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Abstract— ROBOCAST is a multi-national project compris-
ing several institutes which aim at outlining and implementing
a prototype system for advanced, robot-assisted keyhole neu-
rosurgery. This paper reports mainly on software and sensor
aspects of the system in the pre- and intra-operative stage. We
describe a comprehensive workflow of planning steps provided
to the surgeon in a wizard-like manner. As a novelty, we
present a method for automatic trajectory planning based
on a statistical and patient-specific risk atlas. Intra-operative
monitoring of system uncertainty is proposed. Furthermore, the
usage of 2D and 3D Freehand Ultrasound for intra-operative
validation is motivated and theoretically outlined. After the
first of three years project runtime, we present current work
in progress and preliminary results on several patient studies
concerning automatic path planning, trajectory localization
errors as well as ultrasound imaging on one, six and three
patients, respectively. The results underline the usefulness and
significance of proposed methods, both within the scope of
the ROBOCAST project as well as for conventional keyhole
neurosurgery.

I. INTRODUCTION

The project ROBOCAST aims at combining several exist-
ing and novel approaches from the communities of neurolog-
ical and neurosurgical research, medical robotics, computer-
assisted surgery and medical imaging into an overall sys-
tem. Effectively, it should allow safer, more precise and
more functional planning and execution of neurosurgical
procedures through a keyhole. Within the project runtime of
three years, the consortium of ROBOCAST is building and
implementing a protoype and investigating the advantages
and limits of such a highly integrated system within phantom
and eventually cadaver studies. It will feature a combination
of two robots, one for gross-positioning and one for fine-
positioning together with actuators for a linear and – as a
novelty – a flexible biomimetic probe for reaching of single
and multiple targets in the brain.
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In this paper, we report on several software aspects of
the proposed system. Mainly, we present our progress of
activities towards advanced pre-operative planning and intra-
operative validation within the ROBOCAST project. After
the first of three years runtime, the scope of activities were
defined and first steps towards the realization of system
features have been taken. Due to the complexity of the
project and the extent of planned features, our work and also
this paper focus mainly on implementation and integration of
existing methods. Additionally, we present a novel approach
for pre-operative planning based on a risk atlas and risk
minimization for automatic path proposition to the surgeon.
Overall, the scope of this paper is to introduce the planned
and partially implemented ROBOCAST system and give
a detailed overview of planned features. Although we are
still at the beginning of the project and cannot present a
thorough system evaluation or validation at this stage, we
are showing preliminary results on different aspects of the
presented approaches.

The rest of the paper is organized as follows. After a
review of related literature, we give an in-depth description of
the pre-operative planning workflow, which we provide to the
surgeon in a wizard-like manner. Next, we present methods
used for creation of a risk atlas and automatic proposition
of low-risk trajectories during pre-operative planning. Fur-
thermore, we describe the background for the calculation
and visualization of uncertainty that the system is featuring
pre- and intra-operatively. Subsequently, we describe the
motivation and theory for usage of 3D Freehand Ultrasound
within the ROBOCAST system.

In the following section on our current progress, we
describe the outcome of a single-patient study on automatic
path planning based on a simplified risk atlas featuring
only blood vessels. Additionally, we present results from a
study on localization error and uncertainty in six patients.
In the last section, we present first results from transcranial
ultrasound scans both in 2D and 3D on two patients who
recently underwent DBS surgery. The results indicate the
usability and relevance of ultrasound imaging as a validation
tool in the ROBOCAST system.

II. RELATED WORK

In this paper, we report on four main software and sensor
features of ROBOCAST, namely our workflow for advanced
pre-operative planning, an advanced risk atlas for automated
proposition of paths with lowest risk, the incorporation of
uncertainty along the trajectory and the usage of 2D and



3D Freehand Ultrasound for intra-operative validation. We
compare our work to a few selected pieces of literature for
each of the four topics in this section.

Path planning in keyhole neurosurgery is a tedious task
if done fully manually. The first step is to define a target
point. Next, possible entry areas on the head outer surface are
defined. For each entry point that is considered, the surgeon
then has to carefully examine for each slide in the MRI,
whether the trajectory is crossing critical anatomy such as
blood vessels.

There are several groups that have proposed methods for
automated trajectory computation. The relevance for auto-
mated path planning becomes clear in the work of Brunen-
berg et al. [11]. Their partnering neurosurgeons estimate
a time gain of 30 minutes during pre-operative planning
when using the authors’ method for automated trajectory
proposition, which effectively means that the planning time
is halved. A segmentation of anatomy is performed in terms
of blood vessels, ventricles and sulci of the cortex. An
Euclidean distance map allows the calculation of paths with
maximum distance to critical structures and thus minimal
risk. Similar work as in [11] is presented in [15], [18]
and [19]. In contrast to their work, we utilize a more
extensive protocol of patient data acquisition in ROBOCAST
including fMRI and DTI fibre imaging, which allows further
incorporation of critical structures into a more extensive risk
map than in above cited works.

As described in section III-A, we use a combination of
patient-specific and statistical atlasses to provide our trajec-
tory computation with advanced prior knowledge. D’Haese
et al. propose the usage of an electrophysiological (EP)
atlas for optimal placement of DBS electrodes in order to
overcome the non-visibility of the target in the MRI, e.g.
the sub-thalamic nucleus (STN) [16]. While they use their
atlas mainly for finding the STN target, we use our risk atlas
mainly for automatic computation of an entire trajectory,
including entry point and target. A sophisticated atlas based
on 3D histological information has been generated and
presented in by Yelnik et al. [12]. As a prototype system
for feasibility studies, ROBOCAST is going to investigate
the usage of advanced atlasses for automated planning. We
consider both cited works complementary to our approaches
and hope that our work will encourage the merging of
advanced data maps for improved neurosurgical planning in
future.

In particular with respect to the tight spatial margins that
are prevalent in neurosurgical planning [21], it becomes
important to consider geometrical uncertainties along the
planned trajectory. Simpson et al. [13] claim that it might
be useful to visualize system uncertainty to the surgeon.
They visualized the error in a patient-to-CT registration
which effectively transformed a straight linear trajectory into
an hourglass shape. The presentation of such uncertainty
reduced the number of attempts in a simplified needle
penetration task by approx. 40%. We extend this approach
to intra-operative errors that stem from optical tracking
uncertainty and visualize it to the surgeon as described in

section III-D.
In order to validate the pre-operatively planned trajectory,

we plan to incorporate 2D and 3D Freehand Ultrasound. The
SonoWand system [14] is a commercially available system
for 3D Freehand Ultrasound navigation of neurosurgical
procedures under open craniotomy. In contrast to [14], we
plan to investigate the usability of ultrasound in keyhole
surgery using two minimally-invasive access ports – one
transcranially and one through the burr-hole prior to opening
of the dura mater. Transcranial ultrasound is particularly
attractive due to its low requirements concerning sterility
and it can be used for high-quality imaging of intracranial
macro-vasculature [20]. This enables the surgeon to assess
tissue shifts intra-operatively [14].

III. MATERIALS AND METHODS
A. Guided Pre-operative Planning of Keyhole Neurosurgery
in ROBOCAST

The pre-operative planning phase has been organized into
a multi-step wizard, where the surgeon is walked through
a workflow of steps with well-defined functionality. The
wizard and pre-operative planning visualization have been
integrated within the Slicer 3D software. This workflow
also serves as a comprehensive overview of system features
incorporated in ROBOCAST. The wizard steps have been
organized as follows:
1. Data loading: A group of steps where all available
DICOM image series are parsed and loaded in the system.
Series are either tagged as mandatory (3 Tesla T1 MRI,
MRA) or optional (DWI, fMRI, CT, CTA).
2. Registration and segmentation: Based on the data
loaded at the previous steps, the user submits a set of
automated jobs to a high performance computing (HPC)
cluster for the execution of: a) multimodal registration (all
patient datasets and pre-computed DTI fiber bundles are
registered on the 3 Tesla T1 MRI dataset, whose space is
taken as a reference for all subsequent operations); b) atlas
based segmentation, i.e. the T1 dataset of the SPL atlas
[1] is registered on the 3 Tesla T1 MRI patient dataset
using the diffeomorphic demons registration algorithm [2],
and the labeling provided with the SPL atlas is employed to
define anatomical areas on the patient’s scan using a template
matching segmentation strategy; c) skin surface segmenta-
tion: the head surface is automatically segmented from a 3
Tesla T1 MRI scan; d) fiducial segmentation: gadolinium
markers are automatically identifed on the 3 Tesla T1 MRI
scan and a model of the head-ring fixing the patient’s head
is placed within the reference scan space; e) vessels are
segmented using a vessel enhancement approach [3], [4]
followed by skeletonization of the segmented structures [5].
Jobs are executed in parallel using a shared-memory multi-
threading approach with one job for each 8-processor node
of a HPC cluster. Results are automatically loaded back on
the pre-operative workstation upon completion of all jobs on
the HPC cluster.
3. Verification: The user is allowed to review the results
generated in the previous step, one task at a time, using



advanced visualization. Scenes are automatically set-up by
the system on the basis of the verification task. At the present
time, in case the user judges a task to have been performed
unsatisfactorily, we envision the following possibilities: a)
making the user (or a specialized technician) access ad-
vanced parameter panes and resubmit a particular task on
the HPC cluster; b) perform manual editing of the results
(typically to correct anatomical area or vessel segmentation).
4. Lesion segmentation: The user manually delineates
the lesion, with the possibility of switching between the
available multimodal image datasets and performing fused
visualization.
5. No-go area delineation: The user is required to
manually delineate regions to be avoided by the trajectory
either by specifying simple geometric entities (e.g. planes)
or by directly classifying voxels (similarly to the lesion
segmentation step).
6. Target selection: The user interactively specifies one
target point in the case of a linear trajectory, or multiple
target points in the case of a flexible probe and multi-target
treatment.
7. Entry area selection: The user interactively selects an
area on the skin surface to be considered as the candidate
region for trajectory entry.
8. Trajectory computation: Based on a risk atlas, an
automatic trajectory is computed as described in section III-
B. A specified number of trajectories (three by default) are
presented to the surgeon in order of increasing risk.
9. Trajectory verification: The user is given the possibility
of reviewing the trajectories identified by the system as being
associated to the least risk, and additionally of interactively
moving the entry point in order to explore alternative trajec-
tories. The system informs the user about the risk of the new
trajectory resulting from the interactively defined entry point,
in comparison to the automatically identified trajectories.
During trajectory verification, the user is presented with an
animated probe’s eye view allowing the user to evaluate the
path relative to the pre-operative imaging datasets.
10. Simulation: A High-Level Controller (HLC), which is
present in the ROBOCAST system for execution of a pre-
defined probe trajectory, features a simulation of the robot
movements to ensure patient safety and avoid collision with
objects in the OR. In step 10, this simulation is incorporated
into the pre-operative planning workflow. The pre-segmented
head outer surface, the entry point of several trajectories
selected in step 9 and the target point are transferred to the
HLC’s simulator module. A registration of the patient images
to the robot’s dynamic reference frame (DRF) allows the
trajectory information to be aligned with the robot coordinate
system in a spatially correct manner. In an interactive 3D
visualization of the robots with the patient and further objects
in the OR, the surgeon can layout the surgery room pre-
operatively until it is made sure that the robots can execute
the planned trajectory. Upon entering the intra-operative
phase, the robot-to-patient registration is achieved with a
tracking camera and registration procedure integrated in the
Prosurgics Pathfinder robot [23].

B. Automatic Trajectory Planning Based On A Risk Atlas

As a first step to test our approach we have created a
risk volume computed from a head MRI that incorporates
two major risk factors defined by the neurosurgeons: the
blood vessels and user defined no-contraction zones where a
surgical tool should not be placed because of clinical reasons.
In clinical reasons we refer not only to risky structures that
appear in the image and which can be segmented manually,
but also to other structures or tissues that are not seen in the
image and whose location is estimated by the neurosurgeons
via nearby anatomical landmarks.

The risk volume is computed as follows. At first, the blood
vessels are manually segmented and no-contraction zones are
defined manually using the ITK-SNAP software package [6].
Then, a distance map is computed on the unified segmented
volumes using the method suggested by Danielson P. E.
[7] and as implemented in the Insight Segmentation and
Registration Toolkit (ITK)(Kitware, USA). The risk volume
is then computed as the inverse of the distance map such that
a voxel that is further from the segmented zones is assigned
with a lower risk value.

Subsequently, the optimal path is computed automatically
as follows. At first, the neurosurgeon selects a preferred
target on the MRI image. Then, the outer surface of the
head is reconstructed as described in [8] and evenly sampled
with 40,000 points. Each point is considered as a candidate
entry point and with the target it defines a candidate path.
Path’s risk is computed as the maximal risk value along the
path in the previously computed risk volume. In addition,
the geometrical risk values are computed and presented to
the neurosurgeon.

Currently, we are building a richer risk atlas that is more
complex both in the number of considered risk factors and in
the way of risk computation. Risk information will on the one
hand be drawn from a multi-patient statistical atlas, namely
the SPL atlas [1], which can be registered on the patient data
using MRI images. On the other hand, risk information is
drawn from several patient-specific maps, such as the already
mentioned vessel distance map, functional area maps defined
by the neurosurgeon from fMRI data and also neurological
fiber information which is obtained from DTI imaging.
Moreover, in the next version of the atlas the different risk
factors are weighted such that areas related with higher risk
to the patient will be assigned larger weights. We register
this combined atlas data with the specific patient image and
use it to compute the optimal, i.e. safest path.

C. Localization Error Measures

We define four clinically relevant localization error mea-
sures for keyhole neurosurgery: 1) Target Registration Error
(TRE) - the distance between the planned and actual surgical
tool tip location; 2) Entry Registration Error (ERE) - the
distance between the planned and actual surgical tool entry
point; 3) Angular Registration Error (ARE) - the angle
between the planned and actual surgical tool trajectory, and;
4) Shift Registration Error (SRE) - the distance between
the closest points on the planned and actual surgical tool



trajectories. In general, the TRE cannot be derived from
the other measures and the measures might have unknown
dependencies. The implanted catheter was identified accu-
rately (smaller than 0.3mm) on the postoperative image by
repetitive selections of the entry, target, and trajectory points
at different times. In three of the six cases, the entry point
could not be identified accurately (larger than 0.5mm), so its
location was discarded. The 3D localization errors were then
computed from the 2D measurements obtained on orthogonal
planes.

D. Uncertainty Propagation Intra-operatively

Navigation systems for intra-operative guidance require
pose estimation of both patient and instruments. As em-
ployed in most commerically available systems, optical
tracking is used for validation of robot and probe posi-
tions in the ROBOCAST system. As a first step for intra-
operative uncertainty calculation, we consider the system
uncertainty that is contributed from inaccuracies in optical
tracking of objects. In current surgical navigation systems,
the surgeon might be relying on false information if accuracy
of optical localization falls beneath a certain threshold. A
calculation and visualizaton of system inaccuracy should give
the surgeon online feedback about the reliability of displayed
information. A typical tracking system consists of a n-occular
synchronized camera system, using linear, CCD or matrix
cameras. In order to determine the pose of an instrument
or patient, a marker body has to be rigidly attached to the
target object. This marker body typically consists of a set of
fiducials, which are either light-emitting or retro-reflective.
During the process of tracking a target, the n-occular camera
system generates 2D images of the fiducials . From the im-
aged 2D-marker position, the 3D position of the markers, the
marker body and eventually of the tool can be determined.
However, the accuracy of positioning is dependent on many
factors. Among the predominant variables affecting this are
the geometry of the system, light conditions, pose of the
cameras and fiducial visibility. Using the approach proposed
by Sielhorst et al. [10], the uncertainty is propagated using
the internal camera parameter, camera poses, tracking body
poses, body geometry and marker visibility, in order to esti-
mate the expected accuracy . Thereby the tracking induced
fiducial localization error (FLE) and the target registration
error (TRE) are modeled as anisotropic non-uniform errors
[9].

E. Intra-operative Visualization and Plan Update Based On
3D Freehand Ultrasound

Motivation. In order to validate the pre-operative plan
intra-operatively and offer additional navigation and orienta-
tion for the surgeon, we incorporate 3D Freehand Ultrasound
into the ROBOCAST system. In 3D Freehand Ultrasound,
the probe of a conventional 2D ultrasound system is equipped
with a dynamic reference frame (DRF) that is tracked by a
3D positioning system during the scan process, typically a
manually performed sweep across the target anatomy. After a
probe calibration step, the 2D ultrasound image is combined

with its 3D pose information for each slice that is acquired.
In a compounding step, an ultrasound volume is created.
The usage of ultrasound intra-operatively helps the surgeon
to carry over the pre-operative plan to the surgery room
by offering a live update on the pre-operative imaging data
and assess changes in anatomy due to effects such as brain
shift [14]. In the results section, we present initial results
demonstrating the visibility of macro-vasculature as well as
surgical tooling such as a DBS electrode in transcranial ultra-
sound images. This indicates the possibility of offering intra-
operative visual feedback on the probe trajectory executed by
the robot.

Ultrasound Calibration. A crucial step in the acquisition
of 3D Freehand Ultrasound consists in probe calibration. In
this step, the spatial relation between the probe DRF and the
ultrasound image is determined in form of a 4×4 calibration
matrix imageTDRF . After calibration, the coordinates of each
pixel are known in 3D space. There are numerous methods
for probe calibration and we refer the reader to [22] for a
comprehensive review on various calibration methods and
their strengths and weaknesses concerning precision, accu-
racy, phantom simplicity and usability for different probe
types. Among the available methods for calibration, we chose
to implement and integrate a Single Wall calibration into our
system due to its satisfactory accuracy in combination with a
high simplicity of the phantom. The average accuracy of this
method is reported to be 2.46 mm with 0.39mm precision
[22]. So far, we have implemented the calibration method and
assessed the calibration outcome qualitatively through correct
compounding of phantom objects. A detailed quantitative
analysis of the calibration accuracy within the ROBOCAST
project is current work in progress.

Ultrasound Freehand Volume Compounding. After suc-
cessfully calibrating the ultrasound probe, we can combine
ultrasound slices with the 3D pose of the transducer. The
combination of both information for the forming of ultra-
sound volumes is performed in the compounding step. As a
method, we have chosen Backward-Warping Ultrasound Re-
construction as proposed by Wein et al. [17]. Following their
method, for every voxel xi in the reconstruction volume V ,
we accumulate the intensities of all pixels p from neighboring
ultrasound slices within a specified distance D and weight
them according to their distance d(xi, p). We used Gaussian
weighting in our experiments. Ultrasound MPR slices can
be reconstructed from this volume rapidly and compared to
optically co-registered slices from the patient’s MRI volume.

IV. CURRENT PROGRESS AND PRELIMINARY
RESULTS

A. First Results on Automatic Path Planning

We have studied the risk factors that are currently consid-
ered in keyhole neurosurgery path planning via interviews
with several neurosurgeons in three hospitals in Germany,
Italy and Israel. It was found that most of the risk factors
can be represented in form of geometric constraints that can
be computed and presented to the physician. For example the
constraint ”the nearest blood vessel should be at least 2mm



Fig. 1. Screenshot excerpts from our pre-operative planning modules. The left part image shows the definition of a target (tumor), geometric constraints
for the trajectory in form of no-go areas and critical structures such as blood vessels combined into a crude risk atlas. The right image shows two
automatically proposed trajectories with minimal risk (i.e. maximal distance to non-allowed regions). The incorporation of functional regions, fibres and
statistical multi-patient anatomy into the risk atlas is currently under development.

from the path” can be computed, if a path (segment) and a
segmentation of the blood vessels (volume) are given.

The path planning module was implemented and inte-
grated into Slicer3. For this feasibility check, the user in-
terface was not friendly enough for the neurosurgeon to use,
so the authors have selected several ’safe’ paths manually and
without the path planning module guidance. Afterwards, we
have computed the optimal path and compared the values of
the geometrical parameters. Although we lack an assessment
from a medical partner so far about the reasonability of the
proposed trajectory, the computed optimal path was better
than the manually selected paths, in the sense that a larger
distance to the closest blood vessel or to the no-contraction
zones could be achieved.

B. Localization Error Study

We retrospectively measure the localization error along the
tool trajectory and on its tip for six consecutive patients who
underwent keyhole minimally invasive Ommaya catheter
placement surgery by three different neurosurgeons with
a commercial neuronavigation system (Medtronic, USA).
Firstly, the preoperative images (one MRI and five CTs with
0.47×0.47×1.0mm3 and 0.61×0.61×1.0mm3 resolutions)
were fused with postoperative CT images showing the Om-
maya catheter. Then, the localization errors were computed
by comparing the preoperative planned surgical trajectory
with the actual postoperative catheter position.

The mean TRE, ERE, ARE and SRE were 5.6mm(max =
12.0mm), 4.5mm(max = 5.8mm), 5.6o(max = 16.0o)
and 2.6mm(max = 7.2mm), respectively. Note that low
ARE and SRE do not necessary imply low TRE. For exam-
ple, Patient 4 has ARE and SRE values that are much lower
than those of Patient 1, but the observed TRE of Patient 4 was
almost double than that of Patient 1. The TRE for Patient 1
was 3.7mm, which is clinically acceptable. However, 52mm

before, at the cortical penetration point of the catheter, a
significant catheter misplacement of 11.5mm was measured.
At this location, the brain surface is rich with blood vessels,
so a deviation of more than 10mm from the planned cortical
penetration point may increase the risk of vascular injury.
This shows that although the TRE is clinically acceptable, the
localization error along the trajectory may not be acceptable.
We continue to gather data and will incorporate it in the
surgical path planning module.

C. First Results on Transcranial 3D Freehand Ultrasound
Acquisition

Together with our medical partners, we were able to
acquire transcranial ultrasound images on 3 participants, 2 of
which were Parkinson patients who had recently undergone
surgery for implantation of DBS electrodes. Transcranial
ultrasound images were acquired through the temporal lobe
where the skull bone is thin enough to allow ultrasound
imaging at low frequencies of 2-3 MHz. On the first patient,
we set up the equipment for 3D Freehand scanning and
obtained several transcranial 3D ultrasound volumes at 2Mhz
frequency and 14cm penetration depth in order to image the
entire brain until the rear calotte of the skull. Additionally,
we acquired Power Doppler and Color Doppler images. Col-
ored pixels were filtered from the frame-grabbed ultrasound
images in order to achieve a rough segmentation of blood
vessels. Both the anatomy and the blood vessels were com-
pounded separately. Through optical tracking, a registration
of the volumes could be achieved. Two screenshots can be
seen in figure 2. Throughout the progress of the project,
we intend to overlay an MPR slice from the ultrasound
volume with a spatially corresponding slice from the MR
angiography volume, offering improved spatial context and
an assessment of tissue shifts that occurred intra-operatively
to the surgeon.



Fig. 2. Transcranial ultrasound scans of the basal ganglia in 2D on patient 1 (left) and in 3D on patient 2 (right). The cross-section of the DBS electrode
in relation to the PCA (arteria cerebri posterior) can be clearly seen in patient 1. The right image shows a 3D reconstruction of the brain stem anatomy
of patient 2 (white) and the reconstructed PCA vessel (red).

With the second patient, we conducted experiments on
the visibility of a DBS electrode transcranially. In figure 2, a
cross-section of the DBS electrode is displayed in spatial re-
lation to a nearby vessel. We consider this as a breakthrough
result for the ROBOCAST project, since this indicates the
visibility of surgical tools in transcranial ultrasound images.
Implicitly, this allows a safe and non-invasive localization
of surgical tools inside the brain. In the upcoming year,
we are going to investigate the accuracy of tool localization
and navigation transcranially. Additionally, we investigate the
accuracy and imaging quality of ultrasound imaging through
the burr-hole as a second option. We expect the accuracy
to be much higher due to direct contact with the dura and
due to higher frequencies which increase image resolution,
effectively increasing localization accuracy.

V. CONCLUSIONS AND FUTURE WORKS
Insertion of a surgical tool along a predefined trajectory

with nearby sensitive structures such as blood vessels and
eloquent areas is a common practice in keyhole neurosurgery.
In some applications, e.g. Deep Brain Stimulation and
Stereotactic Brain Biopsy, multiple targets along a single tra-
jectory may be defined. Therefore, studying the localization
errors along the planned trajectory is of clinical importance.
Furthermore, the system uncertainty intra-operatively may
lead to wrongly assumed security and to impaired decision
making. Thus, it is calculated and visualized to the surgeon
in an appropriate manner in the ROBOCAST system.

Our findings on the Ommaya catheter procedure provide a
better understanding of accuracy in image guided surgery and
aim at shifting the research focus from a single target error to
the entire trajectory accuracy. We are currently developing
a geometric uncertainty model that incorporates empirical
clinical data and will assist the surgeon to preoperatively
assess the surgical tool trajectory risk.

We presented the workflow of a comprehensive pre-
operative planning wizard that incorporates several patient-
specific medical images together with multi-patient statisti-
cal atlas data into a risk atlas. We presented methods for
using a vessel-based risk map for automated proposition
of paths with minimal risk. This vessel-based atlas will be
augmented with further risk information in the upcoming
year of the project. A simulation step at the end of the
planning workflow ensures the compatibility of the probe
with the spatial situation of robots and objects in the OR.
At all times of surgical planning, the surgeon can decide
to discard automatical trajectory suggestions and rely on
traditional, manual methods for planning of the procedure.

We presented motivation and methods for the usage of
3D Freehand Ultrasound in neurosurgical keyhole surgery.
First results indicate the value of transcranial ultrasound
for visualization of macro-vasculature and surgical tooling
such as DBS electrodes. Such information can help the
surgeon to validate the trajectory that is being executed by
the robot intra-operatively. In the next year, we are going
to quantitatively evaluate the potential of this approach and
also perform phantom experiments and cadaver experiments
using burr-hole ultrasound.

In this paper, we have presented the combination of
several existing and new methods for advanced planning
of robotic neurosurgical procedures. The overall aim is to
equip the ROBOCAST robotic system with software and
validation tools for increased safety and comfort in planning
and execution of complex minimally-invasive neurosurgical
procedures with one or several targets.
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