POSTILLA

Published from 1950 to 2004, the short papers of the *Postilla* series reported on original research by the Yale Peabody Museum of Natural History's curators, staff, and research associates, and their colleagues, in the natural science disciplines represented by the collections of the Museum's curatorial divisions.

The *Postilla* series, which ceased publication with Number 232 (2004), was incorporated into the journal *Bulletin of the Peabody Museum of Natural History*, available from BioOne Complete at https://bioone.org/.

Yale Peabody Museum scholarly publications are archived through EliScholar, a digital platform for scholarly publishing provided by Yale University Library at https://elischolar.library.yale.edu/.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/

Yale peabody museum of natural history

P.O. Box 208118 | New Haven CT 06520-8118 USA | peabody.yale.edu

POSTILLA PEABODY MUSEUM YALE UNIVERSITY

NUMBER 158 29 SEPTEMBER 1972

DENTITION OF THE EARLY EOCENE PRIMATES NIPTOMOMYS AND

ABSAROKIUS

THOMAS M. BOWN PHILIP D. GINGERICH

POSTILLA

Published by the Peabody Museum of Natural History, Yale University

Postilla includes results of original research on systematic, evolutionary, morphological, and ecological biology, including paleontology. Syntheses and other theoretical papers based on research are also welcomed. *Postilla* is intended primarily for papers by the staff of the Peabody Museum or on research using material in this Museum.

Editors: Zelda Edelson, Elise K. Kenney.

Postilla is published at frequent but irregular intervals. Manuscripts, orders for publications, and all correspondence concerning publications should be directed to:

Publications Office Peabody Museum of Natural History New Haven, Conn., 06520, U.S.A.

Lists of the publications of the Museum are available from the above office. These include *Postilla*, *Bulletin*, *Discovery*, and special publications. *Postilla* and the *Bulletin* are available in exchange for relevant publications of other scientific institutions anywhere in the world.

Inquiries regarding back numbers of the discontinued journal, Bulletin of the Bingham Oceanographic Collection, should be directed to:

> Walter J. Johnson, Inc. 111 Fifth Avenue New York, N.Y. 10003.

DENTITION OF THE EARLY EOCENE PRIMATES NIPTOMOMYS

AND ABSAROKIUS

THOMAS M. BOWN

Peabody Museum of Natural History Yale University, New Haven, Connecticut 06520

PHILIP D. GINGERICH

Department of Geology and Geophysics and Peabody Museum of Natural History Yale University, New Haven, Connecticut 06520

(Received April 6, 1972)

Abstract

The mandibular dentition of Niptomomys doreenae was previously known only from an edentulous mandible preserving alveolae for all teeth, and jaw fragments preserving P_4 and M_{1-3} . A new mandible of Niptomomys is described here which preserves an enlarged, lanceolate lower incisor and a small, blunt, single-rooted P_3 . The incisor morphology confirms placement of Niptomomys in the Family Microsyopidae. The presence of a singlerooted P_3 invalidates the previous interpretation of the lower dental formula. Comparison with the related early primates Navajovius, Palaechthon, Plesiolestes and Uintasorex shows the lower dental formula of Niptomomys to be 1.1.3.3.

The total number of teeth in the mandible of *Absarokius* was previously determined to be eight (except for a single specimen of *Absarokius* "near *A. abbotti*" which Gazin, 1962, suggested might possibly have nine). Two mandibles of *A. abbotti* described here clearly had nine teeth and a lower dental formula of 2.1.3.3. The upper canine and P² of this species are also described here for the first time. Comparison of the new specimens of *A. abbotti* with the later *A. noctivagus noceri* demonstrates that the tooth previously interpreted in the latter taxon as P₂ is in fact the canine, thus the lower dental formula of *A.n. noceri* is 2.1.2.3, not 1.1.3.3. *Absarokius abbotti*, with a dental formula of I_{2}^{2} , C_{1}^{1} , P_{3}^{3} , M_{3}^{3} seems clearly to be derived from a species of *Tetonius*.

POSTILLA 158: 10p.

29 SEPTEMBER 1972

INTRODUCTION

Recent Yale paleontological expeditions to the Bighorn Basin in northwestern Wyoming, under the direction of E. L. Simons, have recovered several specimens that reveal for the first time important elements of the anterior dentition of two species of small Early Eocene primates. The morphology of the anterior dentition is important to systematic studies and to the interpretation of feeding behavior and diet; however, for many genera and species of early Tertiary primates, the anterior dentition is unknown.

Lemur-like primates of the Family Adapidae and tarsier-like primates of the Family Anaptomorphidae are first known in the Early Eocene. The remaining Early Eocene primates are members of lineages originating in the Paleocene and are represented by three extinct families, Paromomyidae, Plesiadapidae and Microsyopidae. The new specimens described below reveal new elements of the anterior mandibular dentition of the microsyopid *Niptomomys* and the anterior mandibular and maxillary dentition of the anaptomorphid *Absarokius*.

Tooth nomenclature used in this paper is taken from Simons (1972, p. 63). The following abbreviations are used: AMNH, American Museum of Natural History; MCZ, Museum of Comparative Zoology, Harvard University; PU, Department of Geology, Princeton University; UCM, University of Colorado Museum; UCMP, University of California Museum of Paleontology, Berkeley; YPM, Peabody Museum of Natural History, Yale University.

Niptomomys Doreenae McKenna 1960

McKenna (1960) described four jaw fragments from the Early Wasatchian Four Mile fauna of northwestern Colorado as a new taxon, Niptomomys doreenae. Since that time 35 additional specimens of N. doreenae have been collected or recognized in previous collections (two from 1913). Szalay (1969b) reviewed the specimens known in 1969 and placed Niptomomys with Uintasorex in the Subfamily Uintasoricinae of the Family Microsyopidae.

HYPODIGM. Niptomomys is presently known from the Early Eocene Hiawatha Member of the Wasatch Formation, northwestern Colorado (Four Mile fauna) and from the Willwood Formation, Bighorn Basin, Wyoming (Graybullian and "Lysitian"). The complete hypodigm as now known is: Four Mile fauna—East Alheit Quarry: AMNH 59612, 59621, 59655, 80079, 80080, 80088, 80955, 80957, 80959, 80960, 80961, 80962, 80963; Despair Quarry: UCMP 44038, UCM 29681, AMNH 59692, 59693, 59694, 80055; Timberlake Quarry: UCMP 46978, AMNH 80958; Kent Quarry: UCMP 44080, 44081 (type), 44082, 47106. Willwood Formation—Gray-

DENTITION OF NIPTOMOMYS AND ABSAROKIUS

bullian: AMNH 16828, 16829, PU 17412, 17833, 17880, 17885, 17897, 19550, MCZ 19005, YPM 23600, 26462, 30341; "Lysitian": YPM 18711, 27577.

We recently studied the entire hypodigm and concluded, as did Szalay (1969b), that it represents only one species. Specimens from the East Alheit Quarry sample differ from most of the remaining specimens in their smaller size and more prominent metaconid development on P_4 ; however, individual size and the condition of the metaconid appear to be correlated and variable. A species distinction for this sample thus seems unwarranted.

NEW MATERIAL. In 1971 a mandible of Niptomomys doreenae (YPM 27577, Fig. 1) preserving the incisor, a single-rooted P_3 , P_4 and M_1 was collected by the Yale party at YPM Locality 175, in the NE^{1/4} Section 1, T48N, R97W, Washakie County, Wyoming. This locality has yielded 171 identifiable specimens, including *Pelycodus jarrovii* and *Heptodon calciculus* on which the "Lysitian" age determination is based. The *Niptomomys* specimen is slightly distorted; however, by comparison with previously known material, this distortion can be corrected. The incisor has been rotated, with its dorsal edge moved medially. The dorsal surface of the mandible between the enlarged incisor and P_3 is damaged. P_3 is displaced slightly forward and its crown has been rotated.

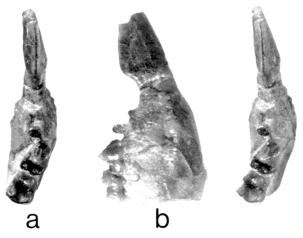


FIG. 1. Anterior portion of a right mandible of Niptomomys doreenae (YPM 27577) showing the enlarged I_1 , P_{3-4} , and M_1 . a. Stereophotograph of occlusal view; b. lateral view. Both $\times 6$.

DESCRIPTION. YPM 27577 is the only mandible of *Niptomomys* known that preserves the large, procumbent first incisor. This incisor is lanceolate in lateral profile. Its root extends posteriorly below M_1 . The crown has a

complete enamel cover, is mediolaterally compressed and shallowly excavated on the medial-dorsal surface (below the occlusal crest). A minor crest arises from the medial surface of the crown just anterior to the root and extends forward to the point where the tip of the crown is broken. The morphology of this incisor is a specialization characteristic of the Microsyopidae. Discovery of a microsyopid type of lower central incisor in the *Niptomomys* dentition apparently confirms allocation of the genus to this family (Russell, Louis and Savage, 1967).

The third premolar of YPM 27577 is a small, blunt, single-rooted tooth with only a faint anteroposteriorly oriented crest. This tooth is also preserved in the mandibles PU 19550 and AMNH 59692. The fourth premolar and the molars of *Niptomomys* have been adequately described and figured by McKenna (1960) and Szalay (1969b) and will not be redescribed here.

DISCUSSION. Szalay (1969b) accepted Jepsen's (1934) determination of the mandibular dental formula of *Uintasorex* as 1.0.3.3. He further proposed that the mandibular dental formula of *Niptomomys* is 1.0.3.3 to be consistent with that of *Uintasorex* and *Microsyops*. The discovery that P_3 of *Niptomomys* is a single-rooted tooth requires a new interpretation of the dental formula of this genus. In *Niptomomys* (Fig. 2) I_1 is followed by

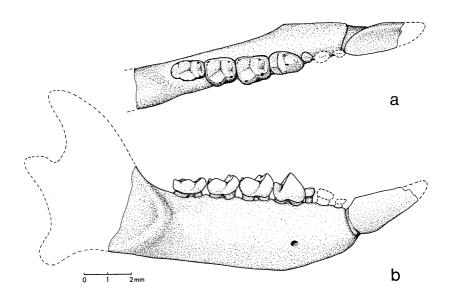


FIG. 2. Reconstruction of right mandible of *Niptomomys doreenae*, based on YPM 27577; AMNH 16829, 80079, 80955; PU 17833, and 19550. Morphology of parts shown with dashed line is unknown.

alveoli for two small, single-rooted teeth, then P_{3-4} and M_{1-3} . In view of the microsyopid affinities of the Middle Paleocene genera *Plesiolestes* and *Palaechthon* (Bown and Gingerich, in preparation), the primitive mandibular dental formula of the family was probably 2.1.3.3. Thus the two small teeth following I_1 in *Niptomomys* could be either I_2 and C, or C and P_2 . Szalay (1969a) discussed the probable microsyopid affinities of *Navajovius*. Simpson's (1935) interpretation of the mandibular dental formula of the Late Paleocene *Navajovius kohlhaasae* as 1.1.3.3 is consistent with the presumed ancestral formula of Microsyopidae and suggests that the correct mandibular formula of *Niptomomys* is probably also 1.1.3.3. Thus the teeth following I_1 in *Niptomomys* are the lower canine and P_2 .

In the reconstruction of the mandible of *Niptomomys* (Fig. 2) the lower canine and P_2 have been tentatively restored with blunt crowns like that of P_3 and paralleling those of the marsupials *Phalanger* and *Petaurus;* however, they may have had pointed crowns as does an undescribed uintasoricine (UCMP 95949) collected by D. E. Savage from the Late Wasatchian of the Washakie Basin, Wyoming.

Absarokius Abbotti (Loomis, 1906)

Among other significant specimens recovered from the Willwood Formation in 1971 are two mandibles of *Absarokius*, referred here to *A. abbotti* (Loomis). These specimens are remarkable in that the symphyseal regions of the jaws are preserved with alveoli present, enabling an accurate determination of the lower dental formula to be made. A maxilla found by the 1962 field party is believed to be the most complete known upper dentition of this species and is therefore described and figured here. Comparison with all Middle Wasatchian *Absarokius* in the Yale Bighorn Basin collections (65 upper and lower jaws) suggests that the dental formula of this taxon is constant within the above areal and stratigraphic range in the Bighorn Basin.

NEW MATERIAL. YPM 27791 (Fig. 3a,c) is a left mandible preserving the lower canine, P_{2-4} , M_{1-3} , and two alveoli anterior to the canine. YPM 28205 (Fig. 3b,d) is a right mandible with the root of the canine, P_{2-4} , M_{1-2} , and two alveoli anterior to the canine root. Both specimens are from YPM Locality 185 ("Lysitian"), in the SE¹/₄ Section 26, T49N, R97W, Buffalo Basin, Bighorn County, Wyoming. YPM 18686 (Fig. 4a,b) is a left maxilla preserving the root of the upper canine, part of P², P³⁻⁴, and M¹⁻³ from YPM Locality 40 ("Lysitian"), in the SW¹/₄ Section 34, T49N, R96W, Buffalo Basin, Bighorn County, Wyoming.

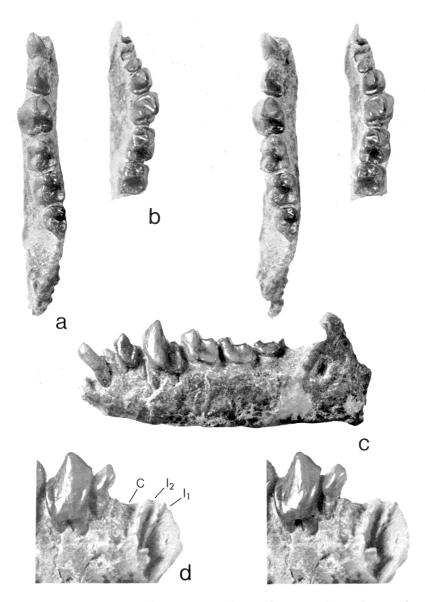


FIG. 3. Mandibular dentition of *Absarokius abbotti*. a. Stereophotograph of occlusal view of left mandible (YPM 27791) with alveoli for I_{1-2} , and intact C, P_{2-4} , M_{1-3} ; b. stereophotograph of occlusal view of right mandible (YPM 28205) with alveoli for I_{1-2} , C, and intact P_{2-4} , M_{1-2} ; c. lateral view of YPM 27791; d. stereophotograph of anterior portion of YPM 28205 showing alveoli for I_{1-2} and C, followed by intact P_2 and P_3 . FIG. 3a-c, $\times 4$; d, approximately $\times 8$.

DESCRIPTION. In YPM 27791, 28205 and 18686 the upper and lower fourth premolars are smaller than samples of those teeth in *Absarokius noctivagus* (Guthrie, 1971), *A.n. nocerai* (Robinson, 1966) and *A. witteri* (Morris, 1954). Both the third lower premolar and the last lower molar are somewhat smaller than recorded in samples of *A. abbotti* from the Wind River Lysite Member (Guthrie, 1967). P³ is slightly wider transversely than observed in most specimens of *A. abbotti*. The cheek teeth of *A. abbotti* posterior to P_2^2 have been adequately described by earlier authors and need not be analyzed again.

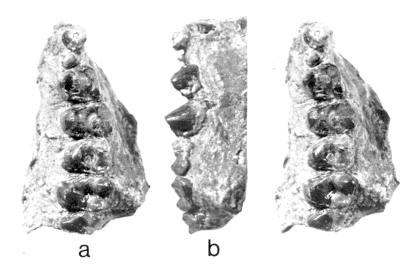


FIG. 4. Left maxilla of *Absarokius abbotti* (YPM 18686) with broken C and P², and intact P³⁻⁴, M¹⁻³. a. stereophotograph of occlusal view; b. lateral view. Both $\times 4$.

 P^2 is a diminutive, single-rooted, peglike tooth, somewhat lingually situated just anterior to the protocone of P^3 (Gazin, 1958). The crown is broken with only the anterobuccal portion complete; however, this part suggests that the tooth was unicuspate with the solitary cusp located on the preserved remnant of the crown (Fig. 4.).

The root anterior to P^2 indicates that the canine was a relatively large tooth with a minor posterolingual cingulum. The root of this tooth is also present in YPM 23177.

 P_2 is a small, single-rooted and unicuspid tooth with the lingual margin of the crown greatly distended (Fig. 3). The single cusp is anteriorly and somewhat buccally removed from the center of the crown. A lingual shelf is apparent and is broadest at the rear of the tooth; there is no buccal cingulid. The posterior slope of the protoconid is convex buccally and excavated lingually, resulting in a weak cristid developed at the rear of the tooth which is attenuated anteriorly where it merges with the protoconid (similar to the condition observed in P_3).

Immediately anterior to the P_2 is a large premolariform tooth, much taller than P_2 and only slightly shorter than P_3 . Due to its relative size and positioning, this tooth is believed to be the lower canine. The root is transversely much wider than it is long, and supports a high, anteriorlydirected crown. The crown morphology is similar to that of P_2 . The posterolingual cingulid region is broken, but the outline of the tooth suggests the former presence of lingually distended enamel as observed in P_2 .

Two alveoli are present in front of the canine in YPM 27791 and in front of the canine root in YPM 28205. These are the alveoli of I_1 and I_2 . As observed in YPM 28205 (Fig. 3d), the I_1 alveolus is considerably larger anteroposteriorly than the alveolus for I_2 . I_2 , like the canine, has a transversely broad root and is somewhat "short-rooted," with the root of the larger I_1 emplaced partially beneath the I_2 root and extending posteriorly to the vicinity of the canine root. A fragment of an incisor root is associated with YPM 27791.

DISCUSSION. Questions of tooth homologies in *Absarokius* and other anaptomorphines have long been unresolved. Matthew (1915) determined the lower dental formula of all *Absarokius* material known to him as 1.1.3.3. He was followed in this interpretation by Gazin (1952, *A. noctivagus*), and Kelley and Wood (1954). Morris (1954) questioned Matthew's description and suggested that in *A. witteri* there may have been four single-rooted teeth in the mandible anterior to P₃. Gazin (1958) believed the lower dental formula "for the more typical of the anaptomorphids" was 2.1.2.3. He later described a "Gray Bull" specimen of *Absarokius* cf. *abbotti* from the Red Desert in which the P₂ was apparently retained (Gazin, 1962). Robinson (1966) named a subspecies of *Absarokius noctivagus*, *A.n. nocerai*, in which he described two alveoli anterior to "P₂" (also figured by Simons, 1963, p. 90). Comparison with YPM 27791 demonstrates that this "P₂" is actually the lower canine; by the stage of *A.n. nocerai* the P₂ had been lost from the dental series.

Based on the specimens here, the dental formula of the Willwood sample of *Absarokius abbotti is* I_{2}^{2} , C_{1}^{1} , P_{3}^{3} , M_{3}^{3} . Other previously described samples of *Absarokius*, when known from more complete anterior dentitions, may prove to share this dental formula also. However, the Huerfano subspecies *Absarokius noctivagus nocerai* seems clearly to be a more advanced form in which P_2 has been lost.

Robinson (1967) described a complete mandible of "?Tetonoides" in which the dental formula is the same as that of Absarokius abbotti. The type specimen of Chlororhysis knightensis Gazin (1958) also closely resembles the specimens of Absarokius figured here. In addition, several relatively complete specimens of Tetonius recovered in recent years by the Peabody Museum field parties and currently under study at Yale indicate that the lower dental formula of most specimens of this genus was probably I_2 , C_1 , P_3 , M_3 as well. The condition of the closely packed anterior teeth and the peculiar arrangement of the incisor roots, as seen in A. abbotti, may have been misleading factors in earlier descriptions of the anterior dental homologies of anaptomorphine lower teeth. The presence of I_1 is difficult to establish unless most of the anterior portion of the mandible is present. The proliferation of anaptomorphine taxa based on size and the condition of the paraconid and metaconid of P_4 may have been due in part to a poor understanding of the dental anatomy of the early members of the subfamily. The relatively large and specialized P_4 of Absarokius can well be explained as an adaptive shift from a *Tetonius*-like ancestor, thus favoring a large P_4 protoconid at the expense of the accessory cusps (Simons, 1972, personal communication). As a result of the present study, Matthew's original (1915) inclination to regard Absarokius species as "progressively specialized descendents of Tetonius" species is strengthened.

ACKNOWLEDGMENTS

We are greatly indebted to Professor Elwyn L. Simons for permission to describe these specimens. We thank Professors Simons and John H. Ostrom, both of Yale University Peabody Museum of Natural History, for their comments on the manuscript. We also thank Dr. M. C. McKenna (American Museum of Natural History), Dr. F. A. Jenkins (Museum of Comparative Zoology), Dr. V. J. Maglio (Princeton University Museum), and Dr. D. E. Savage (University of California Museum of Paleontology, Berkeley) for the loan of specimens in their care.

Mr. David C. Parris (Department of Geology, Princeton) kindly permitted us to study specimens of *Niptomomys* currently under study by him, and we have benefited from discussions with Mr. Kenneth D. Rose (Department of Geology and Geophysics, Yale University).

Contributions from the Boise Fund (Oxford), the O. C. Marsh and J. T. Doneghy Funds (Yale), and Mr. Roger Hall-Lloyd all made the 1971 Wyoming field work possible and are here gratefully acknowledged.

LITERATURE CITED

- Gazin, C. Lewis. 1952. The Lower Eocene Knight Formation of western Wyoming and its mammalian faunas. Smithsonian Misc. Colln. 117 (18): 1-82.
- 1958. A review of the Middle and Upper Eocene Primates of North America. Smithsonian Misc. Colln. 136 (1): 1–112.
- ----- 1962. A further study of the Lower Eocene mammalian faunas of south-western Wyoming. Smithsonian Misc. Colln. 144 (1): 1-98.
- Guthrie, Daniel A. 1967. The mammalian fauna of the Lysite Member, Wind River Formation, (Early Eocene) of Wyoming. Mem. Southern Calif. Acad. Sci. 5: 1-53.
- ----- 1971. The mammalian fauna of the Lost Cabin Member, Wind River Formation (Lower Eocene) of Wyoming, Ann. Carnegie Mus. 43 (4): 47-113.
- Jepsen, Glenn L. 1934. A revision of the American Apatemyidae and the description of a new genus, *Sinclairella*, from the White River Oligocene of South Dakota. Proc. Amer. Phil. Soc. 74 (4): 287-305.
- Kelley, Dana R. and Albert E. Wood. 1954. The Eocene mammals from the Lysite Member, Wind River Formation of Wyoming. Jour. Paleont. 28 (3): 337-366.
- Loomis, Frederic B. 1906. Wasatch and Wind River Primates. Amer. Jour. Sci. Ser. 4, 21: 277-285.
- Matthew, William D. 1915. A revision of the Lower Eocene Wasatch and Wind River faunas. Part IV. Entelonychia, Primates, Insectivora (part). Bull. Amer. Mus. Nat. Hist. 34: 429-483.
- McKenna, Malcolm C. 1960. Fossil Mammalia from the Early Wasatchian Four Mile fauna, Eocene of northwest Colorado. Univ. Calif. Pub. Geol. Sci. 37 (1): 1-130.
- Morris, William J. 1954. An Eocene fauna from the Cathedral Bluffs Tongue of the Washakie Basin, Wyoming. Jour. Paleont. 28 (2): 195–203.
- Robinson, Peter C. 1966. Fossil Mammalia of the Huerfano Formation, Eocene, of Colorado. Bull. Peabody Mus. Nat. Hist. 21: 1–95.
- —— 1967. The mandibular dentition of *?Tetonoides* (Primates, Anaptomorphidae). Ann. Carnegie Mus. 39 (13): 187–191.
- Russell, Donald E., Pierre Louis and Donald E. Savage. 1967. Primates of the French Early Eocene. Univ. Calif. Pub. Geol. Sci. 93: 1-46.
- Simons, Elwyn L. 1963. A critical reappraisal of Tertiary Primates, p. 65–129. In J. Buettner-Janusch [ed.] Evolutionary and genetic biology of primates. Academic Press, New York.
- —— 1972. Primate evolution: An introduction to man's place in nature. Macmillan, New York. 322p.
- Simpson, George G. 1935. The Tiffany fauna, Upper Paleocene. III. Primates, Carnivora, Condylarthra, and Amblypoda. Amer. Mus. Novitates, no. 817: 1-28.
- Szalay, Frederick S. 1969a. Mixodectidae, Microsyopidae, and the insectivoreprimate transition. Bull. Amer. Mus. Nat. Hist. 140: 193-330.

— 1969b. Uintasoricinae, a new subfamily of early Tertiary mammals (?Primates). Amer. Mus. Novitates, no. 2363: 1–36.

INFORMATION FOR AUTHORS

- **REVIEW** The Publications Committee of the Peabody Museum of Natural History reviews and approves manuscripts for publication. Papers will be published in approximately the order in which they are accepted; delays may result if manuscript or illustrations are not in proper form. To facilitate review, the original and one carbon or xerox copy of the typescript and figures should be submitted. The author should keep a copy.
 - **STYLE** Authors of biological papers should follow the *Style Manual for Biological Journals*, Second Edition (Amer. Inst. Biol. Sci.). Authors of paleontological manuscripts may choose to follow the *Suggestions to Authors of the Reports of the U.S. Geological Survey*, Fifth Edition (U.S. Govt. Printing Office).
 - **FORM** Maximum size is 80 printed pages including illustrations (= about 100 manuscript pages including illustrations). Manuscripts must be typewritten, with wide margins, on one side of good quality $8\frac{1}{2} \times 11''$ paper. Double space everything. Do not underline anything except genera and species. The editors reserve the right to adjust style and form for conformity.
 - **TITLE** Should be precise and short. Title should include pertinent key words which will facilitate computerized listings. Names of new taxa are not to be given in the title.
- **ABSTRACT** The paper must begin with an abstract. Authors must submit completed BioAbstract forms; these can be obtained from the *Postilla* editors in advance of submission of the manuscripts.

NOMENCLATURE Follow the International Codes of Zoological and Botanical Nomenclature.

- **ILLUSTRATIONS** Must be planned for reduction to $4\frac{1}{4} \times 7^{"}$ (to allow for running head and two-line caption). If illustration must go sideways on page, reduction should be to $4 \times 7\frac{1}{4}^{"}$. All illustrations should be called "Figures" and numbered in arabic, with letters for parts within one page. It is the author's responsibility to see that illustrations are properly lettered and mounted. Captions should be typed double-spaced on a separate page.
 - **FOOTNOTES** Should not be used, with rare exceptions. If unavoidable, type double-spaced on a separate page.

TABLES Should be numbered in arabic. Each must be typed on a separate page. Horizontal rules should be drawn lightly in pencil; vertical rules must not be used. Tables are expensive to set and correct; cost may be lowered and errors prevented if author submits tables typed with electric typewriter for photographic reproduction.

REFERENCES The style manuals mentioned above must be followed for form and for abbreviations of periodicals. Double space.

AUTHOR'S COPIES Each author receives 50 free copies of his *Postilla*. Additional copies may be ordered at cost by author when he returns galley proof. All copies have covers.

PROOF Author receives galley proof and manuscript for checking printer's errors, but extensive revision cannot be made on the galley proof. Corrected galley proof and manuscript must be returned to editors within seven days.

COPYRIGHT Any issue of *Postilla* will be copyrighted by Peabody Museum of Natural History only if its author specifically requests it.