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Integrating the three E’s in wastewater treatment:
efficient design, economic viability, and
environmental sustainability
Kirti M Yenkie

Water is often the most mispriced and misused component in

domestic, industrial and agricultural sectors. The rise in world

population and industrialization in developing nations has

tremendously increased the demand for water and has resulted

in the generation of wastewater which is contaminated with

dangerous pollutants and unknown contaminants.

Furthermore, if the wastewater is not treated properly the toxic

pollutants will leach back into the ground ultimately

contaminating the groundwater resources. Thus, wastewater

treatment, reuse, and safe disposal have become crucial for

sustainable existence. In this review, the different aspects

involved in designing efficient and sustainable wastewater

treatment systems such as wastewater characterization,

stage-wise treatment approach, technology features, modeling

methodologies, cost evaluations, and environmental impact

assessment are presented and future need for information

exchange, interdisciplinary collaborations and convergent

research are emphasized.
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Introduction
The ever-increasing human population and industrial

growth have posed a huge burden on existing resources

and have led to an increase in environmental pollution

and climate change. The imprudent use of water

resources and overall wastes released from domestic,

agricultural and industrial sectors in natural water bodies

has exacerbated the challenges relating to availability,

quality, and purity of water resources. Pollutants such as

oxygen-demanding substances, pathogens, nutrients,

inorganic, and synthetic organic chemicals have been

listed as potential contaminants in municipal wastewater.

Oxygen demanding substances such as ammonia pose

potential dangers to aquatic life. Pathogens are carried

into the groundwater through sewage sourcing from

industrial waste, storm runoff, and municipal sources.

Nutrients such as carbon, nitrogen, and phosphorus are

found in large quantities in agricultural wastewater. If not

treated properly, the large amounts of nutrients, primarily

phosphorus, and nitrogen cause nutrient enrichment

resulting in algae growth and eutrophication. Heat

reduces the capacity of water to retain oxygen, industrial

water utilized for cooling is often too hot to be released

back to the ecosystem. Thus, wastewater needs to be

checked and treated before it is released in the ecosys-

tem, or else it will have detrimental effects on marine life

and natural water bodies. Furthermore, freshwater

resources are limited and the only way to satisfy the

increased demand for water is to rely on wastewater

treatment (WWT) systems that can provide reusable

water or reduce contaminant concentrations to acceptable

levels which can be handled by natural remediation

systems (biogeochemical cycles).

Current wastewater treatment plants (WWTPs) com-

prises multiple treatment technologies to obtain neces-

sary purity standards set by the regulatory agencies such

as the US EPA (United States Environmental Protection

Agency), European Union’s Water Policy, United

Nations Environmental Programme. Technologies are

based on physical, biological, chemical processes or their

combination [1]. Physical processes are applied for the

removal of solids from wastewater usually using screens

and filters. Biological processes use small organisms to

remove and break down harmful sewage. Chemical

processes are often combined with physical processes

to remove complex pollutants. Thus, appropriate

characterization of wastewater streams is essential to

identify candidate technologies which will reduce the

contaminants to acceptable levels.

Judicious water use and minimization in wastewater

release are equally important due to the scarcity of water

resources and WWTPs energy costs [2]. Considerations

may include overall volume reduction, pollutant strength

reduction, or a combination. Wastewater volume reduc-

tion can have a significant impact on technology capacity,

flow/loadings of WWTPs, operation/maintenance costs,
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energy requirements, and ecological impacts. Approxi-

mately, 20–30% water savings can be achieved with flow

reduction devices such as sensors for fault detections

and concentration measurements, and efficient control-

lers [3,4]. Industrial plants can achieve wastewater vol-

ume reductions by utilizing multi-point waste collections,

reuse, and elimination of sludge discharges. Finally,

WWTPs need efficient design and evaluation metrics

to minimize costs, energy requirements and subsequent

environmental impacts while meeting the regulatory

guidelines. To this end, this review summarizes the

most recent developments in the areas of wastewater

characterization, treatment technologies, modeling, and

optimization framework for designing efficient WWTNs,

economic analysis, and sustainability assessment (see

Figure 1).

Wastewater characterization
The wastewater characterization includes total sus-

pended solids (TSS), total dissolved solids (TDS), pH,

organic loadings, chemical oxygen demand (COD), bio-

chemical oxygen demand (BOD), toxic ions, active phar-

maceutical ingredients (APIs), endocrine disrupting

chemicals (EDCs), and others [1,5,6]. Their typical range

can vary significantly based on the source of the contami-

nant stream. Municipal wastewater from residential

sources have BOD values in the range of 100–400 mg/l,

nitrogen as 20–85 mg/l and phosphorous as 6–23 mg/l

[7��]. Food, drinks, and milk (FDM) sector can have

effluents with 10–100 times higher BOD and COD values

as compared to the municipal sector [8]. Pharmaceutical

effluents contain a high concentration of organics, and

APIs [9]. Thus, source of the effluent stream, its contam-

inant properties, and relative amounts, as well as infor-

mation about limits for safe discharge or reuse of treated

water enables the connection of appropriate WWT tech-

nologies to design a case-specific process flow diagram.

Treatment technologies
WWT is most effective when accomplished in stages and

usually comprises preliminary, primary, secondary, and

tertiary stages along with sludge treatment options [10�].
An overview of the treatment stages and technologies

involved are described in Figure 2. Generally, WWTPs

utilize one technology from each stage; however, depend-

ing on the purity requirements, contaminant properties

and their amounts in the inlet waste stream, more than

one technology might be needed in a stage or some stages

might be bypassed.

The treatment results in water-rich and contaminant-rich

outlet streams. The contaminant-rich stream consists of

sludge which can be treated to recover nutrients via

technologies such as hydrothermal liquefaction [11], ther-

mophilic digestion [12], and fermentation, or incinerated

to recover energy [13��]. The details of some existing and

novel WWT technologies is provided in Table 1. This

information can be used when selecting candidate tech-

nology alternatives for performing a designated task and

technology network connections [7��,14��,15�].

Modeling approaches for efficient design and
economic viability
WWT network (WWTN) design is a complex problem

due to a high number of technology alternatives, multi-

criteria design considerations of purity, costs, operational

safety, and environmental impact, and lack of knowledge

integration from experts. Some modeling approaches

implemented in WWTN design are discussed here.

Data-driven, heuristics and performance index models

Ruiz-Rosa et al. [28�] proposed a data-driven Activity

Based Cost (ABC) management model for WWT and

reuse processes in four phases: (i) identification of final

products and their measurement units, (ii) definition of

product transformations and activities, (iii) relation and

classification of resource groups consumed in WWT,

and (iv) development of logical associations between

resources, activities and products. Here, activities

denote technologies, resource groups denote fixed

assets, labor, energy, maintenance, social and other

services, and logical associations denote cost distribu-

tions in each technology for achieving desired purity.

The work by Liu et al. [29�] proposed an enhancement of

the numerical indicator of total mixing influence potential

(TMIP) [30], based on WWT systems with minimum

treatment flowrate and pinch analysis, by including

heuristic rules for situations when one contaminant can

be removed in multiple technologies or when multiple

contaminants can be removed in a single technology. The

improved model could design more complex treatment

networks. Viciano et al. [31] introduced a performance

index (Z) in the cost function to incorporate the fact that

equipment does not always run on their optimal capacity

due to seasonal changes, population shifts, thus impacting

the energy costs. This methodology was applied to

empirical data from 156 WWTPs in Valencia to

represent economies of scale in efficient design and cost

estimates. Fuzzy logic models, intuitional fuzzy sets

and multi-criteria decision making were integrated to

represent numerical and verbal information and

subsequently applied to optimal WWT technology

selection [15�,32].

Superstructure synthesis approaches

Garibay-Rodrigues et al. [33��] proposed a constraint-

based MINLP (mixed-integer nonlinear programming)

for integrating optimal resource management to the

synthesis of distributed WWTNs. The approach is dem-

onstrated via a typical river system that serves as a source

and natural drainage to domestic, industrial and agricul-

tural sectors with constraints of maximum allowable

concentration of pollutants discharged and limit on water

132 Energy, environment and sustainability: sustainability modeling
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consumption from fresh sources and solving the total

annual costs minimization problem. Alnouri et al. [34��]
presented an approach for interplant water network syn-

thesis in industries by combining the central and decen-

tral treatment options and merging the common pipe

segments carrying water and wastewater with similar

properties, which allowed for a reduction in network

complexity and overall costs.

Lu et al. [35��] addressed the problem of optimal synthesis

and operation of WWTNs with multi-scenario influent

streams under different discharge standards and penalty

ratios of non-compliant emissions. They employed solu-

tion methods involving disjunctive programming, multi-

period MINLPs to minimize Total Annual Costs (TAC)

to provide management insights and assist policymakers.

Some other studies from the group [36,37] also

Integrating 3Es in WWT Yenkie 133
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highlighted the importance of superstructure synthesis

and technology modeling for WWT.

Process network synthesis approaches

Kollmann et al. [38��] applied the Process Network

Synthesis (PNS) approach to optimize the economics

of a WWTP while recovering energy in the form of heat

and supplying the surplus to the public energy distribu-

tion grids. They utilized the Geographical Information

System (GIS) based Energy Zone Mapping and estab-

lished a feasible WWTN structure in P-graph [39] based

PNS studio software. The varied applications of P-graph

based PNS approach [40,41,42] indicates its potential in

the field of WWTN synthesis.

Methods for sustainability assessment
Life-cycle assessment (LCA) has been the methodology

of interest for many research groups [13��,43] when

evaluating the sustainability of a WWTP and integrating

its economics. LCA usually includes four steps: (i) goal

and scope definition, (ii) life cycle inventory (LCI), (iii)

life cycle impact assessment (LCIA), and (iv) life cycle

interpretation. Piao et al. [13��] demonstrated an inte-

grated LCA and economic efficiency analysis for WWTPs

and sludge management systems by subdividing them

into plant operation, electricity and chemical consump-

tion, and transport to landfills, which could prove valuable

in managing urban water systems.

Kollmann et al. [38��] integrated the PNS and Sustainable

Process Index (SPI) approaches efficiently to perform

economic optimization and ecological footprints

assessment of treatment technologies. Another sustain-

ability metric, Fisher information (FI) [44�,45], was

applied to capture the dynamics of multi-dimensional

systems for environmental management as a single entity.

WWTN design is certainly a multi-dimensional problem

influenced by environmental, technological, economic,

political and social factors and needs converging estima-

tors such as FI for better projections of sustainability,

resource consumption, and recovery. Value chain map-

ping was proposed by Chofreh et al. [46�] as a significant

tool for practitioners in water and sewage companies to

increase operational efficiency and reduce wastes by more

than 50%, ultimately shifting towards more sustainable

activities. Circular economy [47] and net-zero waste gen-

eration [48], or energy positive systems [49] are additional

indicators used to define process sustainability.

Final remarks on integrating the 3 E’s
Systematic guidelines which propose treatment based on

inlet contamination and final conditions for water reuse or

safe disposal will aid in designing efficient WWTNs

[50��]. The treatment technologies should be appropri-

ately placed in the network to ensure efficient contami-

nant removal. Novel technologies should be tested for

operation at large scales and their multi-scale integration

with existing technologies should be studied. Modular

design based on maximal structure/superstructure syn-

thesis comprising of all possible treatment technologies,

flow patterns and connections should be applied instead

of relying on conventional design and treatment methods.

Non-intuitive and unconventional solutions consisting of

multiple inputs and/or outputs, recycling, mixing, and

134 Energy, environment and sustainability: sustainability modeling
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Table 1

Wastewater treatment technologies, their advantages, and limitations

Technology Features Advantages Limitations

Screening [1,5] - removes rags, paper, grit,

plastics, and metals

- varying screen sizes available:

coarse, fine and micro

- prevents damage and

clogging of downstream units
- requires regular cleaning and

maintenance

Flocculation/ Coagulation

[10�,16,17]
- forms flocs of suspended and

colloidal particles by adding

chemicals/polymers

- mean residence time and

recirculation ratio influences

floc formation efficiency

- large flocs are easier to

separate compared to their

primary particle size

- cost of flocculants

- mixing and time

Sedimentation/ Clarifier

[5,18]
- gravitational settling based on

particle terminal settling

velocity given by Stokes law

- tank size (area and depth),

settling velocity determine the

residence time

- no utility/external energy

required

- low cost

- tank size and time required for

efficient separation

Filtration (granular)

[5]
- suspended/colloidal

impurities are separated via

passage through a porous

medium

- particle separation range

higher than sedimentation
- head loss and effluent turbidity

limits

Rotating biological contactors

[5,19]
- a biological process consisting

of reservoirs with large circular

disks mounted on horizontal

shaft that rotate slowly through

wastewater streams

- removes BOD, some

phosphorus and nitrates

aerates wastewater and

suspended microbial growth

- simplicity, adaptability, low

land use

- can breakdown complex

organic pollutants such as

dyes

- lack of appropriate scalable

systems

Adsorption/ Ion exchange

[10�]
- use of a solid material such as

activated carbon, selective

resigns, polymeric adsorbents

to remove target contaminants

- can be operated in batch/

continuous modes

- simple and adaptable

treatment methods

- high efficiency and faster

kinetics

- high capital, adsorbent, and

regeneration costs

- sensitive to pH

Disinfection [1] - three main disinfection

techniques; chemical

(chlorine, ozone), physical

(heating, chemical assisted

settling), and radiation (UV,

electromagnetic and acoustic)

- equipment design and

material costs vary based on

the technique employed

- removes viruses, pathogens,

and APIs in some cases
- dechlorination methods

needed

- performance impacted by

pollutant type

Activated sludge [5,20] - aerobic slurry consisting of

microorganisms is added to

the wastewater in a complete-

mix suspended growth reactor

- solid retention time (SRT), that

is, the average time sludge

remains in the system,

determines the overall

performance

- can degrade organic matter

into CO2, water and other end

products

- simple, economically

favorable

- maintenance of microbial

activity

- poor decolorization

- sludge bulking and foaming

www.sciencedirect.com Current Opinion in Chemical Engineering 2019, 26:131–138



segregation of streams should be analyzed for cost effec-

tiveness and environmental impacts. Potential risks,

safety and uncertainty considerations should also be

incorporated to test the robustness of the predicted

optimal WWTNs. To this end, interdisciplinary colla-

borations, information exchange and comparative assess-

ments through multiple approaches should be employed

to eliminate existing drawbacks and provide insights into

novel WWT solutions with enhanced process Efficiency,
leading towards Economic viability and Environmental

sustainability.
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