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Introduction 

Benard-Marangoni convection refers to the thermo- 
capillary flow developing in a shallow horizontal liquid 
layer heated from below when its upper boundary is a 
free surface open to the ambient air.lm4 In the simpli- 
fied case of a two-dimensional geometry the ther- 
moconvective evolution of the open surface can be 
described by the following equation 

where thermocapillary and buoyancy effects are taken 
into account.5.6 Equation (I), arising in BCnard-Mar- 
angoni convection, is a variation on the Kuramoto- 
Sivashinsky (KS) equation3.6.7 

au 2 4 

,+,;+~+$=o 

where for simplicity we have equated all coefficients to 
unity. Note in equation (1) the additional nonlinear 
term ~(uu,),. In addition, the coefficient ~3 in equation 
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(1) can change sign according to the effective gravity 
level, and thus equation (1) accounts for both ground 
and space (microgravity) conditions. When 6<0 
(negative) such a term plays a stabilizing role whereas 
if 6 > 0 (positive) it tends to destabilize the surface.’ 

In the past few years a number of generalizations of 
the KS equation have been published in the literature. 
For instance the KS equation has been supplemented 
with a term containing the third derivative in space 
thus accounting for inertia and dispersion effects, 
which amounts to a combination of the KS equation 
with the Korteweg-de Vries equation (KdV).’ In Ref. 
8 the authors show how profoundly the addition of the 
third derivative affects the KS equation, generally 
leading to standard KdV solitary waves even when the 
order of magnitude of the third derivative is of the 
order of the values of the coefficients of the remaining 
terms. Here, on the contrary, we are interested in a 
generalization of the KS equation when the energy 
supply provided by the Marangoni effect and the dissi- 
pation, i.e., when the second and fourth derivatives 
and the nonlinearity controlled by S in equation (1) 
dominate while dispersion is negligible and yet local- 
ized excitations, steady or otherwise, appear, 

The role of the new nonlinear term in equation (1) 
(KSV hereafter) was illustrated in Ref. 6 by means of 
direct numerical simulations, and it was shown that if 
the eikonal nonlinearity term u: is removed (y = 0, p 2 
0) then the solution of (1) blows up in finite time. 
Otherwise the chaotic dynamics of equation (1) are 
essentially the same as for the KS equation.’ Note that 
the KSV-KdV equation has been recently derived.’ 
On the other hand note also that the same nonlinearity 
was earlier found in a different context.” However, as 
in the equation derived in Ref. 10 there is no fourth- 
order derivative in space; though it shares the same 
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nonlinearity with equation (1) its mathematical proper- 
ties are qualitatively different. 

We concentrate our attention on the localized solu- 
tions of equation (1) in the form of one-dimensional 
traveling waves. As the eikonal nonlinearity term is 
essential and cannot be removed, then y # 0. With no 
other reason we set y = 3 for the sake of definiteness. 
Our main purpose is to assess the role played by the 
nonlinear term S(ULI,), in the shape formation of a sofi- 
tary wave. To simplify the picture we neglect the linear 
resistance term /?u, i.e., we take /3 = 0. The intricate 
interplay between the nonlinearities and the linear re- 
sistance would require special care, and this shall be 
done elsewhere. 

The localized solutions of (1) can be either 
homoclinics when u + 0 for x + +x or -x (the 
traditional solitary wave in the form of a localized 
hump decaying at both infinitely far sides) or het- 
eroclinics (a kink) when u -+ u r for x + -cc, and u + 
u + r for x + + ~0. The second case is more general, and 
we shall concern ourselves in what follows with the 
heteroclinics of (I). It is clear that the derivative u, of a 
localized solution is always a homoclinics and hence 
the integral term in (1) has a finite value even when L 
+ 00. Then taking L -+ 00 we can neglect that term in 
equation (1) and consider a simplified version of (I), 
namely 

Consider traveling waves that are functions only of 
the coordinate 

5 = x-ct (4) 

when (3) reduces to the following ODE, u = u(t), 

-cur + (y + 6)u’2 + 6uu” + u” + ui” = 0 (5) 

Here c is the phase velocity or celerity of the traveling 
wave and a “prime” denotes derivative with respect to 
5 (superscript prime number indicates order of deriva- 
tive). 

When S = 0 (KS case) using the transformation 

u= u’ or LI= 
I 

u@,)& + u-x (6) 

it permits lowering of the order of (5) from fourth order 
in “u” to third order in “u”. Unfortunately, it is not 
the case when the full equation (5) with 6 f 0 is consid- 
ered. Still we prefer to use the substitution (6) because 
it reduces the number of computer operations when 
implementing the numerical algorithm. So, we recast 
(5) to 

-cu + (y + 6)v2 + 8uu’ + U”’ = 0 (7) 

where u is defined by the second equation in (6). Of 
course, the substitution (6) is formally equivalent to 
integration and u_, is in fact an integration constant. 
Appearance of a new constant I._, immediately in- 
creases in order of magnitude the number of numerical 

“experiments” to be performed. One may argue that 
equation (1) is for the deviation from the main state and 
hence at infinity “u” should decay to zero. It is not 
clear, however, at which infinity (--m or +x) the 
function u decays for this depends on the specific phys- 
ical case considered. So we should allow the more 
general case u_, # 0. Fortunately, under some not 
very restrictive limitations in the relationship between 
6 and u z one can introduce an appropriate scaling and 
exclude u_, from the equation. Indeed, upon introduc- 
ing (6) into (7) we get 

-cu+(~+fi)u’+S(ju(ndi)u 
-x 

+ (1 + SN_,)U’ + rY = 0 (8) 

Let us call u. the function that satisfies (7) when 
Up, = 0. Then resealing again the quantities 

u = (1 + 6u_Z)%o(flZ), 

c, = c(1 + &4_,))“’ (9) 

we get 

-(‘I& + (Y + &vi’, 

Naturally, the scaling (8) demands that 

1 
u_,> -- 

6 
for6>0 

(11) 

-ao<ll_,< +m for8 = 0 

Hence we shall consider only the solitary waves of the 
kink type with u_, satisfying conditions (11). 

Putting (10) as a system of ODES in normal form we 
have (for simplicity denote now x = uo) 

x’-y-o 

y’-z=o 

z’ + y [ 1 + Su(5)] + (y + 6)x’ - cx = 0, 
(12) 

5 

u- 
J- 

x(t) d( 
-x 

for which the inverse boundary value problem 

x,y,z-+ 0 fort-, *a (13) 

is to be solved if localized solutions are sought. 

Variational imbedding1’*12 

In the previous section we arrived at the inverse prob- 
lem of identifying the homoclinic trajectory of (12). 
The problem is of inverse nature because we have two 
boundary conditions for each unknown function x, y, z, 
while the corresponding equation is of first order. 
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The straightforward approach to calculating the 
homoclinics is to use the so-called shooting procedure, 
which consists in solving the initial value problem for 
(12) with x = y = 0 and z, = e0 at the left boundary of 
the (reduced) interval 5 = [-=. This must be carried 
out many times with different values of l g until the 
value for l 0 is found for which the boundary conditions 
at the right boundary of the interval, namely, [ = ttZ 
are also satisfied. For the problem under consideration 
the shooting procedure was being applied, e.g., in 
Refs. I3 and 14 (in Ref. 13 to an even more complicated 
equation). The difficulty with shooting techniques is 
that the initial value problem for equation (12) is intrin- 
sically highly unstable, and therefore the requirements 
on mesh size and other properties of the difference 
scheme are very stringent. I4 

Recently” a different approach to the inverse prob- 
lems was proposed. It is a variational imbedding proce- 
dure (MVI hereafter) and was originally implemented 
for calculating the shape of homoclinics of the Lorenz 
system. The essence of the new method is in the re- 
placement of the original unstable initial-value problem 
by the problem of minimization of the quadratic func- 
tional of the equations of the governing system 

1 

.I = I {(x’ - y)' + (y' - z)* 
z 

+ [z’ + y + 6uy + (y + 6)x’ - cx]‘}d[ (14) 

Here we shall use a MVI that is slightly modified 
with respect to that used in Refs. 11 and 12, namely we 

discretize the problem yet on the level of the func- 
tional; i.e., J is approximated by the function of many 
variables 

+ 
zi, 1 - 7.j 

h 
+ (7 + 6)Xf - CXj + (1 + 

(1% 

This permits us to derive the difference scheme in 
conservative form. The scheme provides only a first- 
order spatial approximation O(h) of the functional, but 
it is enough for the purpose here because the higher 
order approximations require a further increase in the 
number of arithmetic computations per grid point. 

The necessary conditions for minimization of the 
function of many variables, I, is to have all its partial 
derivatives with respect to different arguments equal to 
zero, namely 

aI 
-=o,;=o+o, 
axi I t 

i=2 )...) N- 1 (16) 

Differentiation with respect to xl, y,, z,, xN, y,,,, zN is 
not performed because these are specified by the 
boundary conditions, namely 

X, = y, = z, = XN = yN = zN = 0 (17) 

Then, the different derivatives in (15) give the three 
main groups of difference equations 

xi+ I -2x,+ xi_, 

h* 
- [2(y + 6)*x: + cqx, = - 3(y + c)cxf + Yi r,Y;- ’ 

+ [2(y + 6)X; - c] zi+ ’ - zi + (1 + 6u;)y, 
h 1 (18-x) 

Y;+ I - 2Y; + Yi- I 

h2 

_ ,1 + (1 + 6uij21yj = zi phCl _ Xi+;- ‘i + 

[ 

C+;- ‘5 
+ (y+ 6)x; - cx; 1 (1 + &4;) (18-y) 

zi+l - 2Z; + Zi- 1 

h2 

_zi= _Yi+i -Yi 

h 
+ i{[(y + 6)x; + (1 + 6u;)y; - CXJ 

- [(y + s,xfp, + (1 + au;_ ,)y;_, - cxj_ ‘I} (18-z) 
The way we posed the system (18) yields clues on how to linearize it and how to carry out the iterations. For 

example, the first equation can be treated iteratively as follows 

- ,;+’ + x:_‘,‘] - [2(y + 6)*(x:)2 + c*1x:! + ’ 

= - 3(y + c&.(x;)2 + Y:’ - yC’ + [2(y + 6)x; - c] 
h 

Zy+’ - z:’ + (1 + iju”)y” 
h 

I I 1 (19) 

i.e., only the main terms are taken on the new iterative 
stage, the latter being distinguished by the superscript 

In fact we actually did implement the scheme (19) 

“(n + 1)“. This is attractive because we arrive at a 
and at the beginning of the iterations the convergence 

three-diagonal linear system with strongly dominating 
was very fast, but as the solution was approached the 

principal diagonal. 
pace became so slow that the advantage was lost. 

The most consistent approach to improve the con- 
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vergence is to use Newton’s quasilinearization. Unfor- number of arithmetic operations per unit mesh point. A 
tunately, in our case using Newton’s method yields a reasonable compromise can be obtained by the sepa- 
conjugate tridiagonal system for the vector (xi, yi, z;), rate linearization of (1.5). 
which poses problems with the computational imple- Consider the (n + 1)st iterative stage. Suppose we 
mentation. Of course these difficulties can be over- are initially dealing with x. Then we consider the (n + 
come but once again at the expense of increasing the $)th iteration for the functional I, namely 

- g+’ 

h 

n 
Yiil - Yr 

h 
n 
Zi+] - Zr 

h 
+ 2(y + c)xyx?+’ - CX:” + (1 + 6U;)y; - (y + c)x;? II (20-x) 

i.e., we quasilinearize just the term containing the nonlinear contribution from the first unknown. Then the first 
difference system for the set function xi reads 

; cc:,‘, - 2x;+’ + x;:;, - [2(y + c)xl - c12x;+’ 

=Yi -hY~-l+[2(y+~)r:'_cl zr+‘- z: 
h 

+ (1 + &$)y:l - ( y + a+ 1 (21-x) 

At first sight (21) does not differ significantly from 
(19). In the limit n + ~0, i.e., when (Y+ - -PI + 0 the 
two equations give in fact the difference approximation 
(18 - x). However, although small, the differences 
between (21) and (19) cannot be overlooked, and the 
iterations conducted using (21-x) exhibit linear but sta- 
ble convergence with increasing n. 

The problem with the other two functions is much 
less complicated because there are no nonlinear terms 
involving y and z (the system is bilinear with respect to 
y and z). So the next “fractional-step” iteration of the 
functional is 

xv+’ 2 n+2/3 _ 
I - 

1+1 - x;+’ 

h 

Yj’,+l’ - Y:,+’ _ z!, 

h ’ 
II 2 

+ 
z:I+, - z; 

h 
+ (y + c)(x;+‘)2 - a:+ + (1 + &!:‘f’)y::+ II (20-Y I 

Here x;+’ is already known from the (n + f)rh step. Correspondingly, u:f+’ is calculated from x:!+’ by means of the 
trapezoidal rule. Then the system of equations for the minimization of Zn+2’3 with respect to the unknowns y;+’ is 
the following 

-$ (y;:” - 2y; + ’ + y;:‘_+,‘) - [(l + su;+‘)2 + l]y;+’ 

z; - z;-’ tIt1 
xi+l 

- g+’ z;;,‘,’ - z;+’ 
= 

h - h 
+ 

h 
+ (y + 6)(x;+‘)2 - cx;+’ (1 + &$f’) (21-y) 1 

This is once more a linear three-diagonal difference system. 
In the same manner we treat the minimization with respect to z, namely, the third fractional iterative step for the 

functional 

n+l 
nt’ - I - 

xi+1 - x’ y;;,’ - y;+’ 

h h 
- zp+’ 

+ 
&+” - ,y+’ 

h 
+ (y + c)(xY”)’ - cx;+’ + (1 + &Uy+‘)y;+ (21-z) 
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The corresponding system of linear equations is 

- 227” + z:““) - z;+’ = - 
y;>” - y:” 1 

h 
+ --[(y + S)(XY”)2 - C$f’ + (I + &;+‘)y;+‘] 

+ $7 + 6)($‘?“)2 - cx;‘,’ + (1 + 6u;?“,‘)y~:“] (21-z) 

Thus we have a complete system of difference equa- 
tions for the set functions we are looking for. Equa- 
tions (2 1) are to be satisfied at all points starting from i 
= 2 to i = N - 1 while at the boundary points the 
boundary conditions (17) are imposed. 

Here becomes apparent the advantage of using the 
substitution (6) that for the set functions has the form 

n+l _ u - I Y+‘([)d[ 
-r 

Otherwise we would be faced with four equations of 
type (2 1) and the computational time required would be 
about 30% greater, inasmuch as solving the three-diag- 
onal system requires order of magnitude more calcula- 
tions than the simple trapezoidal rule, i.e., the total 
amount of computations is defined by the number of 
main equations. In our case these are (21). 

Iterations are conducted until 

max{(xj’+’ - _r:l),(y”+’ - y”),(z”+ - z”)}<E 

l = lo-’ 

Computations are made using double precision. 
Here the major advantage of the MVI becomes ap- 

parent. Even if we are not “on” the exact “location” 
c* of the nonlinear eigenvalue problem we can still 
obtain a solution to the variational imbedding problem 
that is fairly close to the shape of the real one, and we 
can define the optimal parameters of the mesh for a 
given c. Then we proceed to improve the accuracy in c. 
For illustration we start with y = 3, 6 = 0, c = 1. Let 
us see the main difficulties to be overcome. 

Verification of the difference scheme 

Let us denote by N the total number of grid points. It 
cannot be very large (although it is desired) due to 
computer limitations. It cannot be very small either 
because then the mesh would not be dense enough to 
allow sufficient flexibility. So we choose N = 1601 to 
start with. The role of N is discussed in detail below. 

Another important integer parameter is the number 
NS at which the origin of the coordinate system is 
placed. For different values of control parameters 
(y, 6) and celerity c, the optimal value of NS may vary 
significantly, and this will be shown in the next section. 
For the test case under consideration it can be shown 
from the linearized equation that the solitary wave of 
homoclinics type (if it exists at all) decays twice faster 
at - 00 than at + a. So the proper position for the origin 
of the coordinate system is approximately i of the 
interval under consideration. As far as in the right- 

hand part of the interval the forerunner is governed by 
the wavy decaying solution we can still further in- 
crease the portion allotted to it and set NS = 5N/16 (a 
bit less than $). 

Role of the initial conditions 
Having N and NS specified, one can construct an 

initial condition. As it appears from the numerical ex- 
periments the exact form of the initial condition is not 
especially important. Rather, the most important item 
is the amplitude of the initial condition. So we simply 
set 

ui = C,,,(i - l)(NS - i)INS 
foril NS 

*N.S+; = -uNSp; 

u 2NS+j = 0 j= l,...,N-2NS 

(22) 

In case 2NS > N the construction is the same but 
instead of NS NS, = N - NS is used. 

The constant Cinl defines the amplitude of the initial 
condition. It is an important quantity as we are faced 
with a bifurcation problem in which the trivial solution 
is always present. If we choose a small value (e.g., Gin, 
< 1) then the iterations converge to the trivial solution. 
If we select a very large C;,‘, > 100 then for certain 
cases the iterations may diverge. It turns out that Gin, = 
10 is a suitable choice for the amplitude of the initial 
condition. 

The actual infinity 
Further we have the problem of selecting the most 

sensitive parameter, i.e., the finite size of the interval 
L. If the selected value is too small the problems of the 
previous abset are exaggerated. Either the solution 
rapidly converges to zero or it diverges. Going to larger 
L eliminates this difficulty but a new one develops. For 
very large L two localized structures can appear in the 
interval under consideration that are the kind of bound 
states discussed in Ref. 8. Here it should be mentioned 
that we keep N = 1601, c = 1 while playing with L. 

When we tried a smaller value L = 10 an instability 
of the iterative process occurred. Rather than over- 
coming it by some standard techniques (e.g., relaxa- 
tion) we took a larger value, namely, L = 20. For the 
latter a nontrivial solution to the imbedding problem 
was found after about 80 iterations, and it gave 6 . lop5 
for 1. This result means that we are probably very close 
to the solution sought. So, starting with it as an initial 
condition we increase L to 32 and after less than 30 
iterations, the solution is substantially improved in 
detail though generally retaining the same shape. 

Appl. Math. Modelling, 1993, Vol. 17, June 315 



Solutions of an equation for Benard-Marangoni convection: C. I. Christov and M. G. Velarde 

Moreover, the minimum value is drastically reduced 
down to 1.6 . lO-‘j. The next increase is to 40 where the 
minimum falls to 1.2 . lop6 (remember that starting 
directly with L = 40 leads to a two-hump solution of 
type of bound state). Further increase of L with the 
same number of points (N = 1601) gives a slight in- 
crease of the minimum of I and finally when moving 
from L = 80 to L = 100 the solution decays to zero in 
the course of iterations. These effects are connected 
with the fact that the mesh becomes too rough. So, for 
the case under consideration with y = 3, c = 1 we can 
say that the optimal value of L is 40. To implement the 
above described “chase” we used a spline interpo- 
lation method” to recalculate the shape of the initial 
condition over the new set of grid points when the 
value of L is increased (decreased) with fixed number 
of points, N. Generally, the procedure allows us to 
change all mesh parameters: N, NS, and L (or h) simul- 
taneously as we illustrate in the following subsection. 

The influence of the mesh resolution (number of grid 
points N) 

Taking advantage of the spline approximation proce- 
dure we were able to change the number of grid points 
with fixed L and fixed ratio (NS - l)l(N - 1) = &. In 
all cases to reduce the number of calculations we 
started from the calculated in the previous subsection 
shape (N = 160 1, NS = 501, L = 40). These calcula- 
tions illustrated the convergence of the difference solu- 
tion to the solution of the differential problem. It 
turned out that in the main portion of the interval [ - 12, 
+ 161 where the predominant part of the energy of the 
solitary wave is concentrated (about 99.9%) the solu- 
tions with N = 1601, 3201, and 6401 virtually coincide 
with each other and only N = 401 (respectively, N = 
801) differs up to 5% (respectively, 2%) from N = 
6401. This is a superb performance for a scheme of 
first-order approximation O(h) with respect to the spa- 
tial discretization. Yet as far as the shape of the solitary 
wave solution is concerned one can fully rely on the 
mesh N = 1601. 

Good agreement is observed in the far-distant por- 
tion of the interval [16, 251 where only the roughest 
solution N = 401 deviates significantly, while N = 
1601 and higher N are fully acceptable. One must bear 
in mind that the actual solution is so small in that region 
that some of the deviation may be due to eventual 
round-off errors in the computer representation of the 
numbers. 

To conclude this section we can say that the differ- 
ence scheme developed here provides a good and rap- 
idly converging approximation to the variational 
imbedding problem and hence we can proceed further 
with the essence of the imbedding. 

Outline of the minimization procedure for 
selecting the solution of the original problem 
among the solutions of the MVI problem 

In essence, the attractive part of the MVI procedure is 
that one can calculate the solution of the embedding 
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system for values of c for which a homoclinic solution 
for the original system may not exist and to define thus 
the function f(c) = minX,_y,z Z]-&$), ~6% ~69; cl for each 
c. Finding the minimum of this function of c is the next 
step, and if this minimum is equal to zero then the 
original problem is solved. If the minimum is far from 
the numerical approximation of the zero, then the con- 
clusion is that no homoclinic solution to the original 
problem exists. In the present section we give a brief 
outline of the minimization algorithm, as a follow-up to 
the method developed in Ref. 11. 

For a prescribed set of values of the governing pa- 
rameters y and 6 the scheme is as follows: (a) It is 
roughly estimated the interval in which appears the 
local minimum of functional Z as a function of c 
(namely, the function f(c)). 

Usually this is done by performing an extensive set 
of calculations with different c. To minimize the com- 
putational costs the search is conducted in the vicinity 
of the c*, which has previously been obtained for the 
closest set of parameters y, 6. 

(b) A procedure implementing the method of golden 
section is executed to locate the minimum with a priori 
prescribed accuracy (as a rule we set that accuracy to 
2e, where E is the accuracy at with which the iterations 
for X, y, z are terminated). 

In Figure 1 we give the results of the minimization 
procedure with different mesh sizes. To clearly see the 
behavior in the vicinity of the actual minimum only six 
to eight of the smallest values of the functional are 
shown. Table 1 provides the corresponding final result. 
Here the only significant shortcoming of the first-order 
spatial approximation of the difference scheme ap- 
pears: the convergence of c to the one which is defined 
by the differential problem is also linear. A simple 
linear extrapolation gives a projection for c -L 1.216 
which, surprisingly enough, coincides up to the four 
secure digits with the result of Ref. 16. This excellent 
agreement gives confidence in the results of both meth- 
ods, that of Ref. 16 and the present method. However, 
here one has some advantages in generality (see Refs. 

‘: 
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Figure 1. Accuracy of the minimization procedure of the varia- 
tional functional for c = 1 and different mesh sizes N: + N = 
801;~N=I6Ol;VN=3201;~N=6401. 



Solutions of an equation for Benard-Marangoni convection: C. I. Christov and M. G. Velarde 

Table 1. The minimum of the functional for different meshes. 

N 401 801 1601 3201 6401 m* 

C 1.1890387 1.2025537 1.2093515 1.2127570 
min f(c) 14.1697.10~’ 6.2783.10-@ 4.0612.10-8 3.3099.10-* 

* Projected by a linear Richardson extrapolation from the cases N = 3201 and N = 6401. 

1.2144646 1.216179 
2.9256.10-* 

1 I, 15, and 17), and the method can be applied without 
any modifications to other solitary wave problems 
whereas the spectral technique of Ref. 16 heavily relies 
on some particular properties of the specific KS equa- 
tion and cannot be extended to the equation considered 
in the present paper. 

Finally, in Figure 2 we present the solitary wave as 
obtained for the original problem for different mesh 
sizes. It is once again seen that the homoclinics shape 
is much less sensitive to the mesh size than the eigen- 
value c for which the respective shape does exist. 

To us the results of the present section suffice to 
show that a solitary wave does exist, and its shape is 
represented rather accurately by the solution N = 6401 
given in Figure 2. 

Before going further we mention that having the 
solution of a multitude of meshes with different spac- 
ings provides us with the opportunity to calculate the 
shape with second order 0(/z’) in space. The latter can 
be done by means of the so-called Richardson extrapo- 
lation. Let us denote by 0: the values of one of the set 
functions X, y, Z, u obtained with given value h of the 
spacing. Let @F’2 stand for the values in the same 
points (the index “i”) of the same function but calcu- 
lated with spacing h/2. Then 

@; = 2 @‘* - @I’ = a,(x) + O(h’) (23) 

provides a second-order approximation to Q(x). Re- 
spectively, 

c = 2p2 _ C/l 
(24) 

is the “refined” value of the celerity. 
To check the performance of the scheme we applied 

the Richardson extrapolation twice. First, from N = 
1601 to N = 3201 obtaining the second-order solution 
on the mesh N = 1601 and, second, from N = 3201 to 
N = 6401 obtaining the said solution on the finer mesh 
N = 3201. The comparison between the two second- 
order solutions was perfect, less than 0.3% at the time 
when the maximum of the solution was of order 0.5. 
The accuracy of the extrapolation for c was better than 
0.5%. The “ultimate” value of c is provided in Table 1. 
It has already been noted that the first four digits of our 
result coincide exactly with the value reported in Ref. 
16. 

It is worth mentioning that this was the cheapest way 
to have second-order approximation as the calcula- 
tions with different meshes were mandatory because of 
the bifurcation nature of the problem. In turn using a 
O(h) scheme for a given set of mesh parameters was 
much more efficient in the sense of stability and re- 
quired a fewer number of iterations. So, when dealing 
in the next section with the KSV equation we shall 
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Figure 2. The influence of the mesh size Non the calculated 
shape of the solitary wave: One extreme case solid line (-) N 
= 401; the other values correspond to N = 801, N = 1601, N = 
3201, and the broken line (----) N = 6401. They are nearly indis- 
tinguishable. 

present results obtained after applying Richardson’s 
extrapolation, i.e., results with accuracy O(h*). 

Before closing this section let us emphasize that con- 
trary to earlier statements in the literatures.‘2.‘8 the 
spectrum is discrete and consists only of one value. 

KSV equation-the case of negative S 

After clarifying the issue regarding the existence of a 
solitary wave in the KS equation we come back to the 
problem of finding the solitary waves for the KSV 
equation (3). The two cases, 6 < 0 (negative) and 6 > 0 
(positive), are expected to exhibit quite different fea- 
tures because of the fact that the solution for u is in fact 
a kink (when a homoclinics is sought for v), i.e., the 
asymptotic behavior of both infinities is strongly asym- 
metrical with an increase of 6 in either the positive or 
negative direction. 

Guided by the notion that for small but negative 6 the 
general appearance of the kink for u (or the hump for v) 
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must be similar to KS, we can conclude that the scale 
of the solitary wave is not drastically changed. Thus 
we can smoothly proceed from the pure KS case to the 
KSV equation. For this reason we start with the case of 
negative 6, when the corresponding nonlinear term in 
equation (3) plays a stabilizing role. 

There is no need to give again a description of the 
minimization procedure already described. Suffice it to 
add that some preliminary work with the algorithm 
must be performed for each S in order to locate roughly 
the interval for the minimum of c. Note that in the 
preliminary calculations connected with the rough lo- 
cation of the minimum we found also the optimal L and 
NS for the given value of 6. The value of the functional 
was always of the order 5.10-*. Results were obtained 
for 6 = -0.1, . . . , -0.7, -0.75, -0.8, -0.85. 

The most important conclusion from the extensive 
set of calculations is that the solitary wave shape 
changes when approaching the limit 6 = -0.87, and 
for the last value even the wave forerunning front dis- 
appears. The gradual evolution of the solution with 6 is 
shown in Figures 3 and 4. Correspondingly, Figures 3a 
and 4a present the kink, which is the actual solution (an 
integral of the solitary wave of Figures 3b and 46). The 
reader should not be confused by the fact that in Ref. 8 
an apparently similar disappearance of the forerunner 
with increasing S takes place. However, S is the coeffi- 
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Figure 3. The localized solution for negative values of& (a) kink 
shape, (b) its derivative. (....) 6 = 0; (----) 6 = -0.1; (-a-) 6 = 
-0.2; (---) 6 = - 0.3; (-_) F = -0.4. 
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Figure4. The localized solution for negativevalues of 6: (a) kink 
shape, (b) its derivative. (....) S = -0.5; (----) 6 = -0.6; (-a-) S 
= -0.7; (---) 6 = -0.75; (-) 6 = - 0.8. 

cient of the third derivative in space, and hence it 
reflects different physical mechanisms. 

KSV equation-the case of positive 6 

Let us turn now to the case with positive 6, when the 
corresponding nonlinear term in equation (3) contrib- 
utes to destabilizing the solution. It can be shown that 
in this case the linearized equation contains the coeffi- 
cient (1 + Su + J for 5 % 1. This coefficient governs the 
properties of the forerunner. The latter decays faster 
now with ,.$ + ~0, but at the same time its wavelength 
becomes shorter, and this makes the numerical prob- 
lem even harder because of the increased gradients of 
the solution. It goes without saying that the value of L 
and the ratio NSIN were being adjusted a posteriori 
with increasing 6. There is another difficulty to tackle 
for positive 6, and it is again connected with the coeffi- 
cient (1 + au,,) because it is a functional of the flow, 
and as a result a positive feedback occurs in the itera- 
tion process, which can lead to instability. This insta- 
bility is easily overcome by means of relaxation. 

In Figures 5a and 56 are presented respectively the 
results for u and u in the interval 6 E [0, 0.81. The 
above-discussed tendency of the solution to shorten its 
support in the region of positive values of the argument 
is clearly seen. In addition the celerity increases with 
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the increase of 6, i.e., the solitary wave becomes 
swifter. This means that the value of c for a smaller S is 
already not as convenient an approximation when 
moving to higher 6, and therefore a considerable num- 
ber of numerical experiments need to be performed to 
localize the minimum of f(c) before proceeding with 
the golden section minimization procedure. 

The above-described tendency is even more con- 
spicuous in Figures 6a and 66, where the range of the 
main governing parameter is 6 E [l.O, 1.51. 

The dependence of c and S is summarized in Figure 
7. Unfortunately, it is not obvious what kind of ana- 
lytic expression for the correlation between c and 6 is 
to be expected. What is obvious is that c increases 
faster than an exponent for 6 > 0 and decreases slower 
than an exponent for 6 < 0. 

Conclusion 

In this paper the problem of localized solutions 
(solitary waves) to a generalization of the Kuramoto- 
Sivashinky equation (called the KSV equation) is 
treated numerically by means of a method of varia- 
tional imbedding. The convergence of the difference 
solution to the solution of the differential equation is 
proved by means of mandatory numerical experiments 
with different mesh sizes, “actual infinity”, etc. The 
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Figure 7. Dependence of the celerity “c” of the localized solu- 
tion/solitary wave on the parameter 6. 

accuracy of the solution is improved by means of Rich- 
ardson extrapolation. 

First, the technique is applied to the problem of 
homoclinic solutions of the original KS equation. It 
appears that a single-hump homoclinics exists only for 
one value of the celerity c * = 1.216, which is in perfect 
agreement with the results of other authors. Then the 
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kink solutions of the KSV equation are obtained for 
different values of an additional governing parameter 6 
(note that for 6 = 0 the spatial derivative of the kink 
solution of the KSV equation coincides with the 
homoclinics of the KS equation). For each 6 a single 
eigenvalue c* for the celerity is obtained. The corre- 
lation between 6 and c* is also graphically presented. 
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