aslin, et al., 1996), and even in a host of other species, including, for example, chimpanzees 

(Sonnweber et al., 2015), macaques, marmosets (Wilson et al., 2013), rats (Toro & Trobalón, 2005), 

budgerigars, zebra finches (Spierings & ten Cate, 2016) and pigeons (Herbranson & Shimp, 2008). 

Crucially, as suggested by the diversity of this list, AGL tasks can be performed in any population 

that lacks the capacity for language, in part because the stimuli are not semantically meaningful and 

therefore no comprehension is required. In many respects, serial reaction time (SRT) tasks offer a 
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similar advantage (see 1.2.1), although it is likely easier to adapt the AGL than the SRT task to 

completely passive use in non-language-capable populations (for example by recording eye-tracking 

data), since fewer responses are required from the subject under the AGL paradigm. 

As discussed in section 1.2.3, the semantics of natural language can be viewed as a 

confounding variable. Although AGL tasks can be used to study structural relationships with 

similarities to language syntax (Petkov & Wilson, 2012) in naturalistic speech stimuli (Milne et al., 

2018; Wilson et al., 2013; Gómez, 2002; Saffran, Aslin, et al., 1996), they allow the experimenter to 

do so in relative isolation from other components of language, including semantics (Petersson et al., 

2012). As previously discussed, this can be especially desirable when studying the neural responses of 

human subjects, because language invokes many stimulus-dependent forms of processing that may 

contaminate a view of any structure-specific effects (Hertrich et al., 2020). It also potentially means 

that findings under AGL tasks can be more readily generalised to explain a broad range of non-

linguistic processes than can linguistic tasks. However, AGL tasks are frequently suggested to provide 

a window on language. From this perspective, a lack of semantics is disadvantageous since it means 

that learning cannot occur through the same complex syntactic-semantic interplay that natural 

language acquisition likely involves (Morgan et al., 2020; Wu et al., 2016). Furthermore, although 

performance on natural language tasks has been shown to correlate with performance on AGL tasks 

(see for example Frost et al., 2015), it may not be appropriate to conflate natural language syntax and 

artificial grammars, since the former involves highly established learning of patterns abstracted across 

categories representing thousands of tokens (words), whereas AGL tasks involve rapidly learned 

associations between small numbers of distinct tokens. 

There are other potential disadvantages to artificial grammar learning tasks, relative to 

alternative approaches. Firstly, although human AGL subjects are typically presented with minimal 

instructions, the typical AGL task is sufficiently unguided that the wording of these instructions may 

affect what the subject perceives to be the demands of the task. Previous studies have suggested that 

AGL task results can be surprisingly robust to instruction effects in healthy adults (Forkstam et al., 

2008) although, conversely, adults with developmental dyslexia have been shown to perform worse 

than healthy controls when provided with scant, implicit instructions, and only match control 

performance when provided with explicit task instructions (Kahta & Schiff, 2016). Depending on 

the population, therefore, AGL results may be quite vulnerable to instruction effects. Secondly, 
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AGL stimuli arguably lack the salience of natural language stimuli or novel spatial environments, 

making the paradigm fatiguing and dull for subjects. This can be mitigated, for example through 

“gamification” of the task (Hall et al., 2018), although in such tasks the presentation of additional 

entertaining media has the potential to contaminate neural responses. Thirdly, although AGL tasks, 

like miniature language tasks, are commonly used as a means of studying sequence learning in the 

absence of extensive prior knowledge, the subjects performing these tasks cannot be regarded as 

starting from a completely blank slate, since first language knowledge is known to bias the learning 

of artificial languages (Onnis & Thiessen, 2013; LaCross, 2015). To some extent, the experimenter 

can mitigate biases resulting from the poor choice of non-linguistic stimuli, for example nonsense 

units that resemble meaningful words – but other biases, such as a first-language bias towards 

learning a particular sequence construction, are less easily controlled. These factors must surely affect 

other proto- and non-linguistic tasks, but our knowledge of such biases suggests the imposition of a 

limit on how far we generalise from AGL task results in a specific sample to the global population. 

There are thus a number of limitations to be borne in mind when using AGL tasks. As discussed, 

however, despite their potential pitfalls, AGL paradigms also have particular strengths. For example, 

unlike the majority of spatial navigation tasks, they draw upon a defined grammar and permit the 

investigation of temporal sequence processing in the absence of spatial cues. Like serial reaction time 

tasks (see 1.2.1), they permit the experimenter to investigate principles relevant to language in 

isolation from the influence of semantics, and in a wide range of populations (Udden & Männel, 

2018). As we have seen, though this may harm their ecological validity as completely faithful 

reproductions of natural language development, it arguably makes them more useful as 

neuroimaging tasks. 

Despite extensive use of the AGL paradigm in humans, we have yet to fully characterise the 

limits of human dependency learning abilities under these tasks (ten Cate et al., 2020; Gebhart et al., 

2009). In particular, despite the prevalence of non-adjacent dependencies in natural language, AGL 

studies of non-adjacent dependency learning have yielded inconsistent results in adults. It has been 

suggested that this inconsistency arises because the ability to learn non-adjacent dependencies is more 

selective compared to adjacent dependency learning (Gebhart et al., 2009), but this requires 

clarification. In particular, by establishing fundamental limits on dependency learning, we might 

impose useful constraints on neurocomputational accounts of sequence processing. 
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1.3 Anatomical substrates of sequence processing 

Neuroimaging studies have revealed that a core system, the frontotemporal language network 

(Friederici, 2011), responds similarly to manipulations of complexity of both language syntax and 

non-linguistic sequence structure. This frontotemporal network (or core language network; Hertrich 

et al., 2020) comprises areas in ventrolateral prefrontal, temporal and temporoparietal cortices, 

including, in particular, subregions of inferior frontal gyrus (“Broca’s area”; Broca, 1861) and 

“Wernicke’s area” (Wernicke, 1874; Friederici, 2011). These two eponymous regions have especially 

historic associations with language. Broca’s area, for example, has been a source of fascination and 

intense study for 160 years, one of the first modern attempts to localise specific cerebral functions in 

the human brain. Louis Victor Leborgne or, as he is most famously known, “Tan”, was a millinery 

mould-maker and patient of Pierre Paul Broca who, at the age of 30, lost the ability to speak, save for 

the one word that gave him his nickname: “tan” (Mohammed et al., 2018). By localising to left 

inferior frontal gyrus the lesion that appeared to give Tan his name, Broca proposed for it a critical 

role in language – initiating a cascade of research that remains strongly relevant to this day, and to 

which we shall return shortly. 

As well as cortical regions, subcortical areas have been implicated in the processing of 

sequences. Perhaps most prominent among these is the hippocampus, which is known to have a 

critical role in both spatial (for example, O’Keefe, 1976; see also 1.2.2) and episodic memory 

formation (for example, Eichenbaum, 2013). More specifically, recent studies provide clear evidence 

of an online role for the hippocampus in sequence learning tasks (Opitz & Friederici, 2003; Schapiro 

et al., 2014; Covington et al., 2018; Jablonowski et al., 2018; Kepinska et al., 2018; Henin et al., 2021) 

as well as in the acquisition and comprehension of semantically meaningful language (Breitenstein et 

al., 2005; Duff & Brown-Schmidt, 2012; Piai et al., 2016). 

Despite strong evidence of its engagement, the exact role of the hippocampus in sequence 

learning is presently unclear, although it has been demonstrated to contribute to both working 

memory for sequential content (Faraco et al., 2011; Kumar et al., 2016; Roberts et al., 2018; 

Shahbaba et al., 2019) as well as to the implicit learning process itself (Schapiro et al., 2014; 

Covington et al., 2018). Moreover, studies have shown that the hippocampus engages in complex 

interactions with inferior frontal gyrus during implicit sequence learning tasks (Opitz & Friederici, 
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2003, 2004; Gheysen et al., 2010; Kepinska et al., 2018). Of note, a study by 

Opitz & Friederici (2003), in which subjects were required to learn the structure of the BROCANTO 

language (see 1.2.3), suggested that the burden of processing initially fell more heavily on the 

hippocampus, but transitioned towards increased inferior frontal gyrus activation as the subject’s 

proficiency increased. However, perhaps most importantly, a great deal of research has suggested that 

the computations it performs generalise across the spatial and non-spatial domains (for example, 

Howard & Eichenbaum, 2013; Buzsáki & Tingley, 2018; Theves et al., 2019; Whittington et al., 

2020; Nieh et al., 2021), instantiating codes that incorporate organisational features in both time and 

space (as demonstrated in, for example, Kraus et al., 2013). On this basis, it can be seen that forming 

a coherent domain-general account of hippocampal processing has the potential to constrain 

hypotheses on hippocampal function, including hypotheses on the hippocampal role in sequence 

processing (see 1.4). 

Although the role of the hippocampus in sequence processing remains imperfectly 

understood, the neuro-computational specifics of its functioning are still arguably better understood 

than those of the inferior frontal gyrus. Despite its longstanding general associations with language, 

highly specific roles for the inferior frontal gyrus have yet to be determined, and the proposed 

possibilities are many and various. These include the resolution of perceptual conflict (Hsu et al., 

2017); action observation and execution (Molenberghs et al., 2012; Pulvermüller & Fadiga, 2010; 

Rizzolatti & Arbib, 1998); working memory (Yan et al., 2021; Rogalsky et al., 2008; Smith & Jonides, 

1999; Caplan & Waters, 1999); and processes of syntactic unification or structure-building (Matchin 

& Hickok, 2020; Hagoort, 2005; Friederici, 2002; Grodzinsky, 2000). Notably, however, 

engagement of left ventrolateral prefrontal cortical (vlPFC) regions appears to vary with the 

complexity of natural language syntax or sequence structure (Friederici, Bahlmann, et al., 2006; 

Bahlmann et al., 2009; Petersson et al., 2012; reviewed in Wilson et al., 2017). Specifically, it has been 

proposed that engagement of vlPFC follows a gradient of activation along the ventrodorsal axis that 

covaries with sequence complexity (Wilson et al., 2017; see Figure 1.2). Thus, there have been a 

number of efforts to describe the configuration of this area in terms of contributions to structural 

processing. Similar associations have been demonstrated between right inferior frontal gyrus and the 

processing of structure in music (Cheung et al., 2018; Koelsch et al., 2013). 
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Figure 1.2 Neurobiologically informed heuristic model of structured sequence 

processing, by Wilson, Marslen-Wilson & Petkov. (A) Fronto-temporal regions 

involved in sequence processing, from Wilson et al., 2015 (Copyright © 2017 Benjamin 

Wilson, William D. Marslen-Wilson, and Christopher I. Petkov, CC BY 4.0). (B) 

Predicted combinatorial codes illustrated as neural patterns implemented by 

coordination between different regions. 

Given the varied roles proposed for left inferior frontal gyrus (IFG), two pressing issues arise. 

Firstly, which, if any, of these putative functions truly reflects observed mechanistic contributions 

of IFG to sequence processing? And secondly, if – as might well be the case – all of these accounts 

have merit, how do we reconcile them? What might the neural codes in IFG actually represent? 

In order to contribute to this area, we ideally require a task, such as an AGL task, that can elicit 

naturalistic structure-driven responses in vlPFC without eliciting confounding semantic responses. 

Furthermore, because responses to language unfold on the order of milliseconds (Beres, 2017), we 

require an imaging method capable of revealing responses in specific subregions of IFG, whilst 
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simultaneously revealing responses at a high time resolution. Functional magnetic resonance imaging 

(fMRI) has been used extensively to reveal localised sequencing-related activity at a high spatial 

resolution, revealing, for example, that a dorsal white matter tract appears to support complex 

syntactic processes, whilst ventral tracts subserve semantic processes and elementary syntax 

(Friederici & Gierhan, 2013). Conversely, electroencephalography (EEG) has been used to reveal 

syntax-related responses at a high time resolution, but with relatively poor spatial resolution (for 

example: Tabullo et al., 2013; Gunter et al., 2000; Hoen & Dominey, 2000; Hagoort et al., 1993). 

There is, however, a middle ground, in the form of intracranial electroencephalography, also known 

as electrocorticography (ECoG), which involves the surgical placement of electrodes within the 

cranium instead of upon the scalp, improving signal-to-noise ratio and spatial resolution relative to 

EEG (Asano et al., 2005). Moreover, such implantations typically also incorporate the surgical 

placement of depth electrodes that penetrate the cortical layers, thereby potentially providing access 

to hippocampal recordings as well, depending on clinical need. Because of the invasive nature of the 

procedure, however, human ECoG/depth electrode datasets are a relative rarity and can only be 

obtained in populations of willing patients undergoing clinically indicated intracranial monitoring, 

chiefly in cases of intractable epilepsy. However, through a cross-disciplinary transatlantic 

collaboration, we had access to a cohort of such patients (Chapter 3). 

1.4 Sequences in mind: the neural representation of temporal structure 

What is a sequence? It would not be incorrect to say: “A series of discrete elements, each 

following the last.” However, from the perspective of the brain, it appears there are multiple answers 

to this question. Across a number of species, evidence suggests that there are multiple concurrent 

representations of sequence structure encoding orthogonal features within different brain networks 

(Dehaene et al., 2015). Below, I consider the evidence for various complimentary cognitive 

perspectives on sequence structure. This evidence suggests that multiple representations, instantiated 

concurrently by the human brain, contribute to structured sequence processing. 
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Figure 1.3: A plurality of cognitive sequence representations. A) Sensory stimuli are 
not inherently discrete, and must be discretised by segmentation processes. B) 
Segmentation both supports – and is supported by – transition probabilistic 
information, describing the likelihood of a transition between two specific discrete 
states. C) Items may be encoded on the basis of their ordinal position, which crucially 
simplifies the rearrangement of items by swapping their ordinal code. This 
rearrangement could be analogous to syntactic movement, the process by which 
perceptually separated items are mentally rearranged to support unification in language. 
D) Mental conceptions of sequences need not only consist of linear orderings of 
elementary items, but instead may also include tree structures, where subordinate 
sequences of items are hierarchically related to superordinate items.

1.4.1 Continuous signa ls, segmentation and discrete items

A speech stream is a continuously varying auditory signal, and yet humans are used to 

conceiving of discrete phonemes, words, phrases, sentences and sequences (Figure 1.3, A). However, 

moving from continuous to discrete representations is notionally non-trivial. From auditory input, 

the brain must undertake speech segmentation or “word discovery” to perceive discrete auditory 

units, which is all the more impressive given that pauses do not reliably mark the boundaries of words

(Brent, 1999). In aphasic patients tasked with segmenting novel words of an artificial language, 

functional MRI (fMRI) localised phonological segmentation abilities to the left inferior frontal 

gyrus (IFG; Peñaloza et al., 2015). This is concordant with fMRI findings under a phonological 

judgment task suggesting that, with age, activation of dorsal IFG (BA 44/9) increases whilst 
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activation of superior temporal gyrus (STG) decreases, which the authors interpreted as reflecting a 

childhood shift in focus from auditory phonology to phonological segmentation (Bitan et al., 2007). 

However, IFG engagement in segmentation does not seem to be specific to speech alone. Similarly 

designed speech (Burton et al., 2000) and tone (Burton & Small, 2006) discrimination tasks have 

yielded fMRI evidence that left IFG is actually engaged in more general auditory segmentation. 

Furthermore, conjunction analysis of fMRI results has suggested that left IFG has a role in the 

segmentation of continuous stimuli across modalities, highlighting common patterns of activation 

in response to audiovisual presentation of novel Spanish and American Sign Language stimuli within 

a phonetic classification task (Williams et al., 2015). 

The evidence is clear that segmentation is by no means a purely bottom-up, feed-forward 

process, but rather part of a feedback loop. For example, although prosodic and phonological cues 

can be used to delineate words in a continuous speech stream, these are not always sufficient in 

isolation. Human intracranial results appear to demonstrate that middle STG contains markers of 

stimulus-driven “syllable edge-detection” (Oganian & Chang, 2019), and behavioural evidence 

suggests that the influence of these speech cues may predominate over other factors in infancy 

(Johnson & Jusczyk, 2001). However, seminal studies in human infants, older children and adults 

have also suggested that continuous speech segmentation appears to be guided by the extremely rapid 

acquisition of statistical information on the co-occurrence of speech sounds (Saffran, Aslin, et al., 

1996; Saffran et al., 1997). Here, participants were required to listen to a continuous stream of 

synthesised speech containing four meaningless tri-syllabic “words”. Subsequently, they were 

assessed on their ability to discriminate these words from novel “non-words” containing identical 

syllables, but in an unfamiliar order. Participants of all ages exhibited a remarkable ability to establish 

word boundaries in a matter of minutes on the basis of the underlying statistical properties of the 

speech stream. 

As we have seen, segmentation of continuous signals into discrete codes appears to be a vital 

part of the sequence learning process. However, more direct evidence has also been provided for the 

existence of discrete representations themselves. It has been proposed that, since action or policy 

selection produces discrete outcomes at specific times, discrete internal representations are required 

to support decision making (Parr & Friston, 2018). Most compellingly, a number of brain regions 

have been shown to instantiate what appear to be discrete encodings (for example of experiences, in 
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the hippocampus, see Shohamy & Wagner, 2008; of syllable onset events, in middle superior 

temporal gyrus, see Oganian & Chang, 2019; and of vowels and potentially auditory objects, in 

multiple regions, see Levy & Wilson, 2020 and Kuchibhotla & Bathellier, 2018).  

1.4.2 Transition probabilities 

The transition probability (or transition probability) of some state change AB is the 

conditional probability of transitioning to state B given that state A has occurred. In sequence 

processing terms, the transition probability typically refers to the probability that some element B is 

upcoming given that A has just been encountered (note that this is actually the forward transition 

probability; the same principle, applied to items in reverse order, yields a backward transition 

probability that in some cases might prove more informative when resolving structure). 

There is strong evidence that transition probabilities are of relevance to the learning of 

sequence structure. As previously described, continuous speech stream segmentation tasks have 

revealed that humans are able to utilise statistical information present within the stream to determine 

the boundaries of word-like units; specifically, the statistical information of relevance appeared to be 

the magnitude of transition probabilities (Saffran, Aslin, et al., 1996; Saffran et al., 1997). Moreover, 

electrophysiological findings have provided evidence that transition probabilities overtly influence 

neural responses and thus form part of the brain’s repertoire of sequence representations (Figure 1.3, 

B). For example, oddball tasks have been found to elicit a characteristic electrophysiological response, 

the mismatch negativity (MMN), a broadly anterior response with an amplitude that, under 

controlled conditions, appears to be inversely related to transition probability (Koelsch et al., 2016). 

Additionally, recently reported findings have suggested that, during statistical learning of boundaries 

in continuous speech, transition probabilities manifest as influences on encodings within relatively 

early auditory processing regions including superior temporal gyrus (Henin et al., 2021). More 

generally, a theoretical relationship has been determined between the learning of transition probabilities 

and the formation of chunks, compressed and recoded aggregations of individual items that abstract 

away from needless detail to reduce cognitive load (Christiansen, 2019). 

It is increasingly apparent that it is advisable to combine theories of transition probabilities 

with related theories of how exactly items are encoded in relation to each other. This is because, by 

encoding the relations of abstract or concrete items in a cognitive map, it becomes possible to infer 
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novel transitions that have yet to be encountered. This principle is known as transitive inference. 

Evidence suggests that inferential reasoning, including transitive inference, is supported by the 

hippocampus (Zeithamova et al., 2012; Zalesak & Heckers, 2009). Likewise, it is difficult to separate 

the concept of transition probabilities from the concept of prediction or forecasting of likely 

upcoming items. This, again, is presumed to fall within the remit of the hippocampus (Barron, 

Auksztulewicz, et al., 2020; Stachenfeld et al., 2017). As a consequence, it is becoming increasingly 

clear that well-triangulated computational models of hippocampal functioning have the potential to 

increase our understanding of sequence processing mechanisms (discussed further in 1.4.5). 

1.4.3 Ordinal position, movement and restructuring 

As we have seen, transition probabilities contain information integral to the discernment of 

structure in sequences. However, in many cases, transition probabilities are not the most efficient 

code by which to describe the salient features of a sequence. For example, the sequences CABD, 

DAEF, XAYY are most usefully described as “containing an A in the second position”, rather than 

by reference to transitions. Encoding sequences by the numeric position of items is known as ordinal 

positional encoding (or simply positional encoding; Figure 1.3, C). This kind of encoding stands in 

stark contrast to the information provided by transition probabilities, because instead of describing 

pairwise associations between items (known in cognitive psychology as associative chaining or simply 

chaining), ordinal positional encodings allow the position of items to be described without reference 

to other elements of the sequence. A long history of behavioural study has suggested that associative 

chaining is unlikely to be the only method by which humans or their close relatives encode serially 

ordered items (Orlov et al., 2000; Restle & Brown, 1970; Lashley, 1951). More recently, discoveries 

have been made in non-human primates of ordinal-position-sensitive neurons in a number of 

regions, including primary motor cortex, premotor cortex, the supplementary motor area and 

intraparietal cortex (Carpenter et al., 2018; Nieder, 2012; Ninokura et al., 2004; Petrides, 1991). 

1.4.4 Hierarchy 

Hierarchical sequence structure (Figure 1.3, D), as we have mentioned, is a key structural 

feature of complex sequences in a variety of domains. Encoding of superordinate hierarchical 

structure in language has been localised by some accounts to the posterior portion of left Broca’s area 

(BA 44; Friederici, 2020), and by others to the anterior portion (BA 45; Koechlin & Jubault, 2006). 
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More generally, equivalent roles have been proposed for right inferior frontal gyrus in the processing 

of hierarchical structure in music (Cheung et al., 2018).  

Despite relatively consistent functional localisation, we still have a limited understanding of 

what exactly a “hierarchical” sequence encoding may look like in neurobiological terms. Temporally 

hierarchical codes, reflecting states at multiple levels of abstraction, have been found in the 

hippocampus (Takahashi, 2013), but it has been argued that these and other similar codes do not 

fully encompass the specific notion of sequential hierarchy relevant to syntactic processing, which 

involves storing a specific ordering of subordinate elements (Fitch & Martins, 2014). Even so, 

converging evidence suggests that the hippocampus supports inferences across levels of hierarchical 

structure (Whittington et al., 2020) and likely has a crucial role to play in hierarchial structure-

building during sequence learning by way of interactions with prefrontal cortex (Theves et al., 2021; 

Opitz & Friederici, 2003). 

Understanding hierarchical encodings likely requires a dynamic perspective. More specifically, 

in order to understand how the brain builds structure in general, we must propose specific dynamic 

mechanisms by which it is able to construct hierarchical neural codes through the recombination of 

constituents. In turn, this means we must ground any theoretical model of sequence processing in 

neurobiologically plausible solutions to the neural binding problem (Segaert et al., 2018; Feldman, 

2013; Hagoort, 2005). Neural binding refers to the combination or association of neural signals to 

produce downstream effects, and it is posited to occur by many distinct processes. However, it has 

been suggested that specific formalisations of population coding and binding mechanisms, known 

as Vector Symbolic Architectures (VSAs), may shed light on these encodings and bridge the gap 

between abstract cognitive structure and neural implementations (Dehaene et al., 2015). 

1.4.5 The need for computational unity 

The ability to bridge the gap between cognitive representations and neural representations is 

important to the utility of a neurocomputational account of sequence processing. Marr (1982) 

famously defined three levels of description that are still widely applied in characterising any given 

model of the brain: the goals of a system (computational level), the cognitive processes required to 

reach these goals (algorithmic level), and the neural mechanisms required to instantiate them 

(implementational level). However, many existing perspectives on sequence processing inform 
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understanding at only a subset of these levels. For example, Chomsky (1956) famously established 

the importance of formal language theory as a computational account of grammatical complexity 

that echoes some of the sentiments expressed in Figure 1.1. More specifically, Chomsky defined a 

notional hierarchy of theoretical automata (the “Chomsky hierarchy”) capable of recognising or 

generating specific types of structure (c.f. Figure 1.1, left versus right models, which have different 

capabilities). Much has been posited about human and animal computational abilities through the 

lens of the Chomsky hierarchy (Fitch & Friederici, 2012). However, such explanations support 

understanding primarily at the algorithmic and computational levels of Marr’s framework. They do 

not, however, provide insights into how individual neurons or networks of neurons instantiate these 

algorithmic computations. Conversely, skyrocketing computational power in recent years has 

supported an array of approaches based on non-biologically modelled artificial neural networks, 

including deep learning models. These are, in effect, networks of interacting nodes connected by 

reconfigurable weights that can be tuned to “learn” patterns, including impressive sequence learning 

models (Alamia et al., 2020; Abiodun et al., 2018; Tosh & Ruxton, 2010; Moga & Gaussier, 2003). 

Despite their remarkable ability to generalise from presented patterns, artificial neural 

networks do not generally incorporate any cognitively relevant algorithmic account for how their 

operations were accomplished. Arguably, the true way forward, therefore, is the coherent, large-scale 

simulation of artificial spiking neural systems, coordinated to support some broader algorithmically 

realised sequence learning goal, and thus spanning all of Marr’s three levels. We have recently entered 

an age where it is possible to undertake such simulation at home, using freely available tools (Bekolay 

et al., 2014; Sherfey et al., 2018). As a consequence, we are now beginning to construct deeply 

informative models of site-specific mechanisms that abstract across Marr’s levels, such as highly 

testable models of hippocampal function that may inform our understanding of sequence processing 

by triangulating a rich body of evidence (as reviewed in Hasselmo et al., 2020). For example, multiple 

models have now been designed that approximate the microcircuitry or cellular activity of the 

hippocampus whilst simultaneously accounting for its role in the sequential encoding and replay of 

episodic memory (for example: Sato & Yamaguchi, 2010; Galluppi et al., 2012; Trujillo & Eliasmith, 

2014; Bayati et al., 2018). Even more impressively, Whittington et al. (2020) have produced a 

neurobiologically plausible hippocampal model that is capable of learning spatial and abstract 

relations, supports transitive inference, makes sensory predictions, and generates plausible activation 
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patterns for two major types of hippocampal cell, place cells and grid cells. Dumont & Eliasmith 

(2020) have similarly proposed a computationally specific correspondence between positional 

encodings and grid- and place-cell activity in the hippocampus.  

Despite the impressive explanatory value provided by the models above, however, there 

remains a paucity of large-scale, neurobiologically plausible models incorporating representations of 

serially ordered sequences, especially those that can be generalised to explain functionality beyond 

the hippocampus (Choo & Eliasmith, 2010; Botvinick & Watanabe, 2007). Furthermore, no such 

models currently seek to attain more than superficial correspondence with site-specific 

neurobiological data across the frontotemporal language network. Development of such a model, 

able to inform our understanding of the neural codes, binding operations and cognitive 

representations relevant to sequence processing, is therefore a key goal of this schedule of work. 
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1.5 Conclusion  

As this chapter has shown, both sequence learning tasks and studies of language, in 

conjunction with a host of broader neuroscientific findings, have helped us to refine hypotheses on 

the neurobiological substrates of sequence processing. However, despite this, we are still considerably 

lacking in our explanation of how exactly we process sequences of items separated over time. We lack 

strong evidence supporting specific accounts of how – or even how well – the brain learns particular 

statistical regularities between items; how it codes representations of sequential items in key areas of 

the frontotemporal network; and how such representations might be combined or restructured into 

new forms. Thus, the primary aim of this schedule of work was to clarify human sequence learning 

capabilities and explore their neural substrates. Additionally, we aimed to integrate new and existing 

findings into a coherent and internally consistent neurocomputational account of sequence 

processing, and to develop novel analyses to support the testing of this model against neural data. 

Although we made use of proto-linguistic stimuli in pursuing these aims (see Chapters 2 and 3), it is 

important to note that our primary interest was not in language itself, but rather in the use of 

naturalistic stimuli to provide a window on more generic sequence processing mechanisms (see 1.2). 

In this thesis, I present behavioural, electrophysiological and computational evidence directed 

towards these goals. In Chapter 2, I report the behavioural results of an AGL experiment 

characterising adult human abilities to learn adjacent and non-adjacent dependencies concurrently. 

Here, I show that the cohort learned both types of dependency. I also present evidence that implicit 

reaction times, rather than seemingly explicit grammaticality judgement measures, are a more 

sensitive measure of artificial grammar learning. In Chapter 3, I analyse behavioural and 

electrophysiological results collected under this AGL paradigm in neurosurgical patients, employing 

a group-level univariate approach to show that ECoG and depth electrode responses to adjacent and 

non-adjacent dependencies included significant effects within key regions of a frontotemporal 

network including IFG pars opercularis and the hippocampus. However, I also suggest that the 

results argue for the use of novel multivariate approaches to advance our understanding beyond the 

insights afforded by traditional methods. In Chapter 4, I integrate cutting-edge and novel 

computational approaches with a wide-range of existing neurobiological evidence, triangulating 

them to produce a neurobiologically plausible computational model of sequence processing in a 

number of regions, VS-BIND (Vector-symbolic Sequencing of Binding INstantiating 
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Dependencies). Here, I show that VS-BIND generates a host of site-specific predictions at multiple 

levels of Marr’s framework, ripe for testing. In Chapter 5, I present the results of novel and existing 

multivariate analyses on the intracranial AGL task data, first demonstrating alignment of results 

under this approach with those of more traditional functional connectivity analyses; then providing 

evidence for key sequence representations posited in VS-BIND to exist in motor cortex and inferior 

frontal gyrus; and ultimately revealing inter-regional flow of representations potentially consistent 

with the predictive coding framework (Summerfield & de Lange, 2014; Friston & Kiebel, 2009; Rao 

& Ballard, 1999), which suggests that context-driven predictions of input from higher-order regions 

interact with input from lower-order regions to produce prediction errors. Finally, in Chapter 6, I 

conclude the thesis by discussing the implications of these combined results. I consider how this 

research has informed understanding of human sequence processing abilities, and how it informs our 

understanding of the specific roles undertaken by key regions of the frontotemporal network during 

sequence processing. I lastly discuss exciting avenues proceeding from this research, and which have 

the potential to further advance neurocomputational accounts of language and cognition in general. 
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Chapter 2. Behavioural assessment of mixed-dependency artificial grammar 

learning 

 

 

 

 

 

 

 

 

All work presented in this chapter was primarily conducted by the author, except where explicitly 

stated. The author designed and implemented the behavioural task in MATLAB following discussion 

with academic supervisors. Behavioural data were collected with Oana Morteanu, an undergraduate 

project student, with support from Benjamin Wilson. The overwhelming majority of analysis and 

writing was conducted by the author. Supervisors provided valuable comments and discussion. 
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2.1 Abstract 

Adjacent dependencies (ADs) are relationships between neighbouring sequential items and occur 

abundantly in nature and language. Non-adjacent dependencies (NADs) are also omnipresent in 

language and a precursor to hierarchical dependencies, which include the nested relationships that 

imbue language with infinitely expressive capabilities.  

Dependency learning can be studied in relative isolation, without the confounds of natural language. 

Artificial Grammar Learning (AGL) tasks expose participants to sequences conforming to a covert 

set of ordering rules (a grammar), and subsequently assess participants on their ability to distinguish 

novel “grammatical” sequences from “ungrammatical” sequences, for example by way of a 

grammaticality judgement task. AD and NAD learning have both been studied with AGL tasks, but 

there is a lack of evidence directly comparing NAD and AD learning under a single task. Evidence 

suggests NAD learning is cognitively demanding in specific cases, but human dependency learning 

abilities need clarification. Additionally, studies showing NAD learning often overtly distinguish 

salient from non-salient items by their phonological properties. However, as a model of natural 

language syntax this constraint lacks ecological validity. 

To simultaneously assess human AD- and NAD-learning abilities using appropriate cues, I devised a 

novel auditory AGL task using sequences containing either ADs or NADs. This task incorporated 

cues including prosody, feedback, delineated sequence boundaries, staged pre-exposure, and variable 

intervening items. Across 50 healthy adults, a grammaticality judgement measure revealed above-

chance performance. However, further analysis revealed bimodal performance despite all cues, with 

some participants performing at very high levels and others at chance, suggesting the grammaticality 

judgement process is cognitively non-trivial. Despite this, even in chance performers, reaction time 

measures revealed differences in responses to grammatical and ungrammatical sequences, suggesting 

implicit learning even in those who failed to demonstrate explicit knowledge of the grammar. 

This study replicates findings that humans can learn NADs without the benefit of phonological cues, 

but extends them by providing insights into performance variability under AGL tasks, suggesting 

that implicit, rather than explicit, measures may better reflect grammatical sensitivity. Finally, this 

task forms the basis for the electrophysiological study of sequence processing reported in Chapter 3 

and Chapter 5.  
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2.2 Introduction 

In the previous chapter, I argued that there is a pressing need to better characterise the 

mechanisms by which the brain is able to reconcile information distributed across time. This 

characterisation naturally begins at the level of behaviour. In this chapter, I report the findings of a 

novel artificial grammar learning (AGL) experiment designed to measure sensitivity to relationships 

between stimuli that are either adjacent in time, or more distantly separated. 

As we have seen, the ability to extract and reconcile events distributed in time is critical to 

many domains including music, mathematics, action sequencing and general cognition (see 

Chapter 1). The limits of these capabilities, however, are exemplified in humans by our facility with 

natural language. Natural language features complex local and nonlocal dependencies between 

phonemes, morphemes, words, phrases and beyond. These dependencies must be rapidly consumed 

and resolved in order to parse meaning during language comprehension and, conversely, instantiated 

as part of a linear stream of fluent utterances during speech production. Language therefore offers 

an enticing route to an improved neurobiological understanding of human structured sequence 

processing. 

Natural language offers examples of adjacent and non-adjacent dependencies at every 

structural level. At the morphemic level, for example, English features prominent relationships 

between word stems and inflectional morphemes. These include the adjacent relationship between 

the stem of a regular verb and “-ed” to conjugate the past tense. They also include the somewhat more 

complex non-adjacent relationship between an auxiliary verb and the suffix “-ing” (as in “is X-ing”, 

in which the intervening verb stem is largely uninformative from a syntactic perspective; Friederici et 

al., 2011). At the level of words, adjacent statistical dependencies exist between adjectives and the 

neighbouring nouns or noun phrases they commonly modify (for example, “blue cheese”), and 

non-adjacent dependencies exist between modal verbs and the main verb in question form (as in 

“Can you see..?” or “Would they take..?”). Relationships spanning phrases are ubiquitous, too, as in 

the non-adjacent example of subject-verb agreement (for example, spanning the noun and verb 

phrases of “the PhD student upstairs studiously writes” versus “the PhD students upstairs studiously 

write”; see Wilson et al., 2018). Furthermore, not only are adjacent and non-adjacent dependencies 

frequently both present between the tokens of a single utterance at all of these levels, but it is also 
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possible to find many examples where identical or similar tokens can legally form both adjacent and 

non-adjacent dependencies in different scenarios (Deocampo et al., 2019). 

Finally, also at the phrasal level, multiple dependencies are commonly related in a hierarchical 

manner, for example through nesting or tail recursion, or a mixture of both, as in “The dog, [who 

chased the cat, [who caught the mouse]], barked” (Rohrmeier et al., 2012). A similar form of 

hierarchical structure, cross-serial dependencies (of the form “A1 A2 B1 B2”) is present in Dutch and 

Swiss German (Christiansen & MacDonald, 2009). Although the degree to which recursion is a 

defining characteristic of human language, and the practical importance of such claims, is disputed 

(Hauser et al., 2002; Jackendoff & Pinker, 2005; Pullum & Scholz, 2010), any grammar featuring 

recursive constructions possesses theoretically unbounded expressivity at a structural level (Harris, 

1957). The ability to process multiple concurrent non-adjacent dependencies is a prerequisite for 

both nested and cross-serial dependency comprehension and, as such, non-adjacent dependencies 

support major aspects of natural language recursivity. 

In summary, adjacent and non-adjacent dependencies are ubiquitous in natural language and 

essential to its communicative properties, and the behavioural and neurobiological study of natural 

language must therefore inevitably inform accounts of sequence processing. However, language 

incorporates not only structured organisation, or syntax, but also a lexicon of referents describing 

real-world percepts or concepts, and these imbue our communications with interpretable meaning, 

or semantics. Furthermore, natural language comprehension relies, at the one extreme, upon the 

interpretation of broad contextual cues and, at the other, on well-learned patterns of individual 

phonemes, the subjects of the fields of pragmatics and phonology, respectively. Whilst language syntax 

is a striking example of human dependency processing capabilities, as an example of sequence 

processing, natural language is thus inherently contaminated by pre-learned phonology and 

pragmatics, as well as by the confounds of semantics, the processing of which engages many regions, 

including some that are spatially coincident with syntax-sensitive areas (Petersson et al., 2012; Petkov 

& Wilson, 2012; Fuji et al., 2016). 

Artificial grammar learning (AGL) tasks are one method by which dependency learning can 

be studied in relative isolation from other aspects of language. AGL tasks are a subset of artificial 

language learning tasks (Ettlinger et al., 2016) that involve first exposing participants to sequences 
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conforming to an implicit set of ordering rules, known as an artificial grammar, and subsequently 

assessing participants on their knowledge of the grammar, for example on the basis of their ability to 

actively distinguish novel “grammatical” sequences from “ungrammatical” sequences (ten Cate et al., 

2020). If, after exposure to the training stimuli, the subject is able to detect the rules or statistical 

regularities that characterise the AG, the subject should exhibit measurable sensitivity to the 

grammaticality of the test stimuli. Remarkably, humans, including infants, can learn to identify these 

characteristic regularities following as little as two minutes of incidental exposure (see, for example, 

Saffran, Aslin, et al., 1996), although the matter of what exactly is learned during these tasks is still a 

matter of some debate (see Alhama & Zuidema, 2019; Marcus et al., 1999) even sixty years after the 

earliest AGL tasks were devised (Miller, 1958; Reber, 1967). There is also strong evidence in humans 

that AGL tasks engage natural-language-relevant neurobiological processes (Friederici & Chomsky, 

2017; Ettlinger et al., 2016; Tettamanti & Perani, 2012; Romberg & Saffran, 2010; Petersson et al., 

2004). Moreover, performance on AGL tasks is correlated with natural language abilities (Frost et 

al., 2015), and impacted in cases of non-fluent aphasia (Cope et al., 2017; Conway & Pisoni, 2008; 

as reviewed in Wilson et al., 2017). 

By avoiding semantic prerequisites, AGL tasks offer a “relatively uncontaminated window” 

into the neurobiology of dependency processing in human adults (Petersson et al., 2012). Likewise, 

whilst some of the earliest AGL tasks, such as that of Reber (1967), used written verbal stimuli in 

humans, the flexibility of the paradigm means that AGL tasks have subsequently been employed to 

study responses to verbal and nonverbal stimuli in multiple sensory domains and species, for example 

using abstract visual stimuli (Stobbe et al., 2012), auditory speech and tone stimuli (Saffran, Aslin, et 

al., 1996; Saffran et al., 1999), motoric stimuli (Opacic et al., 2009) and olfactory stimuli (Shahbaba 

et al., 2019). 

2.2.1 Adjacent and non-adjacent dependency learning abilities in humans 

Human adults, children and infants are capable of very quickly learning to identify word 

boundaries in rapidly unfolding speech streams, seemingly grouping adjacent syllables into word-like 

units using the information described by transition probabilities (Newport & Aslin, 2004). In 

contrast, although it is clear from the prevalence of non-adjacent dependencies (NADs) in language 

that they are critically important and that humans are able to process them, AGL studies of NAD 

learning have yielded inconsistent results. It has been suggested that this inconsistency arises because 
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the ability to learn NADs is far more selective compared to adjacent dependency learning (Gebhart 

et al., 2009). 

It is certainly true that humans can learn NADs outside of language. A number of statistical 

learning studies provide evidence of this under specific circumstances. Studies that have been 

designed specifically to test simple NAD learning have shown that humans are able to respond to 

violations of learned relationships between non-adjacent elements (Watson et al., 2020; Deocampo 

et al., 2019; Vuong et al., 2016; Romberg & Saffran, 2010; Gebhart et al., 2009; Lany & Gómez, 

2008; Newport & Aslin, 2004; Gómez, 2002; Peña et al., 2002). Statistical learning studies designed 

to demonstrate learning of hierarchical dependencies (e.g. centre-embedded or “nested” 

dependencies) also provide evidence of NAD learning outwith language, since reconciliation of non-

neighbouring items is a necessary prerequisite for the encoding of multiple nested relationships (for 

example, Friederici, Fiebach, et al., 2006; see de Vries et al., 2011 and Wilson et al., 2018).  

Given the above, it might be concluded that humans are trivially capable of learning NADs 

in natural and artificial languages. However, it appears that NADs are difficult to detect except under 

specific circumstances. For example, Newport & Aslin (2004) determined, by running a series of 

increasingly simplified statistical learning tasks in adult participants, that subjects could not exceed 

chance performance in differentiating grammatical from ungrammatical non-adjacent stimuli except 

where the critical stimulus elements were distinguished from each other at the perceptual level (e.g. 

aXb or AxB). Similarly, Onnis et al. (2005) determined that, when processing a novel AG, extraction 

of NADs from continuous speech was possible based on distributional properties, but only when 

dependent items could be grouped by phonological similarity. 

2.2.2 Ecologica lly va lid aids to artificia l grammar learning 

It may seem contradictory that multiple AGL studies have been able to demonstrate 

significant NAD learning, given that such dependencies are apparently challenging to detect except 

in specific circumstances, for example when supported by phonological cues. In fact, it is often the 

case that auditory AGL studies include sequences where the dependent and irrelevant items are 

grouped into distinct phonological categories, and usually as a deliberate design choice. These 

categories are namely based on segmental phonology (i.e. the combination of phonemes in each 

item). For example, the sequence elements used by Peña et al. (2002), who revealed learning of NADs 
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in a human AGL task, were presented as a continuous stream, but could be separated into 

“dependent” or “irrelevant” on the basis of whether they contained either plosive (p, k, b, d, t or g) or 

continuant (l, r, f) sounds. The elements used by Gómez (2002), which have been incorporated into 

a number of subsequent studies, were of different syllabic lengths and separated by pauses during 

presentation (e.g., ‘po gafo di’, where the dependency is between ‘po’ and ‘di’, but ‘gafo’ is an 

irrelevant intervening element). Elements could thus be separated into “dependent” or “irrelevant” 

on the basis of whether they were monosyllabic or disyllabic, respectively (although this does not 

detract from the importance of this seminal study; see below). Although this kind of role-specific 

phonological grouping is likely more salient in a small artificial vocabulary than it is in natural 

language, it has been suggested that such cues are ecologically valid because, intriguingly, words from 

the same grammatical category tend to be phonologically coherent in language (Monaghan et al., 

2007). Therefore, groupings based on segmental phonology are not only prevalent in the AGL 

literature and highly beneficial to NAD learning, but also relevant to the learning of dependencies in 

natural language. However, segmental phonological cues are by no means the only acoustic features 

to aid learning in auditory AGL tasks. Prosody is an essential component of natural speech, 

encompassing non-segmental phonological features such as intonation that serve to emphasise 

particular words or phrasal boundaries. Prosodic cues that have been shown to assist learning of 

NADs include pitch and intensity, where emphasis of either the dependent or irrelevant items is 

sufficient to aid learning (Grama et al., 2016), and pauses in or around sequences (Hawthorne & 

Gerken, 2014). 

As well as phonological cues, statistical manipulations can also be assistive to NAD learning. 

In a seminal study by Gómez (2002), adults and 18-month-old infants were exposed to 3-element 

auditory sequences of nonsense words spoken by an adult female. Sequences followed the form AXB, 

comprising a deterministic NAD in which the dependents A and B were separated by a single 

intervening item, X. All items and sequences were separated by pauses. The variability of X was 

manipulated between subjects by varying the set size from which X was chosen. In adults, learning 

was then assessed by a grammaticality judgement task, and in infants, by using an orienting response 

(head-turn preference procedure, see Kemler Nelson et al., 1995) to test discrimination of 

grammatical versus ungrammatical sequences. In the highest variability condition, where X was 

shown to take one of 24 possible values during training, adults and infants exhibited significantly 
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greater sensitivity to the grammaticality of the NAD during testing than under the lower variability 

conditions. Thus, it was found that learning of NADs only occurred once any ADs were rendered 

sufficiently unpredictable by the presence of a highly variable intervening element, suggesting that 

the reliable, deterministic NADs were prioritised over the unreliable, probabilistic ADs. 

In light of these and similar results, it has been hypothesised that the dependency learning 

mechanism prioritises those dependencies that yield the most reliable information (Onnis et al., 

2004). This hypothesis similarly predicts that nondeterministic NADs should be very difficult to 

learn. Consistent with this account, a study by van den Bos et al. (2012) showed that adults could 

learn deterministic NADs, but could not learn probabilistic NADs without the aid of additional 

sensory cues. This was despite the fact that the intervening and dependent items were distinguished 

by differing syllabic lengths, and that items and sequences were surrounded by pauses. 

Finally, in addition to phonological and statistical cues, extra-linguistic factors can aid 

artificial grammar learning. For example, learning can be facilitated by a “starting small” approach 

(Elman, 1993), which refers to incremental training in which simple relationships are presented 

before complex ones. This is thought to mimic incremental exposure to natural language, and has 

been shown to enhance learning in complex artificial grammar tasks; participants first presented with 

ADs, for example, which are easier to recognise and learn than NADs, are better able to subsequently 

generalise these to more complex NADs (Lany et al., 2007; Lany & Gómez, 2008; Lai & Poletiek, 

2011; Poletiek et al., 2018). 

In summary, by comparison with AD learning, AGL studies of human NAD learning have 

yielded inconsistent results that require clarification. Furthermore, the inconsistencies in these results 

suggest a high degree of sensitivity to specific task parameters, with learning benefitting from 

conditions that bring the dependents "closer together ... physically, attentionally, or perceptually" 

(Wilson et al., 2018), including phonological cues, iteratively ordered learning, and manipulations of 

item variability. However, very few studies have studied the concurrent learning of AD and NAD 

dependencies in humans or other primates in order to allow controlled comparisons to be made 

between them (Deocampo et al., 2019; Vuong et al., 2016; Wilson, Smith, et al., 2015; Romberg & 

Saffran, 2013). Of these named studies, only Deocampo et al. (2019), Vuong et al. (2016) and 
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Romberg & Saffran (2013) comprised statistical learning tasks run in humans, and only the latter 

two of these featured naturalistic speech stimuli. 

2.2.3 Aims 

The primary aim of this experiment was to assess the ability of healthy adult participants to 

learn a novel artificial grammar containing both adjacent and non-adjacent dependencies, with the 

goal of using this task in a clinical population. In addition, we used three different manipulations of 

the prosody of the sequences to assess whether additional phonological cues to the dependencies, 

present either during exposure or throughout the whole task, would increase performance over a 

“no-prosody” condition. 

 

Figure 2.1: Cues that aid non-adjacent dependency learning (see Wilson et al., 
2018; reused with permission). In developing a task that can be used to assess AD and 
NAD learning in neurosurgery patients, we made use of many of these, including 
variability, pauses, edge effects, starting small and prosodic cues. 

 

To achieve this, I developed an AGL task that included both ADs and NADs, allowing 

within-subject comparisons of performance on different dependency types. The sequences consisted 
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of monosyllabic, auditory nonsense words. A number of aids to learning were incorporated (see 

Figure 2.1), including: pauses around individual sequences; highly variable intervening elements; 

feedback; a limited number of relationships; and the generalisation of the pair relationship to both 

AD and NAD cases; but expressly excluded the labelling of item roles by overt perceptual cues, other 

than the prosodic manipulations we applied. We also used a “starting small” approach to aid the 

simultaneous learning of ADs and NADs, and to facilitate learning in general. We hypothesised that, 

through limited (pre-)exposure to the grammatical sequence set, participants would be able to learn 

non-adjacent dependencies with the benefit of these aids to learning, and that the presence of 

prosodic cues during exposure and/or testing would further enhance performance. 

This has the potential to extend the literature on human dependency learning abilities, adds 

to the currently limited existing evidence on simultaneous AD and NAD learning, and serves as a 

crucial precursor to a future electrophysiological task. From this perspective, it is important to 

behaviourally characterise sequence learning abilities and strategies employed under the task in order 

to support the interpretation of future neurobiological findings. 

2.3 Methods 

2.3.1 Participant recruitment and ethics 

Participants (n = 50) comprised a mix of registered students and members of the wider 

public, recruited for behavioural study at Newcastle University via the Department of Psychology’s 

Research Participation Scheme (students) and the Institute of Neuroscience Participant Pool 

(non-students). To meet inclusion criteria, participants were required to have normal hearing, 

normal or appropriately corrected vision, not to have participated in any prior sequence learning 

study, and to be aged 18 to 60 (μ = 23, σ = 7.42 years, range 18–51). Student participants were 

compensated for their time with course credits, whilst non-students received a £5 Amazon voucher. 

All were informed that they were free to leave at any time without giving any reason. Before 

undertaking the task, each participant read and signed a consent form. Following completion of the 

behavioural task, each participant was asked to complete a questionnaire, described below (see also 

Appendix 3: Behavioural questionnaire). Full ethical approval for the schedule of research was 

sought and granted by the Faculty of Medical Sciences Ethical Committee. 
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2.3.2 Task design 

The AxB task was an auditory Artificial Grammar Learning (AGL) task running on a Dell 

desktop computer and coded in Psychophysics Toolbox (Kleiner et al., 2007) using MATLAB (The 

MathWorks, Inc.). The task was conducted within a psychophysics laboratory. Auditory stimuli 

were presented at approximately 75 dB using circumaural headphones (Sennheiser HD 202) and 

visual information was displayed on a 24 inch monitor. Participants were seated approximately 60 

centimetres from the screen and used a computer keyboard to interact when required. Whenever 

onscreen instructions were presented, participants could iterate through these at their own pace 

using the keyboard. 

Before undertaking the task, each participant was advised that their first objective was to pay 

attention to the relationships between the words they would hear. No further information was 

provided on the intended structure or vocabulary of the stimuli. Such minimal instructions are 

typical of AGL tasks in human adults. In particular, explicit instruction is avoided in order to 

promote implicit statistical learning of the underlying sequence structure (Schiff et al., 2017). 

The task itself lasted approximately 30 minutes and was divided into three consecutive 

phases: a passive pre-exposure phase; an AG exposure phase (which corresponded to the traditional 

starting point for an AGL task, during which stimuli fitting a covert grammar were presented to the 

participant); and an active testing phase. Figure 2.2 illustrates the task. The AG exposure phase 

followed the canonical arrangement of presenting stimuli drawn only from the underlying artificial 

grammar (see ten Cate et al., 2020), and is described below. Understanding the AG exposure and test 

phases is a prerequisite for understanding the motivations behind the pre-exposure phase, the subject 

of which will therefore be returned to later in the text. 

AG exposure comprised 48 trials in which the participant was presented with a sequence that 

followed the rules of an underlying artificial grammar (see below; also see Table 2.2). Each trial 

required only passive listening to the auditory sequence. To match the conditions required of a 

prospective electrophysiological experiment and to prepare participants for the requirements of the 

testing phase (see below), participants were requested to stare at a white fixation cross in the centre 

of the screen during this phase (Figure 2.2, 1). Sequences are described below in more detail but each 
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lasted 2100 ms and, during exposure, were separated by silent inter-trial intervals of 2150 ms, yielding 

an exposure phase of just under 4 minutes in length for all 48 trials. 

The active testing phase consisted of two runs of two-alternative forced choice testing, each 

of which consisted of 48 trials and lasted roughly 6 minutes. At the beginning of each testing run, 

participants were informed through onscreen instructions that some of the sequences they were 

about to hear would contain the important relationships they had already heard, and some would 

not. 

In each trial of the testing phase, participants were presented with a novel sequence that was 

either grammatical or ungrammatical, and asked to categorise it as either “fitting the pattern” of the 

sequences they had previously heard, or “not fitting the pattern” (instructions after 

Milne et al., 2018). Participants responded by pressing one of two buttons (“C” and “M” keys, 

counterbalanced between participants). Trials were presented in a randomised order, with 50% of 

trials (i.e. 24 trials per run) being grammatical, and 50% ungrammatical. Trials did not time out, and 

so individual testing time varied by reaction speed. Throughout playback of each auditory sequence, 

a yellow fixation cross was shown in the centre of the screen (Figure 2.2, 2). To discourage explicit 

cognitive strategies in the absence of any time limit, participants were asked to respond swiftly to the 

grammaticality judgement task based on their “gut feeling”, choosing the appropriate keyboard 

response (“C”/“M”) as soon as the central fixation cross turned from yellow to blue (Figure 2.2, 3). 

Each sequence lasted 2100 ms, followed by a silent, jittered pre-response period of between 1000 and 

1300 ms, before the fixation cross turned blue. Following a response, the computer provided the 

participant with onscreen feedback by briefly changing the colour and/or orientation of the fixation 

cross (a red “X” for incorrect judgements, and a green “+” for correct judgements; Figure 2.2, 4A and 

4B). A jittered post-response delay of between 1000 and 1300 ms followed each response. 

Between the two 48-trial testing runs, participants experienced a 2 minute refamiliarisation 

period, which was identical to the exposure phase except for its shorter duration. Refamiliarisation 

between testing runs is common in AGL tasks and intended to mitigate the effects of the 

ungrammatical sequences that form 50% of the test set, which might otherwise induce unwanted 

interference with the learning that took place in the exposure phase (Kuppuraj et al., 2018). 
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Figure 2.2 AxB task diagram. During exposure, participants listen to a set of valid 
stimulus sequences (terminating in green, left) whilst looking at a fixation cross (1). 
During testing, participants do the same but hear a 50-50 mix of valid and invalid 
stimulus sequences (terminating in red) whilst waiting for a fixation cross to change 
colour from yellow to blue (2). Once cued, participants respond using keyboard keys (3) 
and receive feedback on their correct (4A) or incorrect (4B) response. 

2.3.3 Stimuli 

Stimuli were auditory sequences comprised of three naturally spoken, single-syllable nonsense 

words, based on stimuli designed and used in previous AGL studies (Wilson, Smith, et al., 2015; 

Saffran et al., 2008; Saffran, 2002). Nonsense words were used as they maintain the spectrotemporal 

complexity of real words, and are readily distinguishable (Wilson, Smith, et al., 2015). Each word 

followed a consonant-vowel-consonant construction and was designed to avoid combinations 

considered common and meaningful in English. 

Nonsense words had previously been produced by an adult female speaker in monotone and 

recorded using an Edirol R-09HR (Roland Corp.) sound recorder. Recorded words were stored in 

digital sound files lasting precisely 600 ms each, then root-mean-square balanced and combined into 

three-word sequences using a custom MATLAB script that inserted 150 ms inter-stimulus intervals 

(ISI), producing a set of three-word stimuli each lasting 2100 ms. This constant playback time 

ensured that neither the duration of individual words nor the duration of the sequence as a whole 

could be used as cues to grammaticality. The complete list of words can be found in Table 2.1 below, 

along with their transcription in the International Phonetic Alphabet (IPA) for avoidance of 

ambiguity.  
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 To assess the possible benefit of prosodic pitch cues on performance in this task, across the 

cohort, participants were randomly assigned to one of 3 prosodic manipulation groups before the 

task began: NP (‘no prosody’), PE (‘prosody during exposure only’) and PT (‘prosody during both 

exposure and testing’). Prosodic trials were identical to non-prosodic trials except that, for prosodic 

trials, the frequency content of X elements was pitch-shifted down by 5% relative to the fundamental 

frequency baseline (using the Praat software package; Boersma & Weenink, 2016), and the frequency 

content of A and B elements was pitch-shifted up by 5% relative to baseline. This produced a net 10% 

pitch difference between A/B and X words, designed to emphasise the distinction between these 

elements. This was considerably larger than the “just noticeable difference” reported in the 

psychophysical literature for speech pitch manipulations (Liu, 2013), and resulted in naturalistic 

utterances. Sound amplitude and duration were not varied. 
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Table 2.1: Nonsense words used in the AxB task, and IPA transcriptions 

Label Word IPA Label Word IPA 

X1 Bek bɛk X17 Pif pɪf 

X2 Ber bɛr X18 Pux pʌks 

X3 Biz bɪz X19 Raz ræz 

X4 Dil dɪl X20 Rik rɪk 

X5 Fal fæl X21 Rit rɪt 

X6 Gol gɒl X22 Ruj rʌʤ 

X7 Heb hɛb X23 Yun jʌn 

X8 Hig hɪg X24 Zil zɪl 

X9 Hok hɒk    

X10 Jat ʤæt    

X11 Kay keɪ A1 Fip fɪp 

X12 Kiv kɪv A2 Gak gæk 

X13 Kug kʌg B1 Wez wɛz 

X14 Lar lɑː B2 Lod lɒd 

X15 Lun lʌn    

X16 Mot mɒt    

 

All stimuli were generated according to the following rules. Every stimulus sequence was 

generated from a mixed dependency grammar permitting either an adjacent dependency or a non-

adjacent dependency within each sequence. “Adjacent” sequences followed the form xAB, where A 

and B represented the important constituent words of the dependency, but the identity of X was 

irrelevant to the relationship under test. “Non-adjacent” sequences followed the form AxB, where 

again A and B represented the critical components of the dependency, and the intervening element 

X again denoted any word irrelevant to this relationship. In order to highlight the importance of A 

and B whilst diminishing the salience of X, there were 24 phonetically distinct X items but only 2 A 

and 2 B items (see Table 2.1). As described in 2.2.2, previous research in human adults and infants 

has indicated that deliberately varying irrelevant items in this way can reduce their saliency within an 
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artificial grammar and promote the learning of non-adjacent dependencies (see especially Gómez, 

2002). 

Whilst grammatical sequences and ungrammatical sequences incorporated the same 

vocabulary of nonsense words, grammatical test sequences were distinct from ungrammatical test 

sequences in terms of the rules they followed. Grammatical sequences followed either of the patterns 

A1B1 or A2B2, where “” denotes the relationship “is ultimately followed by”. For A1B1, for 

example, this encompassed the following valid sequences: xA1B1 and A1xB1. Likewise, for A2B2, 

valid sequences included xA2B2 and A2xB2. Note that every sequence ends in a B. Thus, there were 

two possible valid AB pairings, A1B1 and A2B2, and these could both occur in either adjacent 

or non-adjacent configurations. This grammar is illustrated in Figure 2.3. 

 

Figure 2.3 The AxB task grammar and representative mean stimulus 
spectrogram. The lower left schematics illustrate all valid sequences by abstracting over 
the category of irrelevant Xs but showing the critical AB relationships. On the right, 
the same grammar is illustrated with the Xs expanded to better highlight the adjacent 
and non-adjacent dependencies (note, however, that A and B categories are now 
abstracted for ease of visualisation). 

 

Having two valid AB pairs in the grammar made it possible to generate invalid sequences 

using the same vocabulary as valid sequences whilst balancing word frequency and order. 

Additionally, and crucially in consideration of this study’s role as a precursor to a prospective 

electrophysiological task, it also meant that, during testing, the grammaticality of the B element could 
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be manipulated whilst its acoustic features remained unchanged, since it could either conform to or 

violate a previously established AB expectation (an approach followed in prior 

electrophysiological AGL studies, for example Kikuchi et al., 2017). Table 2.2 shows the final 2×2×2 

factorial design and trial breakdown for each balanced stimulus condition. 

 

Table 2.2: Testing phase trial breakdown for the 2×2×2 factorial design of the 
deterministic AG task. In this cohort, there were two test runs of 48 trials each. During 
the exposure phase, only consistent trials were presented (4 left-hand cells), but with 12 
trials per category instead of 6. 

Per test run (48 trials total) Consistent trials: 24 Violation trials: 24 

Adjacent trials: 24 xA1B1: 

6 trials 

xA2B2: 

6 trials 

xA1B2: 

6 trials 

xA2B1: 

6 trials 

Non-adjacent trials: 24 A1xB1: 

6 trials 

A2xB2: 

6 trials 

A1xB2: 

6 trials 

A2xB1: 

6 trials 

 

Having described the artificial grammar and the main exposure and testing phases of the task, 

it is now possible to describe and motivate the passive pre-exposure phase that preceded them. The 

pre-exposure phase was designed as a precursor to the more typical sequence exposure phase, 

specifically to boost learning of the full grammar by first promoting the generalisation of the AB pair 

knowledge to novel sequences. Incrementally ordered training can enhance learning in artificial 

grammar tasks (Poletiek et al., 2018). 

During the pre-exposure phase, the participant was passively exposed to 24 trials per valid 

AB pair (i.e. 24 x 2 = 48 trials). Each trial consisted of three short related sequences, each separated 

by 900ms of silence. Specifically, every trial followed the pattern 

AiBi   <silence>   xjAiBi   <silence>   AixkBi, 

always in that order. Like the pre-exposure phase itself, this pattern follows the doctrine of 

“starting small” (Elman, 1993), whereby simple relationships are established before complex ones. As 

before, the duration of each syllable was 600ms and syllables were separated by 150ms of silence. 
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Thus, each three-element sequence was 2100ms long, each two-element sequence 1350ms long, and 

the pre-exposure phase around 6 minutes in total. As above, letters here denote a broad class of 

stimuli, whilst subscripts indicate a specific stimulus of that class. Thus, A and B did not differ across 

the three sequences, but X did. Furthermore, across all 24 trials generated per AB pair, every possible 

X was featured twice, once as Xj and once as Xk. 

2.3.4 Post-task questionnaire 

Following completion of the task, participants were provided with a questionnaire (see 

Appendix 3: Behavioural questionnaire). This questionnaire incorporated questions on basic 

inclusion/exclusion criteria, demographic information, and potential confounds to task 

performance. It also included two questions designed to establish to what extent, if any, participants 

developed an explicit awareness of grammar rules or their own performance. 

Finally, two additional questions were included to assess the impact of a potentially significant 

factor affecting future neurosurgical testing on this paradigm: subject wakefulness. It has been long-

established that surgical inpatients are more sleep deprived than healthy controls, mainly by dint of 

the hospital environment (Cumming, 1984). Furthermore, a comprehensive post-implantation 

medication regimen can potentially impact further on wakefulness, either as a result of known side-

effects of specific drugs, for example opioid analgesics or antiepileptics (Rogers et al., 2013; Salinsky 

et al., 1996),  or by way of the measurable impact of polypharmacy on sleep quality and sleep stage 

durations (Lande & Gragnani, 2015). Finally, in some hospitals, sleep deprivation is an intentional 

component of the monitoring procedure for epilepsy patients since it has a potentially epileptogenic 

influence, although this is typically used as a tool to increase diagnostic yield in early testing rather 

than during invasive monitoring (Giorgi et al., 2013). Thus, considering the many potential sources 

of disruption to wakefulness in a future electrophysiological experiment, it was considered 

appropriate to assess any possible relationships between fatigue/sleep deprivation and performance 

on the AxB task. 

2.3.5 Analysis 

Behavioural task data were automatically recorded by the task script and subsequently 

analysed within MATLAB. Questionnaire responses were likewise transferred to MATLAB for 

statistical analysis. 
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Throughout the analysis, nonparametric tests such as the Wilcoxon signed rank test were 

used to compare group means in cases where data was found to be non-normally distributed in at 

least one group, as assessed by visual inspection and formal methods (rejection of null hypothesis of 

normality, p < .05, Lilliefors test). The exception is in the use of n-way factorial ANOVAs, for which 

no non-parametric equivalent is defined, and which have been shown to be robust to violations of 

the normality assumption (Blanca et al., 2017). 

2.4 Results 

2.4.1 Overa ll performance 

The primary behavioural performance measure was the proportion of correct responses to 

the testing trials of the task (that is, the proportion of correct grammaticality judgements). The full 

cohort of 50 participants performed significantly better than chance at the group level, averaged 

across both testing runs (μ = 0.71, p < .001; one-sample Wilcoxon signed rank), demonstrating that 

the cohort as a whole was able to distinguish grammatical from ungrammatical sequences. 

A four-way mixed-design analysis of variance (ANOVA) was conducted to reveal differences 

in task performance associated with manipulations to one or more of the experimental factors 

(between-participant factor: Prosodic group; within-participant factors: Run, Adjacency, 

Grammaticality; interactions included). The ANOVA revealed no statistically significant effect of 

the prosodic group on performance (F2,47 = 0.132, p = .877, although this result is revisited in more 

detail in subsection 2.4.3). Because it was a key between-participant manipulation, and despite the 

lack of an observable prosodic effect, the distribution of scores under each condition is nevertheless 

shown in Figure 2.4. The figure demonstrates that there were no clear performance benefits for the 

participants exposed to prosodic cues, relative to those provided with no additional cues. 

Likewise, the ANOVA revealed no significant effect of adjacency (F1,47 = 0.377, p = .542), and 

no significant interactions between any combination of factors (p > .05 in all cases). However, the 

ANOVA revealed significant effects of grammaticality (F1,47 = 5.94, p = .019) and 

run (F1,47 = 25.8, p < .001) on performance. Consequently, post-hoc pairwise analyses were 

conducted to clarify differences in performance under each grammaticality and run condition. 
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Figure 2.4 Comparison of scores based on presence of prosodic pitch cues. Each 
violin plot shows the distribution, mean and standard deviation of scores averaged across 
the two testing runs under each manipulation of prosodic pitch (NP: ‘no prosody’; PE: 
‘prosody during exposure only’; PT: ‘prosody during both exposure and testing’). 
Differences between the mean score across runs under the three conditions were non-
significant (μPE = 0.72, μPT = 0.71, μNP = 0.69). However, all groups scored significantly 
higher than chance overall. *** = p < .001. 

A nonparametric comparison between mean performance across runs on grammatical versus 

ungrammatical sequences revealed significantly higher performance on grammatical sequences 

(Wilcoxon signed rank, μGram = 0.74, μUngram = 0.67, p = .038). A nonparametric test was used here 

because “ungrammatical” scores were non-normal according to a Lilliefors test (p = .019). Despite 

the difference in scores between the grammaticality conditions, performance on both grammatical 

and ungrammatical sequences was significantly above chance (one-sample Wilcoxon signed rank 

tests, p < .001 in both cases). Figure 2.5 illustrates this. Comparing the proportions of trials each 

participant responded “grammatical” or “ungrammatical” revealed a statistically significant 

difference between them at the group level (Wilcoxon signed rank, p = .038; μresponded gram = 0.53; 

μresponded ungram = 0.47), showing a small but significant response bias towards “grammatical”. This 

response bias in at least some participants explains the tighter distribution and higher scores on 

“grammatical” sequences shown in Figure 2.5. 
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Figure 2.5: Mean performance across task runs on grammatical versus 
ungrammatical sequences. Violin plots show the distribution of performance and 
probability density for grammatical and ungrammatical trials, across both runs and the 
entire cohort (n = 50). Overlays show the mean and standard deviation. Performance 
was significantly higher for grammatical than ungrammatical sequences, but was 
nevertheless significantly higher than chance under both conditions. Significance 
computed using one-sample and two-sample paired Wilcoxon signed rank as 
appropriate. * = p < .05, *** = p < .001.  

Performance was above chance on both testing runs (p < .001 in both cases; one-sample 

Wilcoxon signed rank tests), indicating that the grammar was learned by the group by the end of the 

full exposure period. However, a comparison between performance on both runs revealed that, 

across all participants, performance was significantly higher on Run 2 than Run 1 (Wilcoxon signed 

rank, p < .001, μ1 = 0.65, σ1 = 0.18; μ2 = 0.77, σ2 = 0.22; both groups non-normally distributed, i.e. 

p < .05, Lilliefors test). These results are illustrated in Figure 2.6. 

Looking more closely at the data, on a per-participant basis, it transpired that 21 of 50 

participants scored significantly higher than chance in the first run, as determined by two-tailed 

comparison with the inverse binomial cumulative distribution function at α = .05. In the second run 

29 participants scored significantly higher than chance, by the same method. Group performance in 
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each run of the task was thus driven by a subset of participants performing at a high level. By the 

second run, the division between these subsets produced a clearly bimodal distribution (see Figure 

2.6). 

 

Figure 2.6: Performance (proportion correct) on both runs of the AxB task. Violin 
plots show the distribution of performance and probability density for the first and 
second runs of the task’s testing phase, across the entire cohort (n = 50). Overlays show 
the mean and standard deviation for each run. Performance on both runs was 
significantly different from chance, but significantly improved between the first and 
second runs. Performance was clearly bimodal by the second run. Significance 
computed using one-sample and two-sample paired Wilcoxon signed rank as 
appropriate. *** = p < .001. 

2.4.2 The bimodal distribution of performance 

Given the bimodal distribution of the data in the final run of the task, performance was 

described by fitting a Gaussian mixture model to the distribution of final run scores using maximum 

likelihood estimation, yielding two normal distributions: μ1 = 0.52, σ1 = 0.06 (hereafter “chance 

performers”) and μ2 = 0.94, σ2 = 0.05 (hereafter “high performers”; see Figure 2.7). Though both 

Gaussians were cleanly separated as can be seen from the figure, each was associated with its own 

normal probability density function, meaning that for each participant, formal probability of 

membership to one or another distribution could be evaluated from their final run score. In this way, 

participants were each unequivocally assigned to the “high performer” or “chance performer” group 
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depending on which probability was higher. This method was used because it could usefully be 

applied to more equivocal distributions if needed in future. On this basis, 29 of 50 participants were 

high performers, and 21 of 50 chance performers, which accords with the binomial significance 

testing on individual participant’s scores reported above. The fact that 58% of participants reached 

close to ceiling performance, whilst 42% did not, is suggestive of the fact that the grammaticality 

judgement component of this task is non-trivial, in line with past findings (see 2.2.1). The binomial 

shape of the distribution suggests that, by the end of the task, participants either can, or cannot, 

operationalize their appreciation of the grammar, rather than awareness falling on a continuum. 

 

 

Figure 2.7: Performance (proportion of correct responses) on the final run of the 
AxB task in healthy controls (N = 50). A histogram of performance across the 
deterministic cohort is shown overlaid with the normal distributions of a Gaussian 
mixture model fitted to the data by maximum likelihood estimation. The results exhibit 
a bimodal distribution with 29 “high performers”, and 21 “chance performers”, when 
assigning each participant to the distribution with the highest probability density for 
that participant’s score. 
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2.4.3 Prosodic pitch effects in high and chance performers separately 

The 4-way ANOVA reported previously revealed no significant effect of the prosody 

condition on performance (F2,47 = 0.132, p = .877), and no significant interactions between prosody 

and any other factors. However, as shown above, by the final run of the task, the cohort could be 

cleanly segregated into high and chance performers, which it was considered might reveal differential 

prosodic effects. Further analysis of prosody was therefore undertaken, focussing on the final run of 

the task alone. 

Looking at the final run scores, all three prosodic groups performed significantly better than 

chance overall (one-sample Wilcoxon signed rank tests; No prosody: p = .0014, μNP = 0.73, σNP = 0.22; 

Prosody in exposure: p < .001, μPE = 0.79, σPE = 0.21; Prosody in testing and exposure: p < .001, 

μPT = 0.77, σPT = 0.22). There were no statistically significant differences between the scores of these 

groups in the final run (Kruskal-Wallis test, χ2 = 0.33, p = .85). 

As in the overall analysis, in each prosody condition, participants’ scores followed a bimodal 

distribution (see Figure 2.8). Therefore, the condition comparison was additionally undertaken for 

the high performers and chance performers separately, to test whether prosodic manipulations were 

effective in boosting performance in one or another of these groups despite being non-significant 

overall. Despite this, one-way analysis of variance (ANOVA) revealed that, for both chance 

performers (F2,18 = 0.30, p = .74) and high performers (F2,26 = 0.86, p = .43), the effects of the 

manipulation remained non-significant. As a result, for the purposes of further analysis, all 

participants were grouped across these three prosodic conditions. 
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Figure 2.8 Comparison of final run scores based on presence of prosodic pitch 
cues. Each violin plot shows the distribution, mean and standard deviation of the scores 
under each manipulation of prosodic pitch (NP: ‘no prosody’; PE: ‘prosody during 
exposure only’; PT: ‘prosody during both exposure and testing’). Whilst the means for 
the two prosodic manipulations (μPE = 0.79, μPT = 0.77) were marginally higher than 
those for the non-prosodic condition (μNP = 0.73), differences between them remained 
non-significant. However, all three groups scored significantly higher than chance 
overall. *** = p < .001. 
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2.4.4 Correlation of performance under opposing conditions 

The reported 4-way ANOVA described group-level effects of the experimental conditions 

on performance, but could not reveal how scores varied under stimulus conditions on a per-

participant basis. Whilst at the group level sequence adjacency had no effect on performance, for 

example, it might nevertheless be the case that individual participants exhibited a trade-off in 

performance between the opposing stimulus conditions. This could occur, for example, if there were 

competition for cognitive resources between the two sequence types. Scores under opposing 

stimulus conditions (“adjacent” versus “nonadjacent”; “grammatical” versus “ungrammatical”) were 

therefore correlated to determine the strength and direction of any linear relationship between them. 

The results, summarised below in Figure 2.9, showed a significant positive correlation 

between scores under key opposing stimulus conditions (adjacent vs. nonadjacent: r = 0.89, p < .001; 

grammatical vs. ungrammatical: r = 0.69, p < .001). Overall, this meant that relatively higher 

performing participants under one condition also tended to be higher performers under the 

opposing condition.  

Figure 2.9: Correlation and comparison of within-subject performance under 
opposing stimulus conditions. Results are shown for the full cohort (n = 50). Each 
subfigure includes a scatterplot showing performance in every participant, along with 
the Spearman rank correlation coefficient and significance. The black “+” indicates 
the centroid of the data, scaled to reflect 95% confidence intervals along both axes, 
under a normality assumption. A least squares fit (dashed) is also shown along with a 
line of identity (solid black) for reference. Finally, a histogram shows the distribution 
of data relative to this line of identity, along with a summary of a Wilcoxon signed rank 
test between results under the two conditions.  Both correlations were significantly 
positive. Differences between conditions were significant in the case of grammatical 
vs. ungrammatical (* = p < .05). 
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In the case of adjacent and nonadjacent sequences, these results clearly suggested there was 

no performance trade-off between the two sequence types. However, it was apparent from the 

distribution of the grammaticality scores that there were nonlinearities in the co-distribution of 

scores caused by aggregating both high and low performers (see scatter points, Figure 2.9, 

right-hand plot). The analyses above were therefore repeated after once again segregating the high 

and chance performers. These results are reported in the following section. 

2.4.5 Correlations in high and chance performers separately 

Taking only the high performers, and repeating the analysis in the previous section, the 

results obtained were similar to the cohort overall (see Figure 2.10), demonstrating significant 

positive Spearman rank correlations between the opposing stimulus conditions (adjacent and 

nonadjacent: r = 0.79, p < .001; grammatical and ungrammatical: r = 0.52, p < .001). There were no 

significant differences between performance under opposing conditions (paired t-tests, α = .05). 

Here, as for the cohort as a whole, it is evident that high performers are not just generally good at the 

task, but that performance under opposing stimulus conditions is similar and positively correlated. 

 

Figure 2.10: Correlation and comparison of within-subject performance 
(high performers). There were n = 29 high performers. In this group, differences 
between scores under opposing conditions were non-significant (here, paired 
t-tests, α = .05), and correlations between them significantly positive (see main 
text). 
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The picture was very different in chance performers (see Figure 2.11). Here, scores under 

opposing adjacency conditions were uncorrelated (r = -0.22, p = .36) and scores under opposing 

grammaticality conditions were significantly negatively correlated (r = -0.73, p < .001). There were 

also significant differences between performance on grammatical versus ungrammatical sequences 

(μcons = 0.60, μvio = 0.41, paired t-test, p < .001). 

This general pattern greatly differs from the pattern shown by high performers. The 

uncorrelated adjacency distribution is suggestive of random guessing by the chance performers 

(left, Figure 2.11). The significant negative correlation in the grammaticality distribution 

(right, Figure 2.11) could be suggestive of a cognitive trade-off between performance under opposing 

conditions. However, the significant performance difference between grammaticality conditions 

means this likely reflects a bias towards judging sequences as “grammatical” superimposed on 

random guessing behaviour. Here, the distribution is constrained along the downward diagonal 

because it consists only of participants whose mean grammaticality judgement scores did not 

significantly differ from chance. Accordingly, further analysis of response frequencies revealed no 

 Figure 2.11: Correlation and comparison of within-subject performance 
(chance performers). There were n = 21 chance performers. Despite overall 
chance performance, the range of scores on specific conditions was 
considerable, as the grammaticality distribution (right) shows. Differences 
between scores under opposing conditions (paired t-tests, α = .05) were 
significant for grammatical vs. ungrammatical (p < .001), but non-significant 
for adjacency (p = .85). This suggests a simple response bias in favour of 
“grammatical” judgements. Correlations between scores under opposing 
conditions were negative, shown by the dashed least-squares fit lines, although 
this was only significant in the case of consistent vs. violation (p < .001). 
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response bias in high performers, but a significant bias towards responding “grammatical” in chance 

performers (paired t-tests; high performers: p = .67, μresponded gram = 0.50; chance performers: p = .0012, 

μresponded gram = 0.59). 

2.4.6 Explicitness of the task and impact of wakefulness 

AGL paradigms were initially designed to measure implicit learning, and this is often 

assumed to be the case. However, recent approaches have challenged the “implicitness” of 

grammaticality judgement tasks, which require explicit decision making and conscious reflection. To 

attempt to assess awareness of their knowledge, we asked participants to complete a questionnaire 

about what they had learned. Questionnaire responses were coded and analysed to determine the 

relation of performance (proportion correct) to subjective confidence, and its relation to explicit 

knowledge of the grammar (number of rules identified). The impact of participant wakefulness was 

also assessed. Analysis was accomplished by computing Spearman rank correlation coefficients 

between cohort performance and all coded subjective questionnaire responses. 

Significant correlations are summarised in Figure 2.12. These firstly reveal that the primary 

performance measure is correlated with subjective assessment of performance on the task 

(r = 0.82, p < .001), and with the number of rules of the artificial grammar the participant could recall 

and correctly specify (r = 0.83, p < .001). As such, under the AxB task, the grammaticality judgement 

performance is seemingly reflective of both awareness of subjective performance, and of the rules of 

the artificial grammar, both of which are forms of explicit knowledge. 

Participant tiredness, as assessed by a subjective tiredness measure, was found to be 

significantly negatively correlated with performance on the task (r = -0.32, p = .024; see Figure 2.12). 

However, there was no significant correlation between performance and estimated number of hours 

slept (r = 0.01, p = .95), which probably simply reflects poor subjective awareness of restful sleep 

duration. 

The significant relationship between subjective tiredness and performance is relevant to 

future deployment as an electrophysiological task in a potentially sleep-deprived patient cohort. 

Additionally, in conjunction with the results above, it is further suggestive of the fact that this AGL 

task, which notionally ought to be trivial for humans, is nevertheless remarkably cognitively 

demanding despite the inclusion of a number of aids to learning (see 2.2.2 and 2.3.2).
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Figure 2.12: Spearman rank correlation of overall performance and 
subjective questionnaire responses. Overall performance (mean performance 
across runs) correlated positively with participants’ subjective confidence in their 
performance (r = 0.82, p < .001), and with the number of artificial grammar rules 
they were able to explicitly identify in a freeform text response (r = 0.83, p < .001). 
There was a significant negative correlation between participants’ subjective 
tiredness ratings, and overall performance (r =-0.32, p = .024), although no 
significant correlation between performance and estimated number of hours slept 
(r = 0.01, p = .95). 
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2.4.7 Reaction time differences 

Reaction times (RTs) have the potential to reveal differences in cognitive processing that 

may not be apparent using other metrics such as performance. Prior analysis (see previous section) 

suggested that grammaticality judgement might be reflective of explicit awareness of sequence 

structure, yet the literature makes a compelling argument for the implicitness of statistical learning. 

Consequently, an analysis of RTs was undertaken with a view to determining firstly whether there 

existed evidence for reaction time differences related to the grammar, and secondly whether this was 

preserved even in participants unable to meet the explicit task demands. This being the case, it would 

suggest that RTs characterise an implicit sensitivity to the grammar under this task. RTs recorded 

during the task described, for each trial, the latency of a subject’s button press following the jittered 

presentation of the visual cue (signalling onset of the response window) after sequence playback.  

Mean RTs were computed and log-transformed for each condition in every participant, and 

compared using paired t-tests for the two manipulations of sequence structure (adjacency and 

grammaticality). For the cohort as a whole, the results were compelling (see Figure 2.13). Whilst there 

were no significant differences between mean RTs for the adjacency manipulation (paired t-test on 

log-transformed data, μadj = 1262 ms, μnonadj = 1245 ms, p = .31), the response latency to violation 

(ungrammatical) sequences was significantly longer, by an average of 129 ms, than that to consistent 

(grammatical) sequences (μcons = 1189 ms, μvio = 1318 ms, p < .001). Thus, it appears that reaction 

times can be related to sequence structure under the AxB task. 

The same analysis was then conducted again for the high performers and chance performers 

separately, as previously. The results are shown in Figure 2.14. Notably, these show that in both high 

performers and chance performers, reaction times are systematically longer to violation sequences 

than to consistent sequences (high performers: μvio − μcons = 128 ms, p = .0040; chance performers: 

μvio − μcons = 129 ms, p = .034). The existence of RT differences for both high and chance performers, 

and the extremely similar magnitudes and directions of those differences in these two different 

subgroups of participants, constitute evidence that, in this cohort, reaction times reveal an implicit 

sensitivity to violations of the AxB grammar, even in participants unable to meet the apparently 

explicit demands of the grammaticality judgement component. 
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Figure 2.13: Mean reaction times by structural condition (n = 50). Shown are 
violin plots of reaction times (RTs) under the two manipulations of sequence 
structure. RTs were averaged across all trials of both testing runs in each 
participant. Each violin plot shows the individual data points, the probability 
density for each distribution, and is overlaid with the group mean and standard 
deviation. Group-level comparison of RTs revealed that responses to “violation” 
sequences were significantly delayed compared to responses to “consistent” 
sequences (paired t-test on log-transformed data, *** = p < .001, μcons = 1189 ms, 
μvio = 1318 ms). 
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Figure 2.14: Mean reaction times (RTs) for high performers (n = 29) and chance performers (n = 21). As expected of a group whose 
scores demonstrated clear sensitivity to sequence grammaticality, high performers (panel A) exhibited the same reaction time effect as the group 
as a whole, having significantly longer RTs to violation vs. consistent sequences (paired t-test on log-transformed data, p = .0040, μcons = 1303 ms, 
μvio = 1431 ms). However, this effect was also observed in the chance performing group (paired t-test on log-transformed data, p = .034, 
μcons = 1033 ms, μvio = 1162 ms), suggesting implicit sensitivity to sequence structure under this task even for subjects who did not excel at making 
explicit grammaticality judgements. (* = p < .05, ** = p < .01) 

A B 
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2.5 Discussion 

Despite their ubiquity in language, the ability to learn non-adjacent dependencies (NADs) 

appears to be highly selective compared to adjacent dependencies (ADs). The aim of the present 

study was to assess the ability of healthy adult participants to learn regularities in sequences generated 

from a novel artificial grammar containing both adjacent and non-adjacent dependencies. This 

approach allowed us to conduct within-participant comparisons of performance on different types 

of sequences. 

2.5.1 Overa ll performance 

Our results revealed that participants were able to learn the artificial grammar, performing 

well above chance on the grammaticality judgement task at the group level, across all trials. Moreover, 

this learning occurred in spite of the absence of segmental phonological cues to the roles of words in 

the artificial grammar, a key cue present in many existing studies. Performance was already above 

chance on the first testing run, implying that learning likely occurred as a result of the preceding 

period of exposure to grammatical sequences. The learning of relatively simple rules is expected 

following mere minutes of passive exposure (as shown, for example, by Saffran, Aslin, et al., 1996). 

As revealed by an analysis of variance including four factors (test run, adjacency, 

grammaticality, prosodic group), significant effects were observed with respect to test run and 

grammaticality only (note that the lack of prosodic effect is discussed in more detail in subsection 

2.5.2, followed by more detailed discussion of the effects of sequence structure, including adjacency). 

The significant effect of “test run” is expected; performance on the task improved significantly 

between runs, likely as a result of increased awareness of task demands over time, and the effectiveness 

of the intervening refamiliarisation period. However, surprisingly, grammaticality judgement 

performance was also shown to be significantly higher on grammatical sequences versus 

ungrammatical sequences. Interestingly, in a miniature language (“Mini Pinyin”) learning study by 

Cross et al. (2020), which incorporated semantics, participants were similarly found to be more likely 

to respond correctly to grammatical versus ungrammatical sentences. However, the results show that 

the effect in our task was apparently caused by a response bias by the lowest performing participants, 

rather than a heightened ability to detect grammatical sequences.  



64 
 

Notably, despite the fact that the group was able to perform above chance on the task overall, 

performance followed a bimodal distribution; by the final run, around 60% of participants 

approached ceiling performance, but the remainder continued to perform around chance. Group 

performance was therefore driven by a subset of high performers, suggesting that the process of 

judging grammaticality was cognitively non-trivial. This discovery also prompted further analysis of 

the differential behaviour of chance and high performers that informs later discussion. 

In a previous study on the concurrent learning of ADs and NADs, 

Romberg & Saffran (2013) found that familiarity judgement performance on NADs followed a 

bimodal distribution similarly centred around chance and ceiling levels, as ours did, whilst AD scores 

followed a unimodal distribution centred on middling scores. It is important to note that, under their 

task, NADs and ADs were formed between different dependents, rather than between the same 

dependents optionally separated by an intervening item, as under our task (see 2.5.3). However, in 

the grammar Romberg and Saffran used, the assessed NADs consisted of only 3 deterministic word 

pairs, whilst the ADs consisted of many more probabilistic pairings, making the NADs the more 

reliable patterns. Whilst the results were interpreted by the study authors as showing that maximum 

performance on the reliable NADs exceeded that on the unreliable ADs, it might rather be said that 

it is remarkable, as under our task, that such strongly highlighted dependencies were not simply 

associated with unimodal ceiling performance. 

2.5.2 The effect of prosody on dependency learning 

Prosodic pitch appeared to have no significant effect on performance under the task in the 

cohort overall, or in chance- and high-performing participants separately. There are a number of 

potential reasons for this. Firstly, it is possible that a net 10% pitch difference between important 

(A/B) and unimportant (X) items was too insubstantial to perceptually highlight the dependency in 

the context of the task. However, this manipulation exceeded previously reported psychophysical 

thresholds (Liu, 2013). Furthermore, equivalent proportional pitch differences, applied as here to 

naturalistic speech frequencies, have been shown previously to elicit electrophysiological responses 

in adults and infants within a deviance-detection task (Mueller et al., 2012), and likewise shown to 

serve as an assistive cue to infants undertaking an artificial grammar learning paradigm (Gervain & 

Werker, 2013). It therefore seems unlikely that the manipulation was insufficient as a cue in the 

context of this task. 
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It is also possible that prosodic saliency was not a significant aid to learning because of the 

other cues present within the task. The ~40% chance-performing participants might have been 

hampered not by the process of isolating salient items, but by a difficulty recalling one or more of the 

correct word pairings after exposure, a failure to appreciate the task requirements, or some other 

limitation. Likewise, in the subset of participants approaching ceiling levels on our task, it is possible 

that staged pre-exposure (discussed in Elman, 1993) and variable intervening items (Gómez, 2002) 

were sufficient to highlight the important elements and that prosodic pitch could add little to the 

saliency. Silent pauses within and around the sequences likely produced edge effects (as reported in 

Peña et al., 2002, for example, and discussed in Wilson et al., 2018) that acted as cues to saliency, for 

example, likely diminishing the relative benefits of prosodic pitch or other cues. However, it is 

important to note that prosodic pitch had a discernable effect in both Mueller et al. (2012) and 

Gervain & Werker (2013), even though the former used separate syllables surrounded by pauses, as 

in this task, and the latter employed a continuous speech stream. 

Finally, it is conceivable that the prosodic comparison was conducted between groups too 

small to detect a significant effect. Further characterisation of pitch effects under a task solely 

focussed on prosody might be warranted in future. However, bearing in mind this study’s goal of 

future electrophysiological deployment, the prosodic manipulation lacks utility. Groups here 

contained at least 16 participants; in an intracranial study, neurosurgical cohort sizes are restricted by 

clinical availability and are typically smaller than this. The manipulation is therefore unlikely to 

enhance learning in an intracranial study based on this task. 

2.5.3 Performance by stimulus condition 

Under our mixed-dependency grammar, group performance did not differ between adjacent 

and non-adjacent trials, and moreover individual scores on both types of sequence were correlated. 

This is perhaps unexpected in light of existing studies that show that AD learning is far less selective 

than NAD learning (Gebhart et al., 2009) and that NAD performance strongly relies on the presence 

of perceptual cues (Newport & Aslin, 2004; Onnis et al., 2005). However, unlike the cited studies, 

our task incorporated staged learning (Poletiek et al., 2018; Lai & Poletiek, 2011; Elman, 1993) and 

distributional cues (in particular high intervening element variability; Gómez, 2002), which are 

known to assist NAD learning. 
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Furthermore, very few artificial grammar learning studies have overtly tested concurrent 

adjacent and non-adjacent dependency learning in humans (Deocampo et al., 2019; Vuong et al., 

2016; Romberg & Saffran, 2013). In these studies, results varied. Romberg & Saffran (2013) found 

that there was a trade-off between the simultaneous learning of ADs and NADs by individuals under 

conditions of high item variability, when ADs were probabilistic and NADs were nondeterministic, 

whilst online testing by Vuong et al. (2016) under a serial recall task revealed no significant 

differences between NAD and AD sensitivity under conditions of low variability.  Deocampo et al. 

(2019) found that AD learning was more robust than NAD learning, as did Vuong et al. (2016) 

during offline testing, whilst Romberg & Saffran (2013) found that NADs were more salient. 

Critically, however, none of these studies incorporated ADs and NADs between identical dependent 

items (i.e. xAB or AxB, a situation that also occurs in language; Deocampo et al., 2019), randomly 

intermixed across trials. It is possible that, by incorporating shared dependents across multiple 

distances, the adjacent and non-adjacent relationships can be generalised to produce a single cognitive 

representation of a flexible relationship over a variable distance (AB). Likewise, the ecologically 

valid “starting small” approach probably serves a similar purpose, highlighting a non-adjacent 

dependency by anchoring it to an earlier adjacent representation (Lany et al., 2007; Lany & Gómez, 

2008; Lai & Poletiek, 2011). Both design constraints might explain why, under this task, NAD and 

AD performance is matched and correlated. 

Previous statistical learning studies have suggested that subjects are extremely sensitive to the 

probability of temporally transitioning from an item to the one immediately following it (first order 

transitions), with even infants apparently able to use these statistics to group items into word-like 

units (Saffran, Aslin, et al., 1996; Saffran, Newport, et al., 1996; Aslin et al., 1998). Humans have 

also been shown to be sensitive to higher order statistics, potentially up to third-order statistics (those 

that take into account a history of three preceding items; discussed in Cleeremans & McClelland, 

1991). However, by generalising learning across distances, a subject may avoid needlessly integrating 

higher-order transitional information to process a non-adjacent dependency, but rather simplify the 

task by filtering out irrelevant or unreliable information, such as low-probability intervening 

elements, and assessing what remains using a simple first-order system. This would be more 

computationally efficient and effective than attempting to integrate probabilistic transitional 

information over multiple items (i.e. attempting to resolve Ax and xB or even 𝑝𝑝(𝗕𝗕 | 𝗔𝗔, 𝘅𝘅) to 
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assess the likelihood of AxB), an approach which could not easily support detection of 

relationships spanning low- or zero-probability intervening words, such as those featured in this task 

(and in real sentences). 

2.5.4 Implicitness of the task and its measures 

Implicit learning is the process of learning without awareness. Historically, AGL tasks were 

conceived as a means of studying implicit learning, but the implicitness of these tasks is the subject 

of ongoing discussion (DeKeyser, 2003). Here, grammaticality judgement accuracy was clearly 

correlated with questionnaire measures of explicit task awareness (both subjective confidence in the 

participant’s own performance, and the number of grammatical rules consciously identified). This 

is strongly suggestive that the grammaticality judgement task draws on explicit awareness of the 

grammar, consistent with existing study suggesting it engages reflection-based decision processes 

(Christiansen, 2019). Eye tracking evidence (measuring regressions – right-to-left eye movements – 

during English reading by native and second-language speakers) likewise suggests that untimed 

grammaticality judgement tasks measure explicit task knowledge (Godfroid et al., 2015). 

Despite this finding, the explicitness of a task metric does not imply explicitness of the entire 

task, which might invoke both explicit and implicit knowledge. Previous studies have demonstrated 

that indirect measures of sequence recognition such as reaction times may be more sensitive indices 

of learning than accuracy on explicit judgements (Batterink et al., 2015), and thus reveal implicit 

learning more effectively. This is a perspective strongly supported by our results, where reaction time 

effects were observed at the group level, but also separately within both the group who performed at 

ceiling levels on the explicit grammaticality judgement task, and the group of chance performers who 

did not demonstrate explicit knowledge of the grammar. Reaction times thus proved to be a sensitive 

measure of learning in this cohort, even in the absence of explicit awareness. Even the magnitude and 

direction of reaction time effects was remarkably similar in both the ceiling and chance performers, 

showing that the latency of responses to ungrammatical sequences was approximately 130 ms longer 

than that to grammatical sequences. This is consistent with an AGL study by Cock (2010), which 

found that response times were faster (specifically ~140 ms faster) for grammatical than 

ungrammatical test exemplars. However, it is generally difficult to meaningfully compare such 

effects across studies, given the very dissimilar demands placed on participants. 
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2.5.5 Suitability a s an electrophysiologica l ta sk 

Analysis of the questionnaire responses showed that explicit task performance was 

significantly negatively correlated with subjective tiredness, which suggests that sleep-deprived 

neurosurgical patients (Cumming, 1984) will experience reduced grammaticality judgement 

performance relative to this cohort. However, as we have seen, most participants were able to 

concurrently learn the ADs and NADs within the grammar, as measured by grammaticality 

judgement performance, and even in those who only demonstrated chance performance, reaction 

time effects showed sensitivity to the grammar. In principle, therefore, this task has potential as an 

electrophysiological paradigm to investigate the neural substrates of structured sequence learning. 

2.6 Conclusion 

We found that participants could concurrently learn both adjacent and non-adjacent 

dependencies under a novel artificial grammar learning paradigm, exhibiting learning at a group level, 

and with more than half of participants performing at ceiling levels on a grammaticality judgement 

task in the presence of naturalistic cues to learning. Moreover, participants performed equally well 

on both dependencies, potentially generalising across them. We also showed that grammaticality 

judgement is both cognitively demanding and reflects explicit knowledge. Finally, we demonstrated 

that even in those participants performing at chance using the grammaticality judgement measure, 

they still exhibited reaction time effects of the same direction and magnitude as those seen in the 

ceiling performers, suggesting that reaction times reflect implicit learning of the grammar, and that 

implicit learning can still be observed in the absence of explicit knowledge of this grammar. 

This study adds to the hitherto extremely limited literature on concurrent dependency learning, 

shedding light on the multifactorial influences affecting adjacent and non-adjacent dependency 

learning under a common task. Similarly, it adds to the limited literature assessing reaction time and 

grammaticality judgement measures as measures of implicit learning under a common task. Despite 

these findings, however, our understanding of the neural mechanisms supporting structured 

sequence processing remains limited. In light of the learning achieved here, it is therefore of vital 

importance that we better characterise human neural responses to this and other AGL tasks. This is 

the subject of the following chapter.  
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Chapter 3. Electrophysiological signatures of grammaticality in the human 

brain 

 

 

 

 

 

 

The work presented in this chapter was primarily conducted by the author, except where explicitly 

stated. The author designed and implemented the sequence learning task in MATLAB following 

discussion with academic supervisors. The medical and surgical team at Iowa University Hospitals 

and Clinics undertook clinically indicated assessment, imaging and implantation of intracranial 

electrodes in human neurosurgical patients. Members of Iowa University’s Human Brain Research 

Laboratory (HBRL) confirmed contact coordinates and regions of interest through co-registration and 

parcellation of structural imaging. The task was executed by our on-site colleague Zsuzsanna Kocsis, 

to whom we remain indebted, or by the author and HBRL staff members during collaborative visits. 

Subsequent electrophysiological analysis and writing were conducted by the author. 

Academic supervisors provided additional advice, comments and discussion. 
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3.1 Abstract 

The brain is capable of learning covert structure over time without awareness. To measure these 

abilities, Artificial Grammar Learning (AGL) tasks expose participants to sequences conforming to 

a covert set of ordering rules (a grammar), and subsequently assess participants on their ability to 

distinguish novel “grammatical” sequences from “ungrammatical” sequences, for example by way of 

a grammaticality judgement task. These tasks can reveal sensitivity to proto-syntactic structure in the 

relative absence of semantic confounds. We previously revealed implicit and explicit sensitivity to 

grammatical violations in a healthy adult cohort under an auditory AGL task. The AxB task includes 

sequences containing dependencies between neighbouring items (adjacent dependencies) and 

between items separated by an uninformative intervening item (non-adjacent dependencies). 

Key regions of a frontotemporal language network appear to exhibit distinct patterns of engagement 

in response to different types of dependency in both natural language and AGL tasks. In this study, 

we recorded behavioural and intracranial responses in 12 neurosurgical patients as they undertook 

the AxB task, in order to characterise neural responsiveness to sequence grammaticality 

manipulations at a high spatiotemporal resolution. Behavioural results did not provide confirmation 

of implicit or explicit sensitivity to grammaticality, likely due to confounds specific to the 

hospitalised patient population. However, previous research has revealed automatic neural 

responsiveness to syntactic manipulations even in the absence of conscious awareness. Consistent 

with this, time- and time-frequency domain analyses revealed statistically significant differences 

between neural responses to specific grammaticality conditions in regions including left inferior 

frontal gyrus (IFG) pars opercularis, right middle temporal gyrus and the right hippocampus. 

Critical linguistic and AGL sequencing operations have been associated with canonical deflections 

of electroencephalographic (EEG) waveforms (ERPs), including two components associated with 

the processing of syntax, the left anterior negativity (LAN) and syntactic positive shift (P600). Here, 

we report a significant LAN-like response in the time-domain data within IFG pars opercularis, 

which has previously been implicated in the generation of these components, and more generally in 

the resolution of syntactic dependencies. 

Overall, these results provide novel insights into the automaticity of grammaticality responses, and 

the location and syntactic relevance of classical ERP components under a non-linguistic task.  
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3.2 Introduction 

The human brain exhibits an impressive facility for sequence learning, readily detecting 

statistical relationships between items presented over time in both the auditory and visual modalities 

(Henin et al., 2021; Milne et al., 2018; Stobbe et al., 2012). Remarkably, results collected under 

statistical sequence learning tasks have shown that we can learn to discern these statistical regularities 

incidentally, and seemingly without awareness, from mere exposure (Reber, 1967; Folia & Petersson, 

2014), and even in a matter of minutes (Saffran, Aslin, et al., 1996; Saffran et al., 1997). Structural 

relationships (or dependencies) between ordered items also form part of the fabric of our everyday 

experience. These include dependencies between neighbouring items, and between items separated 

from one another (adjacent and nonadjacent dependencies). In particular, language incorporates 

complex dependencies, including adjacent and nonadjacent dependencies, at multiple structural 

levels. These dependencies obey specific rules (syntax) that ultimately become innately familiar to us, 

but which, much as in statistical learning tasks, we largely learn incidentally, and seemingly without 

awareness, from exposure to the utterances of others during development (Peter & Rowland, 2019). 

A major source of evidence in the study of statistical sequence learning has been the artificial 

grammar learning (AGL) paradigm (Reber, 1967; Miller, 1958). During an AGL task, a subject is 

exposed to sequences of nonsense items ordered so as to conform to a covert grammar, and 

subsequently assessed on their ability to distinguish novel “grammatical” from novel 

“ungrammatical” sequences. Although originally intended specifically for the investigation of 

implicit learning (the process of learning without awareness), AGL tasks have been heavily utilised 

to study the learning of specific types of dependencies in sequences, in both humans and other species 

(ten Cate et al., 2020). Furthermore, these types of task continue to be vital to our efforts to 

characterise the neuronal substrates of sequence processing. Natural language exhibits a salience and 

structural complexity arguably unmatched by other sequential stimuli, but it contains more than 

syntax alone; it also contains meaning (semantics) and intent (pragmatics), and as such can evoke 

strong imagery or emotional responses that have the potential to recruit networks across “more or 

less the entire brain” (Hertrich et al., 2020). By contrast, AGL tasks can reveal responses to temporal 

structure in relative isolation from semantic influences (Petersson et al., 2012). The characterisation 

of human sequence processing abilities, and their neuronal underpinnings, thus benefits from the 

triangulation of evidence obtained under both statistical learning and natural language tasks. 
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Findings under natural language and statistical sequence learning tasks suggest the 

involvement of not only domain-specific mechanisms, but also a domain-general facility for proto-

syntactic processing (Milne et al., 2018; Frost et al., 2015; Petkov & Jarvis, 2012; Conway & 

Christiansen, 2006). For example, despite much behavioural investigation into the extent to which 

sequencing knowledge can transfer between sensory modalities, there remains little consensus on the 

topic; some studies have provided evidence that cross-modal transfer does not readily occur (Conway 

& Christiansen, 2006; Frost et al., 2015; Li et al., 2018), and others have shown that it does (Kemény 

& Németh, 2017; Durrant et al., 2016). Whilst these results may not argue strongly for a wholly 

domain-specific or domain-general perspective, they hint at the potential relevance of both types of 

system. In line with this, other behavioural studies have provided clearer evidence for the 

involvement of a domain-general sequence learning system. Humans and other species exhibit 

commonalities in behaviour under sequence learning tasks across modalities (Seitz et al., 2007; Milne 

et al., 2018). Furthermore, performance on language tasks is known to be correlated with 

performance on more abstract sequence learning tasks (Misyak & Christiansen, 2012; Misyak et al., 

2010; Conway et al., 2010; reviewed in Ettlinger et al., 2016). Finally, both developmental and 

acquired conditions have been shown to impact on both language and sequence learning abilities, 

despite relative sparing of other faculties. This has been demonstrated in participants with diagnoses 

including developmental dyslexia (Pothos & Kirk, 2004), specific language impairment (Evans et al., 

2009; Hsu et al., 2014) and aphasia (Goschke et al., 2001; Christiansen et al., 2010; Cope et al., 2017). 

A body of behavioural evidence therefore suggests that domain-general processes contribute to 

sequence learning. 

Neuroimaging evidence also supports the assertion that sequence learning and language are at 

least partly supported by domain-general operations. By comparing neural responses to natural 

sentences of varying syntactic complexity, imaging studies have revealed differential engagement of 

regions within a core system known to be involved in the processing of natural language syntax in 

humans, a left-lateralised frontotemporal language network (Friederici, 2011). This network appears 

to respond in a corresponding manner to manipulations of artificial grammar complexity (Friederici, 

Fiebach, et al., 2006; Friederici, 2011; Bahlmann et al., 2009; Petersson et al., 2012), suggesting that 

it has a broad role in the discernment of temporal structure. Thus, a mechanistic understanding of 



76 
 

this network appears relevant not only to our understanding of language, but also to cognition in 

general. 

The frontotemporal language network comprises key areas in ventrolateral prefrontal, 

temporal and temporoparietal cortices (Friederici, 2011), including subregions of left inferior frontal 

gyrus (Brodmann Areas 44/45, incorporating Broca’s area; Broca, 1861); the frontal operculum; 

superior temporal gyrus; and areas of the temporoparietal junction (TPJ), including angular gyrus 

and supramarginal gyrus (which correspond to parts of Wernicke’s area; Binder, 2015; Wernicke, 

1874, 1881). The inferior frontal gyrus (IFG), in particular, has long been associated with both 

language production and comprehension (Sahin et al., 2009; Broca, 1861), although its precise 

function is the subject of debate (Friederici, 2011). Its role in language has been variously surmised 

to encapsulate: perceptual conflict resolution (Hsu et al., 2017); general action observation and 

execution (Molenberghs et al., 2012; Pulvermüller & Fadiga, 2010; Rizzolatti & Arbib, 1998); verbal 

working memory, especially working memory for syntactic content (Yan et al., 2021; Rogalsky et al., 

2008; Smith & Jonides, 1999; Caplan & Waters, 1999); and specific processes of syntactic unification 

and structure-building (Matchin & Hickok, 2020; Hagoort, 2005; Friederici, 2002; Grodzinsky, 

2000). In particular, the engagement of ventral frontal regions, including IFG and frontal 

operculum, has been observed to vary with the complexity of sequencing operations, implicating 

frontal operculum in the processing of adjacent dependencies, and subregions of IFG in the 

processing of more complex dependencies (Friederici, Bahlmann, et al., 2006; Bahlmann et al., 2009; 

Petersson et al., 2012; as reviewed in Wilson et al., 2017). In relation to sequence learning, relatively 

specific roles have also been suggested for the TPJ, in the integration of both syntactic and lexical-

semantic content in language (Price et al., 2016; Friederici, 2011, 2012), and in the integration of 

“what” and “when” encodings to facilitate sequencing rule generalisation (Orpella et al., 2020). 

Similarly specific roles have been suggested for the superior temporal gyrus, which has been 

implicated in both the ordered representation of categorical speech and/or phrase-level encodings, 

posteriorly (Yi et al., 2019; Chang et al., 2010), and in higher order lexical-semantic/syntactic 

integration, anteriorly (Brennan et al., 2012; Rogalsky & Hickok, 2009; Friederici et al., 2009). 

From these findings, it appears that there are emerging points of agreement on the 

domain-general roles of specific brain regions in sequence processing. However, in order to clarify 

these roles, we must characterise dynamic neuronal responses at a suitably high temporal resolution. 
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Much of what we know about the time course of sequence processing thus derives from the results 

of electroencephalographic (EEG) and electrocorticographic (ECoG) studies, capable of measuring 

mega- and mesoscale neuronal population responses on the millisecond scales relevant to language 

(Beres, 2017). Intracranial or scalp EEG data can be averaged across trials to produce an event-related 

potential (ERP), describing time-locked responses to selected events (Sur & Sinha, 2009), interpreted 

as reflecting specific neurocognitive processes (Roach & Mathalon, 2008). A rich variety of EEG 

studies has revealed canonical components within ERPs elicited by manipulations of natural 

language and non-linguistic sequential stimuli. ERP components are stereotyped waveform features, 

characterised by commonalities in response latency, topographic distribution and polarity. Three 

components in particular have been associated with violations of sequence structure within and 

outwith language: the left anterior negativity, the N400, and the P600. These are discussed below. 

The left anterior negativity (LAN) is a negative deflection in the ERP at around 300-500 ms 

elicited by certain classes of expectation violation (Gunter et al., 2000). Though topographically 

variable (Alemán Bañón & Rothman, 2019), the component is thought to emanate from left-

hemispheric anterior regions. The LAN has been strongly associated with violations of 

morphosyntactic dependencies in natural language, including number and gender disagreement, 

verb tense violations, and subject-verb disagreement (Friederici & Meyer, 2004; Angrilli et al., 2002; 

Gunter et al., 1997; Münte et al., 1993; Kutas & Hillyard, 1983). In particular, it has been suggested 

that the LAN is most likely to be elicited by local (adjacent) dependency violations (Molinaro, 

Barber, et al., 2011; Molinaro, Vespignani, et al., 2011). A probable variant of the LAN, observed at 

a shorter latency of around 150-300 ms (known as the early left anterior negativity, or ELAN), has 

also been observed in cases where words in a sentence are from irreconcilable syntactic categories, 

such that it is impossible to build local phrase structure (Friederici, 2002). However, it has been 

suggested that the LAN does not specifically index the morphosyntactic processing of language, but 

rather represents broader proto-syntactic or morphemic expectation processing (Bornkessel-

Schlesewsky & Schlesewsky, 2019). Consistent with this account, components with similar 

properties to the LAN have been observed in response to non-linguistic sequence structure 

violations, with sufficient exposure (Friederici et al., 2002; Hoen & Dominey, 2000). 

More controversially, it has been suggested that the LAN does not in fact exist at all, but that 

it is in fact an epiphenomenon of two other components: the P600 and the N400 (Gonda et al., 
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2020). The P600 (or syntactic positive shift, SPS) is characterised by a late positive deflection in the 

ERP (500-1000 ms latency) with a broadly centro-parietal topographic distribution, observed in 

response to a wide variety of expectation-driven syntactic anomalies in natural language (Gouvea et 

al., 2010; Friederici et al., 1993; Hagoort et al., 1993; Neville et al., 1991; Osterhout & Holcomb, 

1992). The P600 has also been observed in response to dependency violations in AGL tasks (Silva et 

al., 2017; Tabullo et al., 2013; Christiansen et al., 2012; Lelekov-Boissard & Dominey, 2002). It has 

been suggested that the P600 indexes retrieval and structure-building processes, which appear to 

explain its elicitation not just by syntactic anomalies, but also in the resolution of well-formed long-

distance dependencies (Gouvea et al., 2010). By contrast, the N400 is a negative deflection arising at 

latencies of 250-600 ms (Kutas & Hillyard, 1989, 1980) with a centro-parietal topographical 

distribution (Kutas & Federmeier, 2011), conventionally held to index lexical retrieval and semantic 

integration processes (Delogu et al., 2019). However, it has recently been proposed that the N400 

might conceivably be elicited by both semantic and syntactic violations, but that it is spuriously 

characterised as a LAN in some cases due to the interaction of a broadly distributed N400 and right-

posterior P600 (Tanner, 2019; Tanner & Van Hell, 2014). Despite this suggestion, analysis of at least 

one large dataset (N = 80 participants) has demonstrated that the LAN is observable at the level of 

individual participants and trials, indexing syntactic agreement independently of the N400 (Caffarra 

et al., 2019). In summary, therefore, whilst these components (LAN, N400, P600) remain 

incompletely understood, and the source of much debate, all are of potential relevance to a complete 

account of sequence processing. 

As well as analysing continuous recordings in the time domain using ERPs, neural responses 

can also be characterised over time in the frequency domain, through spectral decomposition of 

recorded signals into content at different frequencies (Makeig, 1993; Makeig et al., 2004). Activity 

in specific frequency bands is considered to reflect differential contributions of distinct oscillatory 

processes (Herrmann et al., 2014). The event-related spectral perturbation (ERSP; see Makeig, 1993) 

is a now-ubiquitous time-frequency measure that comprises the mean power of the 

electrophysiological spectral decomposition across trials, computed relative to defined baseline 

activity. This is distinct from the information provided by event-related potentials (ERPs), which 

reflect the mean time-domain signal over trials. Using ERPs, activity across trials can “cancel out” if 

the individual trial responses are not phase-aligned, but with ERSPs this is not the case. 
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Consequently, whilst some time resolution is sacrificed to resolve frequency-specific detail, ERSPs 

can reveal more about the brain’s electrophysiological response by describing not only phase-locked 

activity, but also the time-locked, phase incoherent activity not captured by ERPs.  

Prior EEG studies have revealed evidence of characteristic time-frequency responses to 

sequencing violations. In particular, violations of natural language syntax eliciting a P600 have been 

associated with a beta (~13-30 Hz) and alpha (~10-13 Hz) band decrease exhibiting a broad 

topographical distribution (Schneider & Maguire, 2018; Lewis et al., 2016; Kielar et al., 2014; 

Davidson & Indefrey, 2007). At least one study has also reported theta (~4-10 Hz) increases in 

conjunction with alpha decreases (Regel et al., 2014). Triangulating these and other observations 

during sentence comprehension, it has been posited that, during the presentation of linguistic 

content, words or phrases are repeatedly syntactically and semantically unified over time to build 

structure unless semantic or syntactic anomalies disrupt the process, and that successful unification 

is associated with frequency-band-specific power increases in primarily frontal regions of the 

frontotemporal language network, including IFG (Bastiaansen & Hagoort, 2015; Hagoort, 2013). 

Accordingly, some studies have demonstrated that power in implicated bands gradually increases 

during the course of error-free sentence presentation (Segaert et al., 2018; Bastiaansen et al., 2010; 

Bastiaansen & Hagoort, 2015). Moreover, by comparing EEG responses to correct sentences, 

syntactically correct but meaningless sentences, and random word lists, disruption of semantic 

unification has been associated with a relative decrease in gamma power (~30-150 Hz) relative to 

content that can be successfully unified, whilst unsuccessful syntactic unification has been associated 

with a relative decrease in beta power, also in line with previously reported studies (Bastiaansen & 

Hagoort, 2015; Bastiaansen et al., 2010). However, this clear frequency-specific division of 

functionality has not been universally replicated, with compelling syntactic effects also observed in 

the gamma band (for example, Nelson et al., 2017), and a number of EEG/MEG 

(magnetoencephalography) studies reporting alpha/beta decreases in response to semantic violations 

(Kielar et al., 2018, 2015, 2014; Wang et al., 2012; Luo et al., 2010). It has been suggested that these 

findings can be reconciled with a more general predictive coding account (Friston & Kiebel, 2009; 

Rao & Ballard, 1999) in which beta synchronisation indexes the maintenance of phrase-level 

predictions destined for lower-order regions, and gamma activity reflects prediction errors destined 

for higher-order regions (Lewis et al., 2015; Lewis & Bastiaansen, 2015; Prystauka & Lewis, 2019). 



80 
 

As has been seen, many of the reported studies on syntactic processing have utilised natural 

language sentences. However, there remains a paucity of electrophysiological data collected under 

controlled statistical learning studies in humans. Moreover, neural responses to sequences not only 

contain information on the very short timescales captured by EEG (Beres, 2017), but also differ 

considerably even between immediately adjacent regions of the brain, for example within the inferior 

frontal gyrus, where adjacent subregions seem to be functionally heterogeneous (Wilson et al., 2017; 

Friederici, 2011). This motivates the use of imaging techniques with a high spatiotemporal 

resolution, such as electrocorticography (ECoG), which can produce data on a scale of millimetres 

by milliseconds (≤ 10 mm, ≥ 5ms; Asano et al., 2005). 

In the previous chapter, behavioural evidence was presented for simultaneous adjacent and 

non-adjacent dependency learning by a neurotypical cohort of healthy adults, using a novel auditory 

AGL paradigm, the AxB task. In this study, we extended this work by characterising behavioural and 

electrophysiological responses in 12 intracranially monitored neurosurgical patients undertaking the 

AxB task. By undertaking both time- and time-frequency domain analyses on the recorded 

intracranial data, we aimed to clarify neural responses to non-linguistic sequential stimuli within the 

frontotemporal language network, adding to the limited body of existing ECoG evidence. In 

particular, we aimed to take advantage of a reported linear correspondence between ensemble ECoG 

and EEG responses (Kaur et al., 2013; Krusienski & Shih, 2010) in order to make comparisons with 

the extensive body of existing EEG evidence on the nature of syntactic ERP components. 

We formed a number of predictions of expected behavioural and electrophysiological 

outcomes under this task. Behaviourally, we predicted that, as in healthy adult participants 

(see Chapter 2), adult neurosurgical patients would exhibit sensitivity to violations of the AxB 

grammar. Because analysis in the healthy cohort had previously revealed that self-reported fatigue 

was associated with lower scores on the explicit grammaticality judgement task, we also predicted 

lower scores in the patient cohort following implantation as a result of the influences of the hospital 

environment and surgical/medical interventions. Irrespective of explicit measures of performance, 

however, we predicted that reaction time effects would reveal implicit sensitivity to the grammar even 

in low performers, as in the healthy cohort. Neurophysiologically, we predicted that the AxB task 

would elicit neural responses in regions across the frontotemporal language network. In 

consideration of prior findings showing neural sensitivity to syntax even in the absence of awareness 
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(Batterink & Neville, 2013), as well as our previously reported reaction time effects (see Chapter 2), 

we predicted that both ERSPs and ERPs would reveal implicit and automatic sensitivity to the 

sequence structure. In particular, we expected sequences to elicit approximations of canonical ERP 

components including left anterior negativity and the P600, modulated by sequence grammaticality, 

and detectable in regions including ventrolateral prefrontal cortex. We also expected that any 

detected LAN would be enhanced in the “adjacent” sequencing violations relative to the “non-

adjacent” violations, in line with previous suggestions (Molinaro, Barber, et al., 2011; Molinaro, 

Vespignani, et al., 2011). Finally, when comparing responses in the time-frequency domain, we 

predicted that violations of sequence structure would elicit suppressed alpha/beta power in critical 

regions, relative to consistent sequences, and that high gamma power would conversely be relatively 

enhanced for violation sequences versus consistent sequences.  

Behavioural findings in this study revealed that the task was extremely challenging for the 

neurosurgical cohort, even with the inclusion of additional staged exposure phases designed to 

support learning. Chance performance was observed at the group level on the grammaticality 

judgement task, and no significant differences were observed between mean reaction times under 

different experimental conditions. However, a sliding window analysis of individual patient sessions 

did show spells of good performance. Furthermore, despite limited behavioural confirmation, 

differences in the neural responses of specific regions were observed between the experimental 

conditions at the group level, chiefly observable in the time domain. Moreover, these effects 

corresponded to canonical LAN effects reported in the electroencephalographic (EEG) literature, 

suggesting automatic and implicit reactivity to the artificial grammar, despite the difficulty in 

obtaining unequivocal behavioural data. Across all trials, task-related responses were also observed in 

the time-frequency domain within critical regions of the frontotemporal language network. 

However, the time-frequency effects of the task were difficult to discern using classical univariate 

analyses, as exemplified by the difficulty in identifying effects even in the highest-performing 

participant. As a consequence, we conclude that a multivariate analytical approach, rather than 

univariate electrophysiological analysis, is a possible route to the clarification of fronto-temporal 

sequence learning mechanisms.  
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3.3 Methods 

3.3.1 Participant recruitment and ethics 

All participants were adult neurosurgical patients (n = 12 intracranially recorded under the 

task, 7 male, 5 female, ages 19–55, median 33 years; see Table 3.1) diagnosed with medically 

refractory epilepsy and undergoing chronic intracranial pre-surgical monitoring at University of 

Iowa Hospitals and Clinics (UIHC) to identify seizure foci suitable for resection. Research protocols 

were approved by the University of Iowa Institutional Review Board (IRB ID No.: 200112047) and 

National Institutes of Health. Participation in the study did not impact on clinical monitoring or 

management. Informed written consent was obtained from each subject prior to their participation 

in the study, and participants were free to withdraw consent at any time without any impact on 

clinical evaluation. Sessions were suspended for at least three hours if a seizure occurred, and only 

resumed if the participant was willing and alert. These ethical guidelines are consistent with 

European Ethical Guidelines (Helsinki Declaration and H2020 EU guidelines). 

Human intracranial electrode implantation is purely clinically motivated, a fact which 

inevitably constrains cohort size in human ECoG studies. However, before the end of the study, and 

to roughly determine the feasibility of collecting sufficient data, an a priori power analysis (Faul et 

al., 2007) was conducted using AxB task data previously collected in the Newcastle cohort 

(see Chapter 2). Based on group performance on the final run of the task in Newcastle (n = 50, 

μ = 0.77, σ = 0.22, yielding effect size d = 1.23), it was revealed that, for a study on any similarly 

behaving cohort to reach one-tailed nonparametric significance of performance versus chance at the 

group level (to α = .05), the minimum required sample size would be approximately 8 participants 

(see also Appendix 2: Supplementary figures, Figure 0.1). This was ultimately exceeded with the 

inclusion of 12 patients in the study. 

Prior to participation, each patient completed audiometric and neuropsychological 

evaluation. No participants were found to have deficits in hearing considered likely to impact on 

performance of the AxB task. Four participants exhibited mild impairments of auditory attention, 

working memory or verbal fluency but these were not considered likely to prevent successful 

performance of this task. 
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Table 3.1: Cohort of neurosurgical participants. 

No. 1 2 3 4 5 6 7 8 9 10 11 12 
Identifier 394 403 405 416 423 425 429 430 434 442 456 460 
Age, ♂/♀  23M 55F 19M 32M 49M 52F 32F 28M 40F 34F 31M 52M 

Handedness R R R R R L R R R R L R 
Wada 
result 

L L L L L - - - L L L L 

  

3.3.2 Task design and stimuli 

The task design largely followed the procedure described in Chapter 2, using slightly 

different computer peripherals (see below) and with the insertion of two additional phases before 

the rest of the task began: passive pair exposure and active pair learning assessment. These phases were 

intended to augment the incremental learning process. In the passive pair exposure and pair learning 

assessment phases, participants were first presented with 5 sequences each of the two essential 

“paired” elements, A1B1 or A2B2, words which remain associated with each other in all later 

grammatical stimuli of the task. This phase was therefore designed to promote attendance to the most 

task-relevant features of the stimuli. Furthermore, understanding this simple relationship would 

allow participants to most effectively extract the dependencies from subsequent sequences and thus 

potentially enhance later performance. During assessment, participants were tested on their ability 

to identify correct and incorrect AB pairings in 12 stereotyped trials. These contained the following 

patterns in the following order: A1B1 (correct), A1B2 (incorrect pairing), A1B1 (correct), B1A1 

(incorrect order), B2A1 (incorrect order and pairing), A1B1 (correct), A2B2 (correct), A2B1 (incorrect 

pairing), A2B2 (correct), B2A2 (incorrect order), B1A2 (incorrect order and pairing), A2B2 (correct). 

This stereotyped ordering was designed to appear random whilst avoiding random clustering of 

conditions, to avoid impeding learning. If a participant failed to reach criterion performance (correct 

responses to at least 9 of the 12 trials), the pair exposure and assessment were repeated once more 

before proceeding to the usual exposure and test phases. 

The task was run in an electrically shielded suite within the Clinical Research Unit of UIHC 

by members of the Human Brain Research Laboratory (HBRL) and, on three occasions, by the 

author. During performance of the task, which took 25–40 minutes, the door was closed, lights were 
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dimmed and the room was quiet except for stimulus playback. Playback was through two free-field 

speakers positioned 1 metre from the participant bilaterally. Forced-choice keyboard responses were 

provided through a handheld two-button response box. Participants carried out each phase of this 

task whilst reclined in a hospital bed, after receiving scripted verbal instruction from the researcher 

running the protocol (who remained within the suite, providing no task direction until the trials of 

each phase were complete). Following completion of each phase, the participant was queried on their 

willingness to continue with the task, and their wakefulness was assessed. Before and after the entire 

task, the participant’s wakefulness was again assessed and they were queried on their willingness to 

continue with other experimental protocols. 

3.3.3 Electrode configuration and acquisition 

Participants were implanted with clinically indicated subdural ECoG arrays and depth 

electrodes. Electrode arrays were manufactured by Ad-Tech Medical (Racine, WI, USA). Depth 

electrode arrays each comprised 4-8 macro contacts with 5-10 mm spacing. ECoG arrays each 

comprised a grid or strip of platinum-iridium disc electrodes (2.3 mm exposed diameter, 5-10 mm 

spacing) encapsulated by a silicon membrane. Recordings were referenced to a subgaleal strip 

electrode. Of the cohort of n = 12 chronically implanted participants, 7 had left-hemispheric 

electrode coverage, 4 had right-hemispheric coverage, and one bilateral (see Figure 3.1). Across the 

cohort, 9 of the participants had previously demonstrated clear left-hemispheric language dominance 

during an intracarotid sodium amobarbital procedure (IAP; Wada, 1949) conducted by the clinical 

team, whilst of the remaining three participants without IAP results, two were presumed left-

dominant on the basis of right-handedness, and one was of unknown status, being left-handed 

(Knecht et al., 2000; again see Table 3.1). Overall, there was coverage of the language-dominant 

hemisphere only in 6 of the 11 left-dominant participants, of the non-dominant hemisphere only in 

4 participants, and of both hemispheres in one participant. 

Local Field Potential (LFP) data was acquired with a Neuralynx Atlas system (Neuralynx, 

Bozeman, MT, USA), amplified, hardware bandpass filtered to between 0.1 Hz and 500 Hz 

(5 dB/octave roll-off), and digitised at a sample rate of 2000 Hz. A room microphone and 

presentation system auxiliary sound output were both also simultaneously recorded (at a minimum 
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of 16000 Hz, largely filtered 0–4000 Hz*) using the Neuralynx system, along with digital events 

generated by the MATLAB task script. Behavioural data including the pattern of responses for each 

participant was also stored by the task script for offline analysis. 

Electrode locations were confirmed in each patient by the clinical and HBRL team via co-

registration of pre- and post-implantation structural imaging supported by intraoperative 

photography (Nourski & Howard, 2015). Recording sites were linearly co-registered to the MNI152 

T1 standard brain, placing them into MNI coordinate space. All recording sites were subsequently 

assigned to standard anatomical regions of interest (ROIs) via anatomical reconstruction of electrode 

location. This was aided in the case of subdural arrays by automated parcellation of cortical gyri 

(Destrieux et al., 2010, 2017) using the FreeSurfer image analysis software suite 

(http://surfer.nmr.mgh.harvard.edu/), and in the case of depth electrodes with reference to 

structural MRI sections. 

Electrode recordings from sites implicated in seizure activity were excluded from subsequent 

electrophysiological analysis. Additionally, for the purposes of the study reported here and in 

Chapter 5, only sites of either hemisphere assigned to the ROIs listed in Table 3.2 below were 

analysed. These sites were primarily included on the basis of known relation to the auditory or 

frontotemporal-parietal language systems. 

 

                                                             

 

 

 

* In one case sound input was recorded at 32 kHz with filter cut-offs of 0.1-8 kHz; in another at 24 kHz and filter cut-
offs of 0-6 kHz. Sound input channel data was used by the experimenter for validation of event alignment only and all 
settings were beyond adequate for this purpose. 
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Figure 3.1: Surface electrode coverage across the implanted cohort (n = 12). Note that participant 430 had only stereoelectroencephalography 
(sEEG) electrodes implanted, rather than a subdural ECoG array as in the other participants. 
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Table 3.2: Analysed regions of interest (ROIs), channel/subject coverage and 
centroids of channels in each region in MNI space across the cohort (n = 12) 

ROI name Nº channels 

(subjects) 

ROI centroid 

left (x, y, z) 

ROI centroid 

right (x, y, z) 

Heschl’s gyrus (HG) L: 62 (6), R: 29 (4) -44.9, -17.4, 5.9 46.6, -16.7, 3.9 

Superior temporal gyrus 

(STG) 

L: 147 (7), R: 69 (4) -65.8, -19.9, 2.9 68.2, -16.0, 3.1 

Superior temporal sulcus 

(STS) 

L: 7 (4), R: 17 (4) -54.8, -16.2, -12.8 56.1, -13.8, -9.2 

Middle temporal gyrus 

(MTG) 

L: 160 (8), R: 104 (8) -65.7, -32.1, -6.7 66.0, -32.8, -7.0 

Inferior temporal gyrus (ITG) L: 70 (8), R: 24 (5) -52.0, -29.7, -27.3 49.3, -22.3, -33.2 

Inferior frontal gyrus (IFG) 

pars opercularis 

L: 24 (6), R: 9 (4) -58.9, 14.9, 15.3 62.1, 15.2, 12.5 

Inferior frontal gyrus (IFG) 

pars triangularis 

L: 33 (4), R: 18 (4) -54.0, 26.8, 9.3 55.1, 30.8, 10.5 

Inferior frontal gyrus (IFG) 

pars orbitalis 

L: 11 (3), R: 11 (4) -47.0, 36.5, -5.4 50.3, 31.9, -5.1 

Frontal operculum L: 3 (2), R: 1 (1) -34.7, 19.6, -2.3 26.2, 16.5, -16.7 

Insula L: 18 (6), R: 14 (4) -32.8, -3.4, 2.0 36.5, -5.0, -1.3 

Hippocampus L: 7 (4), R: 14 (6) -32.1, -26.6, -11.5 25.1, -17.6, -16.1 

Parahippocampal gyrus 

(PHG) 

L: 22 (6), R: 18 (6) -27.3, -18.8, -24.9 24.6, -17.9, -27.3 

Angular gyrus (AG) L: 37 (5), R: 27 (4) -52.4, -66.3, 34.5 60.2, -55.1, 28.4 

Supramarginal gyrus (SMG) L: 70 (8), R: 41 (5) -62.7, -42.4, 30.5 65.3, -36.6, 27.8 

Middle frontal gyrus (MFG) L: 110 (6), R: 67 (4) -41.0, 29.4, 35.5 45.9, 35.2, 31.2 

Orbital gyrus L: 66 (8), R: 71 (9) -26.1, 32.1, -15.4 29.9, 32.6, -17.1 

Precentral gyrus L: 46 (6), R: 38 (4) -58.4, -3.8, 31.8 57.9, 0.0, 32.8 

Postcentral gyrus L: 38 (7), R: 21 (5) -60.4, -17.1, 33.9 61.8, -12.7, 28.4 
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3.3.4 Pre-processing of channel recordings 

Electrophysiological data were analysed offline using a custom MATLAB library with 

support from the EEGLAB (version 14.1.2; Delorme & Makeig, 2004) and FieldTrip (Oostenveld et 

al., 2011) toolboxes. Neuralynx data were first imported into MATLAB, and ECoG/LFP data and 

line noise removed using the demodulated band transform (DBT; see Kovach & Gander, 2016). Data 

was downsampled to 500 Hz using MATLAB’s “resample” function (which applied to the data a finite 

impulse response, antialiasing lowpass filter with delay compensation) and further denoised by 

discarding the first principal component of the singular value decomposition (SVD) of the highpass-

filtered signal (cutoff 160 Hz; see also methods of Kumar et al., 2020). To minimise jitter, recorded 

digital events were aligned with the auxiliary sound input (down to the per-sample level at 2 kHz) by 

shifting them using a custom event alignment script. Any data fragmented across multiple recording 

files was concatenated into one session, and continuous LFP data from selected channels initially 

epoched from -1500 to 4000 milliseconds around stimulus onset. For all analyses reported in this 

chapter, and most subsequent analyses (see Chapter 5), epochs were then truncated in order to omit 

the period following the earliest recorded button press across the cohort (which occurred at 

~3100 ms post-stimulus-onset), and up to 100 ms prior. This was intended to exclude from analysis 

most activity relating to the overt motor response. This yielded epochs windowed from -1500 to 

3000 milliseconds around stimulus onset. 

3.3.5 Evoked potentia l ana lysis 

Event-related potentials (ERPs), or evoked potentials, are derived from trial averaging of 

time-locked local field potential (LFP) data, and reflect coherent, replicable mega-scale neural 

responses to specific endogenous or exogenous events (Davis, 1939; Luck & Kappenman, 2013). 

Though typically associated with electroencephalographic (EEG) analyses, ERPs can be generated 

from ECoG signals in the same manner. However, the non-invasive nature of EEG has made it an 

accessible and prevalent technique in the cognitive neuroscientific literature and comparison with 

this data can yield useful insights; to this end, ERPs were computed from ECoG and depth electrode 

data at a regional level to support comparison with the EEG literature (Kaur et al., 2013; Krusienski 

& Shih, 2010). These large-scale ERPs were computed from the meso-scale intracranial data by 

averaging time-domain data across trials and within individual regions of interest. The purposes of 

the ERP analysis were thus twofold: 1) to reveal time-domain differences between responses to 
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“violation” and “consistent” sequences with a high temporal resolution; and 2) to determine points 

of correspondence between responses to this task and those reported in the existing EEG literature. 

To calculate ERPs and compute contrasts between conditions, DBT- and SVD-denoised 

continuous channel data were bandpass filtered to retain signal between 0.5 and 100 Hz using a 

windowed sinc finite impulse response filter with very sharp roll-off (Kaiser window, HP: ~50 

dB/octave roll-off; LP: >100 dB/octave roll-off). Continuous data were then split into epochs from 

-1500 to 3000 ms around stimulus sequence onset. Each epoch was baseline-corrected by subtracting 

its baseline mean. Baseline was taken to be 1350 to 1500 ms post-sequence-onset (corresponding to 

the inter-stimulus interval just prior to the third syllable, -150 to 0 ms relative to syllable onset). The 

resultant per-trial signals were then averaged across all trials, and under each condition of interest, to 

produce an “all-trial” ERP as well as ERPs for each of the conditions separately (for example, the 

“violation” and “consistent” conditions). ERPs from channels previously assigned to the same 

anatomical region of interest (ROI) according to the Destrieux parcellation algorithm (Destrieux et 

al., 2010, 2017) were then averaged together across the cohort to produce regional group mean ERPs. 

That is, data in a given region were summarised and statistically tested by aggregation of all electrodes 

across the cohort (as in Nourski et al., 2021; Haufe et al., 2018).This produced a weighted mean 

across participants. This effectively up-weighted those response profiles shared across electrodes in 

participants with the best regional coverage. 

Before commencing statistical inference, and to provide a more appropriate timescale for 

comparison with the EEG literature, ERP data were windowed from 0 to 1000 ms around a point of 

reference 1500 ms into the trial (which was the time of the grammaticality manipulation, the onset 

time of the third syllable, and the end of the baseline period). Statistics were computed on this 

windowed signal and the baseline period only. Group mean ERPs under different conditions were 

subtracted from each other to produce a contrast. For example, “consistent” signals were subtracted 

from group mean “violation” signals to produce a difference wave comparing the amplitudes under 

both conditions. Cluster-corrected permutation testing (10 000 random permutations; or else the 

maximum number of unique permutations of the data, if smaller) was used to compute inferential 

statistics on this difference over time, assessing significance at α = .05 (following the method of Maris 

& Oostenveld, 2007). This involved producing group-level surrogate distributions by permuting 

between conditions the trial-averaged data in electrodes from each subject (as motivated in Cohen, 
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2014; see also Theiler et al., 1992), always maintaining the dependence between electrodes of each 

participant. From these group-level surrogates, a null distribution of t-values was computed using a 

one sample t-test of the difference under the two surrogate conditions compared to 0, for each 

permutation. To determine two-tailed, cluster-corrected significance at each time point, the absolute 

t-values resulting from a dependent samples t-test on the true data (i.e. again, a one-sample t-test of 

the true difference under the two conditions against 0) were first thresholded according to the 

required α to produce supra-threshold clusters. For each observed cluster, the sum of the constituent 

t-values (“cluster mass”) was computed. Likewise, the permutation distribution yielded, for each 

permutation, a set of clusters from which the absolute maximum cluster mass was recorded, 

producing a null distribution of maximum cluster masses. The p-value associated with each cluster 

in the observed data was finally derived from the proportion of permutations where the absolute 

maximum null cluster mass exceeded the absolute observed cluster mass (specifically: 𝑝𝑝 = (𝑖𝑖 +

1) / (𝑁𝑁 + 1), where 𝑖𝑖 is the number of times the absolute maximum cluster mass exceeded the true 

cluster mass, and 𝑁𝑁 is the number of permutations). These p-values, thus already cluster-corrected 

for multiple comparisons, were used to identify time points where neural responses differed 

significantly under each condition at the group level.  

Note that the number of unique permutations always depends on the number of 

independent observations, 𝑜𝑜𝑜𝑜𝑜𝑜, here equal to the number of participants with coverage in the given 

region. For a within-subjects study using dependent-samples testing, the number of unique 

permutations at the group level can be directly computed as 2𝑜𝑜𝑜𝑜𝑜𝑜  (see Maris & Oostenveld, 2007 for 

a comprehensive discussion). In this cohort, at the group level, some regions therefore yielded a 

limited number of unique permutations (see Table 3.2). Since 𝑝𝑝 = (𝑖𝑖 + 1) / (𝑁𝑁 + 1), the 

minimum achievable p-value is constrained in each region according to coverage. Accordingly, 

regional coverage was in some regions insufficient to allow α to be reached under any circumstances, 

and therefore insufficient to allow inferences to be made at the group level. These regions are marked 

in results plots with a dagger (†). 

Prior to visualisation, ERPs were filtered once more to retain signal between 0.5 and 30 Hz 

using a windowed sinc finite impulse response filter with sharp roll-off (Kaiser window, HP: ~50 

dB/octave roll-off; LP: >100 dB/octave roll-off). 



91 
 

Finally, as well as computing ROI-averaged ERP differences, per-contact ERP contrasts for 

every participant were also projected onto a three-dimensional standard brain model (Montreal 

Neurological Institute ICBM 152, Fonov et al., 2009, manually masked to retain only the cerebrum 

using BrainSuite 19b; Shattuck & Leahy, 2002). ERP difference waves were averaged over a specific 

time window for every contact in every participant, and these scalar values projected onto the cortical 

surface. This was performed using the NeuralAct toolbox for MATLAB (Kubanek & Schalk, 2015), 

which permits the creation of group-level cortical activity maps from ECoG by the following 

method. Firstly, locations of individual contacts (in MNI space) were projected onto the cortical 

surface with accuracy by inflating the brain model to produce a smooth convex hull, projecting from 

each contact along its normal to the hull surface, and then mapping this projection back to the 

original undulating cortical surface. Subsequently, activity at each vertex of the cortex was estimated 

by spatially convolving the value at each contact to approximate a localised spread of activity (here, 

using a 2D linear kernel fading to zero at 10 mm diameter), and then averaging values from all 

contributing contacts at every vertex. This yielded a three-dimensional brain showing a continuous 

spatial “heat map” of estimated ERSP differences across the cohort, despite the heterogeneous and 

discontinuous coverage inevitably associated with clinically placed electrodes. 

3.3.6 Time-frequency ana lysis 

Time-frequency analysis was undertaken to reveal frequency-specific responses at the group 

level. Mathematically, time-frequency analysis involves the decomposition of a single time-domain 

signal into multiple contributory time-domain signals of specific frequencies, resulting in an 

estimation of instantaneous power and phase of the original signal in a number of specific frequency 

bands over time (a process known as “spectral decomposition”). Spectral decomposition can be 

performed on any continuous data, including local field potentials recorded with ECoG or depth 

electrodes. In the resulting time-frequency map, activity in specific frequency bands is considered to 

reflect the contribution of distinct oscillatory processes in the brain (Herrmann et al., 2014). 

The event-related spectral perturbation (ERSP; see Makeig, 1993) is a ubiquitous measure that 

comprises the mean power of the electrophysiological spectral decomposition across trials, computed 

relative to defined baseline activity. Time domain data from each channel was transformed into an 

ERSP map by way of a baselined Morlet wavelet transform (using the EEGLAB toolbox; Delorme 

& Makeig, 2004), to reveal frequency-specific power perturbations relative to the pre-stimulus 
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period. Decomposition was performed over 301 linearly spaced frequencies between 3 and 150 Hz, 

and over 100 equally spaced time points2, to produce a 301-by-100 pixel map, normalised relative to 

a pre-sequence baseline beginning at -1500 ms and ending at 0 ms. Here, EEGLAB’s “full” 

normalisation method was applied, which normalises first against per-trial baselines, and then again 

across trials to reduce the impact of individual noisy trials (Grandchamp & Delorme, 2011). 

At the per-subject level, ERSPs were firstly produced across all trials (“all-trial ERSPs”), 

depicting the response relative to the pre-sequence baseline. ERSP maps were also produced for the 

subsets of “consistent” and “violation” trials. From these subsets, a per-subject “violation minus 

consistent” contrast was produced. This was a difference map depicting between-condition 

differences in response amplitude for every computed time and frequency. ERSPs under contrasted 

conditions were transformed prior to comparison so that they shared a common mean baseline. As 

for the ERP analysis, the calculation of group mean ERSPs (and statistical inference on between-

condition contrasts) proceeded by aggregation of trial-averaged data across all electrodes in the cohort 

in a given region. Channels were pooled if falling within identical ROIs according to the Destrieux 

parcellation algorithm (Destrieux et al., 2010, 2017). As at the single-subject level, group-level ERSP 

maps were produced from all trials, as well as for subsets of “consistent” and “violation” trials. From 

these subsets, “violation minus consistent” contrasts were produced.  

The procedures described above were also conducted for inter-trial phase coherence (ITC; see 

Tallon-Baudry et al., 1996) across participants. ITC quantifies the degree to which individual trial 

responses are phase-aligned at a given frequency and time. As with ERSPs, ITC values (range 0 to 1) 

were first calculated for each channel in each participant, then averaged over regional channels 

pooled across the cohort to form group-level all-trial ITC results. 

                                                             

 

 

 

2 Using 2 cycles of input at 3 Hz, linearly increasing cycles at half the rate of frequency increase until 150 Hz. The 
default pad ratio of 2 increased the number of distinguishable frequencies to 301. 
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Also at the group level, exactly as with the ERPs, statistical significance of the ERSP 

differences was again determined by cluster-corrected permutation testing (10 000 random 

permutations; or else the maximum number of unique permutations, if smaller), assessing 

significance at α = .05. That is, group-level surrogate distributions were computed by shuffling the 

ERSP maps from electrodes in each participant between conditions, always maintaining the 

dependence between electrodes. From these group-level surrogates, a null distribution of t-values was 

computed using a one sample t-test of the difference under the two surrogate conditions compared 

to 0, for each permutation. To determine two-tailed, cluster-corrected significance at each time-

frequency point, the results of a dependent samples t-test on the true data (i.e. again, a one-sample t-

test of the true difference under the two conditions against 0) were first thresholded according to the 

required α to produce 2-dimensional supra-threshold clusters in the time-frequency map. For each 

2-D cluster, the sum of the constituent t-values (“cluster mass”) was computed. Likewise, the 

permutation distribution yielded, for each permutation, a set of clusters from which the absolute 

maximum cluster mass was recorded, producing a null distribution of maximum cluster masses. The 

p-value associated with each cluster in the observed data was finally derived from the proportion of 

permutations where the absolute maximum null cluster mass exceeded the absolute cluster mass of 

the true cluster (specifically, 𝑝𝑝 = ( 𝑖𝑖 + 1) / (𝑁𝑁 + 1), where 𝑖𝑖 is the number of times the absolute 

maximum cluster mass exceeded the true cluster mass, and 𝑁𝑁 is the number of permutations). 

Finally, statistical comparisons of high-gamma band power (taken to be 50-150 Hz) were also 

undertaken by an alternative method, averaging the spectral power recorded in the ERSP maps across 

the required frequency range to produce a set of time-resolved waveforms, and then statistically 

comparing them at the group level using cluster-corrected permutation testing (α = .05), as previously 

described in 3.3.5 for the ERP waveforms.  
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3.4 Results 

3.4.1 Behavioura l ana lysis 

Following implantation, participants undertook the task described in Chapter 2 (the AxB 

task, see 2.3.2). All n = 12 participants were actively tested, with one exception (participant 423, who 

was passively recorded whilst listening to the standard test sequences; see Table 3.3). Additionally, 

whilst the first 5 participants were only tested on the paradigm after implantation, low post-

implantation task scores, reported below, meant that the subsequent 7 participants, as well as some 

unrecorded patients, were also assessed behaviourally on the AxB task before implantation. This 

allowed performance to be characterised in the absence of potential post-surgical confounds, and was 

intended to assist in prioritising those pre-surgical candidates exhibiting higher levels of performance 

as well as coverage prior to surgery. However, in practice, the mean pre-implantation score was 

generally low (overall μ = 0.57, see Table 3.3), which gave the measure limited utility as a screening 

metric, and caused planned coverage of the language network to be the predominating factor. 

Table 3.3 also shows a between-participant change to the AxB task. Whilst all subjects 

undertook multiple rounds of testing, each consisting of 48 trials, the two earliest participants 

experienced three test runs, balanced as described in 2.3.2 (144 trials rather than 96 trials across all 

runs). This was reduced to two runs in the remainder of participants to avoid patient fatigue. 
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Table 3.3: Pre-implantation and post-implantation scores on the AxB task 
(n = 16). All but the first 2 participants undertook 96 trials of testing in total across 2 
runs. The latter 7 recorded participants (provided here with numeric IDs) were tested 
pre- as well as post-implantation. Participants assigned a letter rather than a number were 
assessed before implantation but not behaviourally assessed or intracranially recorded 
on the task after implantation, and were therefore excluded from further analysis. 
Exclusion mainly occurred in the event of insufficient coverage of relevant regions of 
interest. Additionally, at least one participant was excluded as a result of changes in their 
clinical condition. All but one recorded participants (423) were tested actively. Scores 
significantly different from chance indicated with an asterisk (* = p < .05, inverse 
binomial CDF, see 2.4.1). 

Participant 

Number 

 Test 

runs 

Pre-implant. 

First run score 

Pre-implant. 

Last run score 

Post-

implant. 

First run 

score 

Post-

implant. 

Last run 

score 

394  3 Not tested 0.42 0.40 

403  3 Not tested 0.48 0.56 

405  2 Not tested 0.42 0.46 

416  2 Not tested 0.54 0.44 

423  2 Not tested Passive only 

425  2 0.46 0.58 0.46 0.48 

429  2 0.94* 1.00* 0.44 0.50 

430  2 0.54 0.44 0.71* 0.71* 

434  2 0.46 0.54 0.56 0.46 

(a)  2 0.44 0.52 Not recorded 

(b)  2 0.52 0.46 Not recorded 

442  2 0.58 0.50 0.65* 0.50 

456  2 0.52 0.52 0.56 0.44 

(c)  2 0.52 0.56 Not recorded 

460  2 0.44 0.56 0.48 0.42 

(d)  2 0.52 1.00* Not recorded 

   μ = 0.54, 

σ = 0.14 

μ = 0.61, 

σ = 0.20 

μ = 0.52, 

σ = 0.095 

μ = 0.49, 

σ = 0.086 
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Pre- and post-implantation results are summarised in Table 3.3 and Figure 3.2. At the group 

level, pre- and post-implantation, performance on first and last runs of the task was not significantly 

different from chance (Wilcoxon signed rank, α = .05). Pre- and post-implantation, there was no 

significant difference between first and last run performance (Pre-implantation: Wilcoxon signed 

rank, μ1 = 0.54, μ2 = 0.61, p = .20; Post-implantation: Wilcoxon signed rank, μ1 = 0.52, μ2 = 0.49, 

p = .25). Although mean performance on the final run was lower after implantation than before on 

those participants tested in both instances, this difference was not significant (Wilcoxon signed rank, 

μ1 = 0.61, μ2 = 0.49, p = .31). Unlike performance in the behavioural study reported in Chapter 2, 

neither pre-implantation nor post-implantation performance could be said to be truly bimodally 

distributed, but there were high performing outliers, notably two pre-implantation ceiling 

performers (429 and (d), see Table 3.3 and Figure 3.2) and two patients who performed above chance 

in one or more of their post-implantation test runs (430 and 442). 

Overall chance performance may not necessarily reflect a total inability to perform better 

than chance on the task across its entire duration. A chance score might instead reflect fluctuating 

high and low performance that simply averages to chance over time. With this in mind, a sliding 

window average of behavioural performance was computed on final run responses for each 

participant (see Figure 3.3). This suggested that performance fluctuated over time, and highlighted 

individual trials where sliding window performance breached chance levels, but no statistical 

inferences as to the likelihood of such breaches should be made from the analysis in its present form. 

As in Chapter 2, performance was also broken down by experimental condition (Figure 3.4). 

Pre-implantation results showed significantly higher grammaticality judgement performance for 

consistent versus violation sequences, echoing a similar bias observed in Chapter 2 across the chance 

performers and overall cohort. Post-implantation results revealed no significant conditional bias 

(Wilcoxon signed-rank, α = .05). 
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Figure 3.2: Distributions of scores by pre- (n = 11) and post-implantation (n = 11) neurosurgical patients on the final run of 
the AxB task. Note that these two groups, though the same size, do not contain identical participants. Some implanted participants were 
not recorded pre-implantation, and some participants assessed pre-implantation were not subsequently recorded during the paradigm 
(see main text and Table 3.3). 
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Figure 3.3: Sliding window post-implantation performance of n = 12 neurosurgical patients on the AxB task, final run. The trace in each 
plot shows sliding window final run performance over 10 trials. Limits (dotted lines) were computed from the inverse binomial cumulative 
distribution function and used to determine periods of potentially significant performance (black bars). Participant 423 was passively exposed to 
stimuli only. Windowed performance can be seen to fluctuate over time, often beyond the binomial limits, but note that no futher inferences should 
be made as to the significance of these periods. 
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Figure 3.4: Correlation and comparison of pre- and post-implantation performance by condition. Panel A shows pre-implantation final run 
performance (n = 11) broken down by stimulus condition. Wilcoxon signed-rank revealed significantly higher performance on consistent versus 
violation sequences (μcons = 0.65, μvio = 0.5, p = .0020), as observed in results on the cohort reported in Chapter 2, but no other significant differences 
between performance on opposing conditions. Panel B shows the same analysis on post-implantation participants (n = 11). There were no significant 
differences between performance on opposing conditions. Spearman rank correlations revealed a significant positive relationship between scores on 
sequences ending in B1 and B2 (r = 0.69, p = .017). (* = p < .05, ** = p < .01) 

A B 
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Finally, since Chapter 2 demonstrated that grammaticality judgement in the AxB task 

appeared to be a measure of explicit awareness of the underlying grammar, an analysis was performed 

on reaction times collected under the post-implantation task, in order to reveal possible evidence of 

implicit sensitivity to the sequence structure (as also reported in Chapter 2). However, this analysis 

revealed no significant differences between mean per-participant reaction times under different 

conditions of the task (paired t-test on log-transformed reaction times, α = .05; see Figure 3.5). 

In conclusion, summary metrics of reaction times and performance on the grammaticality 

judgement task did not reveal significant sensitivity to grammaticality conditions in implanted 

participants. However, windowed performance was potentially suggestive of fluctuating 

responsiveness. In addition to this, the absence of significant overall performance or reaction time 

effects, especially across this multifactorially affected cohort, did not preclude the possibility of 

observing implicit or automatic sensitivity to the grammar in the neural data. Neural effects of 

grammaticality have previously been reported in the absence of awareness (Batterink & Neville, 

2013). Thus, to provide evidence for syntactic sensitivity under the task, it was considered that an 

appropriate electrophysiological starting point would be an analysis well-suited to comparison with 

the canonical literature. As described in section 3.2, a number of electrophysiological responses to 

grammaticality have previously been characterised using electroencephalography, which motivated 

an evoked potential analysis on the ECoG dataset. This is described in the following section. 
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Figure 3.5: Post-implantation reaction times on the deterministic task by 
structural condition (n = 11). Shown are violin plots of reaction times (RTs) 
under the two manipulations of sequence structure. RTs were averaged across all 
trials of both testing runs in each participant. Each violin plot shows the individual 
data points, the probability density for each distribution, and is overlaid with the 
group mean and standard deviation. Group-level comparison of RTs revealed no 
significant differences between reaction times under each of the structural 
conditions (paired t-test on log-transformed data, α = .05). 
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3.4.2 Evoked potentia l ana lysis 

Figure 3.6 shows overall mean event-related potentials (ERP) across all trials. These were 

produced by averaging across every channel in a given region of interest (ROI) across the implanted 

cohort of n = 12 participants (see 3.3.5). Note that participant 423, whilst excluded from behavioural 

analyses as a passive participant, is incorporated into the following electrophysiological analyses. 

ERPs are here reported across a window of 1350 to 2500 ms, a period surrounding the final word of 

the sound sequence (the B element, which began at 1500 ms and ended at 2100 ms), as described in 

3.3.5. The 1350 to 1500 ms pre-syllable baseline is also shown for reference. In this figure, the signal 

is shown z-scored relative to baseline (note that the vertical axis is flipped, as in canonical ERP plots). 

The z-scored signal was defined as 𝒛𝒛 = 𝒙𝒙−�̅�𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

, where x is the vector of raw samples, �̅�𝑥𝑜𝑜𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  

and 𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  are the mean and standard deviation across the baseline period respectively, and 𝒛𝒛 is the 

vector of z-transformed samples (see for example Tamalunas, 2021). 

Responses deviating significantly from the pre-syllable baseline at the group level (surviving 

cluster correction for multiple comparisons) can be seen in selected left hemispheric regions 

including Heschl’s gyrus, precentral gyrus and orbital gyrus. However, in a number of regions where 

coverage is insufficient to ever reach α at the group level using the permutation test (grey panels, 

marked with a dagger, “†”), for example right Heschl’s gyrus, it can nevertheless be seen that the 

z-scores describe large shifts from baseline. 

Figure 3.7 shows the group-level ERP contrast for “violation” minus “consistent” conditions 

across the cohort. ERPs are again reported across a window of 1350 to 2500 ms, around the time of 

the final monosyllabic sequence item, again including the pre-syllable baseline. The onset of the final 

word at 1500 ms marked the onset of the grammaticality manipulation. Note also that the design of 

the task ensured that the stimulus presented during this manipulation was acoustically matched 

between conditions (see 2.3.3). Among the regions assessed, no significant post-manipulation effects 

(surviving cluster correction for multiple comparisons) were observed bilaterally at the group level. 

Note, however, that more than half of the tested regions had insufficient coverage to support group 

level inference using the permutation test (see 3.3.5). Left IFG pars triangularis, opercularis and 

orbitalis all exhibited relatively early non-significant negative deflections at around 400-600 ms and 
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non-significant late positive deflections at around 800 ms post-onset, not unlike the canonical LAN 

and P600 responses, though no group-level statistical inferences can be drawn from these findings. 

As previously described in 3.2, multiple studies have provided evidence that syntactically 

relevant ERP components may be modulated by factors including dependency distance, and a large 

body of evidence has also suggested that engagement of IFG is similarly complexity-dependent. Thus, 

although we could provide no evidence for overall grammaticality effects in IFG or other regions, we 

considered it appropriate to break down the grammaticality contrast into two distinct comparisons: 

a “violation minus consistent” contrast for adjacent (xAB) sequencing dependencies, and the 

equivalent comparison for non-adjacent (AxB) dependencies. Since ERP studies of natural language 

syntax typically compare responses to relatively specific syntactic manipulations, the aim in this case 

was to reveal effects obscured by the amalgamation of sequencing conditions in the overall contrast. 

Figure 3.8 shows the group-level evoked potential grammaticality contrast specifically for 

left-hemispheric regions broken down by “adjacent” and “non-adjacent” sequencing conditions (i.e. 

grammaticality contrasts for xAB and AxB sequences) across the implanted cohort of n = 12 

participants, using the same window of analysis as above (1350 to 2500 ms, including pre-syllable 

baseline). Results for right-hemispheric regions (which revealed no significant effects) are reported 

in Figure 0.2 and Figure 0.3, Appendix 2: Supplementary figures. In Figure 3.8, it can be seen that in 

all but one of the regions, neither of the “adjacent” and “non-adjacent” grammaticality contrasts 

revealed any significant effects at the group level using cluster-corrected permutation testing. 

However, the clear exception to this was left IFG pars opercularis, which exhibited a significant 

period of early negativity at the group level after cluster correction, under the “adjacent” 

grammaticality manipulation (from around 200-500 ms post-manipulation). 

Under the “adjacent” contrast, IFG subregions all exhibited prominent non-significant 

relative negativity to violations between ~0 and 600 ms post-syllable-onset,  whereas under the non-

adjacent contrast, however, the same regions appeared to exhibit non-significant positivity to 

violations from ~0-1000 ms post-onset. Additionally, despite the differing direction of adjacent/non-

adjacent effects, all IFG subregions exhibited negative-going deflections in both contrasts at ~400 ms, 

which appeared to produce the prominent, but non-significant, negativity observed in the overall 

grammaticality contrasts. Meanwhile, STG exhibited a slightly negative-going non-significant 
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deflection in all conditions, enhanced in the presence of a violation, resulting in a very early relative 

negativity (~0-100 ms) in both adjacent and non-adjacent contrasts. This subtle early negativity 

appears consistent with accounts of the auditory N100 response, which is a very early negativity that 

appears to emanate from superior temporal gyrus (Boutros et al., 2011) and is enhanced in response 

to unpredicted stimuli (Nordby et al., 1996; Schafer & Marcus, 1973). 

Finally, in Figure 3.9, the “adjacent” and “non-adjacent” grammaticality ERP contrasts are 

shown projected onto a standard cortical surface, visible as relative positivities or negativities in field 

potential for the “violation” trials relative to “consistent” trials. Here, the unfiltered difference waves 

under the two contrasts have been averaged over two time windows: firstly from 0 to 250 ms post-

syllable-onset (1500 to 1750 ms post-sequence-onset), and secondly from 250 to 500 ms post-

syllable-onset (1750 to 2000 ms post-sequence-onset).  In the “adjacent” grammaticality contrast, 

but not the “non-adjacent” equivalent, a notable (though weak) left-hemispheric negativity was 

localised to ventrolateral prefrontal and orbitofrontal cortex. This was most prominent at 250-

500 ms post-onset but continued for at least another 250 ms. Strong relative negativity was visible in 

middle temporal gyrus and broader areas of the left temporal lobe in both periods of analysis, and in 

both “adjacent” and “non-adjacent” contrasts. Left hemisphere positivity in the “adjacent” contrast 

largely centered on superior temporal gyrus (short-lived, absent by 500-750 ms) and the anterior 

temporal lobe (long-lived, present at least between 250 and 750 ms, and not resolvable within the 

Destrieux-parcellated ROI analysis). In the “non-adjacent” contrast, however, weak positivity rather 

than negativity was observed in IFG at 250-500 ms, and a much stronger positivity was observed 

around the temporoparietal junction (TPJ) at 500-750 ms (which was not easily discernable from the 

ROI results).
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Figure 3.6: Group mean (n = 12) event-related potentials across all trials. Overall mean ERPs (pooling all channels) are shown for each region 
(1500-2500 ms), z-scored relative to baseline (1350 to 1500 ms). The transition between the end of the baseline and the onset of the third syllable is 
marked by a vertical line. Solid lines depict ERPs. Significant time points after cluster-corrected permutation testing (α = .05; ≪10 000 iterations) 
are indicated with green dots. Significant responses can be seen in selected regions of the left hemisphere. Grey plots marked with a dagger (†) depict 
regions with insufficient group-level coverage to reach α in permutation testing. Z-scores still show large shifts from baseline in many such regions. 
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Figure 3.7: Overall group mean (n = 12) evoked potential contrasts under “violation” minus “consistent” conditions of the AG. Overall 
mean (equivalent to pooling channels across participants) and difference wave shown for each region and condition. Black trace: violation; Grey 
trace: consistent; Blue trace: violation minus consistent. No significant time points were revealed by cluster-corrected permutation testing (α = .05; 
≪10 000 iterations). Grey plots marked with a dagger (†) depict regions with insufficient group-level coverage to reach α in permutation testing. 
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Figure 3.8: Group mean (n = 12) evoked potential “violation” minus “consistent” contrasts for “non-adjacent” and “adjacent” 
sequences separately (left hemisphere only). Overall mean and difference wave shown for each condition. Black trace: violation; Grey trace: 
consistent; Blue trace: Violation minus consistent. Significant time points revealed by cluster-corrected permutation testing (α = .05, ≪10 000 
iterations) indicated with green dots. Grey plots marked with a dagger (†) depict regions with insufficient group-level coverage to reach α in 
permutation testing. Under the adjacent grammaticality contrast, left IFG pars opercularis showed significant early negativity at the group level. 

 

Violation – Consistent (Adjacent) 

Violation – Consistent (Non-adjacent) 
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Figure 3.9: Cortical projections of group-level (n = 12) grammaticality ERP contrasts. Each brain shows ERP 
differences projected to a standard brain model on an electrode-by-electrode basis, across the pooled electrodes of the 
entire cohort. ERP differences were averaged within specific time windows prior to projection (250-250 ms post-
syllable-onset; 500-750 ms post-syllable onset). 
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 In summary, the group-level ECoG/depth electrode ERP analysis suggested significant 

sensitivity to a specific class of syntactic manipulations in IFG pars opercularis, a key region of the 

frontotemporal-parietal language network (discussed further in section 3.5.2). A number of ERPs 

featured deflections seemingly consistent with canonical EEG components including the N100 and 

syntactic P600/LAN complex, though such deflections were non-significant in all but the 

aforementioned region of interest (ROI), IFG pars opercularis, where significant early negativity was 

observed in the grammaticality contrast for adjacent sequences. From non-significance-masked 

cortical projections, late positivity was apparent in many regions, especially the anterior temporal 

lobe in the adjacent case and the left temporoparietal junction (TPJ) in the non-adjacent case. 

Meanwhile, from the same projections, it appeared that early negativity was generally prominent in 

the middle temporal gyrus and TPJ, but additionally appeared to emanate weakly from left inferior 

frontal gyrus in the adjacent case, in general correspondence with the one significant group-level ROI 

contrast. We also saw signs of widely distributed negativity within the temporal lobe, but there was 

limited evidence either here or elsewhere of centro-parietal negativities that might correspond to the 

timing of an N400 response, in line with prevalent accounts describing a syntactic LAN/P600 

response and a separate, primarily semantic N400 response that would not have been elicited by our 

nonsense stimuli. 

3.4.3 Time-frequency ana lysis 

As described in “Methods” (see 3.3.6), spectral decomposition was undertaken for each 

epoch, in each channel, in every region of interest (ROI). Spectral content was averaged across 

selected epochs and normalised with respect to a baseline to produce an event-related spectral 

perturbation (ERSP) map for every channel. The group-level mean for each ROI was computed 

across all channels assigned to a given region, pooled across the cohort. This was performed across all 

trials as well as under individual conditions. 

Figure 3.10 shows the all-trial group-level ERSP results for every ROI, normalised against the 

pre-sequence baseline. This effectively produces a “post- versus pre-stimulus” contrast in every 

region. Red-shifted colours in the map are indicative of relative enhancement of power relative to the 

baseline, whereas blue-shifted colours denote relative suppression. It can immediately be seen that 

the sequences elicited stimulus driven responses in a number of regions, manifesting as broadband 

responses to each monosyllable of the three item sequences (visible as vertical stripes in the spectral 
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maps). The strongest power perturbations were observed in bilateral Heschl’s gyri, superior temporal 

gyri and right superior temporal sulcus, dominated by relative gamma-band (~30-150 Hz) 

enhancement and relative low-frequency suppression. However, stimulus-driven responses were also 

observed in a number of other regions across the left-lateralised frontotemporal network, and in 

corresponding regions of the right hemisphere. In the right hemisphere, these primarily manifested 

as gamma-band enhancement aligned with the presentation of each syllable, for example in right IFG 

pars opercularis and triangularis, insula, angular gyrus, supramarginal gyrus, and precentral and 

postcentral gyri. In the left hemisphere, the stimulus-driven response was dominated by relative low-

frequency suppression spanning the delta (~0.5-4 Hz), theta (~4-10 Hz), alpha (10-13 Hz) and beta 

(13-30 Hz) bands during and/or after sequence presentation. This effect was observed prominently 

during sequence presentation in left IFG pars opercularis and triangularis, and precentral and 

postcentral gyri. However, a similar effect was observed around or following cessation of the 

sequence at 2100 ms in left IFG pars orbitalis, middle frontal gyrus and supramarginal gyrus. 

In summary, the all-trial ERSP results are consistent with the all-trial ERP results, 

demonstrating clear shifts from baseline in a number of critical regions of the auditory and 

frontotemporal language network. However, they additionally depict distinct patterns of relative 

high-frequency enhancement and low-frequency suppression during and following sequence 

presentation. 

Figure 3.11 shows the group-level all-trial inter-trial coherence (ITC) results for frequencies 

below 40 Hz (the approximate maximum frequency at which non-zero coherence could be identified 

at the group level). As with the ERSP results, the group-level mean ITC for each ROI was computed 

across all channels assigned to a given region, pooled across the cohort. At low frequencies, in a 

number of critical auditory- and language-relevant regions, increased coherence can be seen 

correspondent with the presentation of one or more individual syllables of the auditory sequences. 

This includes prominent effects in bilateral Heschl’s gyri and bilateral IFG pars opercularis, bilateral 

IFG pars orbitalis, bilateral precentral and postcentral gyri, left IFG pars triangularis, right angular 

gyrus and right supramarginal gyrus. Some regions, including bilateral Heschl’s gyri and bilateral IFG 

pars opercularis, also appeared to show a fourth brief post-sequence increase in coherence that 

resembled that of the preceding three syllabic responses, potentially representing an auditory steady-

state response to the rhythmic syllabic presentation (Manting et al., 2021). 
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Finally, contrasts were also computed on the ERSP maps and high gamma power (see 3.3.6). 

Figure 3.12 shows these contrasts in specific regions, both across the high gamma band only (50–

150 Hz, middle column) and the ERSP as a whole (right column), alongside auditory cortical high 

gamma power in the same hemisphere for reference (left column). As with the ERP contrasts, these 

identified very few regions exhibiting significant differences in responses between conditions at the 

group level. As a consequence, only a subset of the results are shown here, including those regions 

showing effects (see Figure 3.12), whilst the rest are included in Appendix 2: Supplementary figures 

(Figure 0.4 to Figure 0.9). 

The one significant result under the overall grammaticality (violation minus consistent) 

contrast is shown on the top row of Figure 3.12. Under the ERSP comparison (rightmost column), 

this revealed subtle relative suppression in the right middle temporal gyrus (MTG) between 2000 

and 3000 ms at around 30-50 Hz. No effects were identified across the high gamma band at the group 

level (middle column). As in earlier analyses, we also broke down the grammaticality contrast into 

adjacent (adjacent violation minus adjacent consistent) and non-adjacent (non-adjacent violation 

minus non-adjacent consistent) grammaticality contrasts, each of which revealed a single significant 

finding across the analysed regions of interest. The significant result under the adjacent 

grammaticality contrast is shown on the middle row of Figure 3.12. Here, the ERSP contrast shows 

that significant relative suppression was seen in the right hippocampus under the violation condition 

versus the consistent condition at 2400-3000 ms (at around 95-130 Hz only; note that, as this does 

not span the entire high gamma band, no equivalent period of significance is identified under the 

high gamma power analysis in the middle column, although the difference between the conditions is 

still weakly visible on this plot). Finally, under the non-adjacent grammaticality contrast (Figure 3.12, 

bottom row), no clear effect is visible under the ERSP contrast (rightmost column), but the mean 

high gamma power plot (middle column) instead here shows a brief period of significant relative high 

gamma enhancement in the right hippocampus under the violation condition versus the consistent 

condition at 1600-1800 ms. It should be noted that even if such responses were potentially also 

observed in the left hemisphere, coverage in the left hippocampus was insufficient to reach α (see 

Appendix 2: Supplementary figures, Figure 0.7 to Figure 0.9). 

 In summary, the conservatively computed group-level time-frequency contrasts, as in the 

time-domain analysis, revealed a limited number of effects overall. However, significant effects were 



112 
 

identified in the gamma band following the grammaticality manipulation in both right MTG and 

the hippocampus.
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Figure 3.10: Overall group mean (n = 12) event-related spectral perturbations (ERSPs). Time is on the abscissa (-1000–3000 ms), and 
frequency on the ordinate axis (3–150 Hz), with colour denoting baseline-relative ERSP amplitude in decibels. Stimulus-driven responses aligned 
with the presentation of each syllable-word are visible in bilateral: Heschl’s gyrus (HG), superior temporal gyrus (STG), insular cortex, pre- and post-
central gyrus; left: hippocampus; right: superior temporal sulcus (STS), IFG p. opercularis, IFG p. triangularis, middle and inferior temporal gyrus, 
angular gyrus and supramarginal gyrus. In a number of cases (notably bilateral: HG and STG; right: STS, insula, IFG p. opercularis and triangularis, 
angular gyrus and SMG) this can be characterised as relative enhancement of β and γ band activity, and relative suppression of δ, θ and α activity. Less 
overtly stimulus-driven responses, still distinct from baseline, can be seen in left IFG as low-frequency suppression, especially in the pars triangularis. 
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Figure 3.11: Overall group mean (n = 12) inter-trial phase coherence (ITC) for analysed regions of interest (ROIs). Time is on the abscissa 
(-1000–3000 ms), and frequency on the ordinate axis (3–150 Hz), with colour denoting ITC. Across all trials, phase-locked responses are observed at 
low-frequencies in a number of regions across the language network at times consistent with presentation of the stimulus items. 
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Figure 3.12: A summary of selected cohort (n = 12) ERSP and high gamma power 
grammaticality contrasts. For each contrast (overall violation – consistent; adjacent 
violation – consistent; non-adjacent violation – consistent) these figures include the 
only significant results found across the cohort. Vertical lines signify onset of the 
grammatical manipulation (3rd item). Left column: high gamma power (HGP, here 
always across 50 to 150 Hz) in right Heschl’s gyrus, shown on the same scale as the 
middle column purely for comparison. These plots are grey and marked with a dagger 
(†) to indicate that coverage was insufficient to ever reach α using group-level 
permutation testing. Middle column: HGP in the same regions shown in the ERSP 
maps of the right-hand column. In both left and middle columns, black traces show 
mean “violation” responses, grey traces show mean “consistent” responses, and blue 
traces show the difference. Green dots show periods of significance after 
cluster-corrected permutation testing (α = .05, ≪10 000 permutations). Right 
column: ERSP differences are shown as colours on a scale from -1.75 to 1.75 dB. Black 
contours surround areas of significance as determined by cluster-corrected permutation 
testing (α = .05, ≪10 000 permutations). In the overall contrast, very subtle relative 
suppression is observed in right MTG between 2000 and 3000 ms at around 30-50 Hz 
(low gamma). However, in both the adjacent and non-adjacent contrasts, there are signs 
of brief high-gamma differences in right hippocampus under the two grammaticality 
conditions, although these meet significance under the ERSP and HGP analysis, 
respectively. In the adjacent “violation minus consistent” ERSP contrast, significant 
relative suppression can be seen in response to violations at 2400-3000 ms (at around 95-
130 Hz only). Meanwhile, in the non-adjacent grammaticality contrast, HGP shows a 
brief period of significant relative high gamma enhancement at 1600-1800 ms.
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3.5 Discussion 

In this study, we assessed the ability of adult neurosurgical patients to learn regularities in a 

novel artificial grammar containing both adjacent and non-adjacent dependencies, and characterised 

intracranial responses to the sequences in the time and time-frequency domains. Behavioural analysis 

demonstrated that this task was extremely challenging for the patient cohort. Electrophysiological 

analysis, however, suggested engagement of key frontotemporal regions during the task, and revealed 

evidence of significant differences in the time- and time-frequency domains between neural 

responses under different syntactic conditions. A number of observed violation responses were 

consistent with canonical responses reported in the ERP literature, although typically these effects 

did not meet significance at the group level. Closer analysis suggested that grammatical violations 

modulated responses in key frontotemporal regions that differed for adjacent (xAB) and non-

adjacent (AxB) sequences. Specifically, left IFG pars opercularis exhibited a significant difference in 

its responses to adjacent grammatical and adjacent ungrammatical sequences, but no such effect for 

non-adjacent sequences. All-trial time-frequency analysis revealed stimulus-driven modulation of 

frequency-specific power in a number of relevant regions, many exhibiting low-frequency phase-

alignment in response to each of the syllables. Group-level time-frequency contrasts showed signs of  

weak relative low-gamma power suppression in right middle temporal gyrus (right MTG) in response 

to violations, across all sequences (via analysis of ERSPs); relative high-gamma power suppression in 

response to violations in the right hippocampus for adjacent sequences (via analysis of ERSPs); and 

relative high-gamma enhancement in response to violations in the right hippocampus for non-

adjacent sequences (via analysis of high-gamma-band specific power). We discuss these findings in 

more detail below. 

3.5.1 Behavioura l findings 

Compared to a healthy cohort previously assessed on a largely identical task (see Chapter 2), the 

neurosurgical patient cohort performed poorly on the AxB AGL paradigm, failing at the group level 

to exceed chance overall performance on the grammaticality judgement task either before or after 

implantation. Unlike the healthy adult cohort, the patients also did not exhibit a bimodal 

performance distribution, with only one or two high performers. A sliding window behavioural 

analysis suggested that performance in some participants varied somewhat over time, but no 

inferences can be drawn from the isolated breaches of performance thresholds identified in this 
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analysis. Consequently, there exists clear behavioural evidence for above-chance performance in only 

two of the participants (430 and 442; see Table 3.3), and only one participant maintained this level 

of performance across both runs of the task (430). 

Whilst data collected in the healthy cohort previously revealed reaction time effects in both 

chance and high performers, here, again, significant reaction time effects were not revealed. The size 

of the neurosurgical cohort was necessarily restricted compared to the healthy cohort, so it is possible 

that it lacked the power to reveal this particular effect. Based on the results of Chapter 2, which 

showed a significant negative correlation between performance and self-reported fatigue, it is also 

possible that post-implantation reaction times and performance were impacted by multifactorial 

environmental factors affecting the epileptic patient population, and hospitalised patients in general. 

These include the effects of sleep deprivation, of pharmacological interventions such as analgesia, 

and potentially other iatrogenic factors (Lande & Gragnani, 2015; Giorgi et al., 2013; Cumming, 

1984). However, we did expect higher pre-implantation performance. It is possible that other factors 

such as patients’ nervousness about their upcoming surgery, or presurgical pharmacological 

interventions, may have affected performance during these sessions. 

Alternatively, it has been suggested that temporal lobe epilepsy patients may exhibit deficits in 

sequence learning tasks by virtue of their pathology (Henin et al., 2021). There is insufficient 

evidence to reject this hypothesis here, especially in light of low pre-implantation performance. 

However, subjects had previously undergone neuropsychiatric assessment (see 3.3.1), and were 

screened for particular cognitive deficits that might be detrimental to performance. Moreover, given 

that the task was shown to be cognitively demanding in a healthy cohort (as reported in 2.4.2), it is 

equally possible that non-clinical demographic factors contributed to the poor performance. 

In summary, we posited that explicit grammaticality judgement performance was low due to 

multifactorial environmental and demographic influences, whilst reaction time effects were most 

likely eliminated by a combination of fatigue and post-surgical medication, slowing responses and 

contaminating the recorded reaction time measurements. However, even without behavioural 

confirmation, we considered it likely that syntactic manipulations produced meaningful neural 

responses. This assumption was based on prior evidence that automatic neural responses to syntactic 

violations can be observed even in the absence of conscious awareness (Batterink & Neville, 2013). 
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3.5.2 Time-domain intracrania l responses 

The z-scored all-trial ERP results (Figure 3.6) revealed that responses to the final syllable of the 

sequences deviated considerably from baseline in many regions bilaterally, including critical regions 

of the left-lateralised frontotemporal language network such as left inferior frontal gyrus (IFG), 

although the coverage in many regions was insufficient to demonstrate significance under a group-

level permutation analysis (see 3.3.5). Previously reported AGL tasks, however, have demonstrated 

similar task-related engagement of the fronto-temporal network, including prominent activation of 

IFG (see Batterink et al., 2019; Wilson et al., 2017).  

The ERP contrasts revealed no evidence of significant responsiveness to sequence grammaticality 

across all sequence types combined (i.e. across both xAB and xAxB), but evidence of significant 

responsiveness to adjacent (xAB) sequence grammaticality in one region at the group level: left IFG 

pars opercularis. This is consistent with accounts that the processing of even simple adjacent 

dependencies engages IFG (Uddén & Bahlmann, 2012) and that stimuli need not be linguistic in 

nature to elicit expectation-violation responses in this region (Batterink et al., 2019). No significant 

responses were detected under the non-adjacent grammaticality contrast, though it may be that non-

adjacent sequences preferentially engaged IFG subregions other than IFG pars opercularis, which 

could not have been detected under this analysis since no other IFG subregion had sufficient coverage 

to reach α under the time-domain permutation analyses (see Table 3.2 and section 3.3.5). 

Although effects in only IFG pars opercularis met significance under the time-domain 

permutation analyses, a number of other regional ERP contrasts also featured characteristic non-

significant positive and negative deflections reminiscent of left anterior negativity (LAN), P600 and 

N100 responses at the cohort level. In contrast to studies suggesting the LAN is an epiphenomenon 

resulting from interactions with N400 responses (Gonda et al., 2020; Tanner, 2019; Tanner & Van 

Hell, 2014), we saw little evidence in the regional contrasts or cortical projections of anything 

resembling the N400 response, which is consistent with popular accounts of a largely syntactic 

LAN/P600 and largely semantic N400 (Friederici & Meyer, 2004), given the lack of semantically 

meaningful content in our stimuli. 

Our findings were potentially compatible with prior studies seeking to localise contributors to 

the LAN and P600 components, although the paucity of statistically significant effects at the group-
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level limits the utility of these observations. Accomplishing source localisation from an EEG signal 

requires the researcher to approximate a solution to the inverse problem of which neuronal current 

sources generated which field potentials. This problem is ill-posed and, without constraints, there 

exist potentially infinite solutions to “which region generated what” (Grech et al., 2008). 

Consequently, the principal neuronal generators of specific ERP components have yet to be 

conclusively established. Multiple studies have mooted IFG as the source of the LAN, which appears 

to be eliminated in patients with left anterior lesions (Friederici et al., 1999; ter Keurs et al., 1999). 

Comparison of fMRI and EEG results has also suggested a role for the IFG in the generation of the 

P600 (Brouwer & Hoeks, 2013; van de Meerendonk et al., 2011), among other (parietal) regions 

theorised to contribute to the response. Our results were not entirely inconsistent with this view, 

showing the aforementioned statistically significant LAN-like response emanating from IFG pars 

opercularis in response to adjacent sequences, and as well as subthreshold (i.e. not statistically 

significant) LAN- and P600-like responses appearing to emanate from other subregions of inferior 

frontal gyrus. However, using a cortical projection method (NeuralAct; see Kubanek & Schalk, 

2015) we also identified a number of other frontotemporal and parietal regions that appeared to 

generate positivities and negativities of a higher amplitude. ECoG is itself simply an intracranial form 

of EEG, and so the inverse problem still applies to results under it, but its spatiotemporal resolution 

and signal-to-noise ratio are higher than that of EEG due to the proximity of its electrodes to the 

cortex, allowing for accurate reconstruction of neural sources within millimetres of each contact 

(Todaro et al., 2019). As such, there is merit to this method of cortical projection, which estimates 

activity in the immediate vicinity of each contact. Whilst our results therefore add to a body of 

evidence suggesting that IFG has a role in syntactic processing and, more specifically, as a contributor 

to the LAN, they were not unequivocal, suggesting strong responses in temporal and parietal cortex 

that might influence this component at the level of the scalp. Such complex source interactions likely 

contribute to ongoing debate as to the origins of the LAN/P600 complex. In the future, 

triangulation of evidence under multiple imaging modalities (including fMRI, single- and multi-unit 

recordings, MEG, scalp EEG and ECoG), is likely to be essential to localising the sources of 

components indexing syntactic processing. 

As previously mentioned, as well as computing overall grammaticality contrasts, we also 

separately determined differences in responses to adjacent (xAB) and non-adjacent (AxB) sequencing 
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violations under our AGL task. In IFG pars opercularis, in response to adjacent sequences, an early 

long-lasting negativity (200-500 ms post-manipulation) was observed in the adjacent violation case, 

whilst a non-significant positivity could be seen in the non-adjacent case. It is possible to reconcile 

these findings with more general accounts that the LAN is preferentially generated in response to 

local violations (Molinaro, Barber, et al., 2011; Molinaro, Vespignani, et al., 2011), as we predicted 

from findings in prior studies (see 3.2). Conversely, there is some evidence that a sustained P600 is 

more likely to be associated with the resolution of longer-range dependencies, perhaps indexing 

working memory for complex syntactic structure (O’Rourke, 2013; Gouvea et al., 2010), although 

no such findings reached significance in our analysis. Nevertheless, a close look at the mean ERP 

differences for both types of sequence (xAB and AxB; Figure 3.8) suggested that the deflections 

might not be as qualitatively distinct as they first appeared under the separate contrasts, as there were 

signs of similar negative- and positive-going deflections at canonical times in each contrast. Again, 

however, this could not be statistically verified at the group-level. If it could be verified, this would 

suggest that both the LAN and P600 are contributors to the ERP in the adjacent and non-adjacent 

cases, but with different weightings. Whilst ERP “components” are commonly taken to mean any 

marked positive or negative peaks or troughs in the waveform relative to baseline, such an account 

would be consistent with a more nuanced view of language-relevant ERP components as latent 

contributors to the final ERP (Brouwer & Crocker, 2017), which sum together to produce the 

observed effects. Future ECoG AGL paradigms run in a larger cohort of participants, and containing 

a wider range of dependency distance manipulations (e.g. AxxB, AxxxB), could support stronger 

characterisation of these seemingly orthogonal components. 

3.5.3 Time-frequency domain intracrania l responses 

As in the ERP analysis, all-trial time-frequency analysis suggested extensive recruitment of 

frontotemporal and parietal regions relevant to language. In particular, under an all-trial ERSP 

analysis, many regions revealed a characteristic high-frequency enhancement (gamma, ~30-150 Hz) 

and low-frequency suppressive effect (<~30 Hz) aligned with the presentation of each syllable. All-

trial intertrial coherence revealed low-frequency phase alignment correspondent with the syllable 

presentation in a number of critical regions, including left Heschl’s gyrus, precentral and postcentral 

gyri, and all subregions of IFG. It also revealed signs of entrainment or auditory steady-state effects 

(Manting et al., 2021) following each sequence in regions including Heschl’s gyrus and IFG. 
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Group-level ERSP and high-gamma power (HGP) permutation analyses followed a similar 

protocol to the ERP analyses, and therefore suffered from the same limitations caused by limited 

regional coverage at the level of individual participants. However, despite these limitations, three 

significant time-frequency effects were seen, namely in right middle temporal gyrus (MTG; seen in 

the overall grammaticality contrast using ERSPs) and right hippocampus (adjacent grammaticality 

contrast using ERSPs; and non-adjacent grammaticality contrast using HGP). Notably, IFG pars 

opercularis did not reveal effects under the time-frequency analyses. 

Of particular interest, the right hippocampus showed signs of relative high-gamma suppression 

in response to adjacent violations, and relative high-gamma enhancement in response to non-

adjacent violations, where the non-adjacent response exhibited an extremely low latency, and the 

adjacent response a marked delay. Interestingly, time-frequency analysis has previously revealed 

hippocampal sensitivity to prediction violations, but in the slow-theta range (2.5–5 Hz), rather than 

the gamma band as shown here (Chen et al., 2013). However, our findings are not physiologically 

implausible, as the hippocampus is thought to instantiate a theta-gamma code (Lisman & Jensen, 

2013). Furthermore, hippocampal differences in gamma-band power have previously been linked to 

distinct processes of information and encoding and retrieval using human intracranial data (Griffiths 

et al., 2019). However, interpreting such scant effects is challenging under this task, especially since 

we still possess a relatively limited understanding of the functional relevance of distinct gamma-band 

frequency ranges (Prystauka & Lewis, 2019). Nevertheless, activation of subcortical structures, 

namely the hippocampus and striatum, is increasingly implicated in the learning of sequential 

statistical structure (Batterink et al., 2019; Opitz & Friederici, 2003). The hippocampus in particular 

may play a key role in the associative learning of sequential relationships and the prediction of 

upcoming items (Schapiro et al., 2014; Covington et al., 2018; see also 1.3). 

As described, the data also revealed a very weak relative suppressive effect in right middle 

temporal gyrus in the low-gamma band in response to violation sequences. The left middle temporal 

gyrus has long been related to language function, specifically comprehension (Friederici, 2002; Price, 

2010), and even to the P600 syntactic response (Friederici, 2011), although the contributions of the 

right MTG are less clear. As a consequence, the mechanistic relevance of this effect is hard to 

determine, although a probabilistic tractography study previously reported a correlation between 

right MTG white matter tract volume and performance on a pitch-based artificial grammar learning 
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study (Loui et al., 2011). In line with this finding, a recent study has also reported that EEG source 

localisation implicates right MTG in rule-based learning processes (Takács et al., 2021).  

In summary, ERSP and HGP contrasts revealed a small number of interesting effects, similar to 

the time-domain analysis, that suggested neural sensitivity to the grammaticality of the stimuli. 

However, individual differences in functional frequency ranges may have diluted the group-level 

effects (as discussed, for example, in Doppelmayr et al., 1998). Similarly, it is possible that individual 

contacts of an ROI might contribute differently in the frequency domain overall, providing more 

information about a stimulus when aggregated in a more meaningful way than simple averaging (as 

in, for example, Tsuchiya et al., 2008). This potentially motivates the use of multivariate techniques 

in future, which account for high-dimensional features of a dataset, unlike the mass univariate 

analyses conducted here (Diedrichsen & Kriegeskorte, 2017). 

 

3.6 Conclusion 

We monitored neurosurgical patients undertaking an AGL task, recording and analysing 

behavioural and electrophysiological (ECoG/depth electrode) data. Despite an absence of 

behavioural confirmation, we found evidence of responsiveness to grammaticality in key regions of 

a frontotemporal network previously implicated in language, including a significant LAN-like time-

domain effect in the left inferior frontal gyrus. We also found non-significant signs of deflections 

reminiscent of canonical ERP components in the time-domain, including the N100 and LAN, 

localisable to other regions of this network. The presence of the significant IFG LAN-like effect 

appeared to be modulated by sequence adjacency, consistent with prior accounts of the LAN 

preferentially indexing local morphosyntactic violations. Significant time-frequency effects were 

scant but notably included high-gamma-power effects in the right hippocampus, in line with 

previous findings suggesting hippocampal involvement in sequence processing (see 1.3). 

Overall, the ability to ascertain group-level statistical significance using group-level permutation 

testing was limited in some regions by the number of clinical participants featuring intracranial 

coverage in those areas, which in turn was restricted by clinical availability. However, future studies 

may overcome these limitations by reducing the cognitive demands of the task, making it feasible to 

collect data in a wider variety of patients; and by using more advanced multivariate techniques to 
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account for per-trial variability and high-dimensional features of the data. Overall, these results seem 

to provide novel insights into the location and syntactic relevance of the LAN under a non-linguistic 

task. 
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Chapter 4. Structured sequence processing and combinatorial binding: 

neurobiologically and computationally informed hypotheses 

 

 

Parts of this chapter (sections 4.1 – 4.7 inclusive) 

have been published as 

 

Calmus, R., Wilson, B., Kikuchi, Y. & Petkov, C.I. (2019) Structured sequence processing and 

combinatorial binding: neurobiologically and computationally informed hypotheses. Philosophical 

Transactions of the Royal Society B: Biological Sciences. 375 (1791), 20190304. 

 

and presented as 

 

Calmus, R., Wilson, B., Kikuchi, Y., Kocsis, Z., Kawasaki, H., Griffiths, T., Howard, M. & 

Petkov, C. (2019) A computational model of complex combinatorial binding: Neurobiological 

simulations and hypotheses. Society for Neuroscience 2019. Chigaco, IL. 697.09 / BB11. 

 

 All work presented in this chapter was primarily conducted by the author, except where explicitly 

stated. The author conceived of the ideas, implemented simulations in MATLAB, produced the figures, 

and undertook the majority of writing. The co-authors provided discussion and helped to write and 

edit the published paper. 
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4.1 Abstract 

Understanding how the brain forms representations of structured information distributed in 

time is a challenging endeavour for the neuroscientific community, requiring computationally and 

neurobiologically informed approaches. The neural mechanisms for segmenting continuous streams 

of sensory input and establishing representations of dependencies remain largely unknown, as do the 

transformations and computations occurring between the brain regions involved in these aspects of 

sequence processing. We propose a blueprint for a neurobiologically informed and informing 

computational model of sequence processing (entitled: Vector-symbolic Sequencing of Binding 

INstantiating Dependencies or VS-BIND). This model is designed to support the transformation of 

serially-ordered elements in sensory sequences into structured representations of bound 

dependencies; readily operates on multiple timescales; and encodes or decodes sequences with respect 

to chunked items wherever dependencies occur in time. The model integrates established Vector 

Symbolic additive and conjunctive binding operators with neurobiologically plausible oscillatory 

dynamics, and is compatible with modern Spiking Neural Network simulation methods. We show 

that the model is capable of simulating previous findings under structured sequence processing tasks 

that engage fronto-temporal regions, specifying mechanistic roles for regions such as prefrontal areas 

44/45 and the frontal operculum during interactions with sensory representations in temporal 

cortex. Finally, we are able to make predictions based on the configuration of the model alone that 

underscore the importance of serial position information, which requires input from time-sensitive 

cells, known to reside in the hippocampus and dorsolateral prefrontal cortex. 

The published content is presented in 4.1-4.7 almost entirely without revision, and from 

section 4.8 onwards is extended by the author (4.8, “Unifying neurocomputational accounts: 

extending the serial order code”). 
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4.2 Introduction 

Natural environments are richly structured in both space and time. Substantial progress has 

been made in understanding the neurobiological bases of learned relationships between spatially or 

temporally separated elements (Kraus et al., 2013; Moser et al., 2015; O’Keefe, 1976). Moreover, 

prior research has established the importance of serial order for the brain (Lashley, 1951) and binding 

problems, whereby distinct sensory events are combined for perception, decision and action 

(Feldman, 2013), have attracted considerable interest and empirical enquiry (Gray, 1999; Singer, 

1999).  

Establishing relationships, or dependencies, between elements over time allows us to extract the 

structure of the sensory world and to make predictions about future events. However, understanding 

how the brain binds complex information distributed in time, building temporally organised 

structures that represent multiple linked dependencies, remains a considerable challenge facing the 

neuroscientific community. This sort of cognitive structure building is challenging for the brain to 

achieve because complex input must be discretized in time, resultant discrete items chunked and 

stored in memory, dependencies identified and related items bound for perception (or other 

purposes), and representations of multiple dependencies maintained concurrently in memory to be 

further manipulated (Fitch & Martins, 2014; Dehaene et al., 2015). 

Human language – written, spoken, or signed – is a salient example of the complexity of the 

binding problem, because it features syntactically organized dependencies between semantic units 

(Tettamanti & Perani, 2012). Yet the problem of building complex representations is also relevant to 

complex action sequences (Fitch & Martins, 2014; Bickerton & Szathmáry, 2009; Rouault & 

Koechlin, 2018), music (Fitch & Martins, 2014; Jeon, 2014; Koelsch & Siebel, 2005), mathematics 

(Dehaene et al., 2015, 2004) and cognition in general (Bickerton & Szathmáry, 2009; Jeon, 2014). 

Moreover, some of these systems are not unique to humans, since songbirds can construct complex 

vocalization sequences (Sainburg et al., 2019), an ability supported by a forebrain neural system (Yu 

& Margoliash, 1996), and correspondences have been established between humans and a number of 

species in processing adjacent and non-adjacent sequencing dependencies (Wilson et al., 2018; Wang 

et al., 2015; Wilson, Kikuchi, et al., 2015). Thus, advancing our understanding of how complex 

structure can be built from sequential input in computational and neural systems is important for 
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developing better machine and animal models to understand both general principles and species-

specific aspects of combinatorial binding. 

In this article, we propose a blueprint for a neurobiologically informed and informing 

computational model of sequence processing (entitled: Vector-symbolic Sequencing of Binding 

INstantiating Dependencies or VS-BIND). The VS-BIND approach integrates: 1) advances in 

modelling combinatorial binding within simulated neural systems using Vector Symbolic 

operations; 2) insights from neuroimaging and neurophysiological evidence in human and 

nonhuman primates on neural correlates of structured sequence processing and working memory; 

and 3) dynamic mechanisms for manipulating population codes that can be incorporated in modern 

Spiking Neural Networks (Bekolay et al., 2014; Eliasmith, 2013). The approach allows us to plausibly 

transform internal representations, rendering these into both mathematically idealised and neurally 

simulated site-specific activity unfolding over time. Building on these foundational mechanisms, we 

focus on modelling chunk encoding and the binding of sensory items to represent adjacent, non-

adjacent and more complex (hierarchically) structured sequencing dependencies. Our key objectives 

here are to motivate the approach, ground it in the relevant literature, and use it to generate distinct 

mechanistic predictions, the form of which, as will be seen below, depends both on the specific 

binding operations used and their configuration. 

It is important to note that any model using combinatorial operators can only be described as 

classically compositional if combinatorial representations precisely reflect the meaning of all 

constituents and the relations between them. The operators used here are not classically 

compositional, but nevertheless serve an important purpose in allowing us to generate falsifiable 

predictions of neural mechanisms and correlates of structured sequence processing ripe for 

neurobiological testing across the species. To assist in this process we also share MATLAB (The 

MathWorks, Inc.) code, including a demonstration (DOI: 10.5281/zenodo.3464607; Calmus, 

2019). Even on the basis of its structure alone and initial modelling, the VS-BIND approach posits a 

number of intriguing predictions. 

In summary, the aims of this chapter are to motivate a coherent computational perspective on 

sequence processing that unifies a diversity of site-specific hypotheses traditionally beyond the remit 

of any single model, and to use this perspective to constrain emergent predictions on brain function. 
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4.3 Foundations of descriptive and computational models of structured sequence processing 

Language relies on semantic and syntactic knowledge, supported by the detection of 

dependencies between phonemes, morphemes, words and phrases in sentences. The language 

binding problem features the rapid detection of lexical symbols and the encoding of complex 

syntactic regularities at multiple scales and temporal granularities.  

 A large volume of neurobiological data implicates a fronto-temporal brain system in various 

aspects of language processing (Bickerton & Szathmáry, 2009; Friederici & Chomsky, 2017; 

Hagoort, 2013). Neurobiological signals associated with the chunking and parsing of speech with 

respect to phrase boundaries have been identified in these regions (Ding et al., 2016; Ghitza, 2011; 

Nelson et al., 2017). Moreover, the temporal structure of speech or language content at different 

timescales (phonemic, syllabic, word or phrasal) produce stimulus- or context-driven neural 

entrainment at the relevant oscillatory frequency bands (Barczak et al., 2018; Giraud & Poeppel, 

2012).  

Behaviourally, a number of sequencing processes are now known to be evolutionarily 

conserved, including entrainment to rhythmic sensory input (Barczak et al., 2018; Lakatos et al., 

2008). There is also information from Artificial Grammar Learning paradigms, which are used to 

establish dependencies between otherwise arbitrary auditory or visual items in a sequence, either via 

statistical or rule learning (Friederici, Bahlmann, et al., 2006; Kikuchi et al., 2018). Humans and a 

number of nonhuman animals can learn dependencies between sensory items next to each other in a 

sequence (adjacent dependencies), as well as dependencies further separated in time and by 

intervening items (non-adjacent dependencies; reviewed in Wilson et al., 2018). The learning of 

hierarchically organized dependencies by nonhuman animals is, however, contentious and it remains 

to be seen whether this ability is uniquely human (Wilson et al., 2017; Jiang et al., 2018). 

Comparative neuroimaging work has identified brain regions in human and monkey frontal 

and temporal cortex involved in processing sequencing dependencies (Wang et al., 2015; Wilson, 

Kikuchi, et al., 2015). This has led to descriptive models of the brain-bases of structured sequence 

processing and the relationship with, and distinctions from, neurobiological processes involved in 

language (Wilson et al., 2017; Friederici, 2004; Petkov & Wilson, 2012). For the purposes of this 

paper, we will focus on the Wilson et al. (2017) descriptive neurobiological model of human and 
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nonhuman primate structured sequence processing, shown in Figure 4.1. Relatively simple 

sequencing relationships, such as between items that occur next to each other in a sequence, can be 

learned by both humans and monkeys and are seen to engage corresponding brain regions, 

particularly the ventral frontal and opercular cortex (Figure 4.1A, vFOC, bottom row) (Wilson et 

al., 2017). For non-adjacent dependencies (which increase working memory demands: store an item 

in memory long enough to link to its matched pair), it is less clear whether the frontal operculum, 

other inferior frontal areas (such as areas 44/45), and/or the dorsolateral prefrontal cortex are more 

involved. More complex (including hierarchical) dependencies engage inferior frontal areas 44/45 in 

humans (Broca’s area; Figure 4.1A, middle and top rows; Friederici, Fiebach, et al., 2006). The 

hippocampus has also been implicated in structured sequence processing (Opitz & Friederici, 2004; 

Schapiro et al., 2017) and implicit learning (Jablonowski et al., 2018), but its mechanistic role within 

these contexts remains incompletely understood.

Figure 4.1: Neurobiologically informed heuristic model of structured sequence 
processing, by Wilson, Marslen-Wilson & Petkov. (A) Fronto-temporal regions 
involved in sequence processing, from Wilson et al., 2017 (Copyright © 2017 Benjamin 
Wilson, William D. Marslen-Wilson, and Christopher I. Petkov, CC BY 4.0). (B) 
Predicted combinatorial codes illustrated as neural patterns implemented by 
coordination between different regions.
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Computational models of language or the processing of serial information provide compelling 

simulations of behavioural data (Cui et al., 2016; Gasser & Arbib, 2017). However, modelling 

underlying neural mechanisms presents additional challenges. David Marr’s tri-level framework 

(Marr, 1982) famously defines three levels of description that are still widely applied in characterising 

any given model of the brain: the goals of the system (computational level), the cognitive processes 

required to reach this goal (algorithmic level), and the neural mechanisms required to instantiate 

them (implementational level). Poggio (2012) extended this framework by suggesting that models 

should also offer insights into learning processes and the evolutionary path that yields the system (see 

also Fitch, 2014). Although advances have been made in understanding many neuropsychological 

phenomena at individual levels of description, it remains desirable to advance understanding on 

multiple levels through holistic modelling approaches (Eliasmith & Kolbeck, 2015).  

The fields of neuroscience and machine learning have been converging, in particular through 

the use of models incorporating functionally and anatomically distinct subpopulations of artificial 

neurons (Marblestone et al., 2016). Artificial Neural Networks (ANNs), including deep and 

recurrent neural networks (DNNs and RNNs), are the dominant connectionist modelling paradigm 

in use today, using iterative training procedures to tune synaptic weights between artificial neurons 

and establish network-level computations. RNNs are relevant to sequence learning since recurrent 

feedback allows them to integrate information over time (Hochreiter & Schmidhuber, 1997), whilst 

DNNs have revolutionised machine learning, increasingly inform neuroscientific analyses, and can 

generate neural correlates (Kar et al., 2019). 

A likewise informative, but paradigmatically distinct approach is to model the brain at an 

algorithmic level, explaining behaviour and cognition in terms of computational processes that 

combine and transform cognitive symbols (see Samsonovich, 2010). Reconciling neural and 

cognitive perspectives is a longstanding challenge, but there exists a computational modelling 

subfield which has made considerable strides in this direction: symbolic connectionism. This approach 

seeks to produce ANN models with explicit support for combinatorial and symbolic operations 

(neural-symbolic networks). This is the subfield we look to in furthering our modelling aims, 

specifically using Vector Symbolic Architectures (VSAs; see below), which can be used alone, in 

ANNs, or in dynamic Spiking Neural Networks. Our use of VSAs has the benefit of generating 
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predictions on neural mechanisms of combinatorial binding throughout the fronto-temporal system 

involved in structured sequence processing. 

4.4 Computationally modelling structured representations in neural systems: A brief 

overview of approaches 

There exist a number of symbolic connectionist solutions, and many non-symbolic or non-

connectionist cognitive architectures, each addressing various aspects of neural binding. Here, we 

briefly overview symbolic connectionist approaches before justifying our use of VSAs. For brevity, 

we restrict discussion here only to approaches that specify ways to build structured representations 

whilst explicitly supporting neurobiologically plausible implementation. 

Three distinct methods of modelling binding predominate, although they can in many ways 

be viewed as complementary (Hummel et al., 2004). The first uses coordinated temporal synchrony 

(see LISA, in Hummel & Holyoak, 2003, 1997; and SHRUTI, in Shastri & Ajjanagadde, 1993) or 

asynchrony (see DORA, in Doumas et al., 2008) to unify constituents. The second uses uniform 

grids of integrating circuits to create a stable memory for bindings (Neural Blackboard Architectures, 

NBAs; van der Velde & de Kamps, 2006). The third, encompassing VSAs, principally uses 

conjunctive spatial coding of abstract vector representations to associate items, via tensor products 

(Smolensky, 1990; Halford et al., 1998; Wilson et al., 2001), circular convolution (Plate, 1995) or 

other defined transforms (Kanerva, 1994; Gosmann & Eliasmith, 2019).  

Although commonly contrasted, spatial and temporal binding mechanisms are not mutually 

exclusive. Conjunctive spatial coding and temporal synchrony/asynchrony are known to be 

complementary and can be thought of as different perspectives on the same dynamic process 

(Hadley, 2007). Furthermore, conjunctive coding is considered appropriate for long-term storage in 

temporally coordinating models (Hummel et al., 2004; Martin & Doumas, 2017), whilst vector-

based methods can operate within dynamic frameworks likewise subject to temporal influences 

(Eliasmith, 2013), which we will consider in more detail later. Thus, spatial and temporal binding 

approaches are not diametrically opposed but rather place different emphases and explanatory 

burdens on mutually informing aspects of neural coding. Although VSAs tend to be conceived of as 

static systems, we specifically advocate their use within a dynamic framework (for example Nengo, 
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Bekolay et al., 2014; Eliasmith, 2013) to incorporate advantages of both temporal and population 

coding.  

The neural population codes employed by these models vary. In this regard, localist 

representations (which exhibit one-to-one or many-to-one mappings between features and neural 

activation) are typically contrasted with distributed representations (which exhibit many-to-many 

mappings). Distributed representations may be dense or sparse, which in the latter case means that a 

low proportion of neurons are active within a population at any one time. There is evidence that 

both localist (Roy, 2017; Bowers, 2009) and sparse distributed representations are utilised by the 

brain (Wixted et al., 2014; Willmore & King, 2009; Rolls & Treves, 2011), and there are advantages 

to both encoding strategies for neural systems. For instance, localist representations exhibit the 

lowest possible interference between encodings, whilst sparse distributed representations exhibit 

graceful degradation in performance in the presence of increasing noise (Werning et al., 2012). Sparse 

distributed vectors exist on a representational continuum that allows them to demonstrate 

characteristics of either localist or distributed encodings depending on their sparsity (Doumas & 

Hummel, 2005). This flexibility motivates the use of abstract vector systems that define 

combinatorial operators over sparse distributed representations. VSAs (Gayler, 2003), which we use 

to implement VS-BIND, accomplish this. 

These models also differ in terms of how semantic representations are instantiated (Logie, 

2007). Some define the semantic structure of relational encodings at the neural level, generating 

explicit role-filler (Hummel & Holyoak, 2003; Shastri & Ajjanagadde, 1993) or symbol-argument 

bindings (Halford et al., 1998). These models provide clear mechanisms to support compositional 

relational encodings of semantic knowledge, where the whole perfectly reflects its parts, a feature 

considered important for linguistic modelling (Hummel & Holyoak, 2003, 1997; Shastri & 

Ajjanagadde, 1993; Doumas et al., 2008). By comparison, VSAs do not inherently specify neural 

implementations at all, but are rather supported in this regard by broad theoretical frameworks that 

specify mappings between abstract vectors and neural population codes (for example, the Semantic 

Pointer Architecture, used in Nengo – see Eliasmith, 2013 and Bekolay et al., 2014 – or Integrated 

Connectionist/Symbolic Architecture, ICS; see Smolensky & Legendre, 2011). 
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Structured sequence processing typically focusses on ordering relationships and can refer to 

operations on meaningless items (e.g., nonsense words or abstract visual shapes). We consider 

cognitive architectures incorporating VSAs (Smolensky, 1990; Plate, 1995; Kanerva, 1994; Gosmann 

& Eliasmith, 2019) to have particular strengths appropriate to their use in a neurobiologically 

plausible model of structured sequence processing. Firstly, using existing tools, VSAs can act as a 

bridge to multiple modelling paradigms. For example, Nengo, a library for large-scale dynamic neural 

simulation (Bekolay et al., 2014), supports VSA encodings within spiking neural networks through 

the use of the Semantic Pointer Architecture. Bayesian computations (Sharma et al., 2017) and 

attractor dynamics (Gilra & Gerstner, 2017) have also been instantiated within this spiking neural 

network system. Secondly, VSAs are highly scalable solutions possessing substantial storage capacity 

for high-dimensional information (Crawford et al., 2016). Thirdly, as we describe shortly, VSAs 

permit the definition of relationships at the algorithmic level using an easily interpretable algebra. 

Finally, VSAs remain neurocomputationally plausible (Eliasmith, 2013) whilst being relatively 

straightforward to implement (Plate, 1995; Kanerva, 1994; Levy & Gayler, 2008). To describe our 

approach, we next outline VSA principles and operators, before explaining how temporal dynamics 

can control such operations. We conclude by describing the role of these mechanisms within a 

neurobiologically plausible model of structured sequence processing, VS-BIND. 

4.5 Combinatorial population coding with Vector Symbolic Architectures  

In VSA models, the basic units of representation are high-dimensional vectors. These typically 

sparse representations (see Figure 4.2, A and B) can be visualised directly (Figure 4.2, left panel) or 

encoded as neural activity using multidimensional tuning functions (Figure 4.2, right panel) 

(Bekolay et al., 2014; Eliasmith et al., 2004). 
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Figure 4.2: Spatial and temporal coding within a spiking model. Top row, left 
panel: Vector Symbolic Architecture (VSA) operations using circular convolution to 
accomplish binding (“A ⨂ B”; Plate, 1995). Sparse, high-dimensional random vectors 
represent distinct symbols A and B (blue text). To aid visual comparison, vectors are 
shown reshaped into squares, meaning the dimensionality of each vector equals the 
number of “pixels” in each box (here, 256-dimensional, plotted as 16 × 16). These 
vectors can also be considered directions in high-dimensional space (inset, projected 
down to 3-D using PCA). Results of the VSA operators are shown (left main panel,
black text, clockwise from left: superposition, binding, unbinding and involution; see 
manuscript), with arrows indicating the flow of operands. A noisy recovered vector 
(bottom right square) can be cleaned up with an autoassociative memory to produce A
(top square). Right panel (from Bekolay et al., 2014; Copyright © 2014 Bekolay, 
Bergstra, Hunsberger, DeWolf, Stewart, Rasmussen, Choo, Voelker and Eliasmith, CC 
BY 3.0): Core properties of the Neural Engineering Framework (NEF; Eliasmith, 2013)
as implemented in Nengo (Bekolay et al., 2014). To the left are tuning curves of 
individual neurons (A, top plot). In vector terms, each neuron fires maximally to its 
own preferred direction. Nonlinear encoding of an input signal (A, middle plot) yields 
spike trains for each neuron (A, bottom plot). Decoding (B) is possible using linear 
methods. Combining decoding with encoding, one can determine synaptic weights 
representing transformations between populations (C). Here, VSA representations are 
simply high-dimensional signals encoded like any other. Operations like convolution 
can be learned by simulated spiking networks incorporating Spike-Timing-Dependent 
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Plasticity (STDP) in Nengo (Eliasmith, 2013). Finally, dynamic signals can be 
represented (D), of relevance for understanding oscillatory mechanisms (Ding et al., 
2016; Nelson et al., 2017; Barczak et al., 2018). Nengo is agnostic about neural models, 
with many spiking models available (Hodgkin & Huxley, 1952; Izhikevich, 2003; 
Stewart et al., 2009). Bottom row: Since the NEF provides mechanisms for spatial (VSA 
operations) and temporal (dynamic) manipulation of representations, possibilities 
exceed that of a static system. Simple interactions between segregated populations 
(networks shown in blue boxes) lead to controlled functional relationships. Thresholded 
dynamic activity, e.g. arising from an oscillator (P1, leftmost panel) can trigger discrete 
combinatorial operations. These operations can be segregated over time (middle left 
panel) through control by interacting, antisynchronous oscillations (P1 and P2). 
Likewise, common driving signals can synchronously strengthen representations in 
disparate regions (middle right panel, P1 multiplicatively modulating P2 and P3) for 
downstream processing such as feature binding. Finally, the phase of an oscillator, rather 
than its amplitude (rightmost panel) can drive downstream encodings such as those of 
relative position. 
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 Symbolic vectors can be recombined using specific, reversible combinatorial operators to 

create new representations containing information on their constituents and the relations between 

them (Smolensky, 1990; Plate, 1995; Kanerva, 1994). Inputs to these operations can either be atomic 

vectors (those that are not compound representations) or the results of previous operations. Atomic 

vectors are often randomly generated in VSA models, but can also be generated by compressing even 

higher dimensional input. Using this latter approach, semantically similar concepts cluster together 

in vector space (Eliasmith, 2013). 

The power of VSA approaches lies in their combinatorial operators. Although these are 

broadly common to all VSAs, here we utilise only one VSA, that of Plate (1995). This VSA uses the 

following operators: superposition (or bundling; point-wise vector addition of inputs), binding (a 

conjunctive operator) and its inverse, unbinding (also termed release, which here relies on inversion, 

equivalent to logical “not”), and a vector comparison operator for readout of results. Note that within 

VSA terminology, only the conjunctive operation is known as binding, but both this specific 

operator and superposition fit the wider definition of binding in the broad context of neural binding 

problems (Feldman, 2013). The more specific VSA nomenclature, which we adhere to hereafter, is 

helpful because it imposes constraints on the potential neural mechanisms involved in each of these 

combinatorial processes. 

Using the full set of VSA operators, algorithmic manipulations are undertaken easily. The 

operators are best demonstrated with just two inputs (here A and B; typical VSA operators are 

illustrated in the left panel of Figure 4.2). A + B (superposition) yields a vector correlated with both 

A and B. This is simple vector addition, essentially overlaying the sparse inputs. A ⨂ B (binding) is 

a conjunctive operator that yields a vector approximately orthogonal to both A and B, and as such is 

poorly correlated with either input. In this VSA, binding is calculated through circular convolution 

(Plate, 1995), which is just one possible way to create an output vector of the same length as one 

input alone (see also Kanerva, 1994; Gosmann & Eliasmith, 2019). This feat is possible because the 

operator encodes a reduced representation of both inputs, which can be unbound as described below. 

Reduced representations are an important feature of a number of VSAs. Without them, 

conjunctive operations on input vectors of length N each result in output vectors of length N2 

(leading to exponential increases in vector size, a combinatorial explosion). This is a characteristic of 
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the ancestral VSA, Smolensky’s tensor product binding model (Smolensky, 1990; Smolensky & 

Legendre, 2011). Plate’s VSA (1995), by contrast, overcomes this scaling problem by making use of 

compressive representations known as Holographic Reduced Representations (HRRs). Reduced 

representations allow a single model to support repeated (or recursive) operations on vectors without 

dimensionality increasing; the limiting factor in using reduced representations is instead that the 

process is lossy, so repeat operations cumulatively degrade the output vector. It is partly for this 

reason that this approach cannot be considered classically symbolic or perfectly compositional. 

However, lossy encoding recapitulates natural limits on working memory and the depth of 

recursively nested structures that can be constructed or comprehended in natural language (de Vries 

et al., 2011). 

Here, unbinding is in essence binding, but with a change to one of the operands. Values may 

be unbound or released from a bound representation by computing a new binding between it and 

the approximate inverse of one of the original inputs with respect to the binding operator (from 

hereon in, just named the inverse, “¬”; see ¬B, Figure 4.2). Inversion is accomplished by simply 

permuting all but the first dimension of B, which at a neural level means rerouting input dimensions 

using a distinct pattern of synaptic weights. It is easier to understand the inversion operator by 

demonstrating its use in unbinding; the vector symbolic formula (A ⨂ B) ⨂ ¬B shown in Figure 4.2 

depicts this process. Here, we bind the bracketed representation with a “key” containing the inverse 

of the element we know to be linked to the vector we wish to recover. Without such a key it is 

impossible to retrieve the contents of a binding via circular convolution. This means that VSA 

operations must be configured carefully to ensure that bound information can be retrieved in a 

plausible way. 

To interrogate the result of unbinding or any VSA operation, we can use the comparison 

operator to assess the similarity of the output to a defined vocabulary of representations. This can be 

useful as part of an autoassociative memory, or to control downstream actions or operations. For 

example, let R = (A ⨂ B) ⨂ ¬B. Here, undertaking a comparison between R and a set of two vectors 

{A, B} would reveal that R is highly similar to A and highly dissimilar to B. Comparisons can be 

conducted on real-valued vectors using correlation or the vector dot product (where a smaller angle 

between input vectors indicates stronger similarity). The dot product in particular could be 
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implemented by any neuron; it is equivalent to simply summing all presynaptic potentials weighted 

by their respective synaptic weights over a short period of time (Rolls & Treves, 2011). 

Use of VSA operations is by no means restricted to elementary computations. 

Mathematically, the superposition (“+”) and binding (“⨂”) operators are designed to exhibit 

associativity, commutativity and distributivity akin to their scalar analogues, addition and 

multiplication (Plate, 1995). For example, if A, B and C each represent vectors, the vector symbolic 

formula A ⨂ (B + C) is equivalent to (A ⨂ B) + (A ⨂ C), just as one would expect algebraically. 

This makes the results of multiple VSA operations predictable and transparently interpretable. In a 

similar fashion, unbinding still functions if we superpose multiple bindings, as in 

R = (A ⨂ B) + (C ⨂ D). In this case, R ⨂ ¬D will result in the value (C + noise), recovering a 

representation highly similar to C. 

Are such operations neurobiologically plausible? Plausibility of the neuronal arithmetic at a 

basic level is well supported; additive and multiplicative functions, which are sufficient to compute 

all of the VSA operations described here, including circular convolution, are established neural 

processes (Silver, 2010). Multiplicative and divisive functions abound in the cognitive 

neurobiological literature, as feedback influences on neural responses (Kikuchi et al., 2019; Reynolds 

& Heeger, 2009). The circular convolution operator could also be substituted for a number of 

alternative conjunctive distributed operators, for example vector-derived transformation binding 

(Gosmann & Eliasmith, 2019). There is a good deal of evidence consistent with the presence of 

conjunctive distributed encodings in associative areas such as retrosplenial cortex (Beyeler et al., 

2019), the ventral visual stream (Erez et al., 2016), and hippocampal CA1 and CA3 subregions 

(Komorowski et al., 2009).  

How do we distinguish superposition from multiplicative (Doumas & Hummel, 2005) 

operations like convolutional binding in high dimensions? We expect that neurons instantiating 

additive operations should demonstrate linear responses to linear combinations of features of 

constituent representations, whilst multiplicative operations should result in nonlinearly selective 

responses. Empirical evidence already suggests that superposition cannot be the only combinatorial 

function, since linear and nonlinear mixed selectivity are both prevalent within the lateral prefrontal 

cortex and elsewhere (Rigotti et al., 2013; Parthasarathy et al., 2017). Thus, there is evidence for the 
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broad classes of functions to which the VSA operators belong in regions supporting cognitive 

function. 

Simulations likewise demonstrate plausibility; Plate’s VSA operators, discussed here and 

shown in Figure 4.2 (Plate, 1995), form the combinatorial backbone of Eliasmith’s Semantic Pointer 

Architecture (SPA), a neurobiologically plausible representational framework underlying Nengo, a 

Python library supporting the construction of spiking neural models (Bekolay et al., 2014; Eliasmith, 

2013). The SPA proposes that high dimensional representational vectors arising in sensory cortex are 

compressed by similarity-preserving dimensionality reduction, and that the brain undertakes vector 

symbolic operations on these reduced representations. Nengo supports the transcoding of these 

cognitive representations into spiking neural representations by applying a set of fundamental neural 

encoding and decoding principles, the Neural Engineering Framework (NEF; Bekolay et al., 2014), 

summarised with reference to the original paper in Figure 4.2 (right panels and figure legend). Under 

this system, each spiking neuron contributes to a distributed encoding of an underlying latent vector 

representation; that is, there is a many-to-many mapping between the dimensions of a cognitive 

vector (itself already a distributed representation) and individual neurons. The resulting spiking 

activity is inherently dynamic, and thus suitable for manipulation over time by temporal mechanisms 

within the same dynamic framework. 

4.6 Dynamically coordinating combinatorial operations with temporal mechanisms 

As we have seen, population coding and temporal mechanisms are both functionally 

important to any account of domain-general structure building (Ding et al., 2016; Doumas & 

Hummel, 2005). Here, we introduce basic oscillatory principles that serve as temporal mechanisms 

within VS-BIND.  

Neural oscillations in the brain reflect temporally coordinated responses of neural populations 

(Whittington et al., 2011; Buzsáki & Wang, 2012). Oscillatory signals can also result in oscillatory 

coupling across frequency bands that reflect coordinated interactions within and between brain 

regions (Buzsáki & Wang, 2012; Fries, 2015). Theta-gamma coupling, for example, is associated with 

cognitive function and is also seen during structured sequence processing tasks (Buzsáki & Wang, 

2012; Kikuchi et al., 2017). 
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We can instantiate dynamic relationships, including coupling, within a spiking neural model 

such that they undertake functionally useful coordinating or multiplexing roles in neurobiologically 

plausible ways (Figure 4.2, bottom row). For example, a self-connected population (leftmost panel, 

P1) can generate oscillatory dynamics that, when thresholded, serve as the trigger for discrete vector 

symbolic operations on multiple inputs (P2). Likewise, interacting oscillators (P1 and P2, middle 

left) can exhibit antisynchrony, segregating discrete operations such that they do not interfere. 

Temporal synchrony can also be simulated (middle right) through top down influences on multiple 

neural populations, for example by controlling gain, such that downstream operators (for example, 

VSA operators) act on coordinated inputs. Here, temporal coordination serves to functionally 

associate two vector representations that would otherwise remain separate. 

The dynamic context in which these spatial operators act is crucial, because it serves to mitigate 

the concern that, due to their multiplicative interactions, such spatial bindings are too variable to 

support generalisation over classes of their inputs, and thus insufficient as relational encodings, a 

problem characterised in the literature as violation of role-filler independence (Doumas & Hummel, 

2005). The explicit segregation of representations in space (Figure 4.2, A versus B) and time (Figure 

4.2, top left panel, upstream/downstream) means that multiple neural ensembles concurrently 

instantiate different components of a combinatorial representation. Variability in the downstream 

binding of A and B would not prevent either of these two populations from generalising over their 

inputs. Constituents may be dynamically bound or unbound as needed to segregate or aggregate 

information. 

Finally, oscillatory signals can unidirectionally coordinate activity elsewhere, for example on 

the basis of phase (Figure 4.2, rightmost panel), thus potentially exhibiting phase-amplitude 

coupling effects. This produces behaviour consistent with conceptual models on the role of theta-

gamma coupling (Lisman & Jensen, 2013) observed in the brain (Buzsáki & Wang, 2012; Canolty et 

al., 2006). VS-BIND exhibits phase-amplitude coupling as an explicit functional property of relative 

position coding.  

The subject of dynamic coordination is returned to in more depth in sections 4.7 (“Network-

level mechanistic hypotheses derived from VS-BIND”) and 4.8 (“Unifying neurocomputational 

accounts: expanding the serial order encoding”).
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Figure 4.3: Neurobiologically informed vector symbolic encoding of sequence structure. Vector symbolic operators can account for the 
processing of a variety of sequencing dependencies. The solid arrows in these charts indicate the flow of information during encoding of a stimulus 
sequence only. These describe transformations of latent vector symbolic representations, as opposed to neural activation patterns. Representation 
strength is denoted by the shading and thickness of each box border. For clarity, representations are shown separated along the horizontal axis, though 
separate boxes do not necessarily imply separate neural populations are engaged, especially if describing identical computations, which could be 
undertaken by neurons of a single region. We suggest sensory representations (bottom row) are maintained within SMA (not shown) and retrieved 
as needed. Operations unfold dynamically following principles outlined in Figure 2. The final encoded sequence representation is found at the top 
of each diagram. Each is a reduced representation whose constituents can be inspected without serially unpacking all bindings; the superposed final
result of the adjacent relationship encoding (leftmost diagram), for example, can be interrogated to recover its secondary element by simply binding 
it with ¬2°I. Serial elements packaged into a single representation are considered to be chunked in the traditional sense (inset box), but identical 
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operations can be applied to nonadjacent (middle diagram) or nested pairs of elements (rightmost diagram), using separate item (I) and chunk 
(C) position encodings. Selective fading along the vertical axis represents salience filtering in the nonadjacent example (middle). Finally, the dashed, 
curved arrow shows just one case in which sub-symbolic feedback from a cognitively abstract cortical region might ultimately influence the 
representation of individual elements in sensory cortex (there may be many such pathways, but one exemplar is shown). Thus, although the figure, 
for simplicity, suggests VS-BIND is largely a feed-forward model, feedback influences feature and can, for example, allow certain areas to influence 
sensory cortical representations. 
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4.7 Network-level mechanistic hypotheses derived from VS-BIND 

Our objective within the remainder of this paper is to outline the specific combinations of 

operations required to support dependency encoding during sequence processing, generating 

neurobiological hypotheses for adjacent, nonadjacent and hierarchical dependency encoding. The 

MATLAB demo provided at DOI:10.5281/zenodo.3464607 further illustrates key principles outlined 

here. 

4.7.1 Adjacent dependencies 

We first consider the binding of two items following each other closely in time. At the vector 

symbolic level, ordered sequences can be unambiguously represented using one of two principal 

methods. The first is by encoding elements with respect to each other (chaining). However, 

behavioural findings in multiple species do not convincingly support this approach (Choo & 

Eliasmith, 2010). An alternative method, encoding each element with respect to a serial positional tag 

(Sequence = 1st * Item1 + 2nd * Item2, and so on), has found greater support. Behavioural results in 

songbirds suggest a reliance on positional cues during sequence recognition (Comins & Gentner, 

2010). Likewise, during recall, humans and non-human primates are more likely to confuse items in 

different memorised sequences if those items share the same ordinal position across sequences 

(Dehaene et al., 2015). Positional influences on recall provide behavioural evidence that ordinality is 

incorporated into the encoding of sequences even when position is not explicitly featured in a task, 

offering support for positional tagging. 

Detection of ordinal serial position, an essential component of sequence encodings within 

VS-BIND, we posit involves dorsolateral prefrontal cortex (DLPFC), motor and premotor cortex. 

Electrophysiological findings in non-human primates align with this account, revealing populations 

of cells in each of these regions involved in consistently encoding serial position irrespective of 

stimulus identity (Carpenter et al., 2018; Petrides, 1991). Studies of the hippocampus likewise reveal 

temporal coding relative to stimulus presentation, hypothesised to form part of the context for later 

retrieval (Long & Kahana, 2019). There is thus a neurobiological basis for the crucial role played by 

explicit positional tags within our model (Figure 4.3, light blue-grey boxes). Within VS-BIND, 

positional tags are considered to be deterministically but flexibly generated by the brain. 
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Here, tags follow the nomenclature “primary” and “secondary” (“1°” and “2°”) rather than 

the ordinal absolutes “first” or “second”, in line with human and nonhuman primate behavioural 

(Henson, 1999; Endress et al., 2010, 2009) and electrophysiological (Carpenter et al., 2018; Long & 

Kahana, 2019) evidence suggesting that, within sequences of words or actions, ordinal position is 

encoded relative to sequence boundaries rather than in absolute terms. Within our model, positional 

tags are anchored to the boundaries of perceptual chunks (Figure 4.3, box, inset), by decoding 

stimulus-entrained oscillatory phase (see Figure 4.2) such that both positional tags and sequence 

items are derived from the stimulus. It is important that each tag remains orthogonal to the last, 

which is a requirement for later unambiguous recovery of specific elements in a sequence. 

To encode a sequence, continuous input over time is first discretized. These discrete sensory 

items are bound to distinct positional tags (to form position-item representations) and superposed 

in a decaying, recurrently connected working memory buffer. This sequence buffer, likely supported 

by SMA and pre-SMA (Cona & Semenza, 2017), therefore maintains a linear, ordered representation 

of the input sequence (i.e. Sequence = 1° ⨂ Item1 + 2° ⨂ Item2 + 3° ⨂ Item3). From this, individual 

sensory representations can subsequently be retrieved (via Item ≈ Sequence ⨂ ¬Position) and recoded 

to reflect dependencies between items or chunks (Figure 4.3, bottom row, showing retrieved items). 

During this recoding process, maintained representations (A, B, or irrelevant intervening items, X) 

serially accumulate within a dependency buffer over time (i.e., moving rightwards) where they can be 

used in increasingly complex binding operations (moving upwards). The SMA encoding steps are 

comparable to the VSA approach in the Ordinal Serial Encoding (OSE) working memory model of 

Choo & Eliasmith (2010), which is capable of modelling behavioural characteristics of serial recall 

such as working memory primacy and recency effects. However, unlike the OSE model, VS-BIND 

incorporates centrally coordinating oscillatory activity and uses boundary-relative (rather than 

absolute) ordinal codes. Moreover, subsequent to serial encoding within working memory, VS-

BIND describes the encoding of various dependencies, which need not be linear in organisation 

(Figure 4.3). 

To encode dependencies, items are retrieved from sequence memory and bound with new 

positional tags (Figure 4.3, light blue-grey boxes). As in sequence memory, bindings form over 

time between tags and corresponding items, which are superposed to form representations of specific 

dependencies (Figure 4.3, topmost representation, all diagrams). The timing of each binding 
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operation is associated with and coordinated by stimulus-related oscillatory activity (see Figure 4.2) 

(Barczak et al., 2018; Lakatos et al., 2008). 

4.7.2 Nonadjacent dependencies 

To support efficient encoding, and permit generalization from learned adjacent 

dependencies, simple nonadjacent relationships may be encoded in an equivalent manner to adjacent 

dependencies. To accomplish this, all constituent items must be maintained in the sequence buffer 

long enough to be integrated, and maintained representations need to be selectively propagated to 

the dependency buffer. This process involves salience filtering (e.g., by repetition suppression, 

expectancy or attentional processes, reviewed in Summerfield & de Lange, 2014; see Figure 4.3, 

centre diagram), possibly supported by regions such as ventral frontal cortex including the frontal 

operculum (FO). This is based on findings that the FO appears to be more active during the 

presentation of infrequent or novel auditory cues (Rong et al., 2018) and responds preferentially to 

violations of adjacent dependencies (Friederici, Fiebach, et al., 2006). We suggest that this region 

integrates information from working memory as soon as it is available, but only maintains it over a 

relatively short time period. In this case, preferential responses to adjacent dependency violations 

could be explained by FO actively inhibiting representations of both low probability items and short, 

low probability n-grams of contiguous elements (for example, those in which the constituent 

elements are not suitably ordered). 

Salience filtering enables nonadjacent dependencies to be encoded into representations 

identical to their adjacent counterparts, for any length of dependency fitting into working memory. 

That is, for any salient A and B and n irrelevant X elements, the sequence A-Xn-B may be rendered 

into the same encoding as AB alone by selectively inhibiting downstream encodings of irrelevant X 

representations (Figure 4.3, identical top representations, left and middle diagrams). 

Discarding irrelevant items results in a more efficient representational code, and in state-transition 

terms allows for grammaticality judgements to be made on nth order nonadjacent dependencies using 

only a first-order Markov process. 

4.7.3 Hierarchica l dependencies 

As shown, within our model a dependency comprises multiple superposed position ⨂ item 

bindings. Although the dependency can incorporate items retrieved from either contiguous or 
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discontiguous positions in serial working memory, the recoded dependency representation can in 

both cases be considered a chunk (in Figure 4.3, left diagram, the chunk is A-B; in the right 

diagram, the two chunks are A1-B1 and A2-B2). To encode hierarchical dependencies (Figure 4.3, 

right diagram, showing nested dependencies), every dependency needs to be bound with a unique 

positional tag, as for individual items. Like individual items, these can also be superposed, forming a 

superchunk containing a higher-order dependency representation. This process can be recursively 

repeated to form a single reduced representation of the hierarchical structure of the entire input 

sequence, integrating progressively increasing amounts of information at higher hierarchical levels of 

encoding. 

The above system is sufficient to compress hierarchical structure into a reduced 

representation. However, we must encode the reduced representation using more than item 

positional tags if we are to support unambiguous recovery of specific constituents and comfortably 

discard the original representations. To avoid generating identical codes for dissimilar structures, we 

can define sets of positional tags specific to each level of the hierarchy, for example 1I° and 2I° for the 

first and second items, 1C° and 2C° for the first and second chunks, and so on (see Figure 4.3, right 

diagram). For this reason, it can be computationally beneficial to define all positional tags as 

convolutional powers (i.e. 𝑜𝑜𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑥𝑥𝑒𝑒𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒) of a given base vector through repeated self-binding (i.e. 

2° =  1° ⨂ 1° =  (1°)2). This, or a similarly invariant function, can be learned by a network such 

that tags are encoded not just as a function of position (by varying the exponent), but also context 

(by varying the base vector). Crucially, by binding items only to a finite set of deterministically 

generated positional tags, the modelled system can always undertake unbinding by re-instantiating 

the same set of keys; by iterating through every possible tag, all constituent items can be retrieved in 

sequence. 

A given dependency coding network can retrieve and recode items from arbitrary positions 

in the linear sequence buffer, provided it has sufficient integrative power. Therefore, this 

representational scheme is capable of encoding not just nested dependencies, but other types of 

hierarchical dependency such as crossed dependencies. For example, Figure 4.3 (right diagram) 

illustrates retrieval of items 1 and 4 (A1 and B1) from sequence memory, which are chunked through 

binding and superposition; and retrieval of items 2 and 4 (A2 and B2), which are likewise chunked. 

These two chunks form a superchunk representing a nested dependency. Cross-serial dependencies 
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between words are notably also present in some human languages. Like nested dependencies, these 

can also be readily represented by our model. We could, for example, have retrieved and bound items 

1 and 3, and 2 and 4, respectively, to form a crossed dependency structure. This is illustrated within 

our coded demonstration (DOI:10.5281/zenodo.3464607). Their inclusion alters the minimum 

computational requirements for any parsing agent (Stabler, 2004), and thus it is important that a 

domain-general representational model has the potential to account for them as well as other 

language-like hierarchical constructions. 

Having recoded a linear sequence in terms of its dependencies, it is possible to recover one or 

more specific items from the representation of hierarchical structure by unbinding using keys that 

specify context-specific position(s). With reference to Figure 4.3 and using this method: the key ¬1C° 

will recover all position-item bindings of the first chunk; the key ¬2I° will recover the second item of 

every chunk (with each still bound to information on the requisite chunk position); and the key 

¬(2I° ⨂ 1C°) will recover the second element of the first chunk. This flexible decoding scheme is 

important because it readily supports manipulation of entire chunks and generalization of 

dependencies to multiple timescales.  

A natural consequence of the above encoding scheme is that the superposition of many 

dependency representations over time can gradually give rise to a memory trace. This trace will be 

influenced by the probabilistic distribution of dependencies over the set of input sequences, 

analogous to implicit learning. It is now possible to computationally model functional characteristics 

of hippocampal subregions, and by this method it has been proposed that a monosynaptic 

(entorhinal cortex to CA1) pathway possesses the relevant properties to support implicit learning 

(Schapiro et al., 2017). This is relevant for sequence learning, where dependencies are established over 

many trials. Single-trial learning, by contrast, requires processing by further hippocampal subregions. 

This suggests a prominent role for parts of the hippocampal system in sequence processing, in line 

with recent findings (Opitz & Friederici, 2004; Schapiro et al., 2017). However, this is not to say that 

we should expect activation of the hippocampus to be constant throughout. Indeed, the human 

neurobiology literature suggests that there is a decrease in hippocampal involvement over time when 

learning an artificial grammar (Opitz & Friederici, 2003), or acquiring a novel semantically 

meaningful lexicon (Breitenstein et al., 2005). These observations can be interpreted by way of a 

predictive coding account, in terms of the degree of mismatch between stored and incoming sensory 
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encodings (Schiffer et al., 2012). We can relate this associative mismatch account of hippocampal 

involvement to the idea of a superposed memory trace. Namely, any newly presented sequence is 

likely to be more similar to a superposition of encountered sequences as time progresses and the 

number of constituents in the superposition grows. Thus, the degree of mismatch, and any activation 

requisite for such an encoding, is likely to decrease over time. 

We propose that hierarchical structure-building is one of the key roles of the dorsal aspect of 

ventrolateral prefrontal cortex (dorsal VLPFC, incorporating Brodmann Areas 44 and 45). This 

position is supported by human neurobiological evidence on syntactic processes prominently 

featuring hierarchical dependencies (Wilson et al., 2017; Friederici, Fiebach, et al., 2006). It has been 

proposed that at least BA44 supports a recursive, multi-dependency management process, a fact 

which would explain increases in its activation observed with increasing depths of hierarchical 

dependency nesting (Friederici, 2011). The recursive reuse of a consistent architecture by VLPFC 

would be consistent with our recursive use of vector symbolic operations during the encoding of 

hierarchical dependencies. Repeated superposition of sparse dependency representations will 

manifest as an increase in local activity as increasing numbers of neurons support the representation; 

as an example of this effect, consider the increased activity represented at the top of Figure 4.3, relative 

to the bottom. A “reset” (or re-sparsification) of the buffer will result in a sudden drop in population 

activity. Such neural accumulation and reset activity has been identified within human intracranial 

recordings in subjects listening to sentences containing words that accumulate into phrases (Nelson 

et al., 2017). Furthermore, representations of constituents might not persist beyond the need to 

encode the reduced dependency representation, a fact that highlights an interesting property of the 

model: detectable neural delay activity does not need to persist throughout working memory 

maintenance of the input sequence, consistent with recently reported findings on the neurobiology 

of working memory (Lundqvist et al., 2018). 

It must be emphasised that the flow diagrams in Figure 3 only show symbolic information flow. 

There are likely to be sub-symbolic influences acting over time to hone the associated neural 

activation patterns, requiring feedback and feed-forward interactions between neural ensembles in 

the model. These are briefly alluded to in Figure 4.3 as a single exemplar (curved, dashed arrow, left) 

denoting top-down influences acting on sensory cortical representations. These sub-symbolic 

influences may be investigated further by instantiating a dynamic neural implementation of the 
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model via the NEF (Eliasmith et al., 2004), where learning algorithms employing, for instance, spike-

timing-dependent plasticity, can be applied to learn functions over time (Aubin et al., 2017). 

4.8 Unifying neurocomputational accounts: extending the serial order code 

Thus far we have described how discrete serial position can be incorporated into neurally and 

cognitively plausible vector symbolic representations of sequentially organised content by tagging 

items with their respective ordinality. Within our vector symbolic account of sequence processing, 

this structure has been suggested as the basis for linear encodings as well as multilevel tree structures 

within the fronto-temporal language network. However, we have also alluded to the importance of 

continuous, boundary-relative encodings (relative position) in the human brain. In such 

representations, an item halfway through a sequence would be encoded as having a position of 0.5 

relative to the sequence boundaries, for example, a position on a continuous scale that is independent 

of the absolute length of the sequence. 

Rather than leaving the relationship between these encodings implicit, in this section I will set 

out a concrete description of the computations required to support continuous relative position, 

which can be understood as extensions or generalisations of the previously described serial order 

encoding. As will be shown, extending this encoding permits the unification of seemingly 

anatomically and functionally disparate neurocomputational accounts. 

4.8.1 The need for continuous relative position 

As described previously, the serial positional encoding of items uses distinct positional tags 

to mark each item’s position within a sequence (i.e. Sequence = 1° ⨂ Item1 + 

2° ⨂ Item2 + 3° ⨂ Item3). The positional tags are most readily conceived of as absolute ordinal 

positions (for example 1st, 2nd, 3rd), but this need not necessarily be the case. Indeed, restricting tags 

to only absolute positions needlessly constrains the explanatory and computational capabilities of 

the positional encoding. 

In neural terms, absolute positional encodings are insufficient to encompass the range of 

positional representations seen within the brain. Evidence for relative serial encodings has been 

found in primate motor, premotor and dorsolateral prefrontal cortex (Carpenter et al., 2018) and rat 

hippocampus (Shimbo et al., 2021). Neurons in these areas exhibit activity profiles from which 

sequential position can be decoded, but in a manner that scales with the length of the sequence. That 
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is, they exhibit activity that appears to encode position relative to the boundaries of a larger entity, 

such as the boundaries of a list. How precisely such boundaries are defined remains a matter of 

interest (Carpenter et al., 2018). However, from a computational perspective, such boundaries can 

be derived either from bottom-up signals within the stimulus itself, or from top-down expectations 

about the impending boundary, learned from prior experience (Barczak et al., 2018). Furthermore, 

such positions need not be defined relative to a one-dimensional sequence in time but could equally 

be defined in the spatial domain. Such topics are investigated later in this chapter. 

As well as supporting the electrophysiological evidence, relative positional encodings 

demonstrate explanatory added value in behavioural hypothesis generation when compared to 

absolute positional encodings. For example, in humans, transposition errors are more likely to occur 

between items at the end of different sized groupings than between the same absolute positions 

(Henson & Burgess, 1998). Furthermore, using an absolute encoding scheme, the 3rd and 4th items 

are nominally just as distinguishable from each other in a 5-item list as in a 20-item list. In relative 

terms, however, these same item positions are much closer together in the 20-item list than in the 5-

item list (on a scale of 0 to 1, having positions of 0.6 and 0.8 in the 5-item list, versus 0.15 and 0.2 in 

the 20-item list). This notional reduction in distinctiveness between neighbouring positional tags for 

longer lists accords with evidence that humans produce more transposition errors between adjacent 

elements when recalling longer sequences (see, for example, Haberlandt et al., 2005). 

Finally, computationally speaking, relative positional codes have two key advantages. Firstly, 

they allow dependencies between events or objects to share common encodings despite differences 

in either the absolute scale or contents of a sequence. This has the potentially enormous advantage 

of permitting dependency learning to be abstracted across timescales as well as modalities. Secondly, 

since relative positional codes encode values on a continuous scale (as opposed to discrete ordinal 

values), it becomes trivial to coordinate them (and thus sequence playback) using any continuous 

signal, including oscillatory activity. 

An account of relative positional encoding is thus highly desirable. Unlike absolute ordinal 

position, however, encoding relative position using a vector symbolic architecture (VSA) requires us 

to define a reliable way of transforming continuously varying, real scalar values (technically, any real 

value between 0 and 1) into distinct positional keys. There are two methods of accomplishing this, 
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one of which, derived from the VSA literature, is computationally efficient; and the second of which, 

a novel method, offers explanatory advantages and relaxes neurocomputational assumptions. 

4.8.2 Encoding continuous position using fractional binding 

For a serial positional encoding to function, each positional tag must be distinct. In VSAs, 

this is accomplished by ensuring that tags are orthogonal to each other. Since vector symbolic binding 

produces output orthogonal to both inputs, we can use self-binding to generate new keys in a 

computation analogous to exponentiation. Thus, as we saw in 4.7.3, it can be useful to define a 

general formula for positional keys that involves raising a base to an integer exponent, like so: 

𝐕𝐕 =  �̂�𝐤𝛼𝛼  

This states that the positional key 𝐕𝐕 computed for the αth value is equal to some unit vector �̂�𝐤 bound 

with itself α times. For example, the fourth item of a list would have a positional key 𝐕𝐕 = �̂�𝐤4; that is, 

𝐕𝐕 = �̂�𝐤 ⨂ �̂�𝐤 ⨂ �̂�𝐤 ⨂ �̂�𝐤. 

It is difficult to conceive of a “partial” binding operation, such as 𝐕𝐕 = �̂�𝐤0.43, in mechanistic 

terms, and so at first sight this scheme may appear to be restricted to integer exponents (and thus 

absolute encodings). However, whilst it may seem unintuitive, Plate (1995, 1992) demonstrated that, 

indeed, the convolutional binding power need not be an integer. Since circular convolution in the 

spatial domain is equivalent to pairwise multiplication in the frequency domain, it can be 

demonstrated that the above exponentiation is equivalent to: 

𝐕𝐕 =  𝑓𝑓−1�𝑓𝑓��̂�𝐤�
𝛼𝛼
�                   𝛼𝛼 ∈  ℝ,  �̂�𝐤 ∈  ℝ𝑏𝑏  

where 𝑓𝑓 and 𝑓𝑓−1 are the forward and inverse Fast Fourier Transform (FFT) respectively; α is any real 

number; and as before �̂�𝐤 is a unit vector, and 𝐕𝐕 the resulting positional key vector. 

In this way, the scheme we defined previously for serial encoding can be used to encode items 

by some continuous measure of position, including relative position, bringing it in line with the 

neural and cognitive evidence. Furthermore, and remarkably, by binding multiple continuous 

position encodings together, continuous trajectories in 2D, 3D or higher-dimensional space can also 

be represented (Plate, 1992), allowing such a system to map visuospatial domains, for example. 

However, this particular method formalises some constraining assumptions; we can, in particular, 
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relax the requirements for either Fourier domain computations or convolutional powers by defining 

a more general transformation. This novel vector symbolic mechanism is outlined below. 

4.8.3 Encoding continuous position using basis functions 

The above method uses fractional convolutional binding to encode orthogonal positional 

keys along a continuous trajectory. However, there is no neurocomputational need to restrict 

orthogonal codes to those produced by exponentiation. Neither is there a formal requirement that 

resultant codes be uniformly spaced along a trajectory, as they are using the fractional binding 

method. One can abstract away from such concerns using the following novel vector symbolic 

formula: 

𝐕𝐕𝜶𝜶 =  �ψ𝑏𝑏(𝛼𝛼) �̂�𝐤𝑏𝑏
𝑏𝑏

𝑏𝑏=1

 

where α is, as above, any real number; 𝑛𝑛 is an integer number of orthogonal encodings; ψ is a set of 𝑛𝑛 

basis functions spanning the real-valued input domain; �̂�𝐤 is a set of 𝑛𝑛 distinct unit vectors, and 𝐕𝐕𝜶𝜶  is 

again the resulting positional key vector. Summation here denotes superposition of its operands. 

The formula is sufficiently compact that a prose explanation is assistive. Here, each distinct 

basis vector �̂�𝐤𝑏𝑏 is scaled by the output of a corresponding basis function ψ𝑏𝑏. The basis vectors �̂�𝐤 must 

be orthogonal for effective encoding, and could be a set of integer binding powers as described 

previously. However, they need not be; since any two randomly selected high-dimensional vectors 

are likely to be approximately orthogonal, this could be a set of random vectors. Scaling occurs by 

multiplying every component of the vector with the scalar output of the given basis function. These 

scaled vectors are subsequently superposed, producing one key vector 𝐕𝐕 that varies continuously 

with the real-valued input scalar, α. Thus, a real valued scalar α is transformed into a continuously 

changing vector 𝐕𝐕𝜶𝜶  by summing a mixture of vectors, using α to control the mixing proportions. The 

resultant key vector 𝐕𝐕𝜶𝜶  can serve as the input for further vector symbolic operations, as with the 

fractional binding or absolute positional encoding methods described previously. 

Casting off the nomenclature, the method is readily portrayed in visual terms, as in Figure 

4.4, which illustrates the basis function method applied to a scalar α derived from the phase of some 

upstream input. Basis functions such as evenly spaced Gaussian curves, as depicted, can mimic the 

fractional binding system described previously, but since these could in fact be any set of functions 
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spanning the input domain, including heterogeneous functions that non-uniformly span the input 

domain, the basis function method is less assumptive than the fractional binding method. 

 

 

Figure 4.4 Transforming continuous phase into discrete positional encodings. 
Within a position-encoding population, some vector components (and thus neurons) 
respond preferentially to specific values of input phase. Thus, at any given phase, a 
subset of neurons will activate. This is equivalent to activating one of a finite number of 
sparse, distributed positional encodings (boxed dots, representing basis vectors) based 
on tuning to specific values of phase (coloured Gaussian curves, representing basis 
functions). Randomly selected sparse, distributed vectors are approximately orthogonal 
(black arrows). Moving through continuous values of phase causes the output to morph 
smoothly between the orthogonal representations (grey arrows), forming a continuous 
trajectory. 

 

A key demonstration of the utility of non-uniform basis functions can be seen in a novel 

simulation of behavioural performance in a free recall task. To store an 𝑛𝑛-element sequence 𝐒𝐒, as 

previously described, each element 𝐞𝐞�𝑗𝑗  is bound with its respective relative positional key 𝐕𝐕 and 

superposed in a buffer, like so: 

𝐒𝐒 =  �𝐞𝐞�𝑗𝑗  ⨂ 𝐕𝐕(𝑗𝑗−1)/(𝑏𝑏−1)

𝑏𝑏

𝑗𝑗=1
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where the keys are derived from the basis function method above and the subscript (𝑗𝑗 − 1)/(𝑛𝑛 − 1) 

simply denotes the relative position of the 𝑗𝑗th element in 𝑛𝑛 (i.e. the first element has a relative position 

of 0, and the last element a position of 1). 

Likewise, as previously described, recall of a specific item 𝐞𝐞�𝑗𝑗  can occur by unbinding using 

the appropriate positional key, thus: 

𝐞𝐞�𝑗𝑗 =  𝐒𝐒 ⨂ ¬𝐕𝐕(𝑗𝑗−1)/(𝑏𝑏−1) 

where 𝐕𝐕 can be derived, as before, solely from the appropriate basis functions and relative position. 

This provides a foundation for a vector symbolic model of free recall using relative positional 

encodings. Here, the basis function method provides notable added value by way of the following 

configuration. 

If, rather than spacing the maxima of basis functions uniformly, as in Figure 4.4, they are 

spaced non-uniformly, along a sigmoid curve, one presupposes that positions at the “edges” of things 

are better encoded than those in the middle. Likewise, the maxima of the basis functions can be non-

uniform such that keys at the edges are always weighted more strongly than those at the centre. These 

two non-uniformities can be seen in the idealised basis functions shown in Figure 4.5. This can be 

combined with a simple decay constant that scales older items towards zero as new items are added, 

producing a relatively parsimonious vector symbolic simulation of primacy and recency in terms of 

the required dynamic interactions (see Figure 4.6). In this simulation, we used a modified variant of 

the ideal basis curve scheme shown in Figure 4.5, in which tuning was far more sparse and not entirely 

symmetrical, with clearer encoding of the most recent items compared to the earliest, and which was 

subtly randomised between participants (see Figure 4.6 legend). The result is a convincing similarity 

between the real and simulated data (c.f. Figure 4.6 left and right panels; see Murdock, 1962). 

However, further fine-tuning parameters in this model would improve its concordance with other 

neuroimaging and behavioural datasets, although this is beyond the scope of this chapter. However, 

it should be evident that the basis function method of continuous position encoding is extremely 

versatile. This is before one considers its strengths in integrating disparate neurocognitive 

perspectives, the focus of the next subsection. 
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Figure 4.5 Non-uniform basis functions for relative position encoding. These 
particular basis functions generate boundary encodings that are both stronger and more 
precise than those at the centre. The figure is sufficient to characterise the N = 17 basis 
functions, but for completeness, these are scaled Gaussian curves (σedge = 0.005, σcentre = 
0.07; scaleedge = 1, scalecentre = 0.1) where the N mean, standard deviation and scaling 
factors were themselves determined by reading from N equally spaced points on a 
Gaussian distribution: μ = 0.5, σ = 0.15 for the standard deviations and scale factors; and 
μ = 0.5, σ = 0.3, cumulatively summed to produce a sigmoid curve for the means. Here 
there are 17 unique positional keys, but more or fewer can be flexibly generated by 
following exactly the same scheme. This flexibility can be useful when simulating the 
impact of variable key count within a virtual population of subjects, for example (that 
is, we do not need to assume that positional encoding fidelity is identical in every virtual 
subject of the population, so each subject can use a different number of basis vectors).
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Figure 4.6 Simulation of primacy and recency effects in free recall, 20 to 40 items. As in Murdock (1962), N = 20 distinct participants were tested per list 
length. As in the original experiment, each participant was exposed to 80 lists and recall proportion computed from these. Shown are group mean proportions of 
items recalled in specific positions under the original task (A, left) and a simulation of free recall (B, right; shading depicts CI95). Here the basis function method 
of relative position encoding was used to encode lists. Items were stored in a single (180-dimensional) vector symbolic buffer, unlike existing methods showing 
similar behaviour (for example, Choo & Eliasmith, 2010, which requires two buffers). Every time an item was added to the buffer by superposition, or recalled 
from it by unbinding, the existing buffer was multiplied by a decay constant (here 0.94). Recall yielded a correct/incorrect item as in real life, from which 
performance was calculated. Basis functions used to encode position were non-uniformly spaced and scaled, so that positional codes close to the middle of the list 
were less distinct than those at either end. The number of distinct positional keys available to each virtual subject was variable, uniformly sampled at random in 
the range (15, 25). Centres of tuning curves were positioned along a Gaussian distribution with random sigma in the range (0.5,0.55). Curves centred at exactly 0 
(beginning of list) were disallowed, but not those at 1 (end of list), producing a bias towards high-fidelity encoding of the most recent items, but not the oldest. 

 

A B 
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4.8.4 Relative position encodings in accounts of perception and memory 

As has been shown, a vector symbolic instantiation of discrete serial position can be readily 

extended to support continuous relative positional encoding, reflecting evidence in the literature and 

relaxing neurocomputational assumptions. Namely, the encoding scheme relaxes assumptions of 

absolute ordinality, the uniformity of basis vector mappings, and the requirement for convolutional 

powers. This relative positional encoding can also support evidentiary triangulation across cognitive 

domains, because it can be incorporated into a wider range of neurobiologically plausible 

mechanisms. This subsection provides evidence for this by exploring the role of the vector symbolic 

relative positional encoding within novel models of stimulus-driven speech segmentation and 

hippocampal replay. Because these models utilise a common encoding scheme, they are amenable to 

integration into a broader view of sequence processing. 

Let us first address speech segmentation. A neurobiologically plausible, vector symbolic 

account of stimulus-driven speech segmentation is useful for two reasons. Firstly, such an account is 

required in order to explain, from first principles, how the vector symbolic sequence encodings 

described above can be derived from stimulus encodings known to arise in sensory cortex. Secondly, 

by codifying models of higher-order dependency encoding (see section 4.7) and stimulus-driven 

speech segmentation within a single conceptual framework,  a VSA model brings us closer to 

reconciling an account of “bottom up”, stimulus-driven segmentation with evidence of the crucial 

role played by ventrolateral prefrontal cortex in human auditory segmentation (discussed previously 

in 1.4.1, see page 19). 

Here, for the first time, a vector symbolic account of speech segmentation is proposed. Key 

assumptions of the model are derived from an existing, primarily descriptive, account of speech 

segmentation in primary auditory cortex (A1) provided by Giraud & Poeppel (2012). Within the 

Giraud and Poeppel model, “bottom-up”, stimulus-driven signals arising in A1 input layer IV 

coordinate low-frequency oscillatory activity (for example, theta band oscillation, assumed to arise 

in superficial layers of auditory cortex), which in turn modulates high-frequency (gamma band) 

activity, guiding the segmentation of the input stream into discrete packets of temporally organised 

spike-trains (arising in output layers II/III of auditory cortex) that are fed forward from A1 to higher 

order areas. The Giraud and Poeppel model is based on a synthesis of evidence across studies. For 

example, stereotactic EEG studies in humans have demonstrated that the power spectrum of 
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responses to speech in A1 strongly correlates with the power spectrum of the stimulus envelope in 

two critical frequency bands, theta and gamma, which are coupled together in a nested relationship 

during speech presentation (Liégeois-Chauvel et al., 2004; Giraud & Poeppel, 2012). Likewise, theta 

band tracking of the speech envelope has been shown to be critical to speech intelligibility (Nourski 

et al., 2009; Luo & Poeppel, 2007; Ahissar et al., 2001). 

The VSA model of speech segmentation is illustrated in Figure 4.7. Here, stimulus-driven 

envelopes, derived from responses arising in the auditory periphery, can preferentially drive 

frequency-specific envelope-tracking oscillators (Figure 4.7A-B). A low-frequency oscillator is a 

source of relatively stable phase information (Figure 4.7C). This low-frequency wave contains 

information sufficient to identify boundaries in a continuous signal, resetting each time a perceptual 

boundary is reached. However, to increase the fidelity of the model, this stimulus-driven activity 

could also be modulated to varying degrees by learned top-down influences (Barczak et al., 2018). 

Instantaneous phase can be extracted by a variety of methods but here, during spiking neural 

simulation of this model, was extracted by approximating the Hilbert transform using 

neurobiologically plausible operations (see Appendix 2: Supplementary figures, Figure 0.10). 

Instantaneous phase can be used as a repeatedly resetting, but otherwise monotonically increasing 

source of positional information using the relative positional encoding scheme described in 

subsection 4.8.3, creating a continuous trajectory of positional codes that describe the current 

position of, for example, a phoneme within the wider context of its containing syllable (Figure 4.7D). 

This relative position can be bound with a representation of the recent auditory history (for example, 

a snapshot of neural cepstral coefficients; see Bekolay, 2016) to encode an ordered list of content 

within context (for example, a list of phonemes within a given syllable, or of syllables within words; 

Figure 4.7E-F). In summary, a continuous stream of auditory input is transformed into a temporally 

organised vector symbolic encoding of nested, discretised phonetic information. 

Studies in the human EEG and ECoG literature continue to provide insights that accord with 

this vector symbolic model. For example, it appears increasingly likely that linear, temporally ordered 

phonetic encodings, the immediate output of this model, initially arise in superior temporal gyrus 

(STG; Brodmann Area 22), in areas overlapping with Wernicke’s area (Wernicke, 1874, 1881), 

lesions to which classically result in Wernicke’s aphasia (or receptive aphasia), chiefly characterised 
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by marked difficulties comprehending language. Electrophysiological recordings in 

middle-to-anterior STG and posterior STG have revealed stimulus-driven activity that suggest 

integration of temporal and phonetic content across syllables and phrases, respectively (Yi et al., 

2019; Giraud & Poeppel, 2012). Furthermore, recent ECoG evidence suggests that both spectral and 

temporal cues in speech are indeed encoded in STG using a common spatial neural coding scheme 

(Fox et al., 2020), akin to the population coding of bound items posited by the vector symbolic 

segmentation model.

Figure 4.7 A putative mechanism for deriving ordinal serial encodings from 
“bottom-up” segmentation of auditory input. A low frequency envelope tracking 
the stimulus acts as a stable source of phase information (A-B). Because phase produces 
a monotonically increasing signal within each oscillatory period, but resets at the 
boundaries of the period, it acts as a source of unique chunk-relative positional 
information (C). A continuous trajectory of positional encodings can be driven by this 
phase signal alone (D). By conjunctively combining the instantaneous positional 
encoding with the instantaneous stimulus encoding (E), and periodically superposing 
these conjunctive representations, an ordinal serial encoding of discrete perceptual items 
can be generated from the original continuous stimulus encoding. This encoding likely 
decays over time (F).

A

B

C

D

F

E
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Thus far, the proposed models codify a broadly feedforward, neurobiologically plausible route 

of information flow, illustrating how higher order dependency structure may be derived from 

continuous sensory input. Specifically, the described models show how representations may develop 

as they pass from the auditory periphery to primary auditory cortex, auditory association cortex, and 

onward to prefrontal cortex, notably ventrolateral prefrontal cortex. However, in this account, there 

has been scant mention of the feedback influences that must necessarily factor into an account of 

sequence processing, in particular of those networks supporting mechanisms for sequence 

prediction, generalisation and memory. These concepts would appear to fall squarely within the 

remit of the hippocampus (Buzsáki & Tingley, 2018; Davachi & DuBrow, 2015), and it is therefore 

notable that online involvement of the hippocampus appears integral to sequence processing (as 

previously discussed in section 4.3). 

There are myriad existing computational models describing the hippocampus as a whole (see, 

for example, Lisman & Jensen, 2013; Schapiro et al., 2017; Whittington et al., 2020), but vanishingly 

few VSA models (actually, to date, only one: Trujillo & Eliasmith, 2014, although there have been 

attempts since to use VSA techniques to specifically instantiate grid cell encodings; see Dumont, 

2020). Furthermore, there are no VSA hippocampal models that have been designed from the outset 

to coordinate with other brain networks in a neurobiologically and cognitively plausible manner. 

With this in mind, a novel vector symbolic model of the hippocampus is explored below in detail. 

We can model the hippocampus by conceiving of it as a sequence playback engine in which 

playback is centrally coordinated by oscillatory activity. Although the focus here is primarily auditory 

sequences, these might just as well be sequences of spatial locations, motor events or emotions, and 

thus the mechanisms here may be considered domain-general. In this case, the model’s agnosticism 

with respect to the form of the input concords well with suggestions that the hippocampus treats 

both time and space in a similar manner (Buzsáki & Tingley, 2018). 

The model is illustrated and described in Figure 4.8. A sequence (for example “ABCD”) is 

firstly stored during memorisation as a vector symbolic list encoded using relative position (as 

described in subsection 4.8.3). Subsequently, this sequence can be traversed by using a continuous 

position encoding driven by an oscillator. To be precise, the stored sequence is unbound using a 

positional key, where the positional key is derived from the phase of an oscillator using the basis 
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function method. The coordinating role of hippocampal theta oscillations is by now well 

documented, both within the hippocampus and between the hippocampus and external regions 

such as prefrontal cortex (Buzsáki, 2002; Lisman & Jensen, 2013; Solomon et al., 2019; Zielinski et 

al., 2019). In this model, phase derived from the theta oscillator produces a sawtooth wave that, when 

used to generate a positional key, produces repeated past-to-future scanning through the stored 

sequence. The generated signals also exhibit phase-amplitude coupling, observed as theta-gamma 

coupling in empirical hippocampal data (Lisman & Jensen, 2013). By adding to the sawtooth-shaped 

phase wave an offset representing the subject’s egocentric position in space or time (Figure 4.8, in 

red), one can simulate scanning that passes from the present position into the future. That is, one 

can simulate the prediction of upcoming sequence items given the present spatial location (for 

example, points in a maze, if storing a series of spatial locations) or temporal location (for example, 

time offset, if recalling a list of words over time). The scanning mechanism generates cycles of 

positional vectors that correspond well with accounts of place cells (Moser et al., 2015). Meanwhile, 

the steady advancements in activation observed as the subject passes through different locations 

correspond to empirically observed phase precession (O’Keefe, 1976). 

Note that the features of this novel hippocampal model by no means presently exceed those 

addressed by all state-of-the-art alternatives. For example, Dumont & Eliasmith (2020) have 

simulated hippocampal function in spiking neural terms, generating rich two-dimensional place- and 

grid-cell maps that exceed the complexity of place cell activity presently simulated under our model. 

Similarly, Whittington et al. (2020), in their rich model, the Tolman-Eichenbaum Machine (TEM), 

have not only provided a coherent account of hippocampal function at the neural level, showing that 

their model learns realistic grid- and place-cell mappings, but have also used these principles to 

simulate the learning of both spatial relations and relations between abstract concepts. Specifically, 

the TEM implements an algorithm that supports transitive inference, whereby exposure to 

relationships between specific items permits inference of new, unseen relationships, supporting 

sensory predictions. This is an important feature, since it defines a role for the hippocampus in 

abstracting across chained linear and hierarchical relations, allowing it to make predictions on the 

basis of prior knowledge even in novel circumstances. We do not presently address learning or 

transitive inference in this hippocampal model. However, our model does have key features of its 
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own, including: relative simplicity; the fact that it explicitly specifies a role for oscillatory activity; and 

that it utilises the same coding principles as other diverse phenomena addressed in this chapter. 

In summary, in this section, vector symbolic relative position encodings have been explored as 

a way of triangulating and unifying seemingly disparate empirical findings. The sum total of all the 

hitherto presented region-specific models, VS-BIND, at this point proposes testable mechanisms 

concordant with evidence from regions across temporal and prefrontal cortex, including sensory and 

association cortex, medial temporal lobe, dorsolateral and ventrolateral prefrontal cortex.   
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Figure 4.8 Utilising continuous positional encodings within a model of the 
hippocampus. The above shows simulated hippocampal activity, depicting the 
repeated replay of a predefined vector-symbolic sequence “ABCD”. Here, scalar theta 
oscillations (top row) are an input to the model that act as a coordinating influence on 
the replay/pre-play process. Though the oscillating signal is provided as a manual input, 
it could have been generated trivially by a feedback loop between two simulated neural 
populations. The theta signal drives an encoding of phase (second row, in blue) that can 
be manipulated by simple addition or subtraction of a positional input to the model 
(second row, in red) to suggest movement towards or away from a goal state, 
respectively. This state may be spatial, as in the end of a maze, or more conceptual and 
temporal, such as “the end of an auditory sequence”. When oscillations are strong, the 
replay/preplay process is active. When theta diminishes, playback ceases. Here, theta and 
the scalarpositional offset drive activation of a continuous positional vector encoding
(third row, depicting a raster plot of simulated output from the model, visualising a 
random subset of the dimensions of the population code representing position). Because 
of the sawtooth nature of phase, the generated positional population vector scans 
repeatedly through some of the same positional code. Finally, the previously stored 
sequential representation “ABCD” is scanned using the generated positional code to 
recall individual items (bottom row, showing the correlation of the simulated vector 
output with each possible item vector “A”, “B”, “C” and “D”, at every time point). 
Replay and preplay of upcoming sequence items can be observed in the simulated 
output (bottom row), recapitulating phase precession. We might posit that the stored 
representation being scanned (i.e. “ABCD”) should be activated by environmental
context, which would allow for an unfathomable variety of recall sequences.

Constrained input

Constrained input

Simulated output

Simulated output
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4.9 In conclusion: Predictions emerging from the structure of VS-BIND 

Vector symbolic operations implemented in Artificial Neural Networks, as we have 

established, have the potential to further our understanding of combinatorial binding at neural, 

cognitive and behavioural levels, generating site-specific neural correlates ripe for testing. Testing 

falsifiable predictions made by this model is important to provide evidence about the plausibility of 

the combinatorial operators and processes modelled here. 

Our model, VS-BIND (Vector-symbolic Sequencing of Binding INstantiating Dependencies) 

does not exist in a vacuum and occupies a landscape of alternative models, a number of which we 

have introduced here. However, one of VS-BIND’s key strengths is that it draws together existing 

computational explanations under a common framework and in a shared, consistent language. To 

illustrate this point, Table 4.1 enumerates key features of a number of alternative models or datasets 

discussed in this chapter, and lists those addressed by VS-BIND here. Whilst it can be seen that some 

individual models have explanatory capabilities that are presently beyond those of VS-BIND, it can 

be appreciated that our model applies consistent principles to explain a variety of phenomena that 

have not been reconciled in existing neuro-computational models. 

The principles followed under our approach produce a number of emergent predictions with 

respect to specific phenomena, enumerated in Table 4.1. More generally, however, the components 

of VS-BIND we have outlined here suggest the following predictions: 

• Superposition of sparse vectors manifests as steadily increasing net activation (Nelson 

et al., 2017). 

• Binding produces orthogonal vectors by re-coding, which might be observed as 

reductions in neural responses, for example reductions in high gamma activity during 

neural local field potential recordings (Nelson et al., 2017). 

• Chunking operations are intrinsic to linguistic bracketing and both produce and 

depend upon dynamic patterns of both increasing and decreasing oscillatory activity 

(Ding et al., 2016). 
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• Relative ordinal position is a crucial neural code when binding serial input in artificial 

and biological neural systems, indicating that time-sensitive or serial-position-sensitive 

cells, wherever they reside (Carpenter et al., 2018) are indispensable for complex 

combinatorial binding in sequence processing. 

• Hippocampal system involvement is not only required for recurrent activity to 

establish associations during Hebbian learning, but components of this system are also 

involved in structured sequence processing, establishing rules and dependencies across 

temporal scales through interactions with at least inferior frontal cortex. 

In summary, the VS-BIND model describes how sequences can be processed and represented 

using established VSA representations and operations, with the main goal of generating falsifiable 

predictions of neural correlates. While it was beyond the scope of this account to model the learning 

processes, VSA-based models such as ours could now be extended with spike-timing-dependent 

plasticity or other available processes.  

It is also important to note that, although our model can represent novel sequences of arbitrary 

items, the model does not bind arbitrary items together, which risks producing uninterrogable or 

unrecoverable bound representations. Instead, VS-BIND only uses the binding operator to combine 

an item with a known positional or contextual tag. Critically, these positional tags are known to the 

model, being drawn from a small, stable set of codes, deterministically re-instantiated by dlPFC 

neurons or hippocampal “time cells”. This process allows retrieval of arbitrary items without the need 

for modeller-specific knowledge or a look up table: all that is needed is the set of positional tags (re-

instantiated by dlPFC or hippocampus) and the sequence representation. Such models could, in 

future, be combined with alternative systems that explicitly support the binding together of arbitrary 

items, which for example support the flexible manipulation of linguistic relations in working 

memory (Hummel et al., 2004). 
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Table 4.1: VS-BIND in the landscape of alternative models. This table outlines key phenomena that can be encapsulated by the combinatorial 
and positional coding mechanisms outlined in this chapter. VS-BIND is compared to notable alternative models (M) and one empirical dataset (E). 

Modelled (M) or empirical (E) constraints 

Lisman 
& Jensen, 
2013 (M) 

Giraud & 
Poeppel, 
2012 (M) 

Murdock, 
1962 (E) 

Doumas 
et al., 
2008 (M) 

Whittington 
et al., 2020 
(M) VS-BIND Emergent predictions of VS-BIND 

Site-specific mechanistic constraints on 
neurocomputations 

• •  
 

• • - dlPFC, vlPFC and the hippocampus integrate 
relative ordinal position within relational codes 

Hippocampal •    • • - Phase precession results from addition of a 
perceived egocentric positional offset vector to a 
theta-phase-derived relative positional code 

Theta-gamma phase-amplitude coupling •     • 
Generalisable mechanism (encode position in 

space/time/abstract domain) •   
  

• • 

Seeks to explain place cell activity •    • • 
Seeks to explain phase precession •     • 

Auditory segmentation  •    • - Discretely encoded auditory items are bound with 
ordinal positions defined relative to the minima of 
the low-frequency envelope 

Low-frequency phase drives segmentation  •    • 
Cortical layer-specific predictions  •     

Free recall   •   • - The primacy and recency effects result in part 
from the tuning curves of specialised boundary-
selective neurons coding for relative position 

Primacy and recency effects   •   • 
Recency effect stronger than primacy effect   •   • 

Confusion of items increases with list length   •   • 
Relational coding    • • • - Linear and hierarchical dependencies are 

represented in vlPFC using one or more relative 
ordinal positional codes to highlight salient items 

Hierarchical encodings     • • 
Transitive inference     •  

Relational learning from Hebbian principles    • •  
Spanning domains above 

   

 

 • 

- Boundary-relative positional codes, forming a 
continuous trajectory through orthogonal 
population states, underlie operations in a host of 
cognitive domains 
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To conclude, we have presented a blueprint for a neurobiologically plausible computational 

model, VS-BIND, outlining its principal mechanisms for encoding sequence dependencies. We have 

also highlighted aspects of VS-BIND that support ongoing efforts to simulate cognitive functions 

relevant to segmentation, chunking, recall and prediction using VSAs within spiking neural 

networks. In summary, as outlined in our initial aims (see section 4.2), we have sought to motivate a 

coherent computational perspective on sequence processing that unifies a diversity of hypotheses 

traditionally beyond the remit of any single model, and to use this perspective to constrain emergent 

predictions on brain function. We have accomplished this by reviewing a diverse literature and 

proposing novel, computationally specific vector-symbolic mechanisms by which key cognitive 

operations can be achieved, including a novel relative positional encoding method (see 4.8.3). In 

summarising key tenets of VS-BIND, Table 4.1 provides an illustration of the extent to which we 

have achieved our aims, setting out our model in the landscape of alternatives and summarising key 

emergent predictions. Further developments of VS-BIND, in conjunction with other models (such 

as those that use classically compositional approaches aimed at modelling language-specific or 

linguistic properties), carry tremendous potential to better understand fundamental aspects of 

cognition and to guide the pursuit of neurobiological correlates of complex mental structures. 

 

4.10 Data accessibility 

Supporting MATLAB code can be found at doi:10.5281/zenodo.3464607 (Calmus, 2019). 
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Chapter 5. The representational dynamics of auditory sequence processing 

 

 

 

 

 

 

The work presented in this chapter was primarily conducted by the author, except where explicitly 

stated. The author designed and implemented the sequence learning task in MATLAB following 

discussion with academic supervisors. The medical and surgical team at Iowa University Hospitals 

and Clinics undertook clinically indicated assessment, imaging and implantation of intracranial 

electrodes in human neurosurgical patients. Members of Iowa University’s Human Brain Research 

Laboratory (HBRL) confirmed contact coordinates and regions of interest through co-registration and 

parcellation of structural imaging. The task was executed by our on-site colleague Zsuzsanna Kocsis, 

to whom we remain indebted, or by the author and HBRL staff members during collaborative visits. 

Subsequent electrophysiological analysis and writing were conducted by the author. 

Academic supervisors provided additional advice, comments and discussion. 
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5.1 Abstract 

Sequences unfolding over time contain relationships between neighbouring and distant items that 

are often critical for information extraction. The ability to perceive this structure is relevant to 

language, music and other non-linguistic cognitive domains, and has been associated with a network 

of key fronto-temporal regions, including inferior frontal gyrus (IFG) and frontal operculum. These 

regions seem to detect statistical regularities and, ultimately, use them to organise sequential input 

into mental structures. However, there is a pressing need to clarify the mechanisms by which they 

achieve this, and the neural codes involved. Artificial Grammar Learning (AGL) tasks can provide 

clarity on this process. In an AGL task, subjects are exposed to sequences conforming to a grammar, 

and then tested on their ability to distinguish novel “grammatical” and “ungrammatical” sequences. 

We previously analysed electrocorticographic (ECoG) data collected in 12 human neurosurgical 

patients undertaking an auditory AGL task (the “AxB task”, Chapter 3), using univariate analyses to 

reveal engagement of the fronto-temporal language network. We also previously outlined a 

computational model of sequence processing, VS-BIND, triangulating diverse findings to generate 

consistent and falsifiable neurocomputational hypotheses. In order to test assumptions of this 

expansive model using real data, however, we ideally require methods of analysis capable of revealing 

the structure and flow of isolated representations. Multivariate analyses aggregate neural information 

across multiple sites and times into high-dimensional spatiotemporal vectors containing more 

information than can be seen using mass univariate testing. In this study, I undertook a battery of 

multivariate analyses, including completely novel analyses, to reveal effective functional connectivity 

between regions of interest; critical aspects of regional syllabic encoding; time-resolved 

representational signals; and causal flow of relatively specific forms of information across the brain. 

This study replicates and advances previous findings that subregions of IFG and frontal operculum 

have markedly different roles in sequence processing, and suggests that representations in IFG pars 

triangularis and precentral gyrus may integrate ordinal information, as described in VS-BIND. It also 

suggests that, whilst auditory sequences elicit feed-forward signals emanating from primary auditory 

cortex to other areas, expectation-driven predictions feed back to regions including primary auditory 

cortex, causing a cascade of prediction-error interactions. These findings are consistent with the 

predictive coding hypothesis, which suggests ‘high-level’ predictions propagate to ‘low-level’ regions. 
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5.2 Introduction 

The human brain can learn relationships between complex stimuli distributed over time, but 

we still have a limited understanding of the mechanisms by which it accomplishes this, the nature of 

the learned representations, and their neurobiological substrates. A salient example of this ability is 

our facility with language, where a knowledge of syntax allows us to reconcile structurally associated 

words and phrases that may be clustered together or separated by intervening content (Tettamanti 

& Perani, 2012). This knowledge is obtained implicitly during development and in spite of the fact 

that linguistic tokens must be extracted from a continuous speech stream where acoustic boundaries 

are insufficient cues to input segmentation (Saffran, Aslin, et al., 1996; Saffran, Newport, et al., 1996; 

Aslin et al., 1998). To accomplish this, it appears that humans (and, to varying extents, other species; 

Sainburg et al., 2019; Wilson et al., 2018; Wang et al., 2015; Wilson, Kikuchi, et al., 2015) have 

developed an innate sensitivity to the statistical co-occurrence and ordering of stimulus elements. 

This has been demonstrated using a class of statistical learning task known as artificial grammar 

learning (AGL) tasks, in which participants are first presented with previously unseen training 

sequences that all implicitly follow a set of undisclosed rules (a grammar), and subsequently tested 

on their ability to distinguish novel grammatical from novel ungrammatical sequences. Learning has 

been established across stages of development (infancy, childhood, adulthood; see for example 

Reber, 1967; Saffran, Aslin, et al., 1996; Saffran et al., 1999), following mere exposure after a matter 

of minutes, using stimuli in a variety of domains (Henin et al., 2021; Milne et al., 2018; Stobbe et al., 

2012; Saffran et al., 1999), and often implicitly, without awareness of what has been learned. We 

ourselves demonstrated reaction time effects under an AGL task run on healthy adults (see 

Chapter 2), finding a significant difference between reaction times to grammatical and 

ungrammatical sequences across all participants, even in the subset of participants who were unable 

to explicitly identify the relationships. 

What exactly is learned under these tasks still requires clarification, but there is strong evidence 

that language and non-linguistic statistical learning tasks engage not only domain-selective networks 

including sensory cortices, but also a domain-general, primarily fronto-temporal network of regions, 

including ventrolateral prefrontal cortex (inferior frontal gyrus and frontal operculum; Hertrich et 

al., 2020; Friederici, 2020, 2011), and the hippocampus (Schapiro et al., 2014; Covington et al., 

2018), that collectively represent sequential stimuli at different levels of temporal abstraction (Ding 
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et al., 2016; Buiatti et al., 2009) and differentially engage depending on the complexity of the 

sequencing relationships (Wilson et al., 2017; Friederici, Fiebach, et al., 2006). Additionally, it has 

long been known that areas including the posterior temporal lobe and temporoparietal junction 

(TPJ; including angular gyrus and supramarginal gyrus) are critical for language (Wernicke, 1874, 

1881). Whilst ventrolateral prefrontal cortex is thought to initiate responses to syntactic or proto-

syntactic sequencing violations, the TPJ is known to be recruited in response to both semantic and 

syntactic violations (Friederici, 2011, 2012). It has therefore been suggested that this area is involved 

in semantic-syntactic integration. 

Despite the need for clarity regarding what is learned under AGL paradigms, it is known that 

these tasks elicit encoding of a plurality of relevant features including identities of syllables and 

learned word-like units, ordinal representations, and transition probabilities between items, which 

describe the likelihood of encountering a new element given some prior element (Henin et al., 2021; 

Fox et al., 2020; comprehensively reviewed in Dehaene et al., 2015). A recent human ECoG study by 

Henin et al. (2021) suggests that, during the learning of sequencing relationships in continuous 

speech, relatively early sensory processing regions such as superior temporal gyrus (STG) instantiate 

representations that primarily track transition probability (or, conversely, surprisal in a local context) 

over time, responding rapidly to simple regularities in low-level sensory input at the level of both 

syllables and words. Meanwhile, the same study determined that a broad range of sites, including 

ventrolateral prefrontal cortex and anterior temporal regions, instantiate representations that appear 

to track higher-order units, but are comprised of ordinal encodings of lower-level constituents 

(Henin et al., 2021). Findings in other species (Shimbo et al., 2021; Carpenter et al., 2018; Ninokura 

et al., 2004) similarly suggest that ordinal encodings are a vital and ubiquitous component of 

cognitive representations of structure during sequence processing. 

By triangulating such evidence, efforts to formalise the neurocomputational definitions of 

cognitive representations during sequence processing have become increasingly sophisticated (see 

Chapter 4). In line with the findings described above, our own computational model (Calmus et al., 

2019) posits that bottom-up, stimulus-driven activity and top-down contextual signals, driven by 

prior learning, organise continuous input into discrete elements, which can then be manipulated 

using stereotyped processes, perhaps even akin to parsing algorithms, that produce ordinally tagged, 

combinatorial representations encompassing flat or hierarchical structure. Specifically, we suggest 
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that detection of ordinal serial position involves dorsolateral prefrontal cortex (DLPFC), motor and 

premotor cortex, although relevant encodings also appear to be present within the hippocampus (see 

Chapter 4). Meanwhile, we propose that ventrolateral prefrontal cortex is involved in sequence 

salience filtering, movement of items, and working memory maintenance of dependency 

representations in a linear or tree-like structure using an ordinal code. However, our ability to falsify 

models of this magnitude is limited by a scarcity of interpretable neural evidence for the 

configuration and dynamics of the cognitive representations involved. Indeed, our model makes 

relatively few pronouncements about interactions at the whole-brain level, avoiding in particular a 

specification of the precise mechanisms by which combinatorial encodings might arise from or 

interact with representations of transition probabilities. We consider that the apparent 

representation of transition probabilities in lower sensory regions is consistent with the predictive 

coding framework (Summerfield & de Lange, 2014; Friston & Kiebel, 2009; Rao & Ballard, 1999), 

which suggests that context-driven predictions of input from higher-order regions interact with 

input from lower-order regions to produce prediction errors. Specifically, if higher order regions pass 

down sequencing predictions to lower level cortical regions, the surprisal response to new elements 

in lower-level regions will covary with the transition probability of those elements. However, we 

again require improved methods for describing time-resolved neural dynamics in order to provide 

further evidence for these hypotheses. We also require neural data recorded at the appropriate 

spatiotemporal resolution to capture these processes (for example electrocorticography, or ECoG, 

which can reveal neural responses unfolding on the order of milliseconds and at a spatial resolution 

of 5-10 millimetres (Asano et al., 2005). 

Traditional univariate analyses on electrophysiological data (see Chapter 3) are essential to 

understand the raw responses associated with specific stimulus features, and to establish 

correspondence with existing studies. However, these traditional contrastive approaches have 

shortcomings, including an overriding focus on the brain’s electrical properties rather than its 

representational properties, when, as in this case, cognitive representations are increasingly the 

researcher’s true interest. Additionally, many neuronal codes appear to be spatially distributed (as 

discussed in Chapter 4; and as for example recently demonstrated in auditory cortex by Fox et al., 

2020). Studies using local field potentials or other meso-scale activity measures have frequently found 

evidence for high dimensional, task-relevant neural representations, accessible only when recordings 
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from multiple contacts or regions are synergistically aggregated for analysis (Tsuchiya et al., 2008; 

Haxby et al., 2001; Cox & Savoy, 2003). Consequently, valuable information is discarded or lost 

when aggregating across contacts or sites in univariate electrophysiological analyses. 

Multivariate pattern analysis methods (also known as also known as multi-voxel pattern analysis) 

are a proven alternative to traditional univariate contrasts. These methods include pattern 

classification (or decoding) analyses, and representational similarity analysis (RSA; Kriegeskorte et 

al., 2008). All are, broadly speaking, methods that seek to aggregate neural information across sites 

and/or times in order to better reveal signals that correspond to mental states or cognitive 

representations instantiated by the subject (Diedrichsen & Kriegeskorte, 2017; Kriegeskorte et al., 

2008; Haynes & Rees, 2006; Norman et al., 2006). They do this by establishing the representational 

geometry across a set of sites; that is, the way in which neural responses vary between conditions or 

trials at a population-coding level. Decoding methods encompass techniques that utilise training and 

testing of classifiers on multiple trials to characterise the representational geometry (typically using 

simple classifiers such as support vector machines, but also artificial neural networks including deep 

neural networks; see Kuntzelman et al., 2021). RSA, however, characterises the representational 

geometry at the level of either single-trials or conditions by taking simple pairwise distance 

measurements between the high-dimensional multivariate patterns under different conditions, with 

no training or testing required. Although the two methods are based on contrasting assumptions 

about the underlying data (Kriegeskorte & Douglas, 2019), RSA is applicable in many cases where a 

decoding analysis would be appropriate, with the benefit of reduced computational requirements. 

However, RSA typically does not yield an interpretable view of dynamics at a high temporal 

resolution. Whilst RSA conducted on time-windowed information is an established technique (see, 

for example, Chen et al., 2016), only a single publication to date has demonstrated the use of RSA to 

generate and visualise very high-resolution time-resolved representational signatures (Lin et al., 

2019). Given that the publication in question analysed single-electrode recordings in rhesus 

macaques during a serial visual presentation task, no such analyses have been published on data in 

humans, under a sequence learning task, or using ECoG. We sought to employ longstanding, recent 

and novel multivariate analysis methods, including a high-resolution, time-resolved approach, to 

obtain insights into representational dynamics during the presentation of auditory sequences. 
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To investigate the dynamics of sequence processing, we collected ECoG data in human clinical 

patients undertaking an auditory artificial grammar learning (AGL) paradigm, in which sequences 

of syllables were presented that either fitted or violated a pre-learned pattern. We then processed this 

recorded data using non-traditional multivariate analyses in order to reveal non-directed functional 

connectivity between regions; similarity between responses to syllables across time (after Henin et al., 

2021); time-resolved representational dissimilarity (building on Lin et al., 2019); and directed 

inter-regional flow of responsiveness to specific dimensions of the stimuli. The latter, novel method 

we call representational Granger causality. 

Our findings showed that region-region multivariate ECoG similarity under the task was 

reflective of known functional connectivity patterns recorded using other imaging techniques. We 

also found, in line with the results of Henin et al. (2021) and our model, that ordinality is potentially 

an organising feature of a number of regional encodings elicited by the AGL task, particularly those 

arising in left precentral gyrus, inferior frontal gyrus pars triangularis, and supramarginal gyrus. 

Time-resolved dissimilarity revealed regional sensitivity to sequential stimuli across the language 

network during and following presentation, forming dynamic motifs of varying complexity. Causal 

analysis of these dynamics revealed significant outflow of item information from sensory cortex to 

other areas of the language network including superior temporal gyrus and inferior frontal gyrus, as 

well as potential signatures of feedback signals, seemingly encoding expectation violation, from 

multiple sources including precentral gyrus and angular gyrus. Our findings finally suggested that 

dynamic multivariate methods, including representational Granger causality, have considerable 

promise as tools for establishing the neurocomputational foundations of cognition. 
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5.3 Methods 

5.3.1 Participant recruitment and ethics 

Participant recruitment is described in 3.3.1. The same participants contributed to this 

analysis. All (n = 12) participants were adult neurosurgical patients (7 male, 5 female, ages 19–55, 

median 33 years) diagnosed with medically refractory epilepsy and undergoing chronic intracranial 

pre-surgical monitoring at University of Iowa Hospitals and Clinics (UIHC) to identify seizure foci 

suitable for resection. Research protocols were approved by the University of Iowa Institutional 

Review Board (IRB ID No.: 200112047) and National Institutes of Health. Participation in the 

study did not impact on clinical monitoring or management. Informed written consent was obtained 

from each subject prior to their participation in the study, and participants were free to withdraw 

consent at any time without any impact on clinical evaluation. Sessions were suspended for at least 

three hours if a seizure occurred, and only resumed if the participant was willing and alert. These 

ethical guidelines are consistent with European Ethical Guidelines (Helsinki Declaration and H2020 

EU guidelines). 

5.3.2 Task design 

The task was an artificial grammar learning task, the AxB task, previously described in detail 

in 3.3.2. The analysis here uses the same raw behavioural and electrophysiological data analysed in 

Chapter 3. Participants were exposed to auditory sequences fitting an XAB or AXB pattern, where 

X was highly variable and uninformative, there were 2 salient A and B items, and A was always paired 

with a specific B. Participants were then tested on their ability to judge the grammaticality of novel 

sequences consistent with, or violating, this relationship. 

5.3.3 Electrode configuration and acquisition 

As described in 3.3.3, participants were implanted with clinically indicated subdural ECoG 

arrays and depth electrodes. Local Field Potential (LFP) data was acquired with a Neuralynx Atlas 

system (Neuralynx, Bozeman, MT, USA), amplified, hardware bandpass filtered to between 0.1 Hz 

and 500 Hz (5 dB/octave roll-off), and digitised at a sample rate of 2000 Hz. A room microphone 

and auxiliary sound output were both also simultaneously recorded using the Neuralynx system, 

along with digital events generated by the task script. Behavioural data for each participant was also 

stored by the task script for offline analysis. Electrode locations were confirmed in each patient by 
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the clinical and HBRL team via co-registration of pre- and post-implantation structural imaging 

supported by intraoperative photography (Nourski & Howard, 2015). Recording sites were linearly 

co-registered to the MNI152 T1 standard brain, placing them into MNI coordinate space, and 

subsequently assigned to standard anatomical regions of interest (ROIs) via anatomical 

reconstruction of electrode location. This was aided in the case of subdural arrays by automated 

parcellation of cortical gyri (Destrieux et al., 2010, 2017) using the FreeSurfer image analysis software 

suite (http://surfer.nmr.mgh.harvard.edu/), and in the case of depth electrodes with reference to 

structural MRI sections. Electrode recordings from sites implicated in seizure activity were excluded 

from subsequent electrophysiological analysis, and analysis was restricted to recording sites assigned 

to the ROIs listed in Table 3.2 (see Chapter 3). 

5.3.4 Pre-processing of channel recordings 

Electrophysiological data were analysed offline using a custom MATLAB library. Neuralynx 

data were first imported into MATLAB, and ECoG/LFP data and line noise removed using the 

demodulated band transform (DBT; see Kovach & Gander, 2016). Data was down-sampled to 

500 Hz and further denoised by discarding the first principal component of the singular value 

decomposition (SVD) of the highpass-filtered signal (cutoff 160 Hz; see also methods of Kumar et 

al., 2020). To minimise jitter, recorded digital events were aligned with the auxiliary sound input 

(down to the per-sample level at 2 kHz) by shifting them using a custom event alignment script. Any 

data fragmented across multiple recording files was concatenated into one session, and continuous 

LFP data from selected channels epoched from -1500 to 4000 milliseconds around stimulus onset. 

Subsequently, epoched data was grouped into trials falling into each of the experimental conditions 

(chiefly: "consistent", "violation", "adjacent/XAB", "nonadjacent/AXB"). 

5.3.5 Genera l computation of representational dissimilarity 

Following pre-processing, a variety of multivariate analyses were conducted on the neural 

data. Each varied in their purpose and design, but all shared a common trait of operating on 

representational dissimilarity matrices (RDMs). Here, the process for deriving an RDM is explained. 

To abstract away from the activity patterns present in the raw data, a matrix of pairwise comparisons, 

the RDM, is computed between neural (or behavioural, or simulated) responses under each 

experimental condition. An RDM is thus comprised of many pairwise dissimilarity measures, each 

entry characterising the distance between responses to two stimuli or conditions. For example, if each 
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electrophysiological response to be analysed forms an activity pattern comprising 1000 samples, each 

pairwise dissimilarity value of the RDM will be a scalar distance computed across the 1000 samples 

of the pattern, between the two patterns. Any one of a host of distance measures, d, can be used for 

this purpose, for example correlation distance: 

𝑑𝑑(𝑝𝑝, 𝑞𝑞)  =  1 – 𝜌𝜌𝑒𝑒,𝑞𝑞 

where ρ is the correlation coefficient (Spearman or Pearson r) between two vectors p and q, the 

activity patterns. Alternatively, one can compute Euclidean distance, as follows: 

𝑑𝑑(𝑝𝑝, 𝑞𝑞) =  ��(𝑞𝑞𝑏𝑏 − 𝑝𝑝𝑏𝑏)2
𝑏𝑏

𝑏𝑏=1

 

where p and q are likewise two activity patterns to be compared. Any spatiotemporal response vectors 

can serve as the activity patterns from which an RDM is derived, including any neural or behavioural 

measurement, or computational model. By this method, data of any modality can be summarised in 

an RDM, permitting abstract representational characteristics to be compared and contrasted at a 

higher level. 

Here, RDMs were computed across multiple chosen contacts within a specific ROI by 

taking the mean response across selected trials within a given time window for every chosen contact, 

concatenating the resulting per-contact patterns into a single vector per condition, and using these 

per-condition signals as the inputs to the pairwise distance measure. In this way, it was possible to 

produce an RDM summarising the representational dissimilarity patterns during a particular time 

window for a given a priori defined anatomical region of interest. 

5.3.6 Neural pattern similarity 

One form of analysis that can be conducted using RDMs is the representational similarity 

analysis (RSA, Kriegeskorte et al., 2008). RSA is a multivariate analytical technique that permits the 

comparison of neural data from one source with data from other modalities, species or brain regions, 

or against computational, behavioural or simple categorical models. The general principle of 

comparison is summarised in Figure 5.1 (see also Kriegeskorte et al., 2008). In canonical RSA, 

previously calculated RDMs (A and B, for example representing the true data and a computational 

model, respectively) are compared by first linearising the upper or lower triangle of the symmetric 
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matrix, and undertaking a correlation between the two resultant vectors. By shuffling one vector 

repeatedly (C), a permutation test can generate percentile thresholds for significance testing from a 

null distribution of r values (D). Thus, RDMs can be compared and the significance of that 

comparison tested. The final r value reflects the degree of second-order isomorphism between the 

two RDM sources; that is, the degree to which the responses in RDMs A and B vary in a similar 

manner between conditions.

Figure 5.1: Canonical method for testing RDM correlations (representational 
similarity analysis). RDMs A and B are shaped into vectors and correlated with each 
other. Correlations may be tested by a permutation analysis if necessary, by shuffling 
one vector (C) to characterise the null distribution of correlation coefficients (D).

A neural pattern similarity (NPS) analysis involves conducting RSA on multiple sources of 

neural data and comparing them representationally, namely comparing representations in one region 

with those of another. In this study, NPS was conducted for two reasons: in order to determine 

whether the chosen regions of interest (ROI) contained meaningful representational content, as a 

precursor to further analyses; and secondly to broadly characterise regional functional divisions 

under the AxB task in this cohort.

To calculate neural pattern similarity, RSA was conducted between regions for each 

participant in the study, and results were then summarised across the cohort. RDMs were calculated 

on time-domain neural data for each of the n = 12 implanted participants (see Chapter 3), using a 

custom MATLAB library. The RDMs were derived from correlation distances between ECoG signals 
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recorded during the grammaticality testing phase. Pairwise Pearson correlation distances were 

obtained by comparing spatiotemporal vectors under every pairing of the 8 experimental conditions 

(the 8 conditions: xA1B1, A1xB1, xA2B2, A2xB2, xA1B2, A1xB2, xA2B1 and A2xB1). Each 

spatiotemporal vector contained time-domain data from a portion of every epoch, concatenated 

(comprising the ECoG signal recorded between -1.5 and +4 seconds relative to stimulus onset, for 

every trial), and from all contacts within an a priori defined ROI from the table listed in 3.3.3. 

Pairwise distance computations produced, for each participant, a single 8 × 8 RDM for every ROI 

that took into account neural response variability at the single-trial level. 

Subsequently, pairs of RDMs (each representing an ROI) were themselves correlated with 

each other by following a variation of the procedure described in Figure 5.1. To correlate RDMs, the 

Spearman rank correlation coefficient was used; rank-based comparison methods are recommended 

here to avoid assumptions of a linear match between RDMs, since the activity patterns in each RDM 

can exhibit different noise characteristics (Kriegeskorte et al., 2008). This produced a matrix of 

region-region r values which were averaged across the cohort (excluding pairs of regions absent in a 

given participant), and masked to α = .05 by performing a one-tailed, one-sample t-test between zero 

and the group’s r values for the comparison. This departs from the canonical single-subject RSA 

procedure described above, but can be justified by the fact that r values on random datasets occupy 

a finite-bounded approximation of the normal distribution (Hotelling, 1953). The result of this 

process was a significance-masked matrix of similarities between the representations instantiated 

within different ROIs across the cohort. ROI-ROI comparisons with higher r values can be 

interpreted as being more similar in their representational geometry, and lower values less similar. 

To aid interpretation of this matrix of correlation coefficients, the unmasked Spearman r data 

was transformed into a dendrogram, or hierarchical tree diagram, in which leaves represent brain 

regions and the branch size between two leaves is proportional to the distance between them. 

Distances were computed from the average correlation coefficients across the cohort, excluding 

region-region pairings absent in each participant, using the simple formula 𝑑𝑑 =  1 –  𝑟𝑟, where d and 

r are the distances and correlation coefficients, respectively. The dendrogram was computed by 

agglomerative hierarchical clustering (for an efficient method, see Day & Edelsbrunner, 1984). Using 

this algorithm, items are iteratively merged into clusters depending on their distances from one 

another, beginning with the closest items. As clusters are formed, the closest clusters or items are 
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likewise merged, until all items have been merged. This requires a linkage function that defines how 

to compute the distance between two clusters. Here, agglomerative hierarchical clustering was 

conducted using an un-weighted average linkage function, which defines the distance between two 

clusters as the arithmetic mean of the distances between all possible pairings of items across the two 

clusters. During this clustering process, to mitigate any artefactual clustering caused by the 

distribution of coverage across the cohort rather than neural pattern similarity, missing values were 

completed by mean imputation. Simply put, this meant that region-region distances missing in any 

individual (for example between hemispheres, where a participant typically only had coverage on one 

side or the other) were replaced by the mean distance across the entire correlation coefficient matrix 

for that individual. This yielded a tree where similarly responding regions clustered together and were 

hierarchically grouped by their single-trial response patterns. 

5.3.7 Dissimilarity between responses to syllables across time 

A second analysis was undertaken to determine, for each region, the similarities to different 

classes of syllable over time, inspired by Henin et al. (2021). Recorded epochs were again separated 

into 8 experimental conditions (every combination of xA1B1, A1xB1, xA2B2, A2xB2, xA1B2, A1xB2, 

xA2B1 and A2xB1). Data was averaged across the 12 trials under each condition, and then windowed 

in time to capture the first syllable and its subsequent inter-stimulus interval (0 to 750 ms), the second 

syllable and subsequent inter-stimulus interval (750 to 1500 ms), and third syllable over the same 

period (1500 to 2250 ms). This produced a single 24 × 24 RDM containing responses to 3 syllables 

under 8 conditions, for each region, describing the dissimilarities between responses to each class of 

syllable at each time position (first or second position for X and A items; always third for B items). 

This data was then subjected to metric multidimensional scaling (Torgerson, 1952, 1958; Gower, 

1966; described in more detail in the next subsection) to produce visualisations of the syllables, drawn 

as points in 2-dimensional Cartesian space. Points were visually grouped by drawing 95% confidence 

ellipses drawn around specific categories of stimulus (for example, all syllables of the same ordinal 

position). Ellipses were positioned at the centroid of the category of interest, aligned with the largest 

eigenvector of the point distribution, proportioned to encapsulate the points using the standard 

deviation along the principal eigenvectors, and scaled to form confidence bounds according to the 

cumulative Chi-square distribution (2 degrees of freedom) at the 95th percentile. 
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5.3.8 Dynamic representational dissimilarity 

The neural pattern similarity analysis was in principle sensitive to second-order isomorphism 

between regions, when considering responses under all trials of the task, and the syllable-level analysis 

was sensitive to representational differences between specific time windows. However, a 

time-resolved analysis was required to clarify the dynamic representational characteristics of each 

region at a high temporal resolution. One possible method by which to characterise representational 

dissimilarity over time is to effectively produce many “frame-by-frame” RDMs, each associated with 

a snapshot in time (Lin et al., 2019). As before, data is viewed not on the level of individual electrode 

channels, but rather as spatiotemporal vectors derived from multiple channels in a given region of 

interest (ROI), across multiple time points in a given window of interest. In this case, however, the 

window of interest is moved across the input channel data to form different spatiotemporal vectors 

at each point in time. This approach is familiar to dynamical systems theorists, where it is known as 

“time-delay embedding” or “state space embedding” (Braaksma et al., 1985; Whitney, 1936), and it 

has more recently been employed in neuroscience (for example Lin et al., 2019; Anderson et al., 

2006). As when producing a “static” RDM, the dissimilarity between two conditions is the distance 

between two corresponding spatiotemporal vectors. However, by forming time-varying 

spatiotemporal vectors, the process of time-delay embedding produces multiple RDMs over time 

(or, equivalently, a single three-dimensional RDM containing time-varying distance information). 

To maximise the reliability of these repeated distance measurements, data was first spatially 

pre-whitened (i.e., subjected to multivariate noise normalisation, see Walther et al., 2016). This 

mitigates the impact of noise correlated between recording sites, a problem affecting many imaging 

modalities including intracranial recordings, using the estimated variance-covariance matrix of the 

recorded data across trials to de-correlate the noise between sites (Diedrichsen & Kriegeskorte, 2017). 

To pre-whiten data, zero-phase components analysis (ZCA; see Bell & Sejnowski, 1997) was used to 

estimate a whitening matrix from a pre-stimulus baseline period (-1 to -0.2 seconds relative to 

stimulus sequence onset). Recorded per-trial intracranial activity was then de-meaned, and the 

spatially pre-whitened data taken to be the matrix product of this de-meaned data and the whitening 

matrix. Note that whilst the singular value decomposition (SVD) denoising process described 

previously (see “Pre-processing” above) spatially filters continuous channel data to minimise 

correlations across contacts, the process here differs firstly by explicitly de-correlating, rather than 
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outright removing, correlated components; and secondly by making reference to the per-trial 

baseline to distinguish background activity from possible task-relevant activity, rather than acting on 

correlated components detected solely from continuous data. 

The steps of the time-resolved representational analysis are illustrated in Figure 5.2. Trial-

averaged event-related potentials (ERPs) were first computed for each channel in an ROI under a 

given condition, and time-windowed ERP data for every channel concatenated into a spatiotemporal 

vector (Figure 5.2A). Spatiotemporal vectors were thus computed for each of the ROIs under each 

of the experimental conditions, and spanning specific windows in time. The same computations 

were conducted for every time-point in the trial by iteratively sliding the temporal window (a 300 ms 

rectangular window, sliding by 5 ms per iteration, producing a time series of spatiotemporal vectors 

with an effective sampling rate of 200 Hz). Although epochs in the study strictly ran from -1500 to 

4000 ms post-stimulus onset, only data between 0 ms and 3000 ms (more specifically, from windows 

centred at these times) was considered in the DRD analysis, to omit the subsequent period 

containing participants’ motor responses. 

For a given ROI, within a given time window, pairwise comparisons were then conducted 

between all conditions to produce a representational dissimilarity matrix (RDM; Figure 5.2B). Pairs 

of spatially pre-whitened spatiotemporal vectors were compared by computing the Euclidean 

distance between them. More precisely, because channel data was pre-whitened prior to analysis, the 

entry in each cell of the RDM was the Mahalanobis distance between conditions (since Euclidean 

distances on pre-whitened data are equivalent to Mahalanobis distances; see Diedrichsen & 

Kriegeskorte, 2017). This produced 8 × 8 distance measurements, forming an RDM symmetrical 

about the diagonal. For each time window, an 8 × 8 RDM was thus produced from trial-averaged 

data under each of the factorial task conditions. 
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Figure 5.2: Time-resolved representational analysis, including Procrustes multidimensional 
scaling (pMDS). See main text for further details. A) Spatiotemporal vectors are produced by 
generating time-delay embeddings from pre-whitened trial-averaged data at multiple sites and times. 
Here, embeddings were produced by a simple sliding window 300 ms in duration, iteratively shifted 
by 5 ms. B) Distances between spatiotemporal vectors are entered into a representational dissimilarity 
matrix (RDM), producing one RDM per window (i.e. an RDM every 5 ms). C) RDMs can be 
visualised in low-dimensional space – shown for clarity in 2D – by multidimensional scaling (MDS), 
and matched across time-points by using the Procrustes algorithm, which scales and translates points 
to optimally align them, in a process known as Procrustes multidimensional scaling. D) Undertaken 
in one-dimensional space, pMDS over time produces a set of waveforms showing changes in 
representational similarity between conditions over time. To group points representing multiple 
experimental conditions, we can find their centroid using the arithmetic mean. (E) The distance 
between two centroids in low dimensional space produces what we call a dynamic representational 
dissimilarity (DRD) wave useful for downstream analysis. 

For each time window (each frame of 300ms, slid by 5ms), metric multidimensional scaling 

(MDS) was then conducted on the resulting RDM. Metric MDS (also known as classical MDS; 

Torgerson, 1952, 1958; Gower, 1966) is a method of dimensionality reduction that transforms 

pairwise dissimilarities between objects, as stored in a distance matrix,  into a visualisation of the 

objects as points in an abstract, low-dimensional Cartesian space, whilst attempting to preserve the 

relative dissimilarities between them. It is rarely possible to exactly reproduce the original distances 

in low-dimensional space using MDS, but the approach produces a set of low-dimensional points 

where the original distances and low-dimensional distances are maximally linearly correlated. The 
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method is closely related to principal component analysis (PCA; Pearson, 1901; Hotelling, 1933), 

and the solution for a given distance matrix is therefore unique and deterministically reproducible.  

The left box of Figure 5.2C illustrates this process with an output of 2 dimensions. The 

representations under each condition are approximately as proportionally close to each other in 2D 

as the original spatiotemporal vectors. However, MDS on different distance matrices will not 

necessarily yield points that are rotated or translated consistently in low-dimensional space. As a 

result, it is not typical to produce multiple MDS results over time, as these cannot by default be 

readily compared with each other. Historically, this has made it difficult to visualise representational 

dynamics. Here, however, useful time-aligned MDS results were produced over time by adapting a 

method employed by Lin et al in their 2019 conference paper. All MDS results were transformed 

using a generalised Procrustes analysis (Gower, 1975) to produce a globally optimal alignment 

between all MDS frames (Figure 5.2C, left versus right boxes; see Lin et al, 2019). The generalised 

Procrustes algorithm is a method for optimally aligning two or more sets of points by rotating, 

translating and scaling them to match as closely as possible, minimising a goodness-of-fit criterion. 

As in Lin et al. (2019), scaling was explicitly disallowed during alignment, since it would invalidate 

the meaning of the magnitude of distances over time, but rotation and translation were permitted. 

Procrustes-aligned multidimensional scaling (pMDS) results can be plotted in arbitrary low 

dimensions, including as two-dimensional plots over time (i.e. three-dimensional visualisations). 

However, the simplest possible space that can be visualised is a 1-dimensional representational 

embedding over time (i.e. a two dimensional visualisation, for example with time on the abscissa and 

representational space on the ordinate axis). This is potentially the most readily interpretable and 

intuitive of the visualisations possible with pMDS, with representations separating vertically when 

they are different, and converging when they are similar (see Figure 5.2D, left boxes). As with all of 

the measures computed in this analysis, it was possible to produce a pMDS visualisation for a specific 

ROI, or a collection of regions or contacts, or on a whole-brain basis. 

In this study, the pMDS visualisation was used primarily as an interim representation in a more 

involved analysis, which we call a dynamic representational dissimilarity analysis. Specifically, pMDS 

was first used to produce a 2D mapping of representational space over time, but the centroids of 

multiple related conditions were then determined by arithmetic mean (for example, the low-
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dimensional embeddings of all “grammatical” conditions were averaged together, as were those of all 

"ungrammatical" conditions, to compare “grammatical” and “ungrammatical” representations; 

likewise for A1 versus A2, and B1 versus B2; see Figure 5.2D, right boxes). For most representational 

contrasts (i.e., comparisons on the basis of grammaticality, A or B) this yielded two average traces in 

low-dimensional space, between which a simple difference wave was computed, to produce a time 

series of distances between each set of conditions over time, which we call a dynamic representational 

dissimilarity plot (or DRD plot; Figure 5.2E). The greater the overall difference between the grouped 

conditions at a specific point in time, the greater the magnitude of the DRD wave. The DRD waves 

could therefore be conceived of as multivariate contrasts or, equivalently, as a measure of the 

encoding strength of a given feature or representation over time. This same method was extended to 

allow measurement of dissimilarity between more than two conditions (for example in the case of 

first or second syllable identity, which unlike the B item could take three categorical values: A1, X or 

A2). This was accomplished by computing the pairwise centroidal distances between all contrasted 

groups and taking the DRD to be the maximum of these at a given time. We refer to these syllabic 

identity contrasts as S1 (for items in the first position) and S2 (for items in the second position). S3, 

the syllabic identity in the third position, was by definition identical to B. 

At any time point, this dynamic representational dissimilarity was non-trivially related to the 

original distance matrix, and could not be determined simply by averaging over the inter-group (e.g. 

all grammatical to ungrammatical) distances. Rather, because classical MDS is based on eigenvalue 

decomposition and closely related to PCA, and because we expressly produced a one-dimensional 

embedding at each time point, the DRD value at a given time related to the first principal component 

of the representational dissimilarity matrix; that is, the high-dimensional axis along which the RDM 

exhibited maximum variance. Representational dissimilarities are known to be positively biased 

when estimated on noisy data (Walther et al., 2016), but PCA-based methods have been widely used 

for denoising purposes, by dropping the smallest principal components (those that explain the least 

variance) from data. Therefore, one-dimensional MDS produces output of a visually appropriate 

dimensionality, and also has the potential advantage of reducing noise in the final distance estimates. 

Cohort-level dynamic representational dissimilarity was computed by producing pMDS 

embeddings for each ROI of every participant and then, by following the method above, 
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transforming each pMDS embedding into multiple DRD waves, one per contrast. These included A 

identity (A1 versus A2); B identity (B1 versus B2); grammaticality (grammatical versus 

ungrammatical); 1st word identity, S1 (i.e. max[d(A1, A2), d(A1,X), d(A2, X)], where d was the 

Euclidean distance function, and item labels were obtained from the first position of the entire 

sequence); and 2nd word identity, S2 (likewise, for labels varying in the second position). For 

visualisation only, DRD waves were subsequently normalised to between 0 and 1, to account for 

differing signal-to-noise ratios across participants, expected with differing electrode placements and 

recording conditions. Normalising enabled meaningful aggregation over multiple subjects, to 

produce an average DRD wave for each ROI, with limits, for each of the A, B, S1, S2, and 

“grammaticality” contrasts across the cohort. The resulting plots depicted the contour of 

representational dissimilarities between conditions in a given region over time, across the cohort. 

5.3.9 Representational Granger causa lity 

We undertook causal analysis of multiple DRD datasets (A; B; “grammaticality”; S1, S2, and S3; 

generated as described in 5.3.8) using a specific measure of directed functional connectivity known 

as Granger causality. Granger causality (or “G-causality”) is a mathematical notion of causality 

originally formalised for use on economic data (Granger, 1969; elaborating upon Wiener, 1956), but 

it has since been applied with great efficacy to neural datasets (Seth et al., 2015). Granger causality 

describes the extent to which one signal, X, can be used to predict later samples of a second signal, Y, 

better than signal Y can be used to predict itself. Since we were seeking a characterisation of complex 

interactions between multiple ROIs, we specifically relied upon the notion of multivariate 

conditional Granger causality (MVGC; first defined in Geweke, 1984, 1982). MVGC expands upon 

the original pairwise notion of causality by determining the influence of X on Y conditional on other 

time series Z (that is, X  Y | Z). This permits the testing of causal relationships between more than 

two time series at once, and, given data from sufficient sites, is therefore able to adjudicate between 

direct and indirect causal associations (for example, for three known time series X, Y, Z, adjudicating 

between XY versus ZX, ZY). Here, to distinguish our overall method (which uses signals 

derived from time-resolved representational dissimilarity) from existing methods (which determine 

connectivity directly from channel or voxel time series) we simply call it “representational Granger 

causality”. 
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 Representational Granger causality was computed between the regional DRD waves for each 

of the representational contrasts (A, B, “grammaticality”, S1…3) in MATLAB using the MVGC 

toolbox (Barnett & Seth, 2014). Multivariate conditional G-causality was estimated between all pairs 

of ROIs (except a region and itself) from the DRD signals obtained in every suitable participant 

(n = 12 subjects), after first down-sampling the DRD wave in the time domain by a factor of 5 for 

computational efficiency (producing an effective sampling rate of 40 Hz). The MVGC toolbox 

allows causality to be estimated from multiple “samples”, each a set of concurrently obtained signals. 

To perform a cohort-level analysis, each subject’s DRD dataset was treated as one sample, yielding 

12 samples. As in many neuroscientific analyses, this assumes the existence of a stereotypical system 

behaving similarly in each subject. 

 To estimate G-causality, a model must first be fitted to the data, in this case a multivariate 

vector autoregression (MVAR) model, which describes the evolution of each timeseries in terms of 

the histories of the other available time series, thus: 

𝑋𝑋𝑒𝑒 =  �𝐴𝐴𝑘𝑘 ∙ 𝑋𝑋𝑒𝑒−𝑘𝑘 + 𝐸𝐸𝑒𝑒

𝑒𝑒

𝑘𝑘=1

 

where 𝑋𝑋 is a multivariate time series (a matrix of measurements across time for 𝑛𝑛 variables of interest); 

𝐴𝐴𝑘𝑘  is an 𝑛𝑛 × 𝑛𝑛 matrix of regression coefficients; 𝐸𝐸𝑒𝑒 the 𝑛𝑛 residuals, which effectively represent white 

noise; and 𝑝𝑝 is the order of the model, which describes how many measurements prior to the present 

time 𝑡𝑡 are incorporated into the prediction of the new measurement. 

To support accurate causal estimates, the order of the MVAR model must be appropriately 

selected. This can be accomplished using an information criterion, an objective measure of the 

balance between parsimony and statistical goodness of fit. Here, MVAR models were considered up 

to order 40, and information criteria computed for each using the MVGC toolbox. The model with 

the minimum criterion was then selected. The criterion of interest was a version of the Akaike 

information criterion (AIC; Akaike, 1974; specifically AICC, featuring bias correction to improve 

the accuracy of estimates on small sample sizes; Hurvich & Tsai, 1989). Using AIC to select the 

optimal model for each DRD dataset (A, B, “grammaticality”, S1…3), the MVAR in every case was 

of order 2. The coefficients of the order-2 MVAR models were then estimated using the Levinson-

Whittle-Wiggins-Robinson approach, a recursive method for fitting MVAR models (Whittle, 1963). 
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MVAR coefficients were then checked for undefined or infinite values to ensure they did not 

indicate a rank-deficient or ill-conditioned regression. 

In the event that data is non-stationary, or incorporates decaying memory effects, Granger 

causality analysis may be inappropriate and can yield spurious results. More precisely, to ensure a 

valid analysis, the VAR coefficients must be stable, defining a covariance-stationary process (Barnett 

& Seth, 2014). VAR stability was tested using the MVGC library by assessing the spectral radius of 

the VAR (the largest absolute eigenvalue of the VAR coefficient matrix, 𝐴𝐴𝑘𝑘). Models with a spectral 

radius <1 can be proven to satisfy the stability condition (Barnett & Seth, 2014). In this case, by this 

test, all selected VAR models were stable, and analysis proceeded. An autocovariance sequence, which 

describes the covariance between 𝑋𝑋𝑒𝑒 and 𝑋𝑋𝑒𝑒−𝑘𝑘 for different values of 𝑘𝑘, was then estimated from the 

MVAR, with time-domain pairwise-conditional G-causality computed in turn from this sequence. 

Finally, for each pair of regions, significance of the causal relationship between them was determined 

using Granger’s F-test, corrected for multiple comparisons using the false discovery rate.  

 Following computation of the Granger causality results, a directed graph (or digraph) was 

constructed to summarise each causality network. The digraph was constructed by computing the 

net flow of G-causality between all pairs of brain regions, and using these to determine edge weights. 

Net flow “summarises the prevailing direction of causality, net of changes in overall causality 

strength” (Duggento et al., 2018). The exact metric used here, significance-masked net flow, took into 

account only significant values and was defined as the significance-masked causality strength in the 

backwards direction subtracted from the significance-masked causality strength in the forwards 

direction, or, as follows: 

𝐹𝐹𝑏𝑏 ,𝑗𝑗  = ((𝐺𝐺 ○ 𝐻𝐻) – (𝐺𝐺 ○𝐻𝐻)𝑇𝑇)𝑏𝑏,𝑗𝑗 

where G denotes the matrix of Granger causality values, H denotes the matrix of significance 

masking values (H = 1 if p <= .05, or 0 otherwise), “T” denotes matrix transposition and “○” denotes 

the Hadamard product (element-wise multiplication) of two matrices. It was intuited that net flow 

would likely be more useful as a summary of representational G-causality results than on traditional 

Granger causality findings, since representational G-causality should reflect the transmission of 

relatively targeted information. In constructing the digraph, when net flow 𝐹𝐹 was strictly positive in 

the forwards direction between two regions 𝑖𝑖 and 𝑗𝑗, the edge weight for the edge 𝑖𝑖 →  𝑗𝑗 was 𝐹𝐹, 
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otherwise the edge weight was assigned a value of 0 (that is, no edge was recorded). Self-connectivity 

(any edge 𝑖𝑖 →  𝑖𝑖) could not occur in this graph, since G-causality was not computed for these cases. 

5.4 Results 

5.4.1 Neural pattern similarity 

The neural pattern similarity analysis resulted in a symmetric matrix of mean correlation 

coefficients denoting the average similarity across the entire duration of the epoch, across the cohort, 

between the RDMs of any two ROIs. The matrix is shown in Figure 5.3, significance masked to 

α = .05. Excluding self-similarities (where r = 1), the range of significant mean coefficients spanned 

0.10 – 0.75. It is notable that the most similar ROI pairings were not restricted to sensory cortex, but 

rather promised to shed light on the function of more abstruse regions, especially inferior frontal 

gyrus (IFG). For example, the three strongest similarities in the left hemisphere were between middle 

frontal gyrus (MFG) and IFG pars triangularis (r = 0.70); superior temporal sulcus (STS) and middle 

temporal gyrus (MTG; r = 0.70); and IFG pars triangularis and orbital gyrus (r = 0.66). In the right 

hemisphere, the three strongest similarities were between Heschl’s gyrus (HG) and STS (r = 0.75); 

IFG pars triangularis and IFG pars orbitalis (r = 0.71); and MFG and IFG pars triangularis (r = 0.71). 

The dendrogram of the unmasked correlation data, produced by agglomerative hierarchical 

clustering of distances (where distance 𝑑𝑑 =  1 –  𝑟𝑟), is a potentially more interpretable visualisation 

and is shown in Figure 5.4. It can immediately be seen that many ROIs clustered on the basis of the 

hemisphere in which they could be found. The functional properties of the left and right 

hemispheres may have influenced this result, but the effect of coverage likely predominated here, 

despite efforts at mitigation (see 5.3.6). However, we were also able to identify key groupings of 

regions common to both the left and right hemispheres. This included relatively close similarities, in 

both hemispheres, between the responses of hippocampus and parahippocampal gyrus (PHG; both 

in grey); angular gyrus and supramarginal gyrus (SMG; both in blue); superior temporal gyrus (STG) 

and superior temporal sulcus (STS); and middle frontal gyrus (MFG) and orbital gyrus. 
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Some clustering was also observed between regions that are anatomically distal but known to 

be structurally and functionally connected, such as subregions of inferior frontal gyrus (IFG, in 

green) and the temporoparietal junction (TPJ, in blue). For example, left SMG more closely clustered 

with left IFG pars triangularis (via a linkage distance of 0.56) than to the physically nearer Heschl’s 

gyrus (via a linkage distance of 0.61), a relationship that accorded with the original correlation matrix 

(left SMG to IFG p. triangularis: r = 0.58; to HG: r = 0.37). The IFG is known to communicate with 

the inferior parietal lobule via major tracts including the arcuate fasciculus and superior longitudinal 

fasciculus, which are both critical for language in humans and have homologues in the non-linguistic 

precursor circuits of nonhuman primates (Balezeau et al., 2020; Petrides & Pandya, 2009). 

Figure 5.3: Significant neural pattern similarity between regions across cohort 
(n = 12). Mean Spearman ρ between representational dissimilarity matrices (RDMs) 
shown for every region of interest, averaged across the cohort, masked by significance 
(p = .05). RDMs were computed from trial-trial Euclidean distances. If a given pairing 
of regions was never present across the cohort, such comparisons were also masked out. 
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Conversely, adjacent subregions of IFG (all shown in green) largely clustered more strongly 

with non-IFG regions than they did with each other, apparently highlighting the functional 

heterogeneity of this area. In both hemispheres, IFG pars triangularis and middle frontal gyrus 

(MFG, in orange) were closely associated; as were IFG pars opercularis and precentral gyrus (in 

purple); and IFG pars orbitalis and frontal operculum (in cyan). These groupings accord well with 

the results of prior studies on the functional connectivity of IFG (for example, as determined by 

fMRI regional co-activation, reported in Wang et al., 2020). 

Given numerous indicators that the spatiotemporal vectors of intracranial recordings 

contained meaningful information on the functional properties of the brain under the task, time-

windowed analyses were performed as described in 5.3.7 and 5.3.8, and are reported below. 

5.4.2 Dissimilarity between responses to syllables across time 

In section 5.2, we revisited our earlier hypotheses (see Chapter 4) that specific regions are 

involved in the ordinal coding of sequences, namely dorsolateral prefrontal, motor and premotor 

cortex; and that ventrolateral prefrontal cortex is engaged during working memory for dependencies 

Figure 5.4: Dendrogram showing agglomerative hierarchical clustering of neural 
pattern similarities across the cohort. Clustering was based on comparing 
un-weighted average distances derived from the unmasked Spearman ρ matrix. In a 
dendrogram, the total linkage distance between clusters is displayed on the ordinate 
axis. The relatively strong clustering of physically distant TPJ and IFG subregions is 
highlighted. Selected other regions are also coloured for reference (see main text). 

TPJ IFG 
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using a linear or tree-like structure that likewise incorporates an ordinal code. Here, we predicted that 

these regions would exhibit MDS results consistent with ordinal positional coding, in contrast to 

other regions. Schematics are shown in Figure 5.5, depicting the approximate expected 

configurations of the confidence ellipses in the MDS analysis for different hypotheses. Specifically, 

Figure 5.5 panel A shows what we expected MDS results to look like in explicitly ordinally coding 

regions, by which we mean any region that either codes for ordinal position or else incorporates 

ordinality as part of a relational code. Conversely, panel B shows expected results in a region entirely 

insensitive to order. Finally, panel C acknowledges that some separation of confidence ellipses might 

also occur as a result of repetition suppression effects, since a change in the magnitude of a response 

over time should produce a characteristic pattern of Euclidean distances within and across syllables.  

  

Figure 5.5: Schematics showing predicted MDS layouts under alternative 
hypotheses. The dimensions themselves are arbitrary and unitless, and only relative 
locations of datapoints or ellipses are therefore informative. A) Clear separation of 
responses into 3 distinct clusters based on item position. This is compatible with the 
notion of an explicit ordinal positional code. In particular, under such a coding 
scheme, separable ordinal groupings (here varying along Dimension 1) should have 
some independence from the identities of the items themselves (here varying along 
Dimension 2). B) Poor order sensitivity, conversely, results in a lack of separability on 
the basis of position. C) Ordinal positional coding is not the only explanation for 
separation of items on the basis of order. Repetition suppression effects, for example, 
may also produce separation. However, in this case the suppression of response 
magnitude creates steadily smaller confidence ellipses when moving from item 1 to 2 
to 3, likewise with steadily smaller distances between their centroids. 
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Figure 5.6: MDS on Euclidean distances between syllabic responses across time. Syllables lasted 600 ms, followed by an ISI of 150 ms. ERPs 
across trials were computed for each syllable from data under each of the 8 factorial conditions of the experiment, windowed at 0-750 ms around 
syllable presentation, producing a 24 × 24 RDM for each region. Points are coloured according to syllabic identity and labels include the ordinal 
position of the syllable in the sequence. CI95 ellipses are drawn around each set of syllables of the same ordinal position (all the first, or second, or 
third items of a sequence). The ellipses separate well into 3 distinct groups in regions that likely incorporate ordinality into their responses. In this 
way, when consulting the regional plots, evidence compatible with ordinal encoding can be seen in IFG pars triangularis, SMG and precentral gyrus. 
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Figure 5.6 shows the empirical two-dimensional MDS results derived from Euclidean 

distance matrices, comparing responses to syllables in all positions of the presented sequences. Each 

point represents the response to a syllable from a sequence presented under one of the experimental 

conditions. Results are shown for every region of interest in the left hemisphere. Confidence ellipses 

depict the 95% confidence boundary around points of each ordinal category (syllables occurring in 

the 1st, 2nd and 3rd sequence positions; each point’s label includes its ordinal position as a numeral). 

 Consulting the MDS results and the schematics in Figure 5.5, it can be seen that responses to 

the syllables separated in a configuration potentially compatible with ordinal coding in left IFG pars 

triangularis, supramarginal gyrus (SMG), and precentral gyrus. In particular, the responses in left 

precentral gyrus suggested relatively detectable independence between the separable ordinal 

positions (varying along the horizontal axis) and item identity (varying along the vertical axis), 

strongly aligning with the predicted “ordinal coding” schematic. By contrast, in the right hemisphere, 

only superior temporal gyrus (STG) exhibited clean separation (see Appendix 2: Supplementary 

figures, Figure 0.11). A number of regions appeared to be more similar to the predicted repetition 

suppression response, for example left Heschl’s gyrus and STG, which exhibited some separation, 

but steadily decreasing confidence ellipse areas and inter-centroid distances over time. The majority 

of remaining regions in both hemispheres appeared simply to exhibit poor order sensitivity, however. 

Some clustering could also be observed on the basis of item identity. Hippocampus and 

precentral gyrus arguably showed the clearest separation between non-salient (X; black circles) and 

salient (A/B) syllables (however, no region showed clean separation on the basis of salience; CI95 

ellipses not shown). No regions showed clean separated of B syllables on the basis of grammaticality 

(CI95 ellipses not shown). 

5.4.3 Dynamic representational dissimilarity 

Figure 5.7 shows a whole brain Procrustes-aligned multidimensional scaling (pMDS) plot for a 

single participant (“423”; see Chapter 3), produced by conducting the pMDS analysis on all contacts 

of the participant, rather than region by region. The plot depicts multidimensional scaling (MDS) 

results over time, where MDS output at each time point was derived from the condition-condition 

RDM for the 8 experimental conditions. This was the only passively recorded participant of the 

cohort, and so these results had the potential to reveal activity that was uncontaminated by task-



199 
 

related motoric demands. Consequently, data in this plot was windowed up to 4000 ms post-

stimulus instead of the 3000 ms used in later analyses. Annotations clarify the representational 

geometry in low-dimensional space. Moving chronologically, several key features can be observed. 

Firstly, it can be seen that patterns during sequence presentation (0-2100 ms) clustered in low-

dimensional space according to the identity of the newly presented syllable. This immediately 

demonstrates that the multivariate ECoG patterns contained enough information to recover the 

identities of the presented items using the pMDS approach. The traces also revealed reorganisation 

of the representational geometry at times not directly aligned with the presentation of an auditory 

stimulus, for example coincident with the inter-stimulus interval separating syllables 2 and 3 of the 

stimulus sequence (1350 – 1500 ms, where representational signals diverged on the basis of whether 

a sequence began “Ax…” or “xA…”); and beyond the end of sequence presentation.
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Figure 5.7: pMDS results using “whole-brain” aggregation of recordings in an exemplar participant. The participant (423) ran a passive task 
configuration. Stimuli were presented at the times shown in the orange boxes overhead. The ordinate axis depicts representational space. Lines 
separate along this dimension when multivariate responses diverge, and cluster when similar. Annotations on the plot correspond to nearby lines, to 
clarify the clustering of patterns over time. Here “x” refers to the class of X items, F to “Fip” (A1), G to “Gak” (A2), W to “Wez” (B1) and L to “Lod” 
(B2). Representational clustering can be observed relating to the identity of each newly presented syllable. Between second and third syllables, “Ax…” 
sequences are clearly distinguished from “xA…” sequences. Following presentation, a long period (~400ms) of decay is observed for the third syllable, 
after which further repeated reorganisation of the representational geometry can be observed at a frequency of approximately 3 Hz (delta). Each 
oscillatory period, meaningful separation of the sequences deteriorates, potentially suggesting a process of decaying, oscillator-mediated reactivation. 



201 
 

Post-sequence, the prominent B response decayed to undetectable levels, but the 

representational traces continued to fluctuate, exhibiting a periodic reorganisation at around 3 Hz 

until at least the end of the analysed window. Because this whole-brain visualisation is dominated by 

the strongest signals across the brain at any time, the decay of B does not conclusively indicate that 

the syllable no longer elicited a response in selected regions and contacts. However, the post-sequence 

periodic reorganisation indicates that exogenous or endogenous oscillatory processes predominated. 

Representations separated at the maxima of these periodic fluctuations were seemingly not random, 

but instead appeared to be related to each other over time. To avoid additional labels, this portion of 

the plot (2500 – 4000 ms) does not include annotations, but consulting the key will convince the 

reader that the clustering pattern at each periodic maximum is related to that of the previous cycle. 

Specifically, at the first post-stimulus peak, patterns still largely separated on the basis of the identity 

of the B element, but with each subsequent period, separation became increasingly disordered, losing 

all discernable relation to the task by around 4000ms. This suggests that the post-stimulus activity 

reflects a decaying delta-mediated reactivation of the B response, or else a steadily decaying B response 

overlaid with some other strongly delta-mediated process. 

Overall, the pMDS plot succinctly depicts whole-brain multivariate dynamics. Similarly, regional 

pMDS results (not shown) depicted representations resolved across space and time. However, it is 

not especially useful to summarise information in this way at the cohort level; and it is secondly 

difficult to track condition-condition contrasts. As a result, the pMDS traces were simplified to 

dynamic representational dissimilarity (DRD) plots as described in 5.3.8 (and especially Figure 5.2). 

The cohort mean DRD A, B and “grammaticality” traces for every ROI are plotted in Figure 5.8. 

The results for left Heschl’s gyrus are enlarged in Figure 5.9. Note that only data between -150 and 

3000 ms were included in this analysis, and in subsequent causal analyses. Signals after 3000 ms were 

potentially informative, but omitted to avoid confounding the putative grammaticality signal with 

motor activity during the response period; despite between-participant counterbalancing of response 

button handedness, differences in motor responses would likely covary with sequence 

grammaticality in appropriately responding participants. 
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Figure 5.8: Dynamic representational dissimilarity (DRD) results for each ROI across the cohort (n = 12). 
Bilateral Heschl’s gyri instantiate strongest responses to A in both the first and second sequence positions (0 to ~1500ms), 
and B in the third position (~1500 to 3000ms). Other ROIs showing stimulus-driven response peaks include left: 
hippocampus, frontal operculum, and STG; and right: IFG pars opercularis and triangularis, insula, and SMG. 
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Figure 5.10: Difference waves for grand mean (cohort-level) event-related 
potentials (ERPs) under opposing conditions in left Heschl’s gyrus. Note that 
these results rely on time-domain information, as in the previous figure. However, this 
more traditional analysis cannot make use of the high-dimensional information available 
across multiple sites and time points. As a result, even though this ERP analysis and the 
DRD analysis both act on the same dataset, it can be seen that item sensitivity can only 
be discerned through the multivariate DRD approach, whilst the encodings remain 
obscured following the mass univariate approach. 

Figure 5.9: An enlargement of the left Heschl’s gyrus DRD results (A, B, 
grammaticality). The signal at each time point reflects a 300 ms window. Data is 
plotted aligned with the centre of each window. The analysis omits data after 3000 ms 
to exclude signals during the motor response period. Responsiveness to A elements (red) 
peaked twice (0 to ~650 ms, peaking at ~200 ms, and 650 to ~1700 ms, peaking at 
~900 ms). Each peak corresponds to A in the first position or A in the second position 
of the sequence, as dictated by the grammar of the task. The response to the B element 
exhibits a later peak (blue; ~1500 to 3000 ms, peaking at 1950 ms). Sequence playback 
ends at 2100 ms. The group mean “grammaticality” signal (green) fluctuates far less 
interpretably, but peaks towards the end of each syllable, relative to the preceding few 
hundred milliseconds (or, conversely, is suppressed slightly during syllabic presentation, 
most clearly during presentation of the third syllable; difference not significance-tested). 
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As in the pMDS visualisation, the DRD plots revealed clear periods of sensitivity to presented 

items (see Figure 5.8). In particular, bilateral Heschl’s gyri exhibited large peaks in the dissimilarity 

waves at the approximate times of syllable presentation. The A item DRD wave exhibited a double-

peaked contour, where each peak aligned with the presentation of the first and second syllables. This 

can be attributed to the presence, across all trials, of A items in both the first and second positions of 

the presented sequence (as in AxB or xAB; see 2.3.3). The B visualisation, however, featured a single 

peak due to its consistent presentation time (always 1500-2100 ms). Finally, the “grammaticality” 

signal appeared to locally peak towards the end of each syllable, relative to its level at the time of 

maximum syllabic encoding, most noticeably after auditory playback ended. Note that this 

observation is based purely on the group mean shown, and no statistical significance should be 

surmised. Even so, the possibility that this might be a signature of a long latency process originating 

beyond auditory cortex motivated the subsequent Granger causality analysis (subsection 5.3.9). 

At this point, it is important to emphasise that the time-domain DRD approach is more 

powerful than simply subtracting two event-related potentials (ERPs). This is because the data at 

each time point reflects content across a spatiotemporal history of neural responses, not just a 

response at a single point in time and space. To highlight that the DRD provided information that 

would not be apparent in a basic ERP study, equivalent cohort-level ERP contrasts were produced, 

reproduced in Figure 5.10. It can be seen that the multivariate results (Figure 5.9) revealed task-

related effects that were not revealed with any fidelity under the univariate ERP contrast.  

Returning again to the DRD plots in Figure 5.8, it can be seen that many regions other than 

Heschl’s gyrus appeared to instantiate encodings that covaried with the presented syllables. Focussing 

on the A and B DRD waves (red and blue respectively), we identified a number of regions outside of 

Heschl’s gyrus that appeared to exhibit stimulus-driven activity at times roughly correspondent with 

the presentation of two or more of the syllables. These included left hippocampus, left superior 

temporal gyrus (STG), left frontal operculum, right supramarginal gyrus (SMG), right inferior 

frontal gyrus (IFG) pars opercularis, right IFG pars triangularis, and bilateral precentral gyri. Many 

regions also included less transparently stimulus-driven activity, which still likely constituted task-

related effects. For example, in the left hemisphere, the hippocampus, IFG pars triangularis, frontal 
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operculum, superior temporal sulcus (STS) and angular gyrus all featured what appeared to be 

recapitulations of the A and B responses at ~2500-3000 ms, well after sequence playback ended. 

Finally, although the previous DRD figures depicted A, B and “grammaticality” contrasts, also 

computed were “1st syllable” (S1) and “2nd syllable” (S2) contrasts. A “3rd syllable” (S3) contrast is 

exactly identical to B, because the third syllable was always a B item. Figure 5.11 shows cohort-level 

S1, S2, S3 and “grammaticality” contrasts in left Heschl’s gyrus. Crucially, each syllable exhibited a 

single, distinct peak. This enabled the flow of information to be more accurately tracked during 

subsequent causal analysis, since it can be seen that the S1 and S2 syllabic responses (which might 

easily exhibit different causal flow patterns) were no longer amalgamated as they were in the double-

peaked A contrast. 

5.4.4 Representational Granger causa lity 

Because of our specific interest in the mechanistic functioning of the language network, and the 

left language dominance demonstrated by the cohort during pre-implantation assessment (see 

Chapter 3), representational Granger causal (GC) analysis was restricted to left-hemispheric regions.  

Figure 5.11: An enlargement of the left Heschl’s gyrus DRD results (1st, 2nd, 3rd 
syllables, grammaticality). This concords with the A and B contrasts, but highlights 
that, by taking the maximum distance between 3 categories (X/A1/A2), DRD waves 
could be plotted for each syllable separately. 
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The analysis again yielded five sets of causal results: S1; S2; S3 (i.e. B); A; and “grammaticality”. 

These summarised, across the cohort, the causal relationships between regions with respect to each 

of the time-resolved DRD contrasts. The raw results of these five analyses (Granger causality 

strength; p-values; and significance for each pairwise comparison between regions) are presented in 

Figure 5.12. It can immediately be seen in all five cases that significance was met for a subset of region-

region associations (bottom row, showing significance masking, with black cells denoting 

significance). Moreover, by visual inspection, it may be appreciated that the significance mask in each 

case was asymmetrical, in that relatively few of the causal associations were significant in both 

directions simultaneously. This was confirmed quantitatively by computing a “symmetry” metric 

(Lanzi, 2016) on the mask, defined as: 

 

𝑜𝑜 =
�12 (𝐴𝐴 + 𝐴𝐴𝑇𝑇)� − �12 (𝐴𝐴 − 𝐴𝐴𝑇𝑇)�

�12 (𝐴𝐴 + 𝐴𝐴𝑇𝑇)� + �12 (𝐴𝐴 − 𝐴𝐴𝑇𝑇)�
 

 

where 𝐴𝐴 denotes the matrix, 𝐴𝐴𝑇𝑇  its transposition, and | ∙ | the matrix norm. The matrix symmetry 

metric is a scalar value in the range -1 to 1, where -1 indicates “complete anti-symmetry” and 1 

indicates “complete symmetry”. 

For every causal analysis, the symmetry was close to zero (S1: 0.094; S2: 0.17; S3/B item: 0.19; 

A item: 0.015; grammaticality: 0.16). This indicated no especially strong symmetry or anti-symmetry; 

that is, it indicated a sparse pattern of largely unidirectional causal flow between regions. By 

comparison, a traditional Granger causality analysis conducted on regional grand mean event-related 

potentials across all trials, downsampled to the same equivalent sampling rate of 40 Hz, revealed 

many more significant causal links than the representational GC runs (see Appendix 2: 

Supplementary figures, Figure 0.12), and in a significantly more bidirectional pattern (as indicated 

by a symmetry of 0.53; one-sample t-tested against the representational GC symmetries, yielding 

p < .001). Although GC on all trials is already a rather different concept to GC on difference waves, 

these results begin to indicate that, as previously suggested, the representational GC tracks the flow 

of relatively targeted types of information compared to traditional causal analysis and that, as 

expected, such flow is relatively directed compared to causal analysis on raw neural responses. 
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Figures 5.13, 5.14 and 5.15 show causal graphs computed in 5.3.9 from the representational GC 

results. Within each plot, nodes represent regions, and the edges between any two regions are 

proportional in width to the magnitude of the net significance-masked causal flow between them. 
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Figure 5.12: Raw representational GC results (G-causality strength, top, and significance masks, bottom). The horizontal axis shows causal 
origins, and the vertical axis shows destinations. Masks show significance at p = .05 (FDR-corrected for multiple comparisons; black denotes 
significance). From left to right: syllabic S1, S2, S3 (B item) flow; A item flow; “grammaticality” flow. Many significant links are unidirectional, as can 
be seen from the fact that the significance masks show a non-symmetrical pattern across the downward diagonal. Note that causal associations differ 
between representational datasets. Syllabic, A and B data shows flow from Heschl’s gyrus to STG, for example, whilst the grammaticality signal shows 
significant flow from STG to precentral gyrus. “Grammaticality” features the greatest number of significant outbound links from frontal operculum. 
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Additionally, the diameter and colour of each node depicts the total significant causal flux of a 

region. The total significant causal flux was defined as the total significance-masked flow out of a 

region minus the total significance-masked flow into a region, across all regions. This can help clarify 

the overall flow of information through the network. Here, red nodes are net sources (those where 

total significant causal flux is positive), and blue nodes are net sinks (i.e., recipients) of causal flow 

(those where total significant causal flux is negative). We refer to this value simply as causal flux from 

this point onwards. Heschl’s gyrus is circled for emphasis. The layered layout of each graph was 

automatically optimised to reveal hierarchical structure using MATLAB’s “layout” function  (which 

implements Gansner et al., 1993; Barth et al., 2004; Brandes & Köpf, 2002). 

Figure 5.13 shows the causal flow graph produced from the “first syllable” (S1; top panel) and 

“second syllable” (S2; bottom panel) DRD waves. Figure 5.14 includes the corresponding causal flow 

graph for the “third syllable” DRD wave (S3 or B; top panel). As expected of signals that covaried 

with the encoding of the auditory stimuli, the largest positive causal flux in all three cases emanated 

from primary auditory cortex, and the single strongest causal link for every syllable was from Heschl’s 

gyrus to superior temporal gyrus (STG). This finding provides initial validation for the approach. 

However, there was evidence of some isolated nodes that acted as net sources of syllabic content, but 

with no inward links from auditory cortex. It is possible that these regions were not passing syllabic 

content, but rather other information that covaried with it. However, a more likely explanation is 

that the direct or indirect causal links to these regions from auditory areas simply did not meet the 

significance threshold. This is borne out by the raw GC results shown in Figure 5.12 (top row). 

There were other substantial commonalities between the syllabic causality networks. All three 

causal graphs involved significant causal flow to and from all subregions of IFG, in particular an 

interaction between IFG pars triangularis and IFG pars orbitalis that was present in all three syllables’ 

causal flow networks, although it varied in strength and causal direction in each case. Both second 

and third syllable responses appeared to flow directly from IFG pars opercularis to STG, and whilst 

a direct association was absent in the case of the first syllable, there was still indirect net flow between 

these two regions in the same direction. In the case of all three syllables, significant flow was detected 

running from middle temporal gyrus (MTG) to supramarginal gyrus. 
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 The lower panel of Figure 5.14 shows the causal flow for A items overall. This signal was 

previously shown to peak twice in some areas, including primary auditory cortex, with peaks 

corresponding to the encoding of the first and second syllables (see 5.4.3). Despite this fact, causal 

analysis of the A signal could be justified by the fact that this was the only DRD wave likely to covary 

chiefly with the identity of the first grammatically salient item in the artificial grammar sequence. 

That is, the A signal contrasted only A items, but the syllabic signals also incorporated data on the 

extraneous X items. 

 The A item causality network has immediate similarities to the individual syllabic networks 

in the form of causal outflow from Heschl’s gyrus to STG, and interactions between IFG pars 

triangularis and orbitalis. However, here, whilst Heschl’s was still a net causal source, it also accepted 

significant causal inflow from IFG, specifically IFG pars orbitalis and, indirectly, IFG pars 

triangularis, SMG, and precentral gyrus. Consulting the raw G-causality matrices once again (Figure 

5.12, top row), it can be seen that there was some similar, but weaker causal association from IFG to 

Heschl’s for the second and third syllabic signals, but this fell below threshold significance, and in 

those cases was not chiefly from IFG pars orbitalis as seen here (Figure 5.14, lower panel). 

Furthermore, the raw GC results under the syllabic contrasts show little evidence for the 

SMG/precentral gyrus to IFG flow seen here. Overall, therefore, there are notable sources of inflow 

to Heschl’s from IFG, and to IFG from SMG, that are markedly different from those seen in the 

individual syllabic graphs. 

Whilst significant causal outflow from Heschl’s is expected, inflow of A to Heschl’s gyrus 

seems an unlikely finding. Therefore, although discussed further in the next section, it is timely to 

consider briefly how this could happen. It is possible that the A signal, by amalgamating information 

in two sequence positions (xA… and Ax…), yields spurious results in causal analysis. This cannot be 

ruled out, due to the complex nature of the interactions in each dataset. It is also possible that, by 

eliminating the responses to X items, the A signal reveals otherwise obscured flow patterns that fell 

below statistical significance in the first and second syllabic graphs, although the raw results do not 

provide especially strong evidence for this. Most intriguing, however, is the possibility that the A 

graph is contaminated by a covarying signal: specifically, a prediction of B. Assuming the participant 

understands the task and attempts to match B to A, the presentation of A should elicit some 
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prediction of the correct B. Because the correct B is entirely dependent on the presented A, these two 

signals would, under the most ideal circumstances, precisely covary across all trials. This would not 

be the case for information in the first or second syllable DRD waves. It is therefore possible that the 

A item graph is contaminated with “predicted B” signals. 

 Finally, Figure 5.15 shows the causal flow of the “grammaticality” DRD wave. As with all of 

the DRD waves, in the absence of further testing, the statistical significance of the distances at each 

time point cannot be inferred. This fact is especially relevant to the “grammaticality” signal, where 

fluctuations were previously revealed to be extremely modest in comparison to the syllabic DRD 

waves. As a consequence, the Granger causality results on this signal should be interpreted with 

particular caution, as the physiological nature of the underlying signal cannot be guaranteed. 

However, it is also important to bear in mind that any significant causal flow under this analysis is 

statistically inferred at the group level, and thus represents replicable flow patterns across the 

participants. Here, Heschl’s gyrus was a net recipient of causal flow (shown as a blue node), receiving 

significant direct inflow from precentral and postcentral gyri, and indirect flow from angular gyrus 

and STG. Areas of ventrolateral prefrontal cortex including frontal operculum, IFG pars opercularis 

and pars orbitalis were all significantly involved in the causal network, whereas IFG pars triangularis, 

interestingly, was not significantly associated. Frontal operculum here showed bidirectional causal 

associations with parahippocampal gyrus (PHG) and significant causal output to orbital gyrus. 

Somewhat unexpectedly, none of the significant causal associations ran from ventrolateral prefrontal 

cortex to lower-order regions including primary auditory cortex. However, the raw GC results 

(Figure 5.12, top row) do show very weak direct and indirect causal outflow from IFG pars 

opercularis and triangularis to Heschl’s gyrus, which did not meet significance. 

In all of the representational causal networks, including the A and “grammaticality” graphs, 

there existed interactions between areas of ventrolateral prefrontal cortex and PHG. However, no 

statistically significant causal links were detected to or from the hippocampus itself in any of the 

causality networks. Note that, as for all the representational GC results, this implies a lack of causal 

flow for the putatively specific representations we assessed using this novel method (A/B, syllables 

and grammaticality), not a lack of causal flow in general, which was revealed using the traditional GC 

analysis on raw LFPs mentioned previously (Figure 0.12, Appendix 2: Supplementary figures). In the 

GC analysis on raw LFPs, significant causal inflow was detected to the hippocampus from STS, 
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MTG, and STG, whilst significant causal outflow was detected from the hippocampus to STS, 

MTG, PHG and IFG pars opercularis. Overall, this suggests a possible role for the hippocampus 

under the AGL task, but seemingly using representations that are distinct from those that we traced 

through the frontotemporal network. Moreover, the fact that the LFP-GC analysis revealed outflow 

from the hippocampus to the PHG, whilst the representational GC analysis revealed significant 

causal associations with the PHG alone, suggests that the PHG potentially acted as an intermediary 

between a distinct hippocampal system and the wider frontotemporal network under this task. 
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▲ First syllable (S1) 

▲ Second syllable (S2) 

Figure 5.13: Representational flow graph, first and second syllables. Here, nodes 
depict regions, edge weights depict net causal flow between them, and node colour and 
diameter indicate the direction and size of the total causal flux to/from a region (red: 
overall source; blue: overall sink). Heschl’s gyrus is a prominent overall source of the first 
and second syllabic content, as we would expect, exhibiting strong causal outflow to 
superior temporal gyrus (STG). Note that multiple causal generators (nodes in red, with 
outflow only) are possible because the graph only shows net flow, and because some 
causal associations between sub-networks might not reach significance, isolating them. 
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▲ Third syllable (S3; “B” item) 

▲ “A” item 

Figure 5.14: Representational flow graph, A and B items. Again, nodes depict 
regions, edge weights depict net causal flow between them, and node colour/diameter 
indicate direction/size of total causal flux to/from a region (red: source; blue: sink). 
Third syllable (B item), top: Heschl’s gyrus is again an overall source with significant 
outward causal flow, notably to superior temporal gyrus (STG). A item, bottom: As in 
previous figures, Heschl’s is an apparent source of A signals, with significant outward 
causal flow to superior temporal gyrus (STG). However, there is also inflow to Heschl’s 
from IFG, SMG and precentral gyrus, unlike the the 1st/2nd/3rd syllable flow patterns. 
Since any accurately predicted B would covary with the presented A, the flow to Heschl’s 
may represent feedback of a predictive B representation, confounding the A flow 
pattern, but concordant with the predictive coding hypothesis. 
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▲ “Grammaticality” 

Figure 5.15: Representational flow graph, “grammaticality”. More than any other 
representational Granger causality result reported here, note that the configuration of 
this causal flow network should be interpreted with caution due to the low signal-to-
noise ratio of the underlying DRD wave. However, here, the flow pattern is markedly 
different from that of the other graphs. Notably, Heschl’s is now an overall sink (blue), 
rather than a source, and appears to receive prominent causal flow from precentral and 
postcentral gyri, with STG and angular gyrus as the earliest detected sources. Whereas 
parahippocampal gyrus was detected as an overall causal source for A items, as well as 
first and second syllable content studied separately, it acts as a causal sink here, as was 
also the case within the B item flow graph. This is also the only flow graph in which 
frontal operculum was detected as being significantly causally associated with other 
regions whilst also being an overall source, rather than a sink. 
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5.5 Discussion 

We conducted a battery of multivariate analyses on the AxB dataset and revealed evidence for 

regional encodings consistent with our computational model, as well as novel findings on the time-

resolved instantiation and inter-regional flow of representations during sequence processing. The 

outcome of each analysis is discussed further below. 

5.5.1 Neural pattern similarity recapitulates existing functional connectivity findings 

 The neural pattern similarity (NPS) analysis revealed undirected functional connectivity 

consistent with that shown under a previous functional connectivity study (Wang et al., 2020), 

motivating further analysis of multivariate data collected under our task. In particular, the NPS 

analysis replicated existing findings on the functional heterogeneity of subregions of inferior frontal 

gyrus (IFG; Clos et al., 2013), motivating the continued study of representations in anatomically 

distinct subregions of IFG. This heterogeneity has been shown previously to relate to distinct 

patterns of cytoarchitectonic and receptoarchitectonic microstructure (Zilles & Amunts, 2018). 

Our NPS results also provided evidence for communication (in the form of relatively high 

pattern similarity) between IFG and the temporoparietal junction, an interaction critical for 

language in humans and likely involved in the integration of both syntactic and semantic information 

(Friederici, 2011, 2012). Thus, under our AGL task, we observed meaningful patterns of functional 

connectivity between regions comprising a broad fronto-temporal/parietal language network. 

5.5.2 Comparison of syllables across time revea ls ordina l coding in selected regions 

In our comparison of neural responses to syllables across times and conditions, we found 

evidence potentially compatible with ordinal coding in three left-hemispheric regions: IFG pars 

triangularis, SMG and precentral gyrus; and in one right-hemispheric region (STG). Overall, this 

accords with the recently reported findings of Henin et al. (2021), who determined that ordinal 

coding is prominent in word-responsive sites across the brain. However, their task involved 

segmentation of a continuous syllabic speech stream, whilst in our task, every word was a single 

syllable separated by pauses of 150 ms duration, in sequences surrounded by seconds of silence. 

Because our sequence items were all monosyllabic, we cannot contrast syllabic and word position 

coding under this task, though this is a promising avenue for future research. Nonetheless, the fact 

that we too found evidence compatible with an ordinal coding account might suggest that the 
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ordinal code is not exclusively relevant to rapidly unfolding syllables within individual words, but 

extends to longer timescales, potentially encapsulating the order of individual words in a sentence. 

This accords with eye-tracking results in infants and adults suggesting that both continuous speech 

and speech delineated by pauses elicit ordinal encoding, though this tendency appears to be enhanced 

in the presence of pauses (Fló, 2021). 

A number of prior findings have highlighted the general importance of ordinal codes in 

humans and nonhuman primates (reviewed in Dehaene et al., 2015), which motivated their 

prominent inclusion within our computational model of sequence processing, VS-BIND (Calmus 

et al., 2019). However, we added to the body of existing evidence by revealing regional encodings 

that were not inconsistent with site-specific predictions of our model. Signs of potential ordinal 

coding in precentral gyrus were consistent with VS-BIND, which suggests domain-general roles for 

motor and premotor cortex in linear sequencing. This assertion was based on previously reported 

findings including studies by Carpenter et al. (2018) and Ninokura et al. (2004), who both revealed 

ordinal sensitivity within these regions in the brains of rhesus macaques during serial order recall 

tasks. Under our task, one subregion of ventrolateral prefrontal cortex, IFG pars triangularis, also 

exhibited signs of ordinal coding, in line with the predictions of VS-BIND. Within our model, 

representations arising in IFG are theorised to incorporate ordinal coding in a manner that supports 

both linear and hierarchical structure-building. We could not provide any evidence of hierarchical 

structure-building in neural responses to this task. However, this would not have been unexpected 

even in the highest performing participants, because sequences were only three items long, and the 

dependency of interest (AB) was a simple relationship over a variable distance. 

Based on our model, which posits that non-salient items are filtered out before the remaining 

items are structured, we did expect some segregation of the A/B and X representations depending on 

their variability, chiefly in frontal operculum (FOP). We previously asserted that, since FOP appears 

to be sensitive to item and/or chunk frequency (Rong et al., 2018; Friederici, Fiebach, et al., 2006), 

it potentially therefore has a role in salience filtering (Calmus et al., 2019). We did not see evidence 

of salience filtering in this region under this task, however, although there was some limited evidence 

of this segregation in the hippocampus and selected other regions (as shown in 5.4.2). In particular, 

the ordinal representation detected in precentral gyrus appeared to segregate the Xs from other items. 

In general, however, there was little evidence that uninformative X items were filtered out at an early 
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stage and completely discarded from later structures as posited in VS-BIND. This could suggest that 

the model requires revision. However, an alternative possibility is suggested by the behavioural data 

(previously reported in Chapter 3), which showed that, at the cohort level, the implanted participants 

were unable to learn the rules of the artificial grammar above chance levels. It is possible that, in this 

cohort, the reason performance was so poor was because non-salient X items were erroneously 

considered salient by the participants, resulting in their incorporation into underlying encodings, 

disrupting attendance to the truly salient A and B items, and confounding learning of the sequencing 

rules. Henin et al. (2021) obtained similarly poor behavioural confirmation, theorising that it might 

relate to hippocampal deficits specific to the temporal lobe epilepsy population. However, here, this 

explanation lacks parsimony, because poor performance might have resulted from many 

environmental or iatrogenic factors. Indeed, we previously presented evidence that, in a healthy 

cohort, even self-reported fatigue correlated with reduced performance on this task (Chapter 2). 

A final point on this analysis regards the nature of the ordinal code. A possibility not explored 

by Henin et al. (2021) is that the “ordinal coding” detected by this type of analysis might not 

represent an explicit ordinal code (as envisaged in our model) at all, but rather any effect that covaries 

with position. This includes simple repetition suppression (where repeated exposure to a stimulus 

attenuates the neural response, and which we explored in Figure 5.5) and expectation suppression 

(where expectations of stimulus occurrence attenuate the observed response). However, we consider 

this to be an unlikely explanation for our key multidimensional scaling (MDS) results in left SMG, 

IFG pars triangularis and precentral gyrus, for two reasons. Firstly, repetition and expectation 

suppression, both observed in primary auditory cortex (Todorovic & Lange, 2012), likely explain 

aspects of the responses we observed in Heschl’s gyrus (Figure 5.6, p. 197), yet representations in this 

region were not observed to segregate effectively on the basis of position. Secondly (and also visible 

in the Heschl’s gyrus results) is the fact that, as previously stated in 5.4.2, under the influence of any 

form of suppression, multivariate representations move steadily closer together in Euclidean 

representational space as they diminish in magnitude. In primary auditory cortex, this resulted in a 

large confidence ellipse around the first items, but markedly shrinking ellipses as one progressed 

through the sequence, presumably as a result of expectation suppression (see Figure 5.6). Repetition 

suppression based on the frequency of the items is less easily excluded, but, in this case, rare X items 

would be expected to elicit responses of a greater magnitude than the common A and B items, which 
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would likely result in increased dispersal of the X items in the MDS visualisation, relative to A and B. 

These were not features of the representations in IFG pars triangularis, SMG or precentral gyrus. 

Overall, this suggests that explicit ordinal coding is a plausible explanation for the results we 

observed. Further studies, varying the length of sequences, could reveal support for our assertion that 

these codes describe boundary-relative, rather than absolute, ordinal position (see Chapter 4). 

5.5.3 Dynamic representational dissimilarity revea ls peri- and post-stimulus activation 

The Procrustes-aligned multidimensional scaling (pMDS) and dynamic representational 

dissimilarity (DRD) analyses, whilst conducted on time-domain data, revealed sensitivity to the 

stimuli that could not be discerned from a simple univariate ERP contrast. Specifically, the DRD 

analysis clearly revealed stimulus-driven activity in a number of regions across the left-hemispheric 

frontotemporal language network, including auditory cortex, the hippocampus, left frontal 

operculum and precentral gyrus. This last result was concordant with the earlier finding that an 

ordinal sequence representation was instantiated in precentral gyrus (see above). 

As well as auditory encodings, the DRD analysis sought to isolate “grammaticality” signals, 

expectation violation signals relating to the proto-syntactic structure of the stimulus sequences.  The 

group mean grammaticality DRD in Heschl’s gyrus appeared to peak following each syllable in 

comparison to the preceding few hundred milliseconds (see Figure 5.9), although this effect was not 

statistically tested. More importantly, the group-level dissimilarity waves were not statistically 

analysed to determine whether they exceeded any particular baseline, making it possible that some of 

the fluctuations in a low amplitude dissimilarity signal fell below the natural noise floor of the data. 

However, due to the relative latency of the putative peaks in the group mean “grammaticality” wave, 

and the nature of the underlying contrast (responses to violation versus consistent sequences), it was 

considered that it could represent a signal originating outside auditory cortex, potentially describing 

“prediction error”. Trial-by-trial encoding of prediction errors has previously been observed in 

auditory cortex during presentation of auditory oddball sequences (Rubin et al., 2016). However, 

although a predictive coding account of this data was seemingly supported by the subsequent 

representational Granger causality analysis (see below), two additional caveats must be borne in mind 

when interpreting the “grammaticality” signal. 
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Firstly, some regions, including FOP, exhibited prominent early peaks in the grammaticality 

waves that could not have been elicited by true grammatical sensitivity. However, FOP in particular 

had limited coverage across the cohort (n = 2 participants had coverage of left frontal operculum by 

3 contacts in total, and n = 1 participants had coverage of right FOP through a single contact). It is 

therefore possible that the DRD waves in the FOP had a relatively low signal-to-noise ratio. Here, it 

is evident that it would be beneficial in future to refine methods to statistically test the DRD waves 

against a silent or “noise only” baseline, although given the intended sensitivity of the multivariate 

contrasts to latent dynamics, defining this baseline period may not necessarily be trivial. 

Secondly, it is known that only one of the 12 participants achieved significantly higher than 

chance performance on both runs of this task. Although the normalised DRD waves showed 

grammaticality peaks at various task-related times at the cohort level, it is possible that the chance-

performing participants did not exhibit any particular sensitivity to the sequences, and that a weak 

signal in those individuals was driven by artefactual components. However, there are reasons to 

believe that, across the cohort, the grammaticality wave at least partly comprised a physiological 

signal of syntactic relevance after the time of the grammaticality manipulation. Firstly, group-level 

electrophysiological analyses collectively revealed time- and time-frequency domain effects in left 

IFG pars opercularis, right MTG and right hippocampus (Chapter 3). Furthermore, in the 

subsequent causality analysis (see next section), statistically significant causal outflow of the 

grammaticality response was detected at the cohort level emanating from regions including angular 

gyrus, again concordant with a role for the temporoparietal junction in the detection of syntactic 

violations. Irrespective of the DRD results, however, the AxB task was undeniably a cognitively 

demanding task, as evidenced by our behavioural findings in the neurosurgical cohort (Chapter 3), 

and also foreshadowed by bimodal performance on the task in healthy participants (previously 

reported in Chapter 2). Future work will include the application of multivariate methods to data 

collected under a less challenging and/or more meaningful AGL paradigm, and with a greater 

emphasis on methods supporting the statistical validation of the DRD wave. 

Overall, the pMDS/DRD approach produced output of a high temporal resolution, seemingly 

capable of tracking the dynamics of relatively specific cognitive representations on the millisecond 

scale. This can be achieved on ECoG data using decoding approaches (for example, to decode inner 

speech; Martin et al., 2018), which learn to recognise patterns in the data by using classifiers that 
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require training prior to analysis. The DRD approach, however, is an encoding analysis (see 

Kriegeskorte & Douglas, 2019 for a comprehensive comparison of encoding and decoding methods). 

Unlike a decoding analysis, no training process was required, making the approach computationally 

efficient. The algorithm also has few tuneable parameters, simplifying its use. One critical tuneable 

parameter, however, is the length of the temporal window used to construct the spatiotemporal 

vectors over time (see 5.3.8). In this analysis, we used a window of 300 ms, but integrating neural 

responses over longer or shorter time periods might reveal different dynamic patterns. The 

determination of an “optimal” timescale is relevant to many analyses including decoding analyses. 

However, it is likely that the question of which timescale to integrate over is ill-posed, since 

information at different timescales encodes different features (for example, in the auditory system, 

Teng et al., 2016), because neuronal timescales appear to be heterogeneous even within single regions 

(Cavanagh et al., 2020) and because they are to some extent functionally dynamic and therefore ever-

changing (Gao et al., 2020). In future, however, further work might be undertaken to empirically 

determine the window of integration providing the most information about a particular signal. 

Indeed, formal methods have proposed for just this purpose, for example by analysing the entropy 

of motifs in fMRI across specific windows to determine the most appropriate decoding timescale 

(Deco et al., 2019). In this case, Deco et al. (2019) determined that the richest dynamical repertoires 

across the brain were observed on a timescale of around 200 ms (as opposed to scales of different 

orders of magnitude), extremely close to the temporal window we used. 

5.5.4 Representational Granger causa lity revea ls distinct flow patterns for different types 

of dissimilarity wave 

The representational Granger causality analysis appeared to be a promising tool for the 

analysis of neural data, revealing sparser causality networks that were significantly more 

unidirectional than Granger causal (GC) analysis across all trials of equivalently downsampled ECoG 

data. This suggested the waves tracked relatively well-isolated representations that exhibited 

characteristic flow patterns across the cohort during sequence processing. However, the specificity 

of the DRD waves was not guaranteed, and any signal covarying with the signal of interest would 

also have been revealed. The presence of covarying signals was especially relevant to the interpretation 

of the A item causal flow, which we return to shortly. 
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Individual syllabic representations were revealed to flow through a broad network of regions 

encompassing critical parts of the language network. In all cases, this included STG, all subregions of 

IFG, and parts of the temporoparietal junction, consistent with existing findings on the role of the 

language network in non-linguistic structured sequence processing, and known dorsal and ventral 

connectivity between STG and IFG (Petersson et al., 2012; Fitch & Friederici, 2012). Causal 

associations with frontal operculum (FOP), however, were not revealed except in the case of the 

second syllable. Since the original DRD wave shows a prominent encoding of each item in FOP, this 

most likely represents a failure to reach statistical significance due to the lack of coverage in this area. 

Similarly, representational GC on A and B DRD waves revealed causal flow largely consistent 

with the individual syllabic findings, which all revealed prominent outflow from primary auditory 

cortex as expected. However, although Heschl’s gyrus was detected as a net causal generator of the 

overall A item signal, analysis also revealed significant inflow to primary auditory cortex from 

precentral gyrus, IFG pars triangularis and SMG, seemingly by way of IFG pars orbitalis. This 

potentially represented unanticipated tracking of a covarying “predicted B” representation (see 

5.4.4). This result accords with previous findings indicating that increased in IFG pars triangularis 

and orbitalis reflect the instantiation of syntactic predictions (Matchin et al., 2017). However, a 

carefully designed paradigm would be required in order to definitively distinguish covarying A and 

“predicted B” representations. 

Finally, we reported causal flow of a supposed “grammaticality” or expectation violation signal, 

computed from the multivariate differences between neural responses to consistent versus violation 

sequences. It was considered that cohort-level causal analysis of this inconsistent grammaticality 

signal could be meaningful because, despite individual variation, we would expect causal flow to be 

coherent across the cohort if the signal tracked a mechanistically specific process. However, although 

we suspect this to be the case, without also statistically verifying that individual DRD waves breached 

their respective noise floors, it is still possible for the group-level Granger causality analysis to have 

revealed effects even if it were conducted on noise. As well as statistically testing each DRD wave 

against some baseline, an approach that could mitigate this possibility in future would be to generate 

the DRD waves using a noise-resistant method of dimensionality reduction in place of simple 

multidimensional scaling, for example “MDS+” (Peterfreund & Gavish, 2021). 
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Acknowledging the aforementioned limitations, causal analysis of this signal revealed that 

auditory cortex was a net recipient of causal flow at the group level, which was detected as ultimately 

emanating from auditory association cortex and the temporoparietal junction. Frontal operculum, 

believed to be involved in local dependency violation (see Wilson et al., 2017; Friederici, 2011), was 

significantly causally associated with other regions here, acting as an overall source, but generating 

significant causal outflow to orbital gyrus and parahippocampal gyrus (PHG), as well as also 

receiving flow from PHG and precentral gyrus. However, the extreme limitations of frontal 

opercular coverage in this dataset must be acknowledged when interpreting its roles and causal 

associations. Interestingly, this network also included causal inflow to IFG pars opercularis (a region 

also incorporated in the causal networks for S1 to S3), which we previously found to respond 

differently to grammatical and ungrammatical adjacent sequences at the group level (see Chapter 3). 

We consider that the top-down causal flow exhibited by the putative “grammaticality” signal, in 

conjunction with the A item causal findings, is not incompatible with a hierarchical predictive coding 

account (Summerfield & de Lange, 2014; Friston & Kiebel, 2009; Rao & Ballard, 1999). In this 

account, an individual region of a hierarchical network continuously produces context-driven 

predictions of the representations in lower order regions, which are passed down to them, yielding a 

prediction error response. Prediction errors, in turn, propagate to higher-order regions. These same 

prediction-error interactions occur at each level of the hierarchy. Whilst individual errors pass from 

lower-order (sensory) regions to higher-order (integrative) regions, our evidence very tentatively 

suggests that predictions, as well as specific prediction-error interactions, may both appear to 

propagate downwards as we track a specific expectation violation signal (for further investigation of 

time-resolved perspectives on predictive coding, see Hogendoorn & Burkitt, 2019). However, 

further statistical and/or empirical evidence is required to definitively demonstrate that the 

“grammaticality” signal is not driven by noise, but rather reflects task-driven processing amenable to 

causal analysis. 

5.6 Conclusion 

In this study, we undertook a battery of multivariate analyses on ECoG data collected during 

an artificial grammar learning task, with the aim of clarifying regionally instantiated neural 

representations and inter-regional information flow during sequence processing operations. Neural 
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pattern similarity revealed inter-regional response similarities that mirrored previously reported 

patterns of functional connectivity derived from fMRI (Wang et al., 2020). Analysis of syllabic 

representations across time revealed evidence for ordinal coding in IFG pars triangularis, SMG and 

precentral gyrus, compatible with our model (Calmus et al., 2019) and complementing and clarifying 

recent findings by Henin et al. (2021). Dynamic representational dissimilarity, derived from 

multivariate patterns over time, revealed sensitivity to sequential stimuli in a host of regions including 

areas of ventrolateral prefrontal cortex and the hippocampus, which manifested as peri-stimulus and 

post-stimulus activation of sequence representations. Causal analysis of these signals revealed distinct 

flow patterns between regions of the language network for different facets of the artificial grammar 

learning (AGL) stimuli, suggesting prominent involvement of IFG in both organised stimulus 

encoding and syntactic prediction, as well as a key role for areas of the temporoparietal junction in 

the propagation of syntactic predictions and possible syntactic violation signals. Collectively, these 

analyses begin to provide a glimpse of the complex interplay between components of the language 

network, and argue strongly for a productive interaction between model- and data-driven 

approaches.  
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Chapter 6. General Discussion  

Neuroimaging and behavioural results have implicated a frontotemporal-parietal network of 

brain regions in both language and domain-general structured sequence processing operations 

(Friederici, 2011). However, the representations instantiated by these regions require clarification, as 

do the functional interactions between them, if we are to better understand their role in cognition 

(Dehaene et al., 2015; Petkov & Wilson, 2012). Moreover, we require clarity not just on the 

mechanisms of human sequence learning, but also on the limits of human capabilities, which have 

yet to be firmly established (ten Cate et al., 2020). 

The studies reported in this thesis aimed to clarify the behavioural and neuronal sensitivity of 

subjects to violations of expected sequence structure, and to clarify the contributions of regions 

implicated in the construction of cognitive sequence representations. In particular, I aimed to clarify 

the representations and dynamic interactions arising in and between key regions of the 

frontotemporal language network. This included inferior frontal gyrus (IFG, incorporating the site 

commonly known as Broca’s area; Broca, 1861), which still has a much-debated and relatively 

underspecified role considering its long-appreciated involvement in language processing (Yan et al., 

2021; Matchin & Hickok, 2020; Hsu et al., 2017; Molenberghs et al., 2012; Pulvermüller & Fadiga, 

2010; Rogalsky et al., 2008; Hagoort, 2005; Friederici, 2002; Grodzinsky, 2000; Smith & Jonides, 

1999; Caplan & Waters, 1999; Rizzolatti & Arbib, 1998). 

In service of these aims, I undertook analysis of behavioural (Chapter 2; Chapter 3) and 

electrophysiological data (Chapter 3; Chapter 5) collected under an auditory artificial grammar 

learning (AGL) paradigm, the AxB task, analysing the results using univariate techniques and novel 

multivariate approaches, as well as computationally modelling neural representations relevant to 

sequence processing (Chapter 4). Ultimately, I sought to triangulate existing and novel findings in 

order to characterise site-specific representations instantiated during sequence processing. 

Through behavioural analysis of data collected on the AxB task in healthy adults, I have shown 

that, at the group level, participants were able to concurrently learn flexible adjacent/non-adjacent 

dependencies in the presence of statistical cues to salience, and that even in those who failed to exhibit 

high performance on a grammaticality judgement measure, reaction times revealed sensitivity to the 

grammar. Conversely, by analysing behavioural collected in a cohort of neurosurgical patients 
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undertaking an extremely similar version of this AGL task, I have demonstrated that summary 

grammaticality judgement performance and reaction time measures did not provide evidence for 

learned sensitivity to the grammar in the multifactorially affected cohort. However, analysis of 

intracranial data in this cohort revealed an event-related potential (ERP) effect under this task 

concordant with a key canonical syntactic component, the LAN, in inferior frontal gyrus (IFG) pars 

opercularis, and time-frequency effects in the right middle temporal gyrus and hippocampus. 

Despite this, univariate group-level analysis of ERP and time-frequency results provided limited 

insight into site-specific mechanistic roles. On this basis, I have suggested that multivariate – rather 

than univariate – analyses have the potential to reveal greater insights into the mechanistic 

foundations of sequence processing, and have subsequently demonstrated this by presenting novel 

methods for multivariate analysis and applying them to the intracranial AxB dataset. This has, in 

particular, suggested a role for the predictive coding framework in a coherent account of 

frontotemporal sequence processing. 

From a neurocomputational perspective, I have proposed that sequence processing hypotheses 

be constrained by integrating existing evidence into large-scale, mechanistic models. Specifically, I 

have motivated an approach to modelling the brain using concepts from the field of 

hyperdimensional computing. Using this approach, I have defined a model of key aspects of sequence 

processing, VS-BIND (Calmus et al., 2019), that proposes specific neurocomputational mechanisms 

and generates a number of predictions ripe for testing. Finally, as a result of the aforementioned 

multivariate analyses on the AxB neural data, I have found evidence to support a number of 

predictions of site-specific codes specified within VS-BIND, in particular providing evidence that 

both IFG pars triangularis and precentral gyrus instantiate sequence representations integrating 

ordinal positional codes. 

At a broad level, the goal of this schedule of work was to improve our understanding of the 

human brain’s internal perspective on temporal structure. I have contended that this appears to shape 

our perception and production of actions, music and language, and potentially cognition in general. 

However, although one of the motivating arguments for this contention is the shared importance of 

hierarchy between domains, I have not directly addressed the encoding of hierarchical relationships 

in my experimental work, rather forming neurocomputational hypotheses about hierarchy solely 

within VS-BIND and focussing experimental efforts on an understanding of simple adjacent and 
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non-adjacent structures. The nature of hierarchical encodings is therefore a principal challenge yet 

to be fully addressed within our schedule of work. However, there are a number of other aims and 

hypotheses that arise naturally from the findings reported in this thesis. Here, I discuss the specific 

challenges addressed by my work, describe how my results contribute to the understanding of 

sequence processing in the frontotemporal network, and propose additional research that could 

clarify the neural codes employed in these and other regions, thereby advancing our understanding 

of the mechanistic foundations of sequence processing in the human brain. 

6.1 Strengths, limitations and future avenues 

6.1.1 Human performance in a  mixed dependency AGL task 

Findings under the mixed dependency AGL task in healthy adults (Chapter 2) revealed that 

participants could learn the explicit relationships in the task, but, given that they formed a bimodal 

distribution, also revealed that it was less trivial to achieve a high score on the explicit grammaticality 

judgement task than one might have assumed, even with the assistance of perceptual cues. To some 

extent, however, the suggestion that the task was non-trivial aligned with a number of prior reported 

studies incorporating non-adjacent dependencies (see 2.2.1). Moreover, even if the healthy 

participants were not able to perform well on the grammaticality judgement task, they appeared to 

show sensitivity to the sequences in the form of reaction time effects. Nevertheless, given the likely 

multifactorial effects on the patient cohort of their clinical condition, prescribed interventions and 

medication, it is perhaps the case that, in hindsight, performance was insufficiently high in the 

healthy cohort to allow for any reasonable chance of observing sustained high grammaticality 

judgement performance in the patients. Moreover, reaction time effects are likely to be severely 

undermined or eliminated by the prescription of opioid analgesics and other powerful drugs used to 

control pain in the patient population (Rogers et al., 2013; Spear et al., 1992). As a consequence, 

future studies would benefit from the use of alternative online measures of sequence learning, 

especially passive measures. Outside of traditional electrophysiological contrasts, one increasingly 

popular analysis that has been suggested to track sequence learning is neural frequency tagging (NFT; 

Batterink & Paller, 2017), which quantifies neural entrainment effects at the frequency of words 

relative to the frequency of individual syllables. Learning of structured content is associated with 

enhanced word-level entrainment relative to responses to random content. This approach has 

formed the basis for other compelling analyses of sequence processing (Henin et al., 2021; Ding et 
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al., 2016), but we were unable to retrospectively apply it to our data because of the jitter we had 

deliberately introduced to our trials to minimise the impact of motor activity on measured responses 

(see 3.3). 

6.1.2 Electrophysiologica l signatures of sequence processing in the human bra in 

Despite a lack of behavioural confirmation, findings under the electrophysiological AxB task 

in neurosurgical patients (Chapter 3) revealed a significant event-related potential (ERP) effect 

concordant with a canonical finding under linguistic syntax-violation tasks: specifically, a group-level 

difference between responses to adjacent grammatical and adjacent ungrammatical sequences in left 

IFG pars opercularis, strongly resembling the left anterior negativity (LAN). Time-frequency 

analyses were less intelligible, revealing relatively unexpected gamma-band effects in the right middle 

temporal gyrus (MTG) and hippocampus – although, as we noted, both of these regions, or else their 

left hemispheric homologues, have previously been implicated in processes pertinent to artificial 

grammar learning (Opitz & Friederici, 2003; Loui et al., 2011). Unfortunately, the cohort size was 

insufficient to allow statistical inferences to be made at the group level in a number of regions (see 

3.3). This means that it is possible that right MTG and right hippocampus were not the most 

grammatically-responsive regions, despite the results of the group analysis. Similarly, this restriction 

makes it very difficult to surmise hemispheric differences, since the number of regions reaching 

mimimum acceptable levels of coverage in the left hemisphere exceeded those in the right. Finally, 

for the same reason, it is not possible to judge the relative importance of the contributions of different 

subregions of ventrolateral prefrontal cortex in relation to IFG pars opercularis, since IFG pars 

triangularis, IFG pars orbitalis and frontal operculum both had insufficient coverage to reach α. This 

restriction was caused by the limited coverage of specific regions, and ultimately this limitation was 

a function of the availability of clinical patients. In future, a focus on simplifying the cognitive 

demands of the task and broadening the acceptable regions of interest might increase the rate at 

which suitable participants can be recruited, since we excluded a small number from further study 

due to pre-implantation performance and coverage concerns (see 3.4.1). 

A second point of interest is the implantation procedure itself. Given that the highest 

performing implanted participant was in fact a stereoelectroencephalography (sEEG) patient, rather 

than a recipient of a subdural ECoG array (see Figure 3.1), it is possible that a less invasive method of 

recording is a pre-requisite for high performance on this kind of task. It has previously been shown, 
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for example, that patients undergoing sEEG experience significantly less pain and require fewer 

opiates compared to those implanted with subdural grids (Y.-C. Wang et al., 2020). Depending on 

their availability, sEEG patients may therefore prove to be a more appropriate population in which 

to undertake more cognitively demanding tasks such as the AxB task in future. 

Finally, whilst we randomised the trial order under the AxB task, we did not undertake any 

other balancing to control trial ordering. Thus, it was possible to obtain sequences of several trials 

where the grammaticality of the sequence remained identical to that of the previous trial, and this 

did happen on one or two occasions, and a run of >7 identical conditions was observed on more than 

one occasion. Given that refamiliarisation is typically incorporated into AGL tasks precisely because 

learned dependencies may be corrupted by repeated exposure to incorrect sequences (Kuppuraj et 

al., 2018), this may have had the effect of introducing a spurious sense of “violation” at unanticipated 

times when a sequence under a different condition was introduced, akin to effects observed under 

the local-global task, a variant of the oddball task (see Chapter 1) where repeated presentation of a 

deviant sequence can result in any new transition to a “grammatical” target sequence instead 

generating a mismatch response (Marti et al., 2014). However, as an argument against this effect, 

preliminary analyses (not reported here), could not ascertain any clear associations between the 

condition(s) of the prior 1-2 trials and effects in the subsequent trial. 

6.1.3 Neurocomputational hypotheses on combinatoria l binding and sequence processing 

VS-BIND proposed specific roles for a number of cortical regions, and the hippocampus, in 

sequence processing. In particular, we treated the hippocampus as a flexible sequence playback 

engine (see Chapter 4). At present, neither direct nor indirect hippocampal-IFG interactions are 

defined in our model, but the time- and time-frequency results we revealed under an AGL paradigm 

(Chapter 3 and above), which revealed significant effects in both regions, highlight the fact that it is 

likely to be assistive to define and test falsifiable neuro-computational hypotheses on such 

interactions in future. 

Excitingly, multivariate analyses of left IFG, precentral gyrus and supramarginal gyrus (SMG) 

suggested that they may all instantiate ordinally tagged sequences of items (Chapter 5). IFG and 

precentral gyrus, specifically, were predicted by us to contain such representations on the basis of an 

integrative view of existing research (Chapter 4). SMG did not specifically enter into our predictions, 
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primarily because VS-BIND was not intended to incorporate aspects of semantics, and 

temporoparietal areas have putative roles in lexical-semantic integration (Thompson et al., 2015). It 

may therefore be premature to seek to incorporate SMG into VS-BIND given its stated purpose as a 

non-linguistic account of sequence processing. 

A goal that must certainly be prioritised as a result of the neurobiological data is the 

comprehensive integration of predictive coding aspects (Friston & Kiebel, 2009; Rao & Ballard, 

1999) into VS-BIND. Presently, the model encompasses mechanistic manipulations of cognitive 

structures that have putative roles in specific sequence processing operations, and lacks a 

formalisation of predictive coding aspects, although this problem was alluded to in Chapter 4. 

There are two ways in which predictive coding might be implemented in VS-BIND. One is 

to conceive of the predictive coding mechanism as a sub-symbolic process that is completely distinct 

from the symbolic representations themselves. Under this approach, the idealised representations 

would continue to be conceived of as at present, but predictive coding would be introduced through 

the sub-symbolic behaviour of individual artificial neurons, for example by implementing the full 

model using populations of virtual neurons within a large-scale simulation framework such as 

“Nengo” (Bekolay et al., 2014). Parts of VS-BIND have already been implemented within Nengo 

(see Figure 0.10, Appendix 2: Supplementary figures), and some existing research exists attesting to 

the feasibility of implementing predictive coding under this simulation framework (Ororbia, 2019; 

though note that their implementation was not neurobiologically constrained). 

The second way in which predictive coding could be implemented is directly at the level of 

the symbolic representations. This is somewhat intuitive, since, under this approach, regions of the 

model would explicitly instantiate “prediction” structures and “error” structures. These would have 

the same canonical forms but represent different states of the system. One reason that this form of 

implementation is potentially attractive is that it provides an “oven-ready” description of exactly 

what representations regions such as IFG would be manipulating. To be specific, our findings under 

this schedule of work aligned with an account of IFG as a buffer for predictions of complex structure 

– a definition which, in one fell swoop, would account for working memory (Yan et al., 2021; 

Rogalsky et al., 2008; Smith & Jonides, 1999; Caplan & Waters, 1999), structure-building (Matchin 

& Hickok, 2020; Hagoort, 2005; Friederici, 2002; Grodzinsky, 2000), and predictive (Matchin et al., 
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2017) accounts of function. The formalisation of these notions under the model is therefore a key 

future goal. 

Finally, we proposed extensive roles for an ordinal positional code within VS-BIND, providing 

evidence that this is likely a boundary-relative positional code that appears to be used in multiple 

regions including dorsolateral prefrontal cortex and the hippocampus (Carpenter et al., 2018; 

Shimbo et al., 2021). However, one criticism of an ordinal positional code might be that it does not 

appear to support transitive inference – specifically, the ability to infer relative positions between 

novel pairs of referents based on prior exposure to the relative locations of a subset of pairs only 

(Barron, Reeve, et al., 2020). This ability is especially relevant to the mapping of spatial domains 

despite limited traversal of the environment. Transitive inference is increasingly considered to be the 

preserve of the hippocampus, in both spatial and nonspatial domains (Barron, Reeve, et al., 2020; 

Zeithamova et al., 2012). Thus, transitive inference is important to consider in accounts of item 

positional encoding, especially with respect to codes hypothesised to support hippocampal function. 

However, both within our VSA model, and within other proposed VSA encodings of cognitive 

structures (Lu et al., 2019), it has been suggested that one possible method of generating positional 

codes is repeated (fractional) binding of a positional basis vector (Plate, 1992). This scheme generates 

a range of positional codes, but additionally results in the unique property that the binding of an 

existing “absolute” position (representing the position of some item, A) with a new “offset” position 

(representing the comparison of the position of another item B, with the position of A) results in a 

new positional code equal to the intuited output position (i.e., the position of B). This is positional 

transitive inference. The positional code we posited is therefore compatible with such notions, which 

raises exciting possibilities for the broader applications of the representational schemes we described 

and future modelling of hippocampal function using the VS-BIND approach. 

In general, we anticipate an increasing role for large-scale, integrative models of 

neurocomputational mechanisms. VS-BIND is one part of a wider move towards large-scale 

simulation and hypothesis testing. With this in mind, a useful future goal might be to curate an atlas 

of neurocomputational hypotheses or “brain computations”, leveraging the parsimony, flexibility 

and intepretability of vector-symbolic accounts to produce a formal documentation of region-

specific functional roles. A similar concept has already been enacted, using unconstrained 
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mathematical operations, in the form of MRC-CBSU/Cambridge University’s “Kymata Atlas”, an 

atlas of site-specific hypotheses of brain function (https://www.nitrc.org/projects/kymata_atlas/). 

6.1.4 The representational dynamics of auditory sequence processing 

Our novel causality analysis (“representational Granger causality”; Chapter 5) revealed thought-

provoking findings that were potentially consistent with notions of predictive coding in the 

frontotemporal language network (see above). However, due to the low number of conditions, and 

the number of trials that needed to be aggregated into each condition in order to undertake analysis 

on data with a high signal-to-noise ratio, we were unable to conclusively separate all putative signals 

from one another. Specifically, we posit that our “presented A” potentially contains “predicted B” 

information, which in itself, when compared to the “per-syllabic” flow networks, provided 

promising insights. However, ideally, we would perform this analysis on a wider set of conditions in 

order to parametrically vary key aspects of sequence structure with greater granularity than 

“adjacent/non-adjacent” and “A1/A2”, for example. In future, we aim to undertake more extensive 

parameterisation of sequence structure to reveal conclusive effects associated with the alteration of 

sequence length and identity. Based on our model and the findings of Carpenter et al. (2018), for 

example, alterations of sequence length would have the potential to reveal putative “boundary-

relative” positional codes, whilst increased numbers of item identities and parametric variation of the 

permissible AB pairs could enable the partial separation of “presented” and “predicted” 

representations under the representational Granger causal analysis, providing stronger evidence for 

specific predictive codes in implicated regions. 
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6.2 Conclusion 

The goals of this schedule of research were to characterise human abilities to concurrently learn 

adjacent and non-adjacent sequencing dependencies within a naturalistic artificial grammar learning 

paradigm, the AxB task; to characterise electrophysiological responses under the same task and 

establish correspondence with existing findings; to hone a neurocomputational account of sequence 

processing, in order to inform our understanding of critical encodings and mechanisms; and to 

develop novel methods to support model-data comparisons. The studies reported in this thesis show 

that healthy adults can learn a flexible adjacent/non-adjacent dependency relationship, revealing 

implicit sensitivity to the grammar even in the absence of explicit performance effects. Behavioural 

and intracranial electrode obtained on the task in neurosurgical patients revealed that, despite chance 

behavioural performance, patients exhibited electrophysiological responsiveness to sequence 

grammaticality of selected sequences, including a canonically syntactic LAN-like response observed 

in vlPFC following presentation of adjacent dependencies. A novel neurocomputational model, VS-

BIND, triangulated evidence clarifying putative mechanisms in the fronto-temporal language 

network. Subsequent multivariate analysis of the intracranial data was consistent with the presence 

of ordinal encodings in vlPFC and precentral gyrus, as specified in VS-BIND. Novel causal analysis 

also tentatively suggested top-down transmission of syntactic predictions during the AG task, largely 

in the opposite direction to stimulus encodings, consistent with predictive coding accounts, and 

suggested potential roles for the temporoparietal junction and frontal operculum during 

grammaticality processing. These results and novel analyses have unique potential to inform 

neurocomputational accounts of language and cognition. 
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Appendix 2: Supplementary figures 

 

  

Figure 0.1: Required minimum sample size to reach one-tailed group 
significance versus chance performance in a future study. Making the crude 
assumption of a logistic parent distribution, whose tails are a marginally better fit 
for the behaviour of our bimodal final run performance data than a single normal 
distribution, for α = .05, it can be seen that the required power is reached using a 
sample size of 8 participants. Assuming a normal parent distribution (not 
shown), the suggested sample size is still between 8 and 9 participants. See 
Chapter 3 for context. 
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Figure 0.2: Cohort (n = 12) ERPs, adjacent grammaticality contrast (violation – consistent, adjacent only, bilateral ROIs). The left 
hemispheric results were previously shown in Figure 3.8. Both hemispheres shown here for completeness. See Chapter 3 for context. 
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Figure 0.3: Cohort (n = 12) ERPs, non-adjacent grammaticality contrast (violation – consistent, non-adjacent only, bilateral ROIs). 
Left hemispheric results previously shown in Figure 3.8. Bilateral results shown here for completeness. See Chapter 3 for context. 
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Figure 0.4: ERSP contrast (violation minus consistent), pooling electrodes at cohort level (n = 12 participants). ERSP differences (0–
3000 ms, 3–150 Hz) are shown as colours on a scale from -1.75 to 1.75 dB. Black contours surround areas of significance as determined by 
permutation testing (α = .05, ≪10 000 replicates, cluster-corrected for multiple comparisons; only significant cluster in R. MTG). See Chapter 3 
for context. 
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Figure 0.5: ERSP contrast (violation minus consistent, adjacent only), pooling electrodes at cohort level (n = 12 participants). ERSP 
differences (0–3000 ms, 3–150 Hz) are shown as colours on a scale from -1.75 to 1.75 dB. Black contours surround areas of significance as 
determined by permutation testing (α = .05, ≪10 000 replicates, cluster-corrected for multiple comparisons; only significant cluster in R. 
Hippocampus). See Chapter 3 for context. 
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Figure 0.6: ERSP contrast (violation minus consistent, non-adjacent only), pooling electrodes at cohort level (n = 12 participants). 
ERSP differences (0–3000 ms, 3–150 Hz) are shown as colours on a scale from -1.75 to 1.75 dB. Black contours surround areas of significance as 
determined by permutation testing (α = .05, ≪10 000 replicates, cluster-corrected for multiple comparisons; no significant clusters). See Chapter 
3 for context. 
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Figure 0.7 High-gamma power (HGP) contrast (violation minus consistent, n = 12 participants). Black trace: violation; grey trace: 
consistent; blue trace: difference. Green points denote significance as determined by permutation testing (α = .05, ≪10 000 replicates, cluster-
corrected; no significant clusters). Grey plots marked with a dagger (†) have insufficient coverage to reach α. See Chapter 3 for context. 
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Figure 0.8: High-gamma power (HGP) contrast (adjacent violation minus consistent, n = 12 participants). Black trace: violation; grey trace: 
consistent; blue trace: difference. Green points denote significance as determined by permutation testing (α = .05, ≪10 000 replicates, cluster-
corrected; no significant clusters). Grey plots marked with a dagger (†) have insufficient coverage to reach α. See Chapter 3 for context. 
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Figure 0.9: High-gamma power (HGP) contrast (non-adjacent violation minus consistent, n = 12 participants). Black trace: violation; 
grey trace: consistent; blue trace: difference. Green points denote significance as determined by permutation testing (α = .05, ≪10 000 replicates, 
cluster-corrected). See R. Hippocampus. Grey plots marked with a dagger (†) have insufficient coverage to reach α. See Chapter 3 for context. 
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A 

B 

C 

Figure 0.10: Screenshot of spiking neural simulation of stimulus-driven speech segmentation model. Spiking neural simulation was 
accomplished using Nengo (Bekolay et al., 2014) and the screenshot shows a single frame of a browser-based dynamic simulation. Blocks in a directed 
graph (roughly, top right diagonal half) depict connected neural ensembles each containing hundreds of leaky-integrate-and-fire (LIF) neurons. The 
bottom left line plots shows the representations instantiated by some of these populations. Of especial importance here are the “Hilbert” line plot 
and Argand diagrams (A and B), which both show the same information. A neural representation of the low-frequency speech envelope is delayed 
using a biologically plausible delay filter to produce two staggered signals (“Hilbert” line plot, A, showing original and delayed envelopes). These 
signals form real and imaginary components of a complex number (see Argand diagram, B), from which the phase angle can be readily extracted to 
produce a neural estimate of instantaneous phase (C), as used subsequently within the vector symbolic speech segmentation model; see Chapter 4. 
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Figure 0.11: Multidimensional scaling of Euclidean RDM comparing responses to syllables over time (n = 12 participants, right 
hemisphere). Dashed ellipses depict 95% confidence boundaries around each cluster of identically positioned syllables. It can be seen that, unlike 
the left hemisphere (see Figure 5.6), the only region that shows a clean separation potentially on the basis of ordinality is superior temporal gyrus 
(STG). However, this follows a pattern of markedly shrinking confidence ellipses that hints at repetition suppression effects as a possible driver of 
this representational geometry. See Chapter 5 for context. 
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A) 

B) 

Figure 0.12: Granger causality results computed on ECoG data. Data was recorded at 2000 Hz, SVD-denoised and downsampled to 500 Hz 
during preprocessing. Data was then epoched, averaged over trials and downsampled again by a factor of 12.5 to generate a 40 Hz signal, the sampling 
rate used in the representational Granger analysis. Analysis was performed using the MVGC toolbox. Significant causal associations were found 
between many regions (panel A, right), connecting many ROIs. This produced a densely connected causal flow graph (panel B). See Chapter 5. 
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Appendix 3: Behavioural questionnaire 

Confidential Study Questionnaire 
 

You have the option to omit any responses, but note that all given information here is completely 
anonymous and your answers will help us to better analyze your experimental data. 

 
Experimenter:_______________________  

Study:  _______________________ 
 
Anonymous Code (given by the Study Coordinator):  _____________ 
Date: ________________________ 
 
Your Gender: (circle one)   M F  Other  Prefer not to say 
Your Age: ______ 
Are you Right or Left handed: (circle one)   Right   Left   Both 
 
Would you consider yourself bilingual? (Yes or No) ______ 

If Yes, please describe your level of fluency in your second language. 
___________________________________________________________ 
___________________________________________________________ 

 
Do you currently suffer from a cold, flu, or ear infection? (circle)  Y   N 
 
Is there anything impairing your hearing or sight right now? (circle) Y   N 
 If Yes, please describe: __________________________________________ 
 
Has your hearing been normal, as far as you can tell?  Y   N 

If No, describe (for example, I had an ear infection in 1995 but my hearing is normal now). 
___________________________________________________________ 
___________________________________________________________ 

 
Has your vision been normal as far as you know? Y N 

If No, describe (for example, I had blurry vision during the World Cup in 2006 but it is 
normal again). 

___________________________________________________________ 
___________________________________________________________ 

 
Do you wear glasses or contact lenses? Y N 

If Yes, are you wearing them today? 
___________________________________________________________ 
___________________________________________________________ 

 
Do you have a Language or Learning impairment (such as dyslexia)?  Y  N 
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Do you frequently listen to loud music or were you exposed to loud sounds (like machines, 
construction work, or frequent loud iPod music listening)?  Y  N 
 If Yes, describe including what type of sounds: 

________________________________________________________________ 
________________________________________________________________ 

 
How many hours of sleep approximately did you get last night? Please circle. 
 
Less than 2 hours 2-4 hours 4-6 hours 6-8 hours 8-10 hours More than 10 hours 
1  2  3  4  5  6  
 
How tired do you feel right now? Please tick one of the options that best describes you.  
 
Very tired Tired  Slightly tired Rested  Energised 
1  2  3  4  5 
 
How well do you feel that you learnt the structure of the sequences? 
 
Very Well Quite Well Moderately A little  Not at all 
1  2  3  4  5 
  
Please try and list any rules you noticed about the sequence: 
_______________________________________________________________________ 
_______________________________________________________________________ 
_______________________________________________________________________  
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