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Abstract

Optimal power flow problem is one of the most important non-linear problems for power
system planning and the operation of existing modern power networks. Recently, the incre-
mental usage of renewable energy sources in power systems has revealed the significance
of power system planning. Thus, the aim is to model the AC optimal power flow prob-
lem using thermal–wind–solar–tidal energy systems. In this study, uncertainties of wind,
solar, and tidal energy systems were simulated using Weibull, Lognormal, and Gumbel
probability distribution functions. Furthermore, the study presents solutions to the AC
optimal power flow problem by including test cases of stochastic wind, solar, and tidal
energy systems involving minimisation of cost function, active power loss, voltage devi-
ation, enhancement of voltage stability, and contingency conditions. The solutions were
tested via IEEE 30-bus and IEEE 118-bus test systems incorporating renewable energy
sources, using different locations according to the selected thermal generating units. The
symbiotic organisms search algorithm, which is one of the recently introduced optimi-
sation algorithms, was used to solve the proposed power system planning problem, and
simulation results of this algorithm were compared to the results of other algorithms such
as the imperialist competitive, harmony search, backtracking search optimisation, and grav-
itational search algorithms.

1 INTRODUCTION

In modern electrical power systems, the optimal power flow
(OPF) problem is a well-known problem which power system
research groups are still attempting to solve. During the opti-
misation process, it is desirable for the equality and inequality
constraints, such as the active–reactive power flow balance, gen-
erator values, voltage values of all the buses, transmission line
loadability capacity, tap changing ratio values of transformers,
and shunt capacitor values to remain within the specified limit
values, while minimizing the total fuel cost of the thermal gen-
erating units. Over the last decade, the improvements in tech-
nology and the increasing energy consumption due to the con-
tinuously growing global population have caused the electric
energy demands on modern electrical power networks to rise
considerably. New energy resources that can reduce greenhouse
gas emissions have been sought to meet these energy demands.
These ‘eco-friendly’ renewable energy sources (RESs) include
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those for wind, solar, wave, hydro, and tidal energy. Because of
the increased use of RESs in modern power systems, modern
power systems have begun being more complicated network
structures. For this reason, solving the OPF problem in mod-
ern power system planning and operations including RESs is a
topic of interest to researchers [1–5].

In the beginning, power system research groups that sought
to solve the OPF problem in different test systems of electrical
power networks and to minimise total fuel costs by using ther-
mal generation units applied a number of algorithms, includ-
ing the improved colliding bodies optimisation [6], glowworm
swarm optimisation (GSO) [7], improved teaching-learning-
based optimisation algorithm via the Lévy mutation strategy [8],
chaotic krill herd algorithm [9], modified sine–cosine algorithm
[10], tree-seed algorithm [11], improved social spider optimisa-
tion algorithm [12], hybrid Harris hawk optimisation based on
differential evolution [13], and long-term memory Harris hawk
optimisation [14].
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DUMAN ET AL. 279

Recently, to solve the OPF problem, the power system
groups have been investigating the use of meta-heuristic optimi-
sation algorithms to solve the problem for both classical OPFs
and OPFs, including RESs. Elattar and ElSayed used a mod-
ified JAYA algorithm to solve the OPF problem by consider-
ing RESs in different test systems [15]. Gucyetmez and Cam
proposed a hybrid genetic teaching-learning-based algorithm
(G-TLBO) to solve the OPF problem using thermal–wind gen-
erating units and tested the algorithm on a 19-bus Turkish
power system [16]. Shilaja and Arunprasath solved the OPF
problem using thermal, wind, and solar power systems by
using hybrid-enhanced grey wolf optimisation and dragonfly
algorithms on an IEEE 30-bus test system [17]. Ullah et al.
aimed to solve the OPF problem using a hybrid phasor parti-
cle swarm optimisation and gravitational search algorithm with
RESs (wind and solar energy systems), and the proposed solu-
tion method and problem were tested on an IEEE 30-bus
test system [18]. Chen et al. focused on the solution of the
OPF problem by incorporating some common RESs such as
wind and solar power systems. They successfully applied a con-
strained multi-objective population extremal optimisation algo-
rithm to solve the problem under different test cases on an
IEEE 30-bus test system [19]. Elattar undertook the OPF prob-
lem with a combined heat and power system involving stochas-
tic wind energy by using a modified moth swarm optimisation
algorithm, and the solution approach was tested on an IEEE
30-bus test system under various operational cases [20]. Reddy
studied the solution of the OPF problem using thermal gen-
erating units, wind energy, and a photovoltaic (PV) power sys-
tem with batteries [21]. Saha et al. focused on the investigation
of the solution of the probabilistic multi-objective OPF with
RESs using hybrid differential evolution and symbiotic organ-
isms search (SOS) algorithm, which tested on IEEE 30-bus
test system under different operational conditions [22]. Duman
et al. investigated the solution of the OPF problem with con-
trollable wind and PV energy systems using differential evolu-
tionary particle swarm optimisation [23]; in another study, they
developed a modified particle swarm optimisation and gravi-
tational search algorithm with chaotic maps to solve the OPF
problem with flexible alternating current transmission system
(FACTS) devices incorporating wind energy systems [5]. Salkuti
et al. applied the non-dominated sorting genetic algorithm-
II (NSGA-II) algorithm for solving of multi-objective opti-
mal generation planning involving wind and solar power sys-
tems [24]. Salkuti presented the multi-objective GSO algo-
rithm to solve the OPF problem considering the wind energy
system [25].

In addition, different studies have explored the solution of
the OPF problem by incorporating RESs using the NSGA
II algorithm considering the selected strategies, which are the
pareto frontier and the fuzzy satisfaction-maximizing method
[26], the hybrid particle swarm optimisation and artificial
physics optimisation [27], the adaptive parameter control tech-
nique of success-history-based adaptation of differential evo-
lution with superiority of feasible solutions [28], the hybrid
modified imperialist competitive algorithm (ICA) and sequen-
tial quadratic programming [29], the multi-objective evolution-

ary algorithm based on decomposition with superiority of fea-
sible solutions and summation-based multi-objective differen-
tial evolution with superiority of feasible solutions [30], and the
modified bacteria foraging-based algorithm [31].

In this study, we proposed to solve the alternating current
optimal power flow (ACOPF) problem for thermal, wind, solar,
and tidal energy systems using the SOS algorithm. In addition,
the most appropriate probability density functions (PDFs) were
specified to create a model of the RESs used in the presented
ACOPF and security-constrained ACOPF problems. The SOS
algorithm [32] is a new meta-heuristic optimisation algorithm
presented to the literature by Cheng and Prayogo. In the devel-
opment of the algorithm, its main structure was composed
using a simulation of the symbiotic behavior of organisms in
an ecosystem, and it has been studied in different fields of sci-
ence up to the present [33]. The simulation results of the SOS
approach were compared to those of the ICA [34], harmony
search (HS) algorithm [35], backtracking search optimisation
algorithm (BSA) [36], and gravitational search algorithm (GSA)
[37]. These comparison algorithms were applied to solve the
various power system problems, which are the combined heat
and power economic dispatch [38], optimal reactive power dis-
patch [39], OPF with two terminal high-voltage direct current
(HVDC) systems [40], power system stability problem [41], the
short-term hydrothermal scheduling [42], dynamic economic
dispatch [43], unit commitment problem [44], and the recon-
figuration problem of distribution systems [45]. The main con-
tributions of this study can be listed as follows.

(i) The ACOPF problem was examined for wind power, PV,
and tidal energy systems. Tidal energy systems are defined
as combined or hybrid systems of tidal range and tidal
stream [46, 47].

(ii) The ACOPF and security-constrained ACOPF problems
were presented using RESs and thermal generating units
and included various objective functions and contingency
conditions.

(iii) The tidal energy system was considered as a generating
system and included cost models for over- and underes-
timation conditions. Uncertainty cost models of the wind,
PV, and tidal energy systems within the proposed ACOPF
problem had not been previously reported; thus, the for-
mulation of this problem in this study is a new and original
contribution to the literature.

(iv) To demonstrate the solvability and applicability of the pre-
sented ACOPF and security-constrained ACOPF prob-
lems for wind, PV, and tidal energy and thermal generating
systems, the SOS, ICA, HS, BSA, and GSA algorithms were
implemented under various test cases for an IEEE 30-bus
power system.

The rest of this study is organised as follows. The mathemati-
cal formulations of the ACOPF problem for wind, PV, and tidal
energy and thermal generating systems are given in Section 2.
Section 3 demonstrates the RES uncertainty and power mod-
els. The SOS optimisation algorithm is defined in Section 4,
and Section 5 elucidates the simulation studies and results for
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280 DUMAN ET AL.

different operating cases in the proposed ACOPF problem. Sec-
tion 6 summarises the conclusions of this study.

2 FORMULATION OF ACOPF WITH
RENEWABLE ENERGY SOURCES

Recently, the ACOPF problem has been defined as one of the
important planning problems of modern power systems. In this
problem, the main goal is identified and the stated objective
function is then minimised to find the optimal control variables
within the equality and inequality constraints.

2.1 AC optimal power flow problem

The mathematical formulation of the OPF problem can be
expressed as follows:

Minimize fob j = (D, E ) (1)

subject to

{
m (D, E ) = 0

n (D, E ) 0
(2)

where fobj(D,E) is the objective function, D and E are the state
and the control variables, and m(D,E) and n(D,E) represent the
equality and the inequality constraints, respectively.

2.2 Security constrained optimal power flow
problem (SCOPF)

The mathematical formulation of the SCOPF problem can be
defined and considered with a preventive approach as given
below:

Minimize fob j = (D0, E0) (3)

subject to

{
ma (Da, E0) = 0, a = 0, 1,… , c

na (Da, E0) 0, a = 0, 1,… , c
(4)

where D0 and E0 represent the state and the control variables
under pre-contingency cases, Da is the state variables of the ath
contingency case, and c indicates the number of contingency
cases.

2.3 State variables of the OPF problem

The state variables of the proposed OPF problem are identified
as follows:

D =

⎡⎢⎢⎢⎢⎢⎣

PTH G1
, VL1

…VLNPQ
, QG1

…QGNTHG
, QW S1

…QW SNW
,

QPV S1
…QPV SNPV

, QWS+TDL1

…QWS+TDLNWTDL
, SL1

… SLNTL

⎤⎥⎥⎥⎥⎥⎦
(5)

where PTHG1 is the active power of the swing generator;
VL represents the voltage values of load (PQ) buses, QG,
QWS, QPVS, and QWS+TDL represent the reactive power of
traditional generating units, wind power, the PV system, and
combined wind power and tidal systems, respectively; and
SL is the apparent power of the transmission lines. NPQ,

NTHG, NW, NPV, NWTDL, and NTL are the numbers of
load buses, traditional generating units, wind farms, PV sys-
tem, combined systems, and transmission lines in the system,
respectively.

2.4 Control variables of the OPF problem

The control variables of the proposed problem are given as fol-
lows:

E =

⎡⎢⎢⎢⎢⎢⎣

PTH G2
… PTH GNTHG

, PW S1

… PW SNW
, PPV S1

… PPV SNPV
,

PWS+TDL1
… PWS+TDLNWTDL

,VG1

…VGNG
, T1 … TNT , QSH1

…QSHNC

⎤⎥⎥⎥⎥⎥⎦
(6)

where PTHG is the active power of the traditional generating
units except for the swing generator; PWS, PPVS, and PWS+TDL

are the active powers of the wind farm, PV system, combined
wind power and tidal energy systems, respectively; and VG rep-
resents the voltage values of all generator buses, including the
traditional generating units, wind farm, PV system, and com-
bined systems. T and QSH are, respectively, the tap ratios of the
transformers and the shunt VAR compensation; NG, NT, and
NC are number of generator buses (including thermal, wind,
PV and combined units), tap setting transformers, and compen-
sators, respectively.

2.5 Generation cost model of traditional
generators

The traditional generation cost function in thermal generators is
identified as a quadratic cost function in (7) depending on out-
put active power. In (8), the cost model is defined as a quadratic
function including valve-point effects, where xk, yk, and zk are
fuel cost coefficients of the kth thermal generator, and dk and
ek are the valve-point loading effect coefficients

CF (PTHG ) =
NTHG∑

k=1

xk + ykPTH Gk
+ zkP2

TH Gk
(7)

C F1 (PTHG ) = CF (PTHG )

+

NTHG∑
k = 1

||||dksin
(

ek

(
Pmin

TH Gk
− PTH Gk

))||||. (8)
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DUMAN ET AL. 281

2.6 Emission and carbon tax model of
thermal generators

The total emission value from the thermal generators using fos-
sil fuel is mathematically defined as follows [28]:

FE =

NTHG∑
k=1

((𝜎k + 𝛽kPTH Gk
+ 𝜏kP2

TH Gk
)

× 0.01 + 𝜔ke(𝜇kPTH Gk
) ) (9)

where σk, βk, τk, ωk, and μk are emission coefficients of the kth
thermal generator. In addition, due to increasing global warm-
ing, a carbon tax is added to the total emission value as shown
below:

CE = Ctax × FE (10)

where CE and Ctax represent emission cost and tax, respectively.

2.7 Direct cost model of wind, PV, and tidal
energy systems

A direct cost model of the wind power in the system is shown
via a linear function of scheduled power [28]. DCW,k, wp,k, and
PWS,k can be defined as the direct cost function of wind power,
the cost coefficient, and the scheduled power of the kth wind
power system, respectively

DCW,k = C FW,k

(
PWS,k

)
= wp, k × PWS,k. (11)

The direct cost model for the PV power is shown in (12), and
DCPV,k, pv,k, and PPVS,k are the direct cost function of the PV
system, the cost coefficient, and the scheduled power of the kth
PV power system [28], respectively

DCPV,k = C FPV,k

(
PPVS,k

)
= pv, k × PPVS,k. (12)

The direct cost value of the proposed combination model of
wind power and tidal energy can be mathematically calculated
as follows:

DCWSTDL,k = C FWSTDL,k

(
PWS+TDL,k

)
= wp, k × PWS,k + Ptdl,k × PTDLS,k (13)

where DCWSTDL,k, Ptdl,k, and PTDLS,k are the direct cost func-
tion of the combined system, the cost coefficient, and the sched-
uled power of the kth tidal energy system, respectively.

2.8 Uncertainty cost model of wind, PV, and
tidal energy systems

Overestimation and underestimation are defined as the uncer-
tain cost models of the wind, PV, and combined model (wind–

tidal) energy systems. Uncertainty cost models of wind power
are shown as follows [28, 30]:

OCW,k = COw,k

(
PWS,k − Pwav,k

)
= COw,k

PWS,k

∫
0

(
PWS,k − pw,k

)
fw
(

pw,k

)
d pw,k (14)

U CW,k = CUw,k

(
Pwav,k − PWS,k

)
= CUw,k

Pwr,k

∫
PWS,k

(
pw,k − PWS,k

)
fw
(

pw,k

)
d pw,k (15)

where OCW,k and UCW,k are the overestimation and under-
estimation cost values, respectively; COw,k and CUw,k are the
uncertainty cost coefficients; and Pwr,k and Pwav,k are the rated
power and available power of the kth wind farm, respectively.
The overestimation and underestimation cost models of the PV
power system are modelled by using the approach proposed in
[28] and [30]. Cost models for over- and underestimation con-
ditions of the PV system can be calculated using the following
equations:

OCPV,k = COpv,k

(
PPVS,k − PPVav,k

)
= COpv,k ∗ fPV

(
PPVav,k < PPVS,k

)
∗
[
PPVS,k − E

(
PPVav,k < PPVS,k

)]
(16)

U CPV,k = CUpv,k

(
PPVav,k − PPVS,k

)
= CUpv,k ∗ fPV

(
PPVav,k > PPVS,k

)
∗
[
E
(
PPVav,k > PPVS,k

)
− PPVS,k

]
(17)

where OCPV,k and UCPV,k are over and underestimation cost
values, COpv,k and CUpv,k are the uncertainty cost coefficients,
and PPVav,k is the available power of the kth PV power system.
In our study, the tidal energy system was defined as an active
power generating unit. Over- and underestimation cost models
of the proposed model are prepared by the modelling approach
in [28, 30], and [48]

OCTDL,k = COtdl,k

(
PTDLS,k − PTDLav,k

)
= COtdl,k ∗ fTDL

(
PTDLav,k < PTDLS,k

)
∗
[
PTDLS,k − E

(
PTDLav,k < PTDLS,k

)]
(18)

U CTDL,k = CUtdl,k

(
PTDLav,k − PTDLS,k

)
= CUtdl,k ∗ fTDL

(
PTDLav,k > PTDLS,k

)
∗
[
E
(
PTDLav,k > PTDLS,k

)
− PTDLS,k

]
(19)

where OCTDL,k and UCTDL,k are over- and underestimation
cost values, respectively, COtdl,k and CUtdl,k are the uncertainty
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282 DUMAN ET AL.

cost coefficients, and PTDLav,k is the available power of the kth
tidal energy system.

2.9 Objective functions

2.9.1 Total cost model of the proposed OPF

The total cost model of the proposed OPF using RESs is given
as follows:

Fob j1 = C F1 (PTHG ) +
NW∑
k = 1

⎛⎜⎜⎜⎝
DCW,k

+OCW,k

+U CW,k

⎞⎟⎟⎟⎠ +
NPV∑
k = 1

⎛⎜⎜⎜⎝
DCPV,k

+OCPV,k

+U CPV,k

⎞⎟⎟⎟⎠
+

NWTDL∑
k = 1

⎛⎜⎜⎜⎝
DCWSTDL,k

+OCW,k + OCTDL,k

+U CW,k +U CTDL,k

⎞⎟⎟⎟⎠ . (20)

In this objective function, thermal generating units are con-
sidered as the valve-point effect.

2.9.1 Total cost model with emission and
tax of the proposed OPF

In the proposed OPF problem, the objective function including
emission and tax is defined as follows:

Fob j2 = CF (PTHG ) +
NW∑
k = 1

⎛⎜⎜⎜⎝
DCW,k

+OCW,k

+U CW,k

⎞⎟⎟⎟⎠ +
NPV∑
k = 1

⎛⎜⎜⎜⎝
DCPV,k

+OCPV,k

+U CPV,k

⎞⎟⎟⎟⎠
+

NWTDL∑
k = 1

⎛⎜⎜⎜⎝
DCWSTDL,k

+OCW,k + OCTDL,k

+U CW,k +U CTDL,k

⎞⎟⎟⎟⎠ + (Ctax × FE ) .

(21)

2.9.2 Active power losses

The minimisation of the active power losses of the power sys-
tem is defined as an objective function shown as

Fob j3 = Ploss =

NTL∑
n=1

Gn(kl )
(
V 2

k
+V 2

l
− 2VkVkcos𝜃kl

)
.

(22)

2.9.3 Improvement of the voltage stability

To Improve the voltage stability problem, which is a well-known
problem in modern power systems, the objective function is

considered as follows [1,5]:

L j =

||||||1 −
NG∑
i=1

Fji

Vi

Vj

|||||| , where j = 1, 2,… , NPQ (23)

Fji = −
[
YLL]

−1 [
YLG ] . (24)

NG is the number of generator (PV) buses, including RESs,
and the L-index value of the jth bus is defined as Lj. YLL

and YLG are computed from the system YBUS matrix, as
follows: [

IL

IG

]
=
[
Ybus]

[
VL

VG

]
=

[
YLL YLG

YGL YGG

] [
VL

VG

]
(25)

and the objective function is given as

Fob j4 = min (Lmax ) = min
(
max

(
L j

))
. (26)

2.9.4 Voltage deviation

The value of voltage deviation of the power system in the pro-
posed OPF problem is given as

Fob j5 = VD =

(
NPQ∑
k=1

|||VLk
− 1|||

)
. (27)

2.10 Constraints of the OPF problem

2.10.1 Equality constraints

The equality constraints of the proposed ACOPF problem can
be mathematically identified as follows:

PGk − PDk −Vk

Nbus∑
l = 1

Vl (gkl cos (𝜃kl ) + bkl sin (𝜃kl )) = 0

(28)

QGk + QSHk − QDk −Vk

Nbus∑
l = 1

Vl (gkl sin (𝜃kl ) − bkl cos (𝜃kl )) = 0 (29)

where PGk and PDk are the active powers of the kth generat-
ing unit (including thermal, wind, solar, and combined wind–
tidal units) and the load buses, respectively. QGk, QSHk, and
QDk are the reactive powers of the kth generating unit (includ-
ing thermal, wind, solar, and combined wind–tidal units), the
shunt VAR compensator, and the load buses in the electrical
power grid, respectively; Nbus is the number of buses, Vk and
Vl are the voltage values at the kth and lth buses, respectively,
θkl is the angle difference of voltage phasor values at the kth and
lth buses, and gkl and bkl are the conductance and susceptance
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values of the transmission line between kth and lth buses,
respectively.

2.10.2 Inequality constraints

(i) Transformer constraints: Lower and upper limits of the trans-
former tap settings are given as

Tk,min ≤ Tk ≤ Tk,max ∀k ∈ NT (30)

where Tk,min and Tk,max are minimum and maximum tap setting
values of the transformers, respectively.

(i) Compensator constraints: Optimal operating ranges of the shunt
VAR compensators are calculated as

QSHk,min ≤ QSHk ≤ QSHk,max ∀k ∈ NC (31)

where QSHk,min and QSHk,max are the lower and upper limits of
the shunt VAR compensators, respectively.

(i) Generator constraints: Minimum and maximum limits on the
active, reactive power values, and the voltage magnitudes
of the generating units (including thermal, wind, solar and
combined wind–tidal units) are defined as

PTH Gk,min ≤ PTH Gk
≤ PTH Gk,max ∀k ∈ NTHG

PW Sk,min ≤ PW Sk
≤ PW Sk,max ∀k ∈ NW

PPV Sk,min ≤ PPV Sk
≤ PPV Sk,max ∀k ∈ NPV

PWS+TDLk,min ≤ PWS+TDLk
≤ PWS+TDLk,max ∀k ∈ NWTDL

QTH Gk,min ≤ QTH Gk
≤ QTH Gk,max ∀k ∈ NTHG

QW Sk,min ≤ QW Sk
≤ QW Sk,max ∀k ∈ NW

QPV Sk,min ≤ QPV Sk
≤ QPV Sk,max ∀k ∈ NPV

QWS+TDLk,min ≤ QWS+TDLk
≤ QWS+TDLk,max ∀k ∈ NWTDL

VGk,min ≤ VGk
≤ VGk,max ∀k ∈ NG .

(32)

(ii) Security constraints: The voltage value of each of the load buses
must be within specified minimum and maximum limits,
and the apparent power value of each transmission line can
be restricted by its maximum capacity. These security con-
straints are calculated as follows:

VLk,min ≤ VLk ≤ VLk,max ∀k ∈ NPQ

SLk ≤ SLk,max ∀k ∈ NTL
(33)

where VLk,min and VLk,max are the lower and upper voltage val-
ues of the kth load bus, respectively; SLk and SLk,max represent
the apparent power value and maximum apparent power value
of the kth line, respectively.

The fitness function of the proposed OPF problem, includ-
ing the wind–solar–tidal energy systems, can be expressed as

J fitness = Fob j + 𝜆VPQ

NPQ∑
k = 1

(
VLk −V lim

Lk

)2

+𝜆Pslack

(
PTHGslack − Plim

THGslack

)2

+𝜆QTHG

NTHG∑
k = 1

(
QTHGk − Qlim

THGk

)2

+𝜆QWS

NW∑
k = 1

(
QWSk − Qlim

WSk

)2

+𝜆QPVS

NPV∑
k = 1

(
QPVSk − Qlim

PVSk

)2

+𝜆QWSTDL

NWTDL∑
k = 1

(
QWS+TDLk − Qlim

WS+TDLk

)2

+𝜆SL

NTL∑
k = 1

(
SLk − S lim

Lk

)2
(34)

where λVPQ, λPslack, λQTHG, λQWS, λQPVS, λQWSTDL, and λSL

were set as 1000 of the penalty coefficients for all test cases.

3 WIND/SOLAR/TIDAL
UNCERTAINTY AND POWER MODELS

Wind speed distribution is described by the Weibull PDF as
shown in the following equation:

fv (vw ) =

(
𝜉

𝜓

) (
vw

𝜓

)𝜉−1 (
exp

(
−

(
vw

𝜓

)𝜉
))

0 < vw < ∞

(35)
where ξ and ψ are the shape and scale factors, respectively [28,
30].

The output power in a wind energy system is shown as fol-
lows:

pw (vw ) =

⎧⎪⎪⎨⎪⎪⎩
0, vw

⟨
vw,in and vw

⟩
vw,out

pwr

(
vw − vw,in

vw,r − vw,in

)
, vw,in ≤ vw ≤ vw,r

pwr , vw,r < vw < vw,out

(36)
where pwr, vw,in, vw,out, and vw,r represent the rated power, cut-
in, cut-out, and rated wind speeds, respectively. The power of
a wind farm has discrete parts according to wind speeds as can
be seen in (36). In these parts, the probability values are given as
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follows:

fw
(

pw

) {
pw = 0

}
= 1 − e

−
(

vw,in

𝜓

)𝜉
+ e

−
(

vw,out

𝜓

)𝜉
(37)

fw
(

pw

) {
pw = pwr

}
= e

−
(

vw,r

𝜓

)𝜉
− e

−
(

vw,out

𝜓

)𝜉
(38)

fw
(

pw

)
=

[
𝜉
(
vw,r − vw,in

)
𝜓𝜉 pwr

]

×

(
vw,in +

(
pw

pwr

)(
vw,r − vw,in

))𝜉−1

× e

−
⎛⎜⎜⎝

vw,in+

(
pw
pwr

)
(vw,r−vw,in )

𝜓

⎞⎟⎟⎠
𝜉

. (39)

Table 1 shows PDF parameters of the wind, solar, and tidal
energy systems for IEEE 30-bus and IEEE 118-bus test sys-
tems. Wind speeds and rated power for each turbine were
selected as vw,in = 3 m/s, vw,r = 16 m/s, and vw,out = 25 m/s and
3 MW, respectively [28, 30].

The power output of the solar PV systems as a function of
solar irradiation was identified by using the lognormal PDF. The
probabilistic model and output power of the solar system can be
mathematically described as follows [28, 30]:

fGpv

(
Gpv

)
=

1

GpvΩ
√

2𝜋
e
−(lnGpv−𝜁)

2

2Ω2 , for Gpv > 0 (40)

PPVo =

⎧⎪⎪⎨⎪⎪⎩
PPVrate ×

(
Gpv

Gpvstd × RC

)
, for 0 < Gpv < RC

PPVrate ×

(
Gpv

Gpvstd

)
, for Gpv ≥ RC

(41)
where ζ and Ω are the mean and standard deviation values of
the lognormal PDF, respectively, which are given in Table 1; Gpv,
Gpvstd, and Ppvrate are, respectively, the probability value of solar
irradiance, the standard solar irradiance value, and the rated
power of the PV system, which are set as 1000 W/m2 and 40
MW at bus 11 for the IEEE 30-bus test system. Rc value was set
as 180 W/m2. In this study, the probability model of discharge
rate QTDL in the tidal range was modelled by the Gumbel dis-
tribution [30], as shown in (42), and the distribution parameters
are given in Table 1

fQTDL (QTDL ) =
1
𝜆

e

(
QTDL−𝛾

𝜆

)
e

(
−e

(
QTDL−𝛾

𝜆

))
. (42)

The thermal generator at bus 13 of the IEEE 30-bus system
was replaced with combined wind and tidal energy units. The

output power in the tidal range can be represented as follows
[47, 49–51]:

PTDL (QTDL ) = 𝜌gQTDLH𝜂 (43)

where ρ and g are the water density (kg/m3) and the gravity
acceleration (m/s2), QTDL and η are, respectively, the discharge
value (m3/s) across the turbine and the turbine efficiency, and H

is the difference between high and low water levels (high water
level – low water level). These parameters of the proposed tidal
range system are set as H = 3.2 m, η = 0.85, ρ = 1025 kg/m3,
and g = 9.81 m/s2.

The extensively used tidal barrage structure in the tidal range
technology is shown in Figure 1. In this technology, the gener-
ated power is expressed as a function of ebb-based generation,
which is defined as the difference between water levels on both
sides of the tidal range system [47, 51].

4 SYMBIOTIC ORGANISMS SEARCH
ALGORITHM

The SOS algorithm is one of the optimisation methods inspired
by the symbiotic relationship between the organisms in an
ecosystem. It was developed by Cheng and Prayogo in 2014
[32]. The SOS method presents a simple and feasible struc-
ture for solving different optimisation problems [33]. The
algorithm structure is formed in three phases: mutualism, com-
mensalism, and parasitism. The algorithm begins with can-
didate solutions to solve the problem, and these candidate
solutions are expressed as each organism in the ecosystem. The
initial ecosystem of the problem is randomly established within
the limit values, and the application of the algorithm to the pro-
posed OPF problem is represented as step-by-step in this sec-
tion.

∙ Step 1: In this step, maximum iteration, ecosystem size, and
stopping criteria are adjusted by the user, and the initial
ecosystem is randomly created within the limit values. The
creation of the model of organisms and ecosystem in algo-
rithm is shown in Figure 2 [52].

∙ Step 2: The fitness function of each organism in the ecosys-
tem is computed as depending on the flow in Figure 2. The
best organism is identified (Xbest) in the ecosystem.

∙ Step 3: In this step, the algorithm applies the mutualism opera-

tor, which is developed in the stages below.
∙ An organism is randomly chosen from the ecosystem, where

Xm ≠ Xn.
∙ Benefit factors (Bf1 and Bf2) are computed using the codes

below, and the mutualism vector are defined in (44).
∙ /*BF1 = round(1+rand);
∙ BF2 = round(1+rand);*/

Mut_Vec =
Xm + Xn

2
(44)
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FIGURE 1 Tidal range technology
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FIGURE 2 Creating of organisms and ecosystem

∙ The new candidate solutions are mathematically computed
via the mutual relationship in nature

Xmnew = Xm + rand (0, 1) ×
(
Xbest − Mut_Vect × B f 1

)
Xnnew = Xn + rand (0, 1) ×

(
Xbest − Mut_Vect × B f 2

) (45)

∙ The fitness functions of the new candidate solutions (Xmnew

and Xnnew) are calculated, and if the fitness values of the new
organisms exhibit better solution values than previous ones,
the adaptation of the new organisms is accepted. Otherwise,
the new organisms are refused, and the previous ones con-
tinue to be used in the ecosystem.

∙ Step 4: In this step, the commensalism operator is applied via the
symbiotic relationship of different organisms. The sub-steps
of this operator are given as follows.

∙ An organism is randomly chosen from the ecosystem (Xn),
where Xm≠ Xn.

∙ The new organism (Xmnew) is computed by using random Xn

in the following equation:

Xmnew = Xm + rand (−1, 1) × (Xbest − Xn ) (46)

∙ The fitness value of the new organism (Xmnew) is computed,
and if the new fitness value is better than the previous one,

the new organism is used to replace it. Otherwise, the new
organism is rejected, and the previous organism continues to
be used in the ecosystem.

∙ Step 5: The parasitism operator of the algorithm is applied to
specify the new candidate solution in the ecosystem.

∙ An organism is randomly chosen from the ecosystem (Xn),
where Xn≠ Xm.

∙ A parasite vector (parasite_vect) is created by using Xm organ-
ism in the ecosystem.

∙ The fitness solution of the parasite vector is computed, and
if the fitness value is better than the value of organism Xn,
the parasite vector is kept and replaces organism Xn for use
in the ecosystem. Otherwise, the parasite vector is rejected
and organism Xn continues to find optimal solution in the
ecosystem

∙ Step 6: If the determined ecosystem number is reached, the
algorithm goes to Step 7. Otherwise, to identify the best
organism, the algorithm goes to Step 2.

∙ Step 7: The iteration number is determined as the termination
criteria. If the iteration number is equal to the maximum iter-
ation number, the algorithm stops, and the optimal solution
of the problem is obtained.

5 SIMULATION RESULTS

In this study, to solve the ACOPF and security-constrained OPF
problems, including the uncertainties of wind, solar, and tidal
energy systems, the SOS, BSA, GSA, HS, and ICA algorithms
were tested on IEEE 30-bus and IEEE 118-bus test systems.
The system parameters of the IEEE 30-bus and IEEE 118-
bus test systems were taken from [52–56]. The total active and
reactive power load values of the IEEE 30-bus test system are
283.4 MW and 126.2 MVAR, respectively. The test system has
41 transmission lines, 6 generating units, 4 tap rating transform-
ers, and 2 shunt capacitor banks. The total active and reactive
power base loads of the IEEE 118-bus system are 42.42 and
14.38 p.u. at the 100-MVA base, and this system has 54 genera-
tors, 9 tap rating transformers, and 14 shunt compensator units.
In our study, the reactive power limits of the RESs are set as
–0.4×Pmax

res,k
p.u. and 0.5× Pmax

res,k
p.u. [28, 30]. Pmax

res,k
was the max-

imum active power of the RESs, which included wind, solar,
and tidal energy sources. A single-line diagram of the modified
IEEE 30-bus test system using wind, solar, and tidal energy sys-
tems is shown in Figure 3.

In this study, the optimisation algorithms used were run 30
times for all the test cases in order to obtain statistically valid
simulation results. The setting parameters belonging to them-
selves of all optimisation algorithms in this paper were used
the identical as in their original studies to ensure an equitable
comparison among the obtained results from the algorithms.
Furthermore, the maximum number of function evaluations
(maxFEs) was used as the termination criteria, and the num-
ber of population size (Np) of the algorithms is described as the
same value. Table 2 shows the setting parameters of all optimi-
sation algorithms for this problem.
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FIGURE 3 Modified IEEE 30-bus test system with RESs

Table 3 gives the direct, overestimation, and underestimation
cost coefficients of the wind, solar, and tidal energy systems.
The MATPOWER 6.0 was used to calculate the power flow
equations of the proposed OPF problem using RESs [57,58].
The simulation studies were carried out according to the test
cases defined in the following.

Test system 1: Modified IEEE 30-bus test system with RESs

Case 1: Solving an OPF problem with a quadratic cost func-
tion for thermal units, and a cost model of wind, solar,
and combined wind–tidal energy sources.

Case 2: Solving an OPF problem with a cost function using
a valve-point effect for thermal units, and a cost model
of wind, solar, and combined wind–tidal energy sources.

Case 3: Solving an OPF problem with an active power loss
for thermal units and the RESs.

Case 4: Solving an OPF problem with emission and taxes
for thermal units, and a cost model of the RESs.

Case 5: Solving an OPF problem with an enhancement
of voltage stability including the thermal units and the
RESs.

Case 6: Solving an OPF problem with a voltage deviation
including the thermal units and the RESs.

Case 7: Solving a security-constrained OPF problem with
chosen N – 1 contingency conditions for thermal units
and the RESs.

Test system 2: Modified IEEE 118-bus test system with RESs

Case 8: Solving an OPF problem with a quadratic cost func-
tion for thermal generating units, and a cost model of
the RESs.

Case 9: Solving an OPF with cost function and valve-point
effect for thermal generating units, and a cost model of
the RESs.

The flowchart of the SOS algorithm used in solving the OPF
problem is exhibited in Figure 4.

5.1 Case 1: Minimisation of the total cost for
thermal and RES systems

Case 1 explains the minimizing of the total cost using the
quadratic cost function of the thermal units and the cost
model of the RESs. The optimal values of the control variables
obtained from the proposed algorithm for all study cases are
shown in Table 4. The minimum, average, maximum, and stan-
dard deviation values of the SOS, ICA, HS, BSA, and GSA algo-
rithms for all cases are given in Table 6. According to the simula-
tion study, the cost values of the SOS, ICA, HS, BSA, and GSA
algorithms were 773.7797 $/h, 773.9525 $/h, 773.9589 $/h,
774.2297 $/h, and 779.3556, respectively. The resulting of the
SOS algorithm was 0.0223%, 0.0231%, 0.0581%, and 0.7154%

lower than that of the ICA, HS, BSA, and GSA algorithms. The
convergence curves of the total cost values for the optimisation
algorithms are shown in Figure 5(a). The figure clearly indicates
that the SOS algorithm converges to the optimal value faster
than the other heuristic algorithms.

5.2 Case 2: Minimisation of the total cost
with valve-point effects for thermal and RES
systems

Equation (20) was used to minimise the total cost with valve-
point effect for thermal units and the cost model of the RESs.

TABLE 2 The setting parameters of optimization algorithms

IEEE 30-bus test system IEEE 118-bus test system

Optimization algorithms Optimization algorithms

Setting parameters SOS ICA HS BSA GSA SOS ICA HS BSA GSA

Iteration (maxFEs) 300 300 300 300 300 500 500 500 500 500

Population size (Np) 50 50 50 50 50 50 50 50 50 50

 17521424, 2021, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.12023, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



288 DUMAN ET AL.

TABLE 3 The cost model coefficients of the renewable energy sources

IEEE 30-bus test system

Cost coefficients of wind power

($MW)

Cost coefficients of the PV system

($MW) Cost coefficients of the combined wind and tidal system ($MW)

Bus No wp,k COw,k CUw,k Bus No pv,k COpv,k CUpv,k Bus No wp,k COw,k CUw,k Bus No Ptdl,k COtdl,k CUtdl,k

8 1.75 3 1.50 11 1.70 3 1.65 13 1.60 3 1.50 13 1.80 3 1.60

IEEE 118-bus test system

Cost coefficients of wind power

($MW)

Cost coefficients of the PV system

($MW)

Cost coefficients of the combined wind and tidal system ($MW)

Bus No wp,k COw,k CUw,k Bus No pv,k COpv,k CUpv,k Bus No wp,k COw,k CUw,k Bus No Ptdl,k COtdl,k CUtdl,k

18 1.60 3 1.50 6 1.70 3 1.65 32 1.75 3 1.50 32 1.80 3 1.60

55 1.60 3 1.50 15 1.70 3 1.65 36 1.75 3 1.50 36 1.80 3 1.60

104 1.60 3 1.50 34 1.70 3 1.65 110 1.75 3 1.50 110 1.80 3 1.60

FIGURE 4 The flowchart of the SOS algorithm for solving the OPF problem

The simulation result of the SOS algorithm was 802.6983 $/h,
which was 0.4843 $/h, 0.4669 $/h, 0.6195 $/h, and 6.9581

$/h lower than ICA, HS, BSA, and GSA algorithms. For Case
2, the convergence curves of the optimisation algorithms are
shown in Figure 5(b).

5.3 Case 3: Minimisation of the active power
loss

In this case, minimisation of the active power loss of the IEEE
30-bus test system modified by using RESs was proposed by
the SOS, ICA, HS, BSA, and GSA algorithms. According to the

simulation results in Table 6, the SOS algorithm showed the best
value compared to the simulation results from the other algo-
rithms. The simulation curves of the algorithms are shown in
Figure 6(a).

5.4 Case 4: Minimisation of the total cost
with emission and carbon tax

The objective function given in (21) was used to optimise
the total cost. The simulation results of the SOS, ICA, HS,
BSA, and GSA optimisation algorithms were 777.7962 $/h,
777.8675 $/h, 777.9504 $/h, 778.0258 $/h, and 782.0579 $/h,
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DUMAN ET AL. 289

TABLE 4 The simulation results of the proposed optimization algorithm for all cases

Parameters Min. Max. Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case

7.1(line

outage

(2-6))

Case

7.2(line

outage

(15-18))

PTHG1 (MW) 50 200 164.0884 140.4014 50.0009 161.5045 91.3803 71.1779 140.0129 140.5589

PTHG2 (MW) 20 80 45.4352 54.8707 61.1278 46.2065 59.0553 79.7725 53.4906 55.0189

PTHG5 (MW) 15 50 20.4919 20.0341 49.9999 20.6669 49.8591 49.8203 19.9821 20.0604

PWS1 (MW) 0 45 28.3262 34.8868 44.9996 28.5207 45.0000 44.9316 35.9774 34.9213

PPVS (MW) 0 40 10.0691 12.7145 39.9985 11.2494 39.5544 20.9953 14.0387 12.7273

PWS+TDL (MW) 0 40 23.1825 27.5509 39.9990 23.2922 3.1078 21.1087 27.7119 27.3306

V1 (p.u.) 0.95 1.10 1.0796 1.0756 1.0594 1.0794 1.0743 1.0035 1.0928 1.0753

V2 (p.u.) 0.95 1.10 1.0615 1.0606 1.0546 1.0617 1.0713 1.0015 1.0795 1.0608

V5 (p.u.) 0.95 1.10 1.0312 1.0312 1.0366 1.0312 1.0805 1.0180 1.0437 1.0321

V8 (p.u.) 0.95 1.10 1.0365 1.0383 1.0445 1.0366 1.0365 0.9998 1.0339 1.0388

V11 (p.u.) 0.95 1.10 1.0746 1.0797 1.0409 1.0724 1.0814 1.0351 1.1000 1.0782

V13 (p.u.) 0.95 1.10 1.0565 1.0570 1.0635 1.0557 1.0579 1.0393 1.0994 1.0494

T11 (p.u.) 0.90 1.10 1.0586 1.0187 1.0980 1.0662 1.0164 1.0494 1.0999 1.0568

T12 (p.u.) 0.90 1.10 0.9378 0.9926 0.9111 0.9308 0.9000 0.9844 0.9608 0.9354

T15 (p.u.) 0.90 1.10 0.9725 0.9752 0.9905 0.9713 0.9626 0.9983 0.9409 0.9715

T36 (p.u.) 0.90 1.10 0.9682 0.9667 0.9693 0.9661 0.9538 0.9515 0.9770 0.9803

QC10 (MVAr) 0 30 19.1239 19.7960 28.5086 19.8121 4.8550 22.9957 30.0000 22.2705

QC24 (MVAr) 0 30 10.8521 10.6171 10.7017 10.6668 0.0090 15.3587 13.9759 12.6479

QTHG1 (MVAr) -20 150 1.7321 -0.7128 -5.2646 1.4110 -10.6592 -19.9875 8.5904 -1.8749

QTHG2 (MVAr) -20 60 17.3164 15.7527 6.2766 17.9810 22.9864 -17.0023 27.5967 16.3292

QTHG5 (MVAr) -15 62.5 25.7352 25.8680 21.4432 25.4822 61.7193 53.1613 30.7890 26.4025

QWS1 (MVAr) -18 22.5 22.4952 22.4987 22.4990 22.4458 12.0082 22.3963 22.4940 22.4886

QPVS (MVAr) -16 20 19.9804 16.7758 11.8096 19.9682 17.7830 17.9208 3.9427 19.9598

QWSTDL (MVAr) -16 20 5.2577 5.8028 11.2578 4.6388 6.1706 19.9884 -12.5642 0.0620

Total cost ($/h) 773.7797 802.6983 941.0754 774.0652 926.9238 920.4032 806.4118 803.4962

Emission (t/h) 0.1922 0.1485 0.0722 0.1865 0.0887 0.0846 0.1477 0.1487

Carbon tax ($/h) 3.8437 2.9693 1.4439 3.7310 1.7734 1.6927 2.9544 2.9745

Ploss (MW) 8.1933 7.0584 2.7257 8.0401 4.5569 4.4063 7.8136 7.2173

VD (p.u.) 0.8318 0.8548 0.8683 0.8392 0.8797 0.12469 0.8475 0.9090

L-index 0.1386 0.1383 0.1383 0.1383 0.13671 0.1473 0.1387 0.1372

respectively. Figure 6(b) shows the convergence curves of the
optimisation algorithms used for this case.

5.5 Case 5: Enhancement of the voltage
stability of test system

In order to enhance the voltage stability of the test system, min-
imisation of the L-index value, one of the well-known voltage
stability indices, was proposed in this case. According to the
results obtained at the end of the simulation studies, the min-
imum L-index value was found by the SOS optimisation algo-

rithm, which was better than the other ICA, HS, BSA, and GSA
optimisation algorithms. To be precise, the result of the SOS
optimisation algorithm was 1.2639%, 1.0996%, 1.1139%, and
1.4702% lower than the simulation results of the ICA, HS, BSA,
and GSA algorithms, respectively.

5.6 Case 6: Optimisation of the voltage
deviation

Minimizing the voltage deviation of the test system was pro-
posed in this case, and the simulation results obtained by the
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290 DUMAN ET AL.

(a) (b)

FIGURE 5 The convergence curves of total cost values for all algorithms: (a) Case 1 and (b) Case 2

(a) (b)

FIGURE 6 The convergence curves of the power loss and total cost value for all algorithms: (a) Case 3 and (b) Case 4

(a) (b)

FIGURE 7 The convergence curves of the fitness function values for all algorithms: (a) Case 7.1 and (b) Case 7.2
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DUMAN ET AL. 291

(a) (b)(a) (b)

FIGURE 8 The voltage profiles of the load buses: (a) Cases 1–6 and (b) Cases 7.1–7.2

SOS, ICA, HS, BSA, and GSA optimisation algorithms were
0.12469, 0.13185, 0.13148, 0.13407, and 0.13111, respectively.
It is clear from Table 6 that the result with the SOS algorithm
was 5.4304%, 5.1642%, 6.9963%, and 4.8966% lower than with
the other algorithms.

5.7 Case 7: N – 1 contingency conditions in
test systems

Power systems under continuous operation are subjected to var-
ious contingency conditions as outages in the lines. For this rea-
son, modern power systems must provide satisfactory voltage
stability under sudden unexpected conditions. In this study, to
minimise the total cost and to improve the voltage stability of
the test system using RESs, the objective function was consid-
ered as a single objective function, as follows:

fob j (D, E ) = Fob j1 +
(
𝛾L × Fob j5

)
. (47)

In this study, various contingency conditions were consid-
ered, including outages in the transmission lines between busses
2–6, and 15–18.

In the transmission line outage between buses 2 and 6 (Case
7.1), the SOS algorithm achieved the best objective function
value of 820.2768, which was 0.5115, 0.6572, 1.1081, and
9.0855 lower than the simulation results of the ICA, HS, BSA,
and GSA optimisation algorithms, respectively. It is clearly seen
from Table 4 that the minimum cost value of the SOS algorithm
is 806.4118 $/h for this case.

An outage in the transmission lines between buses 15 and 18
was considered in Case 7.2. According to simulation results, the
best optimal result of 817.2199 was achieved by the SOS algo-
rithm, i.e., it was 0.02216%, 0.0419%, 0.05975%, and 0.90841%

lower compared to the simulation results of the ICA, HS, BSA,
and GSA optimisation algorithms, respectively. The conver-
gence curves of the simulation results of the optimisation algo-
rithms for Cases 7.1 and 7.2 are shown in Figure 7(a) and (b),
where it is clearly seen that the SOS algorithm reached the opti-
mal solution value of the problem faster than the other algo-
rithms.

In this study, the lower and upper values of the all load busses
are set as 0.95 and 1.05 p.u. The voltage profiles at the end of
the simulation studies of all load buses for all cases are given
in Figure 8(a) and (b), where the voltage profiles of all load
buses are seen to be within the lower and upper values for all
cases.

5.8 Case 8: Minimisation of the total cost for
thermal and RES systems on the 118-bus test
system

The optimisation of the total cost value using the quadratic
cost function of the traditional generating units and the cost
models of the RESs were studied in Case 8. Table 5 shows
the control variables optimised as well as the objective func-
tion values from the SOS and the other algorithms. The total
cost value of the Case 8 achieved via the SOS is 99852.5888

$/h, which is the best result according to the results obtained
from ICA, HS, BSA, and GSA algorithms. When the simulation
results obtained were evaluated, the SOS result was 5.13092%,
5.72357%, 7.63292%, and 42.33847% lower than the results
from the other algorithms. The convergence curves of the all
optimisation algorithms are shown in Figure 9(a), and the volt-
age profile magnitudes of all load buses are remained within
the acceptable range according to simulation results of the SOS
algorithm for Cases 8 and 9, as shown in Figure 9(c).
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292 DUMAN ET AL.

TABLE 5 The obtained simulation results of the IEEE 118-bus test system for Cases 8 and 9

Parameters Min. Max. Case 8 Case 9 Parameters Min. Max. Case 8 Case 9

PTHG1 (MW) 30 100 30.0014 99.9759 V32 (p.u.) 0.95 1.10 0.9809 0.9553

PTHG4 (MW) 30 100 30.0001 30.0007 V34 (p.u.) 0.95 1.10 0.9500 0.9656

PPVS1 (MW) 0 80 79.9997 79.9933 V36 (p.u.) 0.95 1.10 0.9536 0.9690

PTHG8 (MW) 30 100 30.0053 30.0000 V40 (p.u.) 0.95 1.10 0.9500 0.9528

PTHG10 (MW) 165 550 199.3279 165.0001 V42 (p.u.) 0.95 1.10 0.9536 0.9500

PTHG12 (MW) 55.5 185 55.5068 55.5012 V46 (p.u.) 0.95 1.10 0.9882 0.9845

PPVS2 (MW) 0 100 99.9998 99.9991 V49 (p.u.) 0.95 1.10 0.9981 0.9766

PWS1 (MW) 0 150 150.0000 149.9984 V54 (p.u.) 0.95 1.10 0.9528 0.9570

PTHG19 (MW) 30 100 30.0112 30.0002 V55 (p.u.) 0.95 1.10 0.9500 0.9570

PTHG24 (MW) 30 100 30.0005 30.0000 V56 (p.u.) 0.95 1.10 0.9500 0.9542

PTHG25 (MW) 96 320 96.1142 96.0000 V59 (p.u.) 0.95 1.10 0.9500 0.9500

PTHG26 (MW) 124.2 414 138.6306 124.2005 V61 (p.u.) 0.95 1.10 0.9533 0.9605

PTHG27 (MW) 30 100 30.0001 30.0001 V62 (p.u.) 0.95 1.10 0.9589 0.9500

PTHG31 (MW) 32.1 107 32.1000 32.1001 V65 (p.u.) 0.95 1.10 0.9518 0.9561

PWS+TDL1 (MW) 0 120 119.9952 119.9982 V66 (p.u.) 0.95 1.10 1.0119 0.9609

PPVS3 (MW) 0 150 149.9996 149.9990 V69 (p.u.) 0.95 1.10 1.0042 0.9794

PWS+TDL2 (MW) 0 120 119.9998 119.9620 V70 (p.u.) 0.95 1.10 0.9610 0.9660

PTHG40 (MW) 30 100 30.0002 30.0013 V72 (p.u.) 0.95 1.10 0.9583 0.9616

PTHG42 (MW) 30 100 30.0239 30.0021 V73 (p.u.) 0.95 1.10 0.9547 0.9706

PTHG46 (MW) 35.7 119 35.7009 35.7000 V74 (p.u.) 0.95 1.10 0.9500 0.9501

PTHG49 (MW) 91.2 304 121.8900 182.6414 V76 (p.u.) 0.95 1.10 0.9500 0.9508

PTHG54 (MW) 44.4 148 44.4013 44.4025 V77 (p.u.) 0.95 1.10 0.9927 0.9680

PWS2 (MW) 0 150 150.0000 150.0000 V80 (p.u.) 0.95 1.10 1.0136 0.9789

PTHG56 (MW) 30 100 30.0000 30.0000 V85 (p.u.) 0.95 1.10 0.9505 0.9654

PTHG59 (MW) 76.5 255 95.2645 145.9303 V87 (p.u.) 0.95 1.10 0.9503 1.0023

PTHG61 (MW) 78 260 88.8343 78.0000 V89 (p.u.) 0.95 1.10 0.9509 0.9589

PTHG62 (MW) 30 100 30.0510 30.0001 V90 (p.u.) 0.95 1.10 0.9500 0.9500

PTHG65 (MW) 147.3 491 213.3924 147.3011 V91 (p.u.) 0.95 1.10 0.9531 0.9500

PTHG66 (MW) 147.6 492 213.9460 284.5958 V92 (p.u.) 0.95 1.10 0.9500 0.9567

PTHG70 (MW) 30 100 30.0018 30.0000 V99 (p.u.) 0.95 1.10 0.9846 0.9808

PTHG72 (MW) 30 100 30.0000 30.0002 V100 (p.u.) 0.95 1.10 0.9734 0.9802

PTHG73 (MW) 30 100 30.0123 30.0454 V103 (p.u.) 0.95 1.10 0.9786 0.9852

PTHG74 (MW) 30 100 30.0008 30.0000 V104 (p.u.) 0.95 1.10 0.9807 0.9882

PTHG76 (MW) 30 100 30.0001 99.9999 V105 (p.u.) 0.95 1.10 0.9710 0.9764

PTHG77 (MW) 30 100 30.0093 30.0000 V107 (p.u.) 0.95 1.10 0.9553 0.9667

PTHG80 (MW) 173.1 577 262.2445 340.0671 V110 (p.u.) 0.95 1.10 0.9658 0.9659

PTHG85 (MW) 30 100 30.0312 30.0000 V111 (p.u.) 0.95 1.10 0.9743 0.9500

PTHG87 (MW) 31.2 104 31.2000 31.2000 V112 (p.u.) 0.95 1.10 0.9572 0.9500

PTHG89 (MW) 212.1 707 281.2330 212.1019 V113 (p.u.) 0.95 1.10 0.9644 0.9624

PTHG90 (MW) 30 100 30.2915 30.0000 V116 (p.u.) 0.95 1.10 0.9521 0.9500

PTHG91 (MW) 30 100 30.0098 30.0002 T8 (p.u.) 0.90 1.10 0.9775 0.9804

PTHG92 (MW) 30 100 30.0013 30.0001 T32 (p.u.) 0.90 1.10 0.9921 1.0495

PTHG99 (MW) 30 100 30.0000 30.0000 T36 (p.u.) 0.90 1.10 1.0031 1.0015

PTHG100 (MW) 105.6 352 117.0153 105.6026 T51 (p.u.) 0.90 1.10 0.9981 0.9880

PTHG103 (MW) 42 140 42.0000 42.0007 T93 (p.u.) 0.90 1.10 0.9656 0.9935

(Continues)
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DUMAN ET AL. 293

TABLE 5 (Continued)

Parameters Min. Max. Case 8 Case 9 Parameters Min. Max. Case 8 Case 9

PWS3 (MW) 0 150 149.9995 149.9988 T95 (p.u.) 0.90 1.10 1.0182 0.9957

PTHG105 (MW) 30 100 30.0005 30.0000 T102 (p.u.) 0.90 1.10 0.9000 0.9933

PTHG107 (MW) 30 100 30.0001 30.0026 T107 (p.u.) 0.90 1.10 0.9217 0.9000

PWS+TDL3 (MW) 0 120 119.9997 119.2530 T127 (p.u.) 0.90 1.10 0.9276 0.9624

PTHG111 (MW) 40.8 136 40.8035 40.8001 QC5 (MVAr) 0 25 4.5690 0.0013

PTHG112 (MW) 30 100 30.0028 30.0000 QC34 (MVAr) 0 25 0.0142 24.9261

PTHG113 (MW) 30 100 30.0108 30.0000 QC37 (MVAr) 0 25 0.0295 0.0217

PTHG116 (MW) 30 100 30.0001 30.0076 QC44 (MVAr) 0 25 10.7870 7.6722

V1 (p.u.) 0.95 1.10 0.9500 0.9500 QC45 (MVAr) 0 25 24.9997 24.9952

V4 (p.u.) 0.95 1.10 0.9781 0.9633 QC46 (MVAr) 0 25 2.9756 13.3039

V6 (p.u.) 0.95 1.10 0.9755 0.9549 QC48 (MVAr) 0 25 9.0271 10.5784

V8 (p.u.) 0.95 1.10 0.9669 0.9500 QC74 (MVAr) 0 25 20.2646 24.6773

V10 (p.u.) 0.95 1.10 0.9846 0.9500 QC79 (MVAr) 0 25 24.9189 22.7401

V12 (p.u.) 0.95 1.10 0.9664 0.9570 QC82 (MVAr) 0 25 0.4568 24.6577

V15 (p.u.) 0.95 1.10 0.9511 0.9612 QC83 (MVAr) 0 25 24.6378 24.9715

V18 (p.u.) 0.95 1.10 0.9526 0.9652 QC105 (MVAr) 0 25 24.9998 1.0690

V19 (p.u.) 0.95 1.10 0.9503 0.9589 QC107 (MVAr) 0 25 20.7879 0.1976

V24 (p.u.) 0.95 1.10 0.9500 0.9561 QC110 (MVAr) 0 25 24.9559 0.1668

V25 (p.u.) 0.95 1.10 0.9888 0.9707 PTHG69 (MW) 0 805.2 273.0742 68.0208

V26 (p.u.) 0.95 1.10 0.9500 0.9892 Total cost ($/h) 99852.5888 104038.7111

V27 (p.u.) 0.95 1.10 0.9899 0.9500 Ploss (MW) 61.1390 48.4042

V31 (p.u.) 0.95 1.10 0.9701 0.9545 VD (p.u.) 2.5388 2.8148

L-index 0.0720 L-index

(a) (b) (c) 

FIGURE 9 The convergence curves of all algorithms: (a) Case 8, (b) Case 9, and (c) the voltage profiles of the load buses

5.9 Case 9: Minimisation of the total cost
with valve-point effects for thermal and RES
systems on the 118-bus test system

In Case 9, solving of the ACOPF problem considering
the quadratic cost function with valve-point effect for ther-
mal generating units, and the cost models of RES pro-

posed using SOS, ICA, HS, BSA, and GSA optimisation
algorithms.

The simulation results obtained from SOS method are shown
in Table 5, and Table 6 shows the comparison with the results
of all algorithms for this test system. The result of SOS algo-
rithm is 104038.7111 $/h, which is the best result in compar-
ison with the simulation results of the other algorithms. The
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294 DUMAN ET AL.

TABLE 6 The minimum, mean, maximum and standard deviation values of the optimization algorithms for all cases

IEEE 30-bus test system IEEE 118-bus test system

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case

7.1(line

outage

(2-6))

Case

7.2(line

outage

(15-18)) Case 8 Case 9

SOS Min. 773.7797 802.6983 2.7257 777.7962 0.13671 0.12469 820.2768 817.2199 99852.5888 104038.7111

Mean 773.7890 802.7075 2.7359 777.8279 0.13722 0.12791 820.5823 817.2766 99926.217 104861.659

Max. 773.8158 802.7268 2.987 777.8480 0.13807 0.1312 822.081 817.3193 100110.2684 106443.3916

Std. 0.008449 0.006306 0.047469 0.005123 0.000282 0.001664 0.2992352 0.01601963 60.7888329 669.1923887

Simulation
time (s)

628 625 618 623 620 622 648 645 1142 1146

ICA Min. 773.9525 803.1826 2.7521 777.8675 0.13846 0.13185 820.7883 817.4011 105253.0397 115824.6822

Mean 774.2321 803.4210 2.8987 778.0909 0.13932 0.14062 821.4528 817.7677 109220.0925 121798.1246

Max. 774.8099 805.3642 3.1686 777.2992 0.14067 0.15729 822.8238 819.2672 113991.7558 127989.2692

Std. 0.226619 0.494714 0.11457 0.36137 0.000615 0.006502 0.5309276 0.416912 2100.480178 3404.871455

Simulation
time (s)

651 657 647 652 649 654 670 674 1175 1177

HS Min. 773.9589 803.1652 2.7938 777.9504 0.13823 0.13148 820.934 817.5625 105914.6980 112307.9584

Mean 774.6469 803.5811 2.8820 778.4170 0.13880 0.13662 821.9175 818.1924 107038.8785 113800.5605

Max. 775.4867 804.5423 2.9708 779.1800 0.13956 0.15278 822.9972 819.3028 107841.9863 115445.9354

Std. 0.441756 0.406213 0.046927 0.378441 0.000341 0.004617 0.4669836 0.5249195 451.3165059 774.0361867

Simulation
time (s)

648 644 639 651 652 649 668 672 1169 1173

BSA Min. 774.2297 803.3178 2.7915 778.0258 0.13825 0.13407 821.3849 817.7085 108104.0939 119758.0931

Mean 774.8235 803.8579 2.9782 778.4034 0.13889 0.1437 822.0690 818.4239 110500.0564 122777.0598

Max. 775.5997 804.7109 3.1393 778.8898 0.14013 0.15752 822.8821 819.5422 113845.0104 124952.7869

Std. 0.31469 0.348357 0.08692 0.251226 0.0003565 0.005698 0.3469092 0.3938949 1252.86092 1433.423585

Simulation
time (s)

646 649 642 647 648 650 666 669 1167 1178

GSA Min. 779.3556 809.6564 5.0699 782.0579 0.13875 0.13111 829.3623 824.7117 173170.2330 202272.1134

Mean 787.2304 814.7603 6.0477 788.5668 0.1397 0.13928 833.9697 828.9012 185433.8587 218550.0869

Max. 794.6067 819.8978 6.6710 800.2448 0.14123 0.15621 843.8181 833.8177 196069.7180 230198.4020

Std. 3.734595 3.142586 0.44356 3.395821 0.0005199 0.006274 3.21854 2.474986 6057.099133 6724.698098

Simulation
time (s)

659 663 651 657 656 659 687 689 1189 1197

result of SOS is 11785.9711 $/h, 8269.2473 $/h, 15719.3820

$/h, and 98233.4023 $/h lower than ICA, HS, BSA, and GSA
algorithms, respectively. Figure 9(b) displays the convergence
curves to optimal solution of all algorithms at the end of the
optimisation process.

6 CONCLUSION

This study investigated the modeling of the ACOPF problem
using wind, PV, and tidal energy and thermal generating systems,
and the SOS and other heuristic algorithms are used to solve
the proposed ACOPF problem. The proposed problem using
RESs was tested on IEEE 30-bus and IEEE 118-bus power

test systems for various cases, which included different oper-
ating conditions of the thermal units and situations involving
active power loss, voltage stability, voltage deviation, and spec-
ified N – 1 contingencies. The simulation results obtained at
the end of the optimisation process revealed that the SOS algo-
rithm exhibited high convergence speed in reaching the opti-
mal solution compared to the results of the ICA, HS, BSA,
and GSA algorithms. The results of all the optimisation algo-
rithms were examined statistically (minimum, mean, maximum,
and standard deviation values) to confirm the optimal solution
findings of the algorithms in all the test cases. The statistical
results of all study cases demonstrated that the SOS algorithm
presented the best value for each of the statistical cases. Accord-
ing to the standard deviation value of the results obtained from
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30 test runs for all study cases, the results of the SOS algorithm
were consistently found to be close to each other.

Moreover, it is recommended that the ACOPF problem
involving RESs also be investigated using various study cases
to solve multi-objective problems on large power systems. This
power system problem using wind power, PV power, tidal
power, hydropower, plug-in electrical systems, and so forth can
be considered as a dynamic ACOPF problem that could be
incorporated into the power system network in a multi-terminal
HVDC system incorporating FACTS devices.
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