
Fine Grain Analysis of Simulators Accuracy for
Calibrating Performance Models

Marco Lattuada, Fabrizio Ferrandi

Politecnico di Milano - Dipartimento di Elettronica ed Informazione

Via Ponzio, 34/5 – 20133 – Milano (Italy)

{lattuada,ferrandi}@elet.polimi.it

Abstract—In embedded system design, the tuning and valida-

tion of a cycle accurate simulator is a difficult task. The designer

has to assure that the estimation error of the simulator meets the

design constraints on every application. If an application is not

correctly estimated, the designer has to identify on which parts of

the application the simulator introduces an estimation error and

consequently fix the simulator. However, detecting which are the

mispredicted parts of a very large application can be a difficult

process which requires a lot of time.

In this paper we propose a methodology which helps the

designer to fast and automatically isolate the portions of the

application mispredicted by a simulator. This is accomplished by

recursively analyzing the application source code trace highlight-

ing the mispredicted sections of source code. The results obtained

applying the methodology to the TSIM simulator show how our

methodology is able to fast analyze large applications isolating

small portions of mispredicted code.

I. INTRODUCTION

Performance evaluation is a critical aspect of an embedded

system design flow since designers have to assure that final

solution will meet the timing constraints. To evaluate the

performances of an architecture on one or more applications,

three main families of methods exist: measuring them directly

on the real platform, estimating them by using simulators or

estimating them by using mathematical models.
The first solution is not an applicable option most of

the time because the platform is developed parallel to the

software. On the other hand, several simulation based methods

for estimating the performance of a multiprocessor system-

on-chip architectures exist which provide a different trade-

off between efficiency and accuracy [1]. Analyses based on

mathematical models are usually faster but less accurate when

compared to cycle accurate simulators. For these reasons,

during first stages of the design flow, mathematical models

may be preferred to speed-up the design space exploration.

On the contrary, to refine the solution during following phases,

simulators may be preferred for their accuracy.
Accuracy guaranteed by cycle accurate simulators is usually

very high; however, the estimation error introduced on a single

application can be much higher than the average. Moreover,

errors which can be negligible considering a whole application,

can become very relevant when considering its single parts. In

particular, an estimation error of few percentage points on a

critical part of the application will not be acceptable in final

stages of a design flow, so we need to improve the accuracy of

the simulator itself. Tuning a simulator or the machine model

on which it is based is not a trivial task since single relevant

estimation errors may be caused by corner cases. Identifying

and isolating which are the parts of the application which

stimulate these corner cases can help the simulator designer

to improve the accuracy of the simulator.
In this paper we propose a methodology for helping the

debugging and the tuning of generic cycle accurate simulators

by identifying the portions of the C source code of an

application whose performances are mispredicted.
The main characteristics of the methodology are:

• it is based on the recursive partitioning of the applica-

tion execution trace at source code level; the complete

execution trace is not needed since trace portions are

dynamically computed by the methodology itself;

• the finer granularity at which the analysis can work is

at C statement level (lower granularity like the assembly

level is out of the scope of this work);

• the only performance measure which the simulator and

the real system must provide is the overall execution time

of modified versions of the application.

The paper is organized as follows: Section II presents the

Related work, Section III describes the proposed methodology,

Section IV shows the experimental results of the application

of this methodology while Section V draws some conclusions

and outlines some future works.

II. RELATED WORK

In the last years several methodologies for automatic gener-

ation of simulators have been proposed. These methodologies

start from a high level description of the target machine and

use this information to build the simulator. The precision

of the machine description highly influences the accuracy

of the produced simulator. Identifying errors in the machine

description requires stimulation of the parts of the performance

model where the errors are present. For this reason, several

strategies have been proposed for choosing the set of bench-

marks used to test the accuracy of the simulator. Black et al.

978-1-42447074-7/10/$26.00 c©2010 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55210721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[2] propose a taxonomy of the possible errors introduced in

performance models and present a methodology which aims

at exploiting them. This is accomplished by automatically

generating benchmarks sets for stressing different portions of

the models. However, this type of benchmarks is not able to

detect all the possible errors of a model, so some hand-written

benchmarks are added to test suites; however, even with this

addiction the complete coverage of all the possible errors is

not guaranteed.

Desikan et al. [3] propose to reduce the testing suite to

only handwritten tests: they present a test case for validating

the Alpha 21264 using a suite of 21 microbenchmarks. Also

in this case they can not assure that all possible errors of the

simulator are covered by the testing suite. Using only this type

of benchmarks can be harmful: they can not stimulate errors

which occur in complex situations and they can be biased

if written by the simulator designer. Indeed, if the designer

has ignored a particular condition during simulator design, he

likely does not write a test case which stimulates it.

Pimentel et al. [4] propose a semi-automatic methodology

for tuning parameters of performance models. Applications

are described using Kahn Process Networks: the methodology

tunes the parameters of both the single component perfor-

mance models and of the whole system. The disadvantages

of this approach consists of having to model the application

as a Khan Process Network. Moreover, the single component

performance models must be linear and the methodology tunes

them considering only a single application.

III. THE PROPOSED METHODOLOGY

The methodology proposed in this paper is based on mul-

tiple binary search: the execution trace of an application is

recursively partitioned and analyzed at source code level to

identify mispredicted portions of code. The methodology is

proposed for the analysis of applications written in C code, but

it can be very easily extended to support other programming

languages. It is completely automatic, but it can be driven by

the designer by tuning two parameters:

• error: the maximum relative error which the designer

considers tolerable; error is defined as

error =
|treal − testimated|

treal

where treal and testimated are the cycle execution times

measured on the real system and estimated by the simu-

lator;

• size: the minimum size of a piece of code of the

application whose analysis is considered significant; how

to measure the size of a piece of code can be decided

by the designer (e.g.: measured execution cycles, number

of source code statements); through this parameter the

designer controls the granularity level of the analysis.

The recursive analysis of the methodology works on Code

Regions but, before defining what a Code Region is, we have

to introduce some definitions about traces at source code level.

We define:

double a[90], b[90];

int main()

{

int i, temp;

A: for(i=0; i < 90; i++)

{

B: if(!(i%2))

C: even(a, i);

else

D: odd(a, i);

}

E: printf("%f\n", a[89]);

F: for(i=0; i < 90; i++)

{

G: temp = 1 << ((i-1)%32);

H: if(i%2)

I: b[i] = a[i]*a[i] + temp;

else

J: b[i] = temp;

}

K: printf("%f\n", b[89]);

L: printf("%f\n", a[89]+b[89]);

M: return 0;

}

void even(double * array, int i)

{

N: array[i]=sin(i);

}

void odd(double * array, int i)

{

O: array[i]=cos(i);

}

Fig. 1: Source code of functions main, even and odd

• Instr: the set of C statements of an application;

• s = I1, I2, . . . , IN: a sequence of C statements;

• preds(I): the predecessor of I in sequence s;

• succs(I): the successor of I in sequence s.

Given a single application execution, we define the only

complete sequence of executed operations as application

source code trace Tr. For each statement I ∈ Instr, we

annotate each its occurrence in Tr with a progressive number;

in this way each annotated element of Tr is unique.

The application source code trace Tr of the example

presented in Figure 1 is tabled in Table I(a). We report only

the first and last iteration of both the loops. Each new line

corresponds to the start of a new loop iteration or of a

new function execution, each column corresponds to all the

executions of a particular statement. The sequence Tr can be

TABLE I: Example of Code Regions

Trfunction are the function source code traces, Id is the identifier of the sequence, P is how the sequence is composed, IsCr

reports if the sequence CrId is a Code Region; if CrId is also a Loop Code Region, Lr is its identifier.

(a) The application source code trace of the example of Figure 1.

Trmain Treven Trodd

A0 B0 C0

N0

A1 B1 D0

O0

A89 B89 D44

A90 E0

F0 G0 H0 J0
F1 G1 H1 I0

F89 G89 H89 I44
F90 K0 L0 M0

(b) Examples of sequences.

Id P IsCr Lr

Cr1 A0B0C0 Yes l1(0, 0)

Cr2
A0B0C0 Yes
A1B1

Cr3
A0B0C0 Yes l1(0, 1)
A1B1D0

Cr4 A0B0D0 No

Cr5 A1B1D0 Yes l1(1, 1)

Cr6 A90E0 Yes

Cr7 C0N0 No

Cr8 N0 Yes l0(0, 0)

obtained by simply reading the Table from left to right and

from first row to last row.

Given an application source code trace Tr, a function source

code trace Trf is the projection of Tr on the source code

statements which belong to the function f . Since each element

of Tr is unique, also each element of Trf is unique. The Trf
of a function f of the application of Figure 1 can be obtained

by reading the sequence of Table I(a) ignoring the column not

belonging to f .

Given a function source code trace Trf , a Code Region Cr
is a contiguous sub-sequence J1j1, J2j2, ..., JNjn extracted from

it. Since each element of Trf is unique, we can identify a

Code Region by its boundaries.

Examples of Code Regions are presented in Table I(b). Cr4
is not a Code Region since it is not contiguous; Cr7 is not a

Code Region since C and N belong to different functions.

A subset of Code Regions is the set of Loop Code Regions.

Before defining them, we have to introduce some notations

about loops:

• Lf = {l} is the set of loops present in the source code

of function f identified by a modified version of the

Sreedhar-Gao-Lee algorithm [5];

• l0 is the outmost loop of the function corresponding to

the whole function; it is introduced to generalize the loop

structure: all the other loops of the function are nested in

it;

• ∀l ∈ Lf , i = H(l) identifies the first statement of the

header of loop l.

In function main of Figure 1, we have two for loops

identified as l1 and l2: A = H(l1) and F = H(l2)
A Code Region Cr = [I1n, J1o] is a Loop Code Region Lr

if its statements correspond to exactly one or more iterations

of a loop:

∃l : I1 = H(l) ∧ J1o = predf (I1p)

The first condition states that the Loop Code Region must start

with the first statement of a loop l; the second condition states

that the first statement after the Loop Code Region must be

the starting of a new iteration of the same loop l. We identify

this Loop Code Region as Lrl(n, o): l identifies the loop, n
and o the first and the last iteration which belong to the Loop

Code Region.

Examples of Loop Code Regions are presented in column

Lr of Table I(b). Cr1, Cr3 and Cr5 are Loop Code Regions

since they start with Aj (A = H(l1)), they end with C0 (C0 =
pred(A1)) and D0 (D0 = pred(A2)). Cr8 is a Loop Code

Region because of the outmost loop l0 we have introduced.

Given the definition of Code Region, we now describe the

methodology which in pseudo-code is shown by Algorithm 1.

The input of the methodology is the boundaries of the

Code Region Cr = [startCr, endCr] to be analyzed (initial

input is the boundaries of the whole application: the first and

last statement). The output is the set of mispredicted Code

Regions. The methodology does not need to have the complete

input Code Region nor does it require to compute it: starting

from the boundaries of Cr, it dynamically computes all the

I ∈ Cr it needs.

Since the analysis is recursive, we have to describe its two

main components: the Base Case and the Recursive Step.

The conditions under which the Search algorithm reaches

the Base Case are the following:

a© the error in the analyzed Code Region Cr is not signifi-

cant (Line 2); how the error is computed will be described

in Section III-B;
b© Cr is too small to be analyzed (Line 4);
c© Cr is considered atomic and so not splittable (Line 11);
d© Cr is a call to an already examined function or to a

library call (Line 6);
e© Cr = Lrl(o, p) (Line 13) and loop l has already been

examined (Line 15).

During the Recursive Step, the methodology, after checking

that no termination condition has been met, splits the current

Cr into two halves (Line 21). How the splitting point pair

Ml −Mr is computed will be described in detail in Section

III-A. Having gotten the splitting points, the analysis continues

recursively on the two new Code Regions obtained (Lines 22

Algorithm 1 Pseudo-code of Search

1: function SEARCH(startCr , endCr)

2: if GETERROR(startCr , endCr) ≤ error then

3: return Ø

4: else if GETSIZE(startCr, endCr) ≤ size then

5: return Cr

6: else if ISOLDCALL(startCr, endCr) then

7: return Cr

8: else if ISNEWCALL(startCr, endCr) then

9: Called← GETCALLED(startCr, endCr)

10: return SEARCH(Called.begin, Called.end)

11: else if NOTSPLITTABLE(startCr, endCr) then

12: return Cr

13: else if ISLR(Cr) then

14: loop← GETLOOP(Cr)

15: if loop ∈ visited loops then

16: return Cr

17: else

18: visited loops← visited loops ∪ loop

19: end if

20: end if

21: Ml,Mr← GETMIDDLE(startCr, endCr)

22: left← SEARCH(startCr , Ml)

23: right← SEARCH(Mr, endCr)

24: return left ∪ right

25: end function

and 23).

A. GetMiddle: Splitting a code region

Where a code region is split is a crucial step of this

methodology since it determines the number of iterations

of the analysis and so the overall execution time of the

methodology. The solution of partitioning a Code Region into

two performance equivalent regions has been rejected because

of its requirements. Indeed, to implement it, we need two

types of information which can be not available: the complete

application source code trace and an estimation model of the

target.

On the contrary, the criterion we selected is cheaper in terms

of information required and more focused on the main aim of

this methodology which is to provide the simulator designer

a fast and automatic method to isolate the portion of the

application which is mispredicted by the simulator. Dynamic

execution of the application is not the only information used

by analysis: we combine it with the Control Flow Graphs of

each function for driving the exploration of the application,

providing more readable results to the designer.

Given a Code Region Cr, first of all analysis checks if all

its statements belong to the same basic block or not. In the

first case, it checks the number of function calls present in

Cr:

f© zero function call: said N the number of the statements

of Cr, it is split after the ⌊N/2⌋ statement;
g© one function call, which is also the only statement of

the Code Region; if the called function has already

been examined, the analysis stops (Termination rule d©),

otherwise it proceeds recursively on its function source

code trace (Line 8);
h© one function call, which is the last statement of the

sequence: the region is split immediately before the call;
i© one function call, which is not the last statement of the

Code Region; it is split immediately after the call;
j© N > 1 function calls: the region is split after the ⌊N/2⌋

function call.

If statements of Cr belong to more than a basic block and

Cr is an iteration, or part of an iteration, of a loop li, analysis

checks the loop contained in it:

k© Cr does not contain any loop lj nested in li and it is

composed by statements belonging to N basic blocks:

Cr is split after the last operation of the ⌊N/2⌋ Basic

Block;
l© Cr contains a single nested loop lj and starting of Code

Region is also the header of loop lj: Cr is split after

the last iteration of loop lj contained in Cr;
m© Cr contains a single nested loop lj and starting of Code

Region is not the header of loop lj: Cr is split before

the first iteration of lj contained in Cr;
n© Cr contains N > 1 nested loop: Cr is split before the

first iteration of the ⌊N/2⌋ loop contained in Cr.

If Cr is composed exactly by N > 1 iterations of a loop

li:

o© Cr is split at the end of the ⌊N/2⌋ iteration among the

ones contained in the Code Region.

Finally, there are some types of Code Region which are not

treated by GetMiddle since none of the previously presented

bisection rules (f© to n©) can create them starting from Tr.

These types are:

p© Cr contains parts of two different iterations of the same

loop;
q© Cr contains parts of two or more iterations of different

loops.

Figure 2 shows an example of application of this method-

ology: it shows the search tree built during the analysis of

the application of Figure 1 when statements D, E0, G1, K0,

L0, N , are mispredicted. The analysis proceeds in depth first

order; the label of an intermediate node corresponds to the rule

applied in that point of the search. The dotted parts of the tree

represent chains of applications of rule o© which have been

omitted. Each leaf is a Code Region which has been examined

and not split: plain line boxed leaves are the mispredicted ones.

The union of all the leaves is equal to the application source

code trace.

B. GetError: Measure the simulator error on a code region

The simulator error is computed comparing the performance

estimation produced by the simulator with the measure of

n

l l

o h o j

o e a d o a h i

o e o a a e e a

k e a k

a g l a

b a c

A0B0 C0

N0

A1B0D0

O0

... A45...D44

O44

A90 E0 F0...I0 F1 G1H1 J0 ... F45...J44 F90 K0 L0 M0

Fig. 2: Search tree produced by application of the methodology to application of Figure 1. The label of each intermediate

node corresponds to the rule applied. Leaves correspond to Code Regions which have not been split during analysis.

///Last statement of code region

<statement>;

if(__counter-- == 0)

exit();

Fig. 3: Example of added instrumentation

the real platform. Since not all the simulators and platforms

allow getting the execution time at an arbitrary point of

the execution, we propose a profiling technique based on

code instrumentation to retrieve these data. In particular, we

instrument the source code to stop the application execution in

a given point of the application. This type of profiling can be

exploited since we are working at source code level: working

at assembly level would require a more complex target-

dependent instrumentation technique. The execution time of

the Code Region is computed as the difference between the

execution times of the application stopped after and before the

Code Region itself. An example of the added code is shown

in Figure 3.

This type of instrumentation provides two advantages: gen-

erality and lightness. Indeed, in this way we guarantee the

generality of the methodology since we only require that the

platform and the simulator provide the overall execution time

of an application execution. Moreover, since the instrumen-

tation is limited to a single point, we reduce its perturbation

on the application performance. However, if the simulator or

the platform provides a method for directly measuring the

execution time of an arbitrary portion of code, it can be

exploited.

All the execution times collected during the search are

cached. In this way, in all the iterations of the methodology

but the first one, we only have to perform a single run of

the simulator and of the platform. Indeed, if the current Code

Region is the left (right) part of its parent, we have already

measured its starting (ending) time which is the same of the

parent.

C. Methodology simplifications

Some simplifications have been introduced in the proposed

algorithm to speed-up the methodology.

The first one consists in assuming that if the estimation error

on a Code Region Cr is non significant, the simulator correctly

estimates the performance of every part of the Code Region

itself (Termination rule a©). This assumption is not necessarily

true: a simulator can overestimate some parts of this Code

Region and underestimate others producing an overall null

error.

An example of this situation is shown in Table II. Estimation

error on Control Region Cr11 is 0%, but the two Control

Regions Cr9 and Cr10 which compose it are mispredicted.

To be sure that simulator correctly estimates all the single

parts of the application, we should exhaustively examine the

application.

TABLE II: Example of effects of combination of Estimation

Errors

Execution Time

Cr Sequence Real Simulated Error

Cr9 A0 10 5 50%
Cr10 B0 5 10 100%
Cr11 A0B0 15 15 0%

The next simplification, implemented by termination rule
e©, is the analysis of only the first mispredicted iteration of a

loop and not of all ones (Line 15 of the Algorithm 1). This

simplification reduces the complexity of the analysis of a loop

body executed n times from O(n) (exhaustive search of all

iterations in the worst case) to O(log n) (binary search of

the first mispredicted iteration). Since the number of runs on

simulator and platform is linearly proportional to the number

of SEARCH invocations, this simplification can reduce in a

relevant way the overall execution time of the methodology.

The cost paid for this simplification is less accurate results:

we still identify all the mispredicted Code Regions, but some

of them can be bigger than necessary: they can also contain

correctly estimated Code Regions. For example, in the mis-

predicted Code Regions produced by the analysis shown in

Figure 2, we have Cr = [[A, 1][D, 1]] instead of Cr = [O, 0].
However, since each execution of the methodology correctly

identifies and isolates at least one error for each loop, the

successive applications of methodology and fixings of the

simulator allow to completely debug the simulator.

Last simplification is quite similar, but it concerns function

calls: only the first mispredicted execution of a function is

examined instead of all ones (Termination rule d©). Also in this

case, to guarantee the isolation of all the existing misprediction

errors, the designer can debug the simulator by repeating

execution of methodology combined with simulator fixing.

IV. EXPERIMENTAL RESULTS

We have verified the proposed methodology by integrating

it in PandA [6], a framework for the Hardware/Software code-

sign based on the GNU GCC compiler [7]. The framework has

been used to verify the methodology by analyzing the accuracy

of the TSIM simulator [8] on a set of benchmarks extracted

from the DSPStone [9], MediaBench [10] and PowerStone

[11]. TSIM is a cycle accurate simulator of the LEON3 proces-

sor [12], a 32-bit microprocessor compliant with the SPARC

V8 ISA. Based on LEON architecture originally designed

by the European Space Agency, it is currently developed by

Gaisler Research licensed under GNU GPL license.

The simulator results have been compared with the ones

produced by a single processor LEON3 System synthesized on

a Virtex-5 XUPV5 Board. The benchmarks have run both on

the real system and on the simulator without operating system

to exclude its non-deterministic effects which can invalidate

the analysis. All the benchmarks have been compiled with

BCC 4.4.1, a GNU GCC based cross-compiler with a simple

bare-C run-time with interrupt support. To avoid any non-

deterministic effect we have automatically excluded from the

profiling all the system call functions such as printf. Indeed

this type of function has proved to have a sensible variance in

execution time also when run on a system without operating

system. Finally, we have had to exclude from the analysis all

the benchmarks which read input data from files because of

the operating system absence.

The results of the analyses are reported in Table III. All

the benchmarks have been tested compiling them without

optimization (O0 level) and with maximum optimization (O3

level). The analyses have been performed with the following

parameters: error has been set to 5%, size to 1, 000 cycles

and we consider as not splittable a basic block without function

call since in almost every case is smaller than size.

The results concerning benchmarks which are correctly

estimated with both optimization levels have not been reported

in the Table. For each mispredicted benchmark we report its

size in terms of source code (Lines Numbers) and of overall

number of Basic Blocks in the Control Flow Graphs (Static

BB). We also report the size of the execution trace of the

application expressed in terms of number of Basic Blocks

which compose it. For both the optimization level the overall

error (Error) on the application and the number of Basic

Blocks identified as mispredicted (Wrong BB) are reported.

Finally we report the recursions of the methodology (Recur.)

and the overall time (Time) required to execute it on a Intel

Quad-Core Xeon X5355 (2,33 GHz, 4 MB L2 cache per

couple of cores) with 8 GB RAM.

The detailed results about the identified mispredicted Code

Regions can be used to identify the conditions under which

TSIM may introduce an estimation error. For example, in the

fir2 and wavelt benchmarks, most of the estimation error has

been introduced on a basic block composed by a long sequence

of multiplies and sums of elements of globally declared array.

In the case of complex update set of benchmarks, the error

seems to be caused by the use of the complex arithmetic

during data access. The misprediction error on the hanoi

benchmark, instead, seems to be due to the presence of a

recursive function.

To show how the methodology parameters influence its

performance and results, we analyze the jpeg application with

different combination of error and size. The results of these

analyses are presented in Table IV.

The Table shows how the trade-off between the results

precision and the performance of the analysis is controlled

by error and size. For example, set the error to 1%, the

reduction of the size from 10, 000 to 100 removes 26 Basic

Blocks, which were false positive, from the set of the identified

mispredicted Basic Blocks. On the other hand, set the size to

1000, the reduction of the tolerable error from 2.5% to 1%
add two new Basic Blocks to the set of the mispredicted.

V. CONCLUSIONS

In this paper we present a methodology for fast isolating the

estimation errors introduced by a simulator on a C application.

The methodology is based on the recursive analysis of the

TABLE III: Results of the analysis of the TSIM performance estimation

O0 Optimization O3 Optimization

Name Lines Number Static BB DynamicBB Error (%) Wrong BB Recur. Time (s) Error (%) Wrong BB Recur. Time (s)

bcnt 95 8 3.80 · 10
1

14.07 2 4 17 13.69 2 4 19

blit 102 25 4.01 · 10
3

12.37 17 3 116 13.43 3 12 52

complex multiply 1 58 2 2.00 · 10
0

19.29 2 3 44 15.76 1 3 36

complex multiply 2 70 12 7.00 · 10
1

15.76 1 4 16 9.29 3 7 23

complex update 1 78 2 2.00 · 10
0

5.07 1 3 17 1.40 0 1 3

complex update 2 81 2 2.00 · 10
0

5.56 1 3 17 1.71 0 1 3

convolution 73 9 7.10 · 10
1

7.49 2 9 30 8.14 3 7 23

fir2 118 11 1.73 · 10
3

9.54 3 13 60 9.40 3 13 45

fir2dim 1 149 38 7.21 · 10
2

6.80 2 22 74 7.31 3 38 131

fir2dim 2 152 46 8.23 · 10
2

11.75 5 38 129 13.04 7 59 213

g3fax 653 57 3.31 · 10
5

6.19 1 6 30 4.77 0 1 6

gamma 41 15 1.73 · 10
2

7.38 1 2 30 4.01 0 1 15

hanoi 122 26 1.81 · 10
8

2.26 0 1 150 5.95 4 14 570

iir biquad N sections 1 117 11 1.33 · 10
2

6.75 2 6 43 12.52 2 14 47

iir biquad N sections 2 119 23 1.34 · 10
2

19.62 2 13 54 7.58 4 16 54

iir biquad one sections 1 94 2 4.00 · 10
0

18.54 1 7 23 1.78 0 1 3

iir biquad one sections 2 86 2 4.00 · 10
0

18.20 1 7 23 1.49 0 1 3

jpeg 931 155 4.74 · 10
5

4.02 0 1 6 6.01 1 6 32

lms 1 156 18 1.36 · 10
2

14.10 3 10 33 13.20 4 13 12

lms 2 156 11 8.20 · 10
3

22.43 4 13 43 7.36 5 14 50

main16 bit reduct 125 80 4.01 · 10
2

6.41 4 17 3 5.55 4 17 3

main1024 bit reduct 149 40 7.22 · 10
4

5.86 8 36 297 0.28 0 1 12

main1024 inspca 125 37 3.12 · 10
4

6.45 8 32 263 0.14 0 1 10

matrix 1 131 20 3.65 · 10
3

15.18 4 19 3 10.38 4 20 4

matrix 2 131 38 3.22 · 10
3

11.91 5 19 3 10.30 3 14 4

matrix1x3 1 99 14 6.20 · 10
1

9.31 2 11 23 7.11 2 10 23

matrix1x3 2 76 7 3.30 · 10
1

5.01 2 6 34 5.41 2 6 12

n complex update 1 90 8 1.05 · 10
2

8.80 3 11 36 7.82 4 10 34

n complex update 2 89 14 1.03 · 10
2

6.99 3 11 37 9.06 4 10 34

n real updates 1 70 8 1.05 · 10
2

9.27 3 11 36 8.78 4 10 35

n real updates 2 69 14 1.03 · 10
2

2.28 0 1 37 22.89 3 11 35

pi 680 81 2.00 · 10
6

5.08 1 11 594 0.12 0 1 65

real update 1 71 3 2.00 · 10
0

8.92 1 2 13 1.59 0 1 4

real update 2 66 2 2.00 · 10
0

6.61 1 2 13 1.38 0 1 4

SearchGame 456 185 5.04 · 10
7

10.00 1 21 572 1.20 0 1 52

startup 193 33 5.79 · 10
2

5.64 4 31 84 5.20 4 31 107

wavelt 155 63 8.86 · 10
2

7.42 10 44 157 7.43 9 37 148

TABLE IV: Analysis results on jpeg benchmark (O0 optimiza-

tion) with different parameters.

error size (cycles) Wrong BB Recur. Time (s)

1%
100 13 53 75
1000 15 49 60
10000 39 29 32

2.5%
100 13 46 50
1000 13 31 37
10000 23 18 22

5% − 0 1 6

application execution trace at source code level. We do not

need the complete execution trace: in each iteration of the

methodology, only the points needed for the analysis are

dynamically computed. The results show that our approach

can be used to fast analyze also large applications in a few

iterations. Moreover, by tuning the methodology parameters,

the designer can choose the desired trade-off between the

analysis precision and its execution time. Future works will

consist of improving the methodology precision in presence

of multiple loop iterations and multiple mispredicted function

calls.

REFERENCES

[1] Joshua J. Yi, Resit Sendag, David J. Lilja, and Douglas M. Hawkins.
Speed versus accuracy trade-offs in microarchitectural simulations. IEEE

Trans. Comput., 56(11):1549–1563, 2007.
[2] Bryan Black and John Paul Shen. Calibration of microprocessor

performance models. Computer, 31(5):59–65, 1998.
[3] Rajagopalan Desikan, Doug Burger, and Stephen W. Keckler. Mea-

suring experimental error in microprocessor simulation. In ISCA ’01:

Proceedings of the 28th annual international symposium on Computer

architecture, pages 266–277, New York, NY, USA, 2001. ACM.
[4] Andy D. Pimentel, Mark Thompson, Simon Polstra, and Cagkan Erbas.

Calibration of abstract performance models for system-level design
space exploration. J. Signal Process. Syst., 50(2):99–114, 2008.

[5] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. Identifying
loops using DJ graphs. ACM Trans. on Programming Languages and

Systems (TOPLAS), 18(6):649–658, 1996.
[6] PandA framework, http://trac.ws.dei.polimi.it/panda.
[7] GNU Compiler Collection. GCC, version 4.3.
[8] Tsim erc32/leon simulator, www.gaisler.com.
[9] V. z̆ivojnović, Juan M. Velarde, C. Schläger, and H. Meyr. DSPSTONE:

A DSP-oriented benchmarking methodology. In ICSPAT ’94, 1994.
[10] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith.

Mediabench: a tool for evaluating and synthesizing multimedia and
communicatons systems. In MICRO 30: Proceedings of the 30th annual

ACM/IEEE international symposium on Microarchitecture, pages 330–
335, Washington, DC, USA, 1997. IEEE Computer Society.

[11] A. Malik, B. Moyer, and D. Cermak. A low power unified cache archi-
tecture providing power and performance flexibility (poster session). In
ISLPED ’00, pages 241–243, New York, NY, USA, 2000. ACM.

[12] Leon3 sparc v8 processor, www.gaisler.com.

