
S calp electroencephalograms (EEGs) are indispens-
able for the diagnosis and management of epilepsy 

and other neurological disorders.  However,  reviewing 
and interpreting EEGs is time-consuming and requires 
years of training for epileptologists and/or electroen-
cephalographers (EEGers).  Technology that would 
allow the automated screening of EEGs to detect epilep-
tic discharges or spikes would thus be useful in reducing 
the human labor.  A number of teams have attempted to 
develop tools to automatically review EEGs [1-4],  but 
none of the systems have been widely adopted in clini-
cal practice.  Against this background,  various research 
groups have attempted to adapt artificial intelligence 

(AI) technologies such as artificial neural networks to 
medical applications [5 , 6],  including the analysis of 
EEG data [7-10].

Deep learning with convolutional neural networks 
(CNNs) is particularly useful for image classification.  
Despite encouraging results,  the application of AI tech-
niques to EEG analysis is still in its infancy in terms of 
ictal and interictal EEG analyses [4 , 11-14].  In particu-
lar,  the application of AI technology to the analysis of 
pediatric EEGs is very rare,  and the reported number of 
children with EEG spikes in previous AI studies is very 
small [15].  In other studies,  the subjects were limited to 
patients suffering from childhood epilepsy with centro-
temporal spikes,  a unique type of epilepsy syndrome 
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with rolandic spikes which are morphologically stereo-
typed and generally easy to identify [16 , 17].

Pediatric EEGs differ from adult EEGs in various 
aspects,  including age-dependent changes of back-
ground activity,  patterns of epileptic discharges,  and a 
tendency for contamination with many artifacts (e.g.,  
electrode potential jumps,  muscle activity,  ocular 
movements,  and movement artifacts).  We hope to 
develop a method to automatically detect spikes in 
pediatric EEGs based on deep learning with CNNs,  
although this might be more challenging than a compa-
rable system for adult EEGs.  The present pilot study is 
an initial attempt to create such a system.  Our aim is to 
exploit the power of CNNs and apply it to image pro-
cessing by converting EEG data into images and expos-
ing them to the network,  in contrast to most of the 
previous attempts in which time-series and/or spectral 
EEG data were used [12 , 18-21].  EEG image data have 
been used with CNNs for the detection of seizures or 

ictal EEG patterns [14] but not for interictal EEGs,  to 
the best of our knowledge.  Herein,  we investigated a 
simple application of an already established neural net-
work model that may work for this purpose.  We also 
attempted to identify which EEG montage setting is the 
most appropriate for this AI technique.

Subjects and Methods

Subjects. We enrolled 240 pediatric patients in 
the study who visited Okayama University Hospital 
during the period from January 2018 to March 2021 
and who were ≥ 3 years and < 18 years old at the time of 
scalp EEG recording.  Of these children,  120 showed 
spikes on EEGs and the remaining 120 did not,  as 
determined through the consensus of two experienced 
epileptologists (explained below).  Demographic data of 
the participants are listed in Table 1.

This study,  which was based on the use of previous 
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Table 1　 Demographic and electroencephalogram (EEG) data

Epileptic discharges Background

Training/validation Test Training/validation Test

No. of participants (male/female) 100 (53/47) 20 (10/10) 100 (54/46) 20 (10/10)

Median age (range) 9.9 (3.3-17.3) 10.7 (3.3-17.5) 10.5 (3.4-17.6) 10.6 (3.0-17.9)

Disorder

　Epilepsy 88 16

　Epilepsy with seizures suppressed 6 1 54 13

　Febrile seizures 6 2

　Behavior disorders without epilepsy 15 1

　Various neurological disorders 6 3 15 3

　Suspected seizures (epilepsy unlikely) 10 1

No. of EEG data images

　Epileptic discharges 3,025⇒6,050＊ 640

　Background# 6,400⇒12,800＊ 1,280

　　Alpha rhythm 370⇒740＊ 83

　　Vertex sharp transients 301⇒602＊ 53

　　Sleep spindles 561⇒1,122＊ 50

　　Artifacts 437⇒874＊ 35
#Background data included artifacts.
＊Number doubled due to addition of data with temporal jitter.



clinical records in the Department of Child Neurology,  
was approved by the Okayama University Ethics 
Committee (Ken #2109-029).

EEG recording and methods of analysis. EEGs 
were recorded using the Neurofax system (Nihon-
Kohden,  Tokyo) designed for the diagnoses of epilepsy 
and other neurological disorders (Table 1) with the 
international 10-20 electrode system and a sampling 
rate of 500 Hz.  We extracted a 20-min interictal data 
segment including both waking and sleep phases from 
the EEG record of each patient.

As a spike is transient with pointed peak(s),  the 
main component of which is generally negative [22],  
the EEG data were pre-screened for the detection of all 
steep negative potentials (local negative peaks with a 
potential gradient ≥ 25 μV within a 50-ms range and/or 
≥ 50 μV within a 100-ms range at both ends) in a refer-

ential montage with reference to the average of all elec-
trode potentials.  Clear spikes were then identified using 
both referential and bipolar montages based on the 
consensus of two epileptologists.

The data of up to 32 spikes (the highest negative 
peak in cases of spread to multiple channels; minimal 
temporal separation,  3 sec) were exported as 224-by- 
224-pixel gray TIFF images in a three-channel referen-
tial montage alone,  a two-channel bipolar montage 
alone,  and a combination of referential and bipolar 
montages (process illustrated in Fig. 1A , B) from each 
patient with spikes.  Another image was created for each 
selected spike with a temporal jitter of 0.5 sec (random 
choice of the forward or backward temporal shift) to 
avoid overfitting.  A bandpass EEG filter (1.5-80 Hz) 
was used to create the images.

In each child without spikes on EEG,  steep negative 
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Fig. 1　 Schematic illustration of the neural network used in this study.  (A) Representative original EEG data in a referential montage 
(top) and a bipolar montage (bottom).  Green dots:  background peaks.  Red dots: highest spike peaks.  Pink dots: surrounding spike peaks.  
Parts of EEG traces including the highest spike peaks indicated by red rectangles were exported as images in a referential montage,  a 
combination montage,  and a bipolar montage (B).  These images were processed through a convolutional neural network (CNN) for training,  
and the resulting output indicated whether the activity was a spike or background activity (C).  Av,  average reference.



potentials were similarly detected from the background,  
and a maximum of 64 potentials (minimal temporal 
separation,  3 sec) were exported as data images along 
with an additional identical number of jittered data 
images.  Artifacts were not excluded,  so that the net-
work could be trained to differentiate artifact-laden 
background data from spikes.  There were more back-
ground images than spike images because background 
activity generally shows an abundance of different pat-
terns.  Discrimination between spike and background 
data by human experts is necessary to build the present 
type of model (supervised machine learning) irrespec-
tive of the data format used (image,  time-series,  or 
spectral EEG).  Human involvement is also necessary to 
test the performance of the model.

Computations were performed by a program written 
in-house for MATLAB (ver. 9.11 [R2021b]; MathWorks,  
Natick,  MA,  USA) with the Deep Learning Toolbox 
including the associated pretrained VGG-16 network 
model <https://www.robots.ox.ac.uk/~vgg/research/
very_deep/> (accessed April,  2022),  a type of CNN 
suited to image recognition.  CNN models extract fea-
tures from matrix-type data by a multi-layer application 
of small pattern-patches (convolution with filters) to 
output classification.  Generally,  CNN models are 
trained with a large amount of data to attain the optimal 
parameters.  In this study,  by application of the transfer 
learning method to this VGG-16 model,  the network 
was trained on spikes from 100 patients and back-
ground data from another set of 100 children (randomly 
selected 20% data for validation; initial learning rate:  
0.0001; number of epochs: 50; batch size: 64; acti-
vation function: Rectified Linear Unit [ReLU]) 
(Fig. 1C).  The GPU (graphics processing unit) used was 
a GeForce RTX3060 (Nvidia,  Santa Clara,  CA,  USA).

Test data were drawn from 20 patients with spikes 
(32 spike images per person without jitter) and 20 chil-
dren without spikes (64 background images per person 

without jitter) who did not overlap with those used for 
the training/validation of the model.  The cases of the 
patients used for gathering the test data were selected so 
as to have an even distribution in terms of age and sex 
(shown in Table 1) and to include a variety of spike 
types.

Accuracy (the sum of true positive [spike] and true 
negative [background activity] outputs of classification 
divided by the total number of test images),  sensitivity 
(the number of true positive outputs of classification 
divided by the number of spike images for the test),  
specificity (the number of true negative outputs of clas-
sification divided by the number of background images 
for the test),  and the receiver operating characteristic 
(ROC) curve with the associated area under the curve 
(AUC) were computed for each data set in the referen-
tial montage alone,  the bipolar montage alone,  and the 
combination of referential and bipolar montages.  The 
threshold of classification was 0.5,  and the optimum 
threshold was also computed based on the ROC curve 
for each montage.  The Wilcoxon signed-rank test was 
used to compare the correct classification of spike and 
background images in individual patients,  with 
Bonferroni correction for multiple comparisons; sig-
nificance was defined as a p-value < 0.05/3 with three 
analyses).  We used the JMP Japanese ver. 11 software 
(SAS Institute Japan,  Tokyo) for these analyses.

Results

The accuracy,  sensitivity,  and specificity were each 
> 0.97 when the referential and combination montages 
were used with a threshold of 0.5,  and they were each 
< 0.97 with the bipolar montage (Table 2).  A correct 
classification of spikes and background activity in indi-
vidual patients is shown in Fig. 2.  Although montage- 
related differences were not observed regarding spikes,  
the use of the bipolar montage resulted in significantly 
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Table 2　 Accuracy,  sensitivity,  and specificity of classification

Threshold at 0.5 Optimum threshold for each montage

Montage Accuracy Sensitivity Specificity Optimum threshold Accuracy Sensitivity Specificity

Combination 0.97708 0.97969 0.97578 0.99387 0.97917 0.95781 0.98984

Referential 0.97917 0.97188 0.98281 0.93950 0.98281 0.96406 0.99219

Bipolar 0.96823 0.96719 0.96875 0.99555 0.97297 0.94219 0.98828



lower correct classification rates compared to the use of 
the referential montage in the case of background activ-
ity (p = 0.0107).

The AUC was generally high when the combination 
and referential montages were used (0.99772 and 
0.99778,  respectively),  and it was slightly lower with the 
bipolar montage (0.99189) (Fig. 3).  When the optimum 
threshold obtained from the ROC curve was used for 
each montage,  the accuracy and specificity improved 
slightly,  but the sensitivity worsened (Table 2).

There were a total of 30 false-negative outputs of 
classification (13 , 18,  and 21 outputs of misclassifica-
tion as background with overlap in the analyses of the 
combination,  referential,  and bipolar montages,  
respectively,  among 640 assessments of spike images) 
and 59 false-positive outputs of classification (31 , 22,  
and 40 outputs of misclassification as spikes with over-
lap in the analyses of the combination,  referential,  and 
bipolar montages,  respectively,  among 1,280 assess-
ments of background images) with a threshold of 0.5.  
Correct spike classification tended to fail in cases of 
low-amplitude ill-formed spikes,  particularly epileptic 
discharges with a rather long duration (termed “sharp 
waves”) in a run (Fig. 4A) that accounted for 25 false- 
negative outputs of classification.  Misclassification of 
the remaining five spike images appeared to be due to 
noise contamination.

Correct background classification also failed in cases 
of slow waves,  particularly runs of slow waves with 
rather steep morphology (Fig. 4B),  which accounted for 
39 false-positive outputs of classification.  Misclassifica-
tion of the background occurred in two images,  which 
included sleep spindles associated with slow waves 
(Fig. 4C),  seven images including vertex sharp tran-
sients (Fig. 4D),  seven images including alpha activity 
with rather deformed/irregular morphology associated 
with slow waves and/or noise,  and four images includ-
ing artifacts.

The time needed to train the network ranged from 
2,578 to 2,591 min,  and the mean time to test 1,000 
images was 28.6 sec.

Discussion

We used an established CNN model to recognize 
spikes in pediatric EEGs without any additional data 
processing,  and we obtained acceptable results.  The 
accuracy,  sensitivity,  specificity,  and AUC obtained 
with our method were generally high,  and they were 
largely comparable to the results of various other AI 
studies involving adults [19],  a combination of adults 
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and children [20 , 21],  children [16 , 17],  and partici-
pants of unknown ages [11 , 18].  It is notable that Jing et 
al.  reported expert-level performance of their network 
model (SpikeNet) [23].  A straightforward comparison 
of performances among these proposed methods is dif-
ficult because the EEG data used are different.  In most 
of the previous studies,  EEG data in the form of 
time-series numerical values were used.  Because EEG 
data are a time series of potential values,  it may be 
mathematically more natural and precise to use 
time-series data than to use image-transformed data.  
However,  our present method based on an image data 
analysis may have an under-recognized and attractive 
feature: it has potential similarity to human EEG 
reviewing,  as epileptologists and EEGers see EEGs as 
images of traces for pattern recognition and not as runs 

of numerical values.  When the present model is com-
pleted,  both the process of picking out candidate steep 
potentials from EEG data and the spike/background 
classification can be fully automated,  as is the case with 
other AI methods.

Epileptologists and EEGers learn to tell spikes from 
steep potentials buried in background activity through 
experience; however,  they do not know exactly what is 
the essential morphological difference between spikes 
and background steep potentials,  and therefore the 
mathematical formulation of this differentiation 
remains to be established.  As in many EEG studies,  we 
needed the consensus of experienced epileptologists to 
select spikes — due to the lack of a formal objective defi-
nition of spikes — regardless of the data format used.  
CNNs are thought to model real neural responses in the 

622 Kobayashi et al. Acta Med.  Okayama　Vol.  76,  No.  6

Fig. 4　 Representative false-negative and false-positive classifications.  (A) Mis-classification of a run of sharp waves over T4 as the 
background.  Mis-classification of background grapho-elements as spikes.  (B) slow waves in a burst,  (C) sleep spindles associated with 
slow waves,  and (D) a vertex sharp transient.  Purple dots: background peaks that happened to be selected for the test.  Green 
dots: background peaks.  Red dots: highest spike peaks.  Pink dots: surrounding spike peaks.



primary visual cortex [24 , 25],  although the processing 
in CNNs is largely a black box.  If a CNN model really 
works for EEG reviewing and the reasons for such suc-
cess are identified in the future,  then our new model 
might provide some clue to what human eyes recognize 
in the morphology of EEGs.

The present results provide several clues suggesting 
how our method can be improved.  First,  regarding 
montage selection,  the use of a referential or combina-
tion montage gave better results than the use of the 
bipolar montage.  A subtraction of potential values 
between adjacent EEG channels in a referential montage 
yields potential values in a bipolar montage.  Therefore,  
all data in a bipolar montage are included in a referen-
tial montage,  and the data in a combination montage 
include duplicate information.  Image panels in a refer-
ential montage may contain EEG data information most 
efficiently in a limited area compared to other mon-
tages.  In childhood,  however,  the EEGs in a referential 
montage are generally prone to deformation due to 
artifacts,  and both referential and bipolar montages are 
often necessary for precise interpretation by humans.  
EEG images in only a bipolar montage may not be ideal,  
but further research is necessary to determine whether 
a referential montage is better than a combination mon-
tage.

Second,  there is a trade-off between the sensitivity 
and specificity of the analysis,  and this is affected by the 
threshold selection.  In this study,  the background data 
appeared to have more influence on the model than the 
spike data,  probably because the number of back-
ground images was double that of spike images.  
Consequently,  our selection of the optimum threshold 
led to decreased sensitivity (true spike classification) 
and increased specificity (true background classifica-
tion) compared to the initial threshold of 0.5.  The 
selection of the threshold may depend on subjective 
decisions regarding the relative importance of spikes 
and background.

Third,  the misclassified background EEG patterns 
that we observed included vertex sharp transients,  sleep 
spindles,  and alpha rhythms,  which have a specific 
mode of appearance and distribution: vertex sharp 
transients occur dominantly over the vertex (Cz) during 
non-rapid eye movement (NREM) sleep; sleep spindles 
emerge over the bilateral frontal and/or central regions 
during NREM sleep,  and alpha rhythms appear domi-
nantly over the bilateral occipital regions when the sub-

ject closes his or her eyes during a waking state.  We 
may thus build separate models that are designed for 
specific regions and incorporate arousal-level informa-
tion.

In addition,  various types of EEG grapho-elements 
other than spikes might well be differentiated through 
the network model.  Although an attempt to include 
information on age and sleep stage has been described 
for a model of adult EEG data [19],  such an attempt 
may be challenging for pediatric EEG data because chil-
dren often keep their eyes open (with blocking of alpha 
rhythms) during wakefulness,  which can make the 
staging challenging.  In addition,  such region-,  stage- 
and grapho-element-specific models would require an 
enormous amount of EEG data for model training.

Fourth,  epileptologists and EEGers generally see 
whole EEGs in both temporal and spatial aspects to 
identify various patterns,  which makes brief single/
few-channel traces insufficient for review.  Some spikes 
are difficult to recognize even by human eyes when EEG 
data from surrounding/contralateral regions are miss-
ing.  There are models that employ all-channel time-se-
ries EEG data [11],  but the inclusion of all-channel data 
in an image would expand its size and might render it 
somewhat difficult to spot the location of an abnormal-
ity.  More investigation is needed in this regard.

There are several study limitations to address.  We 
pre-selected steep negative potentials as candidate 
spikes,  for convenience.  Spikes with very low ampli-
tude may thus have been missed,  and spikes with a 
predominant positive component may seldom be 
observed [22].  There are reports of methods to pre- 
select candidate spikes that would be more sophisti-
cated than our simple method [15 , 16],  plus methods 
that do not involve pre-selection [11].  Our present 
analyses did not include data from infants or young 
children (< 3 years of age) with immature EEG patterns,  
which may require a different scheme.  The time con-
sumed for modeling and testing may be improved if a 
program written in Python is used with a better GPU.  
We selected the VGG-16 over other types of CNNs as it 
allows a relatively large image size,  but there might be 
another CNN model that works better for EEG analyses.  
Our selection of the patients for tests depended on 
human decisions and might thus have included some 
bias.  We need to involve many more patients not only 
from our institution (Okayama University Hospital) but 
also from other hospitals to improve the efficacy of our 

December 2022 AI-based EEG Spike Detection 623



method.
There is much room to improve the methodology,  

but the results of the present pilot study demonstrate 
the possibility that pediatric EEGs can be interpreted 
with AI using currently available CNN models.  We 
hope that our model will become a useful clinical 
screening tool to reduce human labor in reviewing scalp 
EEGs.
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