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Abstract. Environmental Information Systems and Services require flex-
ible discovery and chaining of distributed environmental services to sup-
port a large number of concurrent decision processes. The ability to cope
with geo-spatial features of the environment and to process in real
time huge and possibly noisy data streams are two critical factors
in supporting such decision processes. Solution to separately cope with
the two aspects are available. The geo-spatial aspect has been studied
for decades in the Geographic Information System (GIS) community.
Data Stream Management Systems (DSMS) are the result of a decade
of investigation on data stream processing by the database community.
However, seamless integrated usage of GIS and DSMS is still a diffi-
cult task. Recent developments of the Semantic Web community have
been trying to overcome the barriers between these two technologies by
proposing to extend the Semantic Web with both a Geo-Spatial and a
Streaming dimension. In this paper, these two dimensions of Semantic
Web are show-cased for environmental monitoring and management in
oil and gas operations.

1 Introduction

Remaining world leader in the oil and gas industry while achieving continuous
improvements in environmental performance is one of the objectives for the
years 2009-2011 listed by Norwegian Oil Industry Association (OLF)3[1]. In OLF
vision, a number of areas are identified where ICT technology can be used to
create smarter solutions. OLF vision calls for:
– better ICT infrastructure able to increase communication capability from

sensors and controllers to the platform and onshore control rooms;
– better data integration solutions able to break the vendor specific silos

that make it hard, if at all possible, to correlate data produced by different
vendor’s equipment; and

– more intelligent systems able to interpret the huge amount of real-time
sensor data about production, environment and facilities against the even

3 http://www.olf.no/
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larger amount of information that describe wells, templates, processing plants,
and pipelines.

For instance, oil operation engineers base their decision processes on real
time data acquired from sensors on oil rigs, both on the sea surface and on the
seabed. A typical oil production platform is equipped with about 400.000 sensors
for measuring environmental and technical parameters. Some of the questions
they faces are:

– Given an alarm on a well in progress to drown, how much time do I have
given the historical behavior of that well?

– Given this brand of turbine, what is the expected time to failure when the
barring starts to vibrate as now detected?

– How do I detect weather events from observation data?
– Which sensors have observed a blizzard within a 100 mile radius of a given

location.

Answering these questions requires to process an (almost) “continuous” flow
of information – with the recent information being more relevant as it describes
the current state of a dynamic system – against a rich background knowledge –
with geospatial information playing a central role.

The Semantic Web can provide to the oil industry, and in general the Envi-
ronmental Information Systems and Services research area, the standard tech-
nologies for data integration, but state-of-the-art semantic technologies can only
partially support the need for intelligent systems in the oil industry.

In the rest of the paper, we briefly discuss (see Section 2 and 3) recent
attempts to add to the Semantic Web the ability to continuously process data
flows and to efficiently perform geospatial analysis. We exemplifying their usage
for analyzing weather sensor data places all around the oil fields. In particular,
in Section 4, we describe how we are developing a solution for chaining different
processing units within the LarKC project4. Finally, in Section 5 we draw some
conclusions.

2 Continuous Processing of Data Streams

Continuous processing of flows of information (namely data streams) has been
largely investigated in the database community [2]. Specialized Data Stream
Management Systems (DSMS) are available on the market and features of DSMS
are appearing also in major database products, such as Oracle and DB2.

On the contrary, continuous processing of data streams together with rich
background knowledge requires specialized reasoners, but work on semantic tech-
nologies is still focusing on rather static data. In existing work on logical rea-
soning, the knowledge base is always assumed to be static (or slowly evolving).
There is work on changing beliefs on the basis of new observations [3], but the

4 http://www.larkc.eu
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solutions proposed in this area are far too complex to be applicable to gigantic
data streams of the kind illustrated in the oil production example above.

As argued in [4], we strongly believe that there is a need to close this gap
between existing solutions for belief update and the actual needs of supporting
decision process based on data streams and rich background knowledge. We
named this little explored, yet high-impact research area Stream Reasoning.

The foundation for complex reasoning over streams and background knowl-
edge has been investigated since 2008 by introducing technologies for wrapping
and querying streams in the RDF data format and by supporting simple forms of
reasoning. In this paper, we focus on Continuous-SPARQL (shortly C-SPARQL)
[5–8].

Listing 1.1 shows an example of C-SPARQL query that detects a blizzard: a
severe storm condition lasting for 3 hours or more characterized by low temper-
atures, strong winds, and heavy snow.

1 PREFIX so: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>
2 PREFIX w: <http :// knoesis.wright.edu/ssw/ont/weather.owl#>
3
4 REGISTER STREAM BlizzardDetection COMPUTE EVERY 10m AS
5 CONSTRUCT {
6 ?sensor so:generatedObservation [a w:blizzard] ;
7 so:samplingTime fn:now() .
8 }
9 FROM <http :// oilprod.org/weatherStations.rdf >

10 FROM STREAM <http :// oilprod.org/weatherObs.trdf >
11 [RANGE 3h STEP 10m]
12 WHERE {
13 ?sensor so:generatedObservation [a w:SnowfallObservation] .
14 { SELECT ?sensor
15 WHERE { ?sensor so:generatedObservation ?o1
16 ?o1 a w:TemperatureObservation ;
17 so:observedProperty w:AirTemperature ;
18 so:result [ so:value ?temperature ] . }
19 GROUP BY ( ?sensor )
20 HAVING (AVG(? temperature) <"0.0"^^ xsd:float) }
21 { SELECT ?sensor
22 WHERE { ?sensor so:generatedObservation ?o2
23 ?o2 a w:WindObservation ;
24 so:observedProperty w:WindSpeed ;
25 so:result [ so:value ?speed ] . }
26 GROUP BY ( ?sensor )
27 HAVING (MIN(? speed)> "40.0"^^ xsd:float) }
28 }

Listing 1.1. Example of C-SPARQL which detects a blizzard

At line 4, the REGISTER clause is use to tell the C-SPARQL engine that it
should register a continuous query, i.e. a query that will continuously compute
answers to the query. In particular, we are registering a query that generates
as output an RDF stream (i.e., we use REGISTER STREAM). The COMPUTE EVERY

clause states the frequency of every new computation, in the example every 10
minutes. At line 9, the standard SPARQL clause FROM is used to load in the
default graph the location of all weather stations. At line 10, the C-SPARQL
specific clause FROM STREAM defines the RDF stream of weather observations. We
supposed that the observations are encoded in RDF using the Semantic Sensor
Web ontology [9]. Next, line 11 defines the window of observation over the RDF
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stream of weather observations. Streams, for their very nature, are volatile and
for this reason should be consumed on the fly; thus, they are observed through
a window, including the last elements of the stream, which changes over time.
In the example, the window comprises weather observations produced in the last
3 hour, and the window slides every 10 minutes. The WHERE clause conforms
to the under-development SPARQL 1.1 standard [10]. It uses sub-queries and
aggregates as defined in [11]. The sub-query from line 14 to 20 checks that the
average temperature has been below 0, while the one from line 21 to 27 checks
that the minimum wind speed has been above 40 km/h. Finally, selected stations
are used to construct the elements of the RDF stream specified in the CONSTRUCT

clause between line 5 and 8. The xPath function now() is used to describe when
the blizzard was detected.

As Listing 1.1 illustrates, C-SPARQL enables the encoding of the typical
questions an oil operation engineer has to answer. This is possible, because
C-SPARQL extends SPARQL with the notions of window and of continuous
processing.

Two approaches alternative to C-SPARQL exist: Streaming SPARQL [12]
and Time-Annotated SPARQL (or simply TA-SPARQL) [13]. Both languages
introduce the concept of window over stream, but only C-SPARQL brings the
notion of continuous processing, typical of stream processing, into the language;
all the other proposal still rely on permanent storing the stream before process-
ing it using one-shot queries. Moreover, only C-SPARQL exploits optimization
techniques [7] that push, whenever possible, aggregates computation as close
as possible to the raw data streams; and only C-SPARQL efficiently supports
OWL2-RL entailment regime [8].

3 Efficient Geospatial Analysis

Efficient geospatial analysis methods have been developed over the past half cen-
tury and most of them are available in Geographic Information Systems (GIS)
packages. However, the Semantic Web community has devoted very limited at-
tention to the spatial dimension of data. Available solutions (e.g., Virtuoso [14]
or AllegroGraph [15]) offer a limited support if compared to the rich features
normally available in a GIS.

The main reason for such a limited support is the tendency to re-implement
geospatial analysis algorithm (e.g., R-tree indexes) in RDF repositories. This is
neither necessary, nor efficient. Since 2003, several solutions have been conceived
and implemented [16–20] addressing the growing need for RDF applications to
access the content of non-RDF, legacy databases without having to replicate the
whole database into RDF. They provide (in slightly different ways) declarative
languages to describe mappings between relational database schemata and RDF-
S vocabularies (or more expressive ontological languages). Once the mapping is
ready, they can use it to rewrite SPARQL query in SQL. We refer interested read-
ers to [17] and [18] for a comprehensive explanation of the mapping languages
of D2RQ and Virtuoso and of the query rewriting algorithms.



Title Suppressed Due to Excessive Length 5

In [21] an extension of D2RQ, namely GIS2RDF (G2R), is proposed to treat
GIS as virtual RDF graphs by rewriting SPARQL query to GIS query (specifi-
cally SQL/MM spatial standard [22]).

Listing 1.2 shows an example of SPARQL query that detects the platforms
within oil-fields in which more than 10 blizzards were detected in the last month.

1 SELECT ?oilField ?platform
2 FROM
3 WHERE {
4 ?oilField ex:hasSurface ?oilFieldSurface .
5 ?platform ex:hasSurface ?platformSurface .
6 ?sensor grs:point ?sensorPosition ;
7 so:generatedObservation [a w:blizzard] ;
8 so:samplingTime ?time .
9 FILTER (g2r:contains (? oilFieldSurface , ?sensorPosition)

10 && g2r:overlaps (? oilFieldSurface , ?platformSurface))
11 FILTER (?time >= "2010 -10 -01 T00 :00:00Z^^xsd:dateTime ")
12 FILTER (?time <= "2010 -09 -01 T00 :00:00Z^^xsd:dateTime ")
13 } GROUP BY ?oilFieldSurface
14 HAVING (COUNT(? sensor) > 10)

Listing 1.2. Example of SPARQL query requiring geospatial analysis that G2R
can efficiently answer using an underlying GIS.

The query in Listing 1.2 is a standard SPARQL 1.1 query that uses two
of the extended value testing functions available in G2R: g2r:contains and
g2r:overlaps. g2r:contains checks whether the sensor is contained in the area
(in the general case a curved polygon) of the oil-field. g2r:overlaps tests if the
area of the oil platform overlaps the area of the oil-field (in the general case both
are a curved polygon).

G2R rewrites the query in Listing 1.2 in the equivalent SQL MM/Spatial
query in Listing 1.3 using mappings of the kind declared in Listing 1.4.

1 SELECT o.ID , p.ID,
2 FROM platform AS p, oilFields AS o, sensors AS s
3 WHERE s.generatedObservation = "blizzard" AND
4 p.area.ST\_Within(s.position) = 1 AND
5 b.area.ST\_Overlaps(o.area) = 1 AND
6 s.samplingTime >= "2010 -09 -01 T00 :00:00Z" AND
7 s.samplingTime <= "2010 -10 -01 T00 :00:00Z"
8 GROUP BY o.ID
9 HAVING COUNT (s.generatedObservation) > 10

Listing 1.3. A SQL MM/Spatial query equivalent to the SPARQL query in
Listing 1.2 generated by g2r

In Listing 1.4, note that the extended value testing functions available in
G2R, i.e., g2r:contains and g2r:overlaps, are rewritten in the respective SQL
MM/Spatial functions ST Within() and ST Overlaps().

1 map:area a g2r:SpatialPropertyBridge;
2 d2rq:belongsToClassMap map:platform;
3 d2rq:property ex:hasSurface;
4 g2r:spatialColumn "area";
5 d2rq:datatype g2r:Polygon .

Listing 1.4. A SQL MM/Spatial query equivalent to the SPARQL query in
Listing 1.3 generated by g2r
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Moreover, note that the mapping declared in Listing 1.4 allows G2R to map
the property ex:hasSurface to the spatial column “area” of the GIS, which is a
polygon.

4 Combining the Two Approaches with LarKC

C-SPARQL and G2R have not been integrated yet, but we are working on it in
the LarKC project. The main goal of LarKC [23] is to develop a pluggable plat-
form for reasoning on massive heterogeneous information integrating techniques
from various areas including databases, machine learning, Semantic Web and
Geographic Information Systems. LarKC facilitates the processing of a complex
SPARQL query by orchestrating various plug-ins that are able to provide partial
answer to the query. In the case described in this paper, such plug-ins will be a
C-SPARQL engine and G2R, while data integration support can be provided by
LarKC datalayer5.

Once the integration will be complete, we will be able to issue a C-SPARQL
query that every 30 minutes determines the geographical area interest by a
blizzard by combining the positions of the sensors that have been detecting a
blizzard in the last 3 hours (i.e., the RDF stream resulting from the C-SPARQL
query in Listing 1.1). To achieve this results (see Listing 1.5) the spatial function
g2r:convexHull is called to compute the minimal convex polygon that contains
all the sensor positions.

1 PREFIX so: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>
2 PREFIX w: <http :// knoesis.wright.edu/ssw/ont/weather.owl#>
3
4 REGISTER STREAM BlizzardAreaDetection COMPUTE EVERY 30m AS
5 CONSTRUCT {
6 [] a w:blizzard ;
7 ex:hasArea g2r:convexHull (? sensorPoint} .
8 }
9 FROM <http :// oilprod.org/weatherStations.rdf >

10 FROM STREAM <http :// oilprod.org/BlizzardDetection.trdf > [RANGE 3h STEP 30m]
11 WHERE {
12 ?sensor so:generatedObservation [a w:blizzard] ;
13 grs:point ?sensorPosition .
14 }

Listing 1.5. Example of C-SPARQL that requires G2R to be efficiently
evaluated

By further processing the results of this query, we can detect which oil plat-
form could be potentially interested in the near future by a blizzard with the
C-SPARQL query illustrated in Listing 1.6). This query uses the spatial func-
tion g2r:buffer to generate a buffer of 20 km around the convex hull previously
computed and returns the oil platforms that are placed within this area.

5 LarKC datalayer is the powerful middleware behind http://factforge.net/, the first
successful attempt to assembly independent datasets published on the Semantic Web
in a single consistent knowledge base.
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1 PREFIX so: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>
2 PREFIX w: <http :// knoesis.wright.edu/ssw/ont/weather.owl#>
3
4 REGISTER QUERY PlatformToAlertForPotentialBlizzard COMPUTE EVERY 30m AS
5 SELECT ?platform
6 FROM <http :// oilprod.org/weatherStations.rdf >
7 FROM STREAM <http :// oilprod.org/BlizzardAreaDetection.trdf > [RANGE 3h STEP

30m]
8 WHERE {
9 ?blizzard a w:blizzard ;

10 ex:hasArea ?blizzardArea .
11 ?platform ex:hasSurface ?platformSurface .
12 FILTER (g2r:overlaps(g2r:buffer (? blizzardArea , "20"^^ g2r:km), ?

platformSurface))
13 }

Listing 1.6. Another example of C-SPARQL that requires G2R to be efficiently
evaluated

5 Conclusion

In this paper we have illustrated the potential usage of C-SPARQL and G2R in
the context of oil production. We have shown how to extend the Semantic Web
standards, which already facilitate data integration, with the ability to cope with
the geospatial features of the environment and to process in real time huge and
possibly noisy sensor data streams. We have also reported on the ongoing work,
within the LarKC project, in providing a pluggable platform for chaining various
systems such as our C-SPARQL Engine and G2R Engine on top of a powerful
data integration layer.

The path that leads to systems able to support in real-time the decision
making processes of hundreds of concurrent users (e.g., the controllers on the
platform and in the onshore control rooms) is still long. However, we trust that
the partially implemented infrastructure, described in this paper, is a concrete
step in the direction of developing flexible Environmental Information Systems
and Services.
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