
Application Heartbeats

A Generic Interface for Expressing Performance Goals and
Progress in Self-Tuning Systems

Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller,
and Anant Agarwal

Massachusetts Institute of Technology
{hank,eastepjm,santa,jasonm,agarwal}@csail.mit.edu

Abstract. Self-tuning, self-aware, or adaptive computing has been pro-
posed as one method to help application programmers confront the grow-
ing complexity of multicore software development. Such systems have
been proposed for architectures, compilers, and operating systems to
ease the application programmer’s burden by providing services that au-
tomatically customize to meet the needs of the application. However,
these systems often rely on ad hoc methods for understanding and mon-
itoring an application and thus struggle to incorporate the true perfor-
mance goals of the applications they are designed to support. This paper
presents the Application Heartbeats API which addresses the need to
provide a standardized interface for applications to communicate with
supportive adaptive systems. The Application Heartbeats framework
provides a simple, standard programming interface that applications can
use to indicate their performance and which system software can use to
query that performance. Several experiments demonstrate the simplicity
and efficacy of the Application Heartbeat approach.

1 Introduction

As multicore processors become increasingly prevalent, system complexities are
skyrocketing. It is no longer practical for an average programmer to balance all
of the system constraints and produce an application that performs well on a
variety of machines, in a variety of situations. One approach to simplifying the
programmer’s task is the use of self-tuning, or adpative hardware and software.
Self-tuning systems take some of the burden off of programmers by monitoring
themselves and optimizing or adapting as necessary to meet their goals.

As described in [1], adaptive systems must be able to monitor their environ-
ment as well as detect significant changes. Despite this need, there is no standard-
ized, general approach for applications and systems to measure how well they
are meeting their goals. Existing approaches are largely ad hoc: either hand-
crafted for a particular system or reliant on architecture-specific performance
counters. Not only are these approaches fragile and unlikely to be portable to
other systems, they frequently do not capture the actual goal of the applica-
tion. For example, measuring the number of instructions executed in a period

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55208707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

of time does not tell you whether those instructions were doing useful work or
spinning on a lock; reliance on CPU utilization or cache miss rates has similar
drawbacks. The problem with mechanisms such as performance counters is that
they attempt to infer high-level application performance from low-level machine
performance. What is needed is a portable, universal method of monitoring an
application’s actual progress towards its goals.

This paper introduces a software framework called Application Heartbeats
(or just Heartbeats for short) that provides a simple, standardized way for ap-
plications to monitor their performance and make that information available to
external observers. The framework allows programmers to express their appli-
cation’s goals and the progress that it is making using a simple API. As shown
in Figure 1, this progress can then be observed by either the application it-
self or an external system (such as the OS or another application) so that the
application or system can tune its behavior to make sure the goals are met.
Application-specific goals may include throughput, power, latency, quality-of-
service, or combinations thereof. Application Heartbeats can also help provide
fault tolerance by providing information that can be used to predict or quickly
detect failures.

(a) (b)
App

framework

API

AP
I

App Parameters

App

framework

AP
I API OS

Machine

System Parameters

Fig. 1. (a) Self-optimizing application using the Application Heartbeats framework.
(b) Optimization of machine parameters by an external observer.

This paper makes the following contributions:

1. A simple, standardized Heartbeats API for specifying and monitoring application-
specific performance metrics.

2. Examples of ways that the framework can be used, both within an applica-
tion and by external services, to develop self-optimizing applications. Exper-
imental results demonstrate the effectiveness of the Application Heartbeats
approach.

The rest of this paper is organized as follows. Section 2 identifies key sys-
tem components that will benefit from the Application Heartbeats framework.
Section 3 describes the Application Heartbeats API in greater detail. Section 4
presents our experimental results. Section 5 compares Application Heartbeats
to related work. Finally, Section 6 concludes.



3

2 Heartbeat Usage in System Software and Hardware

The Application Heartbeats framework is a simple end-to-end feedback mech-
anism that can potentially have a large impact on the design of adaptive and
self-tuning computer systems. This section explores ideas for novel computer ar-
chitectures, operating systems, and compilers which may exploit the Heartbeats
framework as a feedback mechanism to enable self-tuning.

Self-tuning Architectures. We envision a multicore microarchitecture that
can adapt properties of its TLB, L1 cache, and L2 cache structures such as as-
sociativity, size, replacement policy, etc. to improve performance or minimize
energy for a given performance level. We envision a multicore microarchitecture
that can adapt its execution pipeline in a way similar to the heterogeneous mul-
ticores proposed in [2]. Lastly, we envision a multicore microarchitecture where
decisions about dynamic frequency and voltage scaling are driven by the per-
formance measurements and target heart rate mechanisms of the Heartbeats
framework. [3, 4] are examples of frequency and voltage scaling to reduce power.
Driving these new microarchitectures with an end-to-end mechanism such as
a heartbeat, as opposed to indicators such as cache misses or utilization, en-
sures that microarchitectural optimizations focus on aspects of execution most
important to meeting application goals.

Organic Operating Systems. Heartbeats provides a framework for novel
operating systems with organic features such as self-healing and intelligent re-
source management. Heartbeats allow an OS to determine when applications fail
and quickly restart them. Heartbeats provide the feedback necessary to make
decisions about how many cores to allocate to an application. An organic OS
would be able to automatically and dynamically adjust the number of cores an
application uses based on an individual application’s changing needs as well as
the needs of other applications competing for resources. The OS would adjust
the number of cores and observe the effect on the application’s heart rate. An
organic OS could also take advantage of the Heartbeats framework in the sched-
uler. Schedulers could be designed to run an application for a specific number of
heartbeats (implying a variable amount of time) instead of a fixed time quanta.
Schedulers could be designed that prioritize time allocation based on the target
heart rate requirements of different applications. Locking mechanisms provided
through the OS can be improved using Heartbeats. For example, Smartlocks
[5], an adaptive locking framework, uses the Heartbeats API to obtain a direct
measure of program performance and adapt locking and scheduling policies to
meet the performance goals of the application. Heartbeats provide Smartlocks
with a direct measure of application performance as opposed to using statistics
gathered within the lock library such as lock contention.

Adaptive Compilation. Adaptive [6] and dynamic [7] compilation tech-
niques have emerged to increase portability and address some challenges that
cannot be met by traditional static compilation. Heartbeats could be used to
improve the design of these compilers in several ways. First, by providing a
standard interface the Heartbeat API allows one program to work with multiple
compilers without source-level code changes. Second, by providing a mechanism



4

Table 1. Heartbeat API functions

Function Name Arguments Description
HB initialize window[int], local[bool] Initialize the Heartbeat runtime system and

specify how many heartbeats will be used to
calculate the default average heart rate

HB heartbeat tag[int], local[bool] Generate a heartbeat to indicate progress
HB current rate window[int], local[bool] Returns the average heart rate calculated

from the last window heartbeats
HB set target rate min[int], max[int], local[bool] Called by the application to indicate to an

external observer the average heart rate it
wants to maintain

HB get target min local[bool] Called by the application or an external ob-
server to retrieve the minimum target heart
rate set by HB set target rate

HB get target max local[bool] Called by the application or an external ob-
server to retrieve the maximum target heart
rate set by HB set target rate

HB get history n[int], local[bool] Returns the timestamp, tag, and thread ID
for the last n heartbeats

for specifying program goals Heartbeats allow dynamic compilers to know when
to stop optimizing, allowing the system to save energy by avoiding unnecessary
work. Third, the Heartbeat API allows application code to specify the regions
of the application where performance is critical, again allowing the system to
avoid unnecessary optimization. As an example, the SpeedPress compiler inserts
a runtime system, called SpeedGuard, into an application which uses Heartbeats
to detect performance changes. The SpeedGuard runtime can then trade quality-
of-service for performance in order to maintain the real-time goals of a system
in the face of faults like core-failures and clock frequency changes [8].

3 Heartbeats API

Since heartbeats are meant to reduce programmer effort, they must be easy to
insert into applications. The basic Heartbeat API consists of only a few functions
(shown in Table 1) that can be called from applications or system software. To
maintain a simple, conventional programming style, the Heartbeats API uses
only standard function calls and does not rely on complex mechanisms such as
OS callbacks.

The key function in the Heartbeat API is HB heartbeat. Calls to HB heartbeat
are inserted into the application code at significant points to register the appli-
cation’s progress. Each time HB heartbeat is called, a heartbeat event is logged.
Each heartbeat generated is automatically stamped with the current time and
thread ID of the caller. In addition, the user may specify a tag that can be used
to provide additional information. For example, a video application may wish
to indicate the type of frame (I, B or P) to which the heartbeat corresponds.
Tags can also be used as sequence numbers in situations where some heartbeats
may be dropped or reordered. Using the local flag, the user can specify whether



5

the heartbeat should be counted as a local (per-thread) heartbeat or as a global
(per-application) heartbeat.

We anticipate that many applications will generate heartbeats in a regular
pattern. For example, the video encoders may generate a heartbeat for every
frame of video. For these applications, it is likely that the key metric will be
the average frequency of heartbeats or heart rate. The HB current rate function
returns the average heart rate for the most recent heartbeats.

Different applications and observers may be concerned with either long- or
short-term trends. Therefore, it should be possible to specify the number of
heartbeats (or window) used to calculate the moving average. Regarding win-
dow size there may be some tension between the application registering the
heartbeats and the system service reading the heartbeats. We assume that the
application knows which window size is most appropriate for the computation it
is performing; however, the system service responding to this information may
want to override this window if it is trying to make adjustments on a different
granularity. Therefore, the API allows the application to set the window size and
this size is the default used whenever an external system requests the current
heartrate. An additional API call allows system software to override the window
size.

Applications with real-time deadlines or performance goals will generally
have a target heart rate that they wish to maintain. For example, if a heartbeat
is produced at the completion of a task, then this corresponds to completing a
certain number of tasks per second. Some applications will observe their own
heartbeats and take corrective action if they are not meeting their goals. How-
ever, some actions (such as adjusting scheduler priorities or allocated resources)
may require help from an external source such as the operating system. In these
situations, it is helpful for the application to communicate its goals to an exter-
nal observer. For this, we provide the HB set target rate function which allows
the application to specify a target heart rate range. The external observer can
then take steps on its own if it sees that the application is not meeting (or is
exceeding) its goals.

When more in-depth analysis of heartbeats are required, the HB get history
function can be used to get a complete log of recent heartbeats. It returns an
array of the last n heartbeats in the order that they were produced. This allows
the user to examine intervals between individual heartbeats or filter heartbeats
according to their tags. Most systems will probably place an upper limit on the
value of n to simplify bookkeeping and prevent excessive memory usage. This
provides the option to efficiently store heartbeats in a circular buffer. When the
buffer fills, old heartbeats are simply dropped.

Multithreaded applications may require both per-thread and global heart-
beats. For example, if different threads are working on independent objects,
they should use separate heartbeats so that the system can optimize them in-
dependently. If multiple threads are working together on a single object, they
would likely share a global heartbeat. Thus, each thread should have its own pri-
vate heartbeat history buffer and each application should have a single shared



6

history buffer. Threads may read and write to their own buffer and the global
buffer but not the other threads’ buffers.

Some systems may contain hardware that can automatically adapt using
heartbeat information. For example, a processor core could automatically adjust
its own frequency to maintain a desired heart rate in the application. Therefore,
it must be possible for hardware to directly read from the heartbeat buffers. In
this case the hardware must be designed to manipulate the buffers’ data struc-
tures just as software would. To facilitate this, a standard must be established
specifying the components and layout of the heartbeat data structures in mem-
ory. Hardware within a core should be able to access the private heartbeats for
any threads running on that core as well as the global heartbeats for an appli-
cation. We leave the establishment of this standard and the design of hardware
that uses it to future work.

4 Experimental Results

This section presents several examples illustrating the use of the Heartbeats
framework. First, a brief study is presented using Heartbeats to instrument the
PARSEC benchmark suite [9]. Next, an adaptive H.264 encoder is developed to
demonstrate how an application can use the Heartbeats framework to modify
its own behavior. Then an adaptive scheduler is described to illustrate how an
external service can use Heartbeats to respond directly to the needs of a running
application. Finally, the adaptive H.264 encoder is used to show how Heartbeats
can help build fault-tolerant applications. All results discussed in this section
were collected on an Intel x86 server with dual 3.16 GHz Xeon X5460 quad-core
processors.

4.1 Heartbeats in the PARSEC Benchmark Suite

To demonstrate the applicability of the Heartbeats framework across a range of
multicore applications, it is applied to the PARSEC benchmark suite (version
1.0). For each benchmark, we read the description of the application, find the
outermost loop and insert the heartbeats in this loop. Table 2 shows where the
heartbeat was inserted in terms of the application’s processing and the average
heart rate that the benchmark achieved over the course of its execution running
the “native” input data set on the eight-core x86 test platform1. We note that
placement of heartbeats is flexible and can be tailored to the specific needs of
the application.

For all benchmarks presented here, the Heartbeats framework is low-overhead.
For eight of the ten benchmarks the overhead of Heartbeats was negligible.
For the blackscholes benchmark, the overhead is negligible when registering
a heartbeat every 25,000 options; however, in the first attempt a heartbeat was
registered after every option was processed and this added an order of magnitude

1 Two benchmarks are missing as neither freqmine nor vips would compile on the target
system due to issues with the installed version of gcc.



7

Table 2. Heartbeats in the PARSEC Benchmark Suite

Benchmark Heartbeat Location Average Heart Rate (beat/s)

blackscholes Every 25000 options 561.03
bodytrack Every frame 4.31
canneal Every 1875 moves 1043.76
dedup Every “chunk” 264.30

facesim Every frame 0.72
ferret Every query 40.78

fluidanimate Every frame 41.25
streamcluster Every 200000 points 0.02
swaptions Every “swaption” 2.27

x264 Every frame 11.32

slow-down. For the other benchmark with measurable overhead, facesim, the
added time due to the use of Heartbeats is less than 5 %.

Adding heartbeats to the PARSEC benchmark suite is easy, even for users
who are unfamiliar with the benchmarks themselves. The PARSEC documenta-
tion describes the inputs for each benchmark. With that information it is simple
to find the key loops over the input data set and insert the call to register a
heartbeat in this loop. The total amount of code required to add heartbeats to
each of the benchmarks is under half-a-dozen lines. The extra code is simply the
inclusion of the header file and declaration of a Heartbeat data structure, calls
to initialize and finalize the Heartbeats run-time system, and the call to register
each heartbeat.

In summary, the Heartbeats framework is easy to insert into a broad array of
applications and our reference implementation is low-overhead. The next section
provides an example of using the Heartbeats framework to develop an adaptive
application.

4.2 Internal Heartbeat Usage

This example shows how Heartbeats can be used within an application to help
a real-time H.264 video encoder maintain an acceptable frame rate by adjusting
its encoding quality to increase performance. For this experiment the x264 im-
plementation of an H.264 video encoder [10] is augmented so that a heartbeat
is registered after each frame is encoded. x264 registers a heartbeat after every
frame and checks its heart rate every 40 frames. When the application checks its
heart rate, it looks to see if the average over the last forty frames was less than
30 beats per second (corresponding to 30 frames per second). If the heart rate is
less than the target, the application adjusts its encoding algorithms to get more
performance while possibly sacrificing the quality of the encoded image.

For this experiment, x264 is launched with a computationally demanding set
of parameters for Main profile H.264 encoding. Both the input parameters and
the video used here are different than the PARSEC inputs; both are chosen to
be more computationally demanding and more uniform. The parameters include



8

the use of exhaustive search techniques for motion estimation, the analysis of
all macroblock sub-partitionings, x264’s most demanding sub-pixel motion esti-
mation, and the use of up to five reference frames for coding predicted frames.
Even on the eight core machine with x264’s assembly optimizations enabled, the
unmodified x264 code-base achieves only 8.8 heartbeats per second with these
inputs.

As the Heartbeat-enabled x264 executes, it reads its heart rate and changes
algorithms and other parameters to attempt to reach an encoding speed of 30
heartbeats per second. As these adjustments are made, x264 switches to algo-
rithms which are faster, but may produce lower quality encoded images.

Figures 2(a) and 2(b) illustrate the behavior of this adaptive version of x264
as it attempts to reach its target heart rate of 30 beats per second. The first
figure shows the average heart rate over the last 40 frames as a function of time
(time is measured in heartbeats or frames). The second figure illustrates how the
change in algorithm affects the quality (measured in peak signal to noise ratio)
of the encoded frames.

0

5

10

15

20

25

30

35

40

0 200 400 600

Time (Heartbeat)

H
ea

rt
 R

at
e 

(b
ea

t/
s)

Adaptive FPS
Performance Goal

(a) Heart rate

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500 600

Time (Heartbeat)

P
S

N
R

 D
if

fe
re

n
c

e

(b) Image Quality

Fig. 2. Heart rate and image quality of adaptive x264. (a) shows how the heart rate
of x264 changes as the program adapts to meet its goals. (b) shows the difference in
PSNR between the unmodified x264 code base and our adaptive version.

As shown in Figure 2(a) the adaptive implementation of x264 gradually in-
creases its speed until frame 400, at which point it makes a decision allowing it
to maintain a heart rate over thirty-five beats per second. Given these inputs
and the target performance, the adaptive version of x264 tries several search al-
gorithms for motion estimation and finally settles on the computationally light
diamond search algorithm. Additionally, this version of x264 stops attempting
to use any sub-macroblock partitionings. Finally, the adaptive encoder decides
to use a less demanding sub-pixel motion estimation algorithm.

As shown in Figure 2(b), as x264 increases speed, the quality, measured
in PSNR, of the encoded images decreases. This figure shows the difference in
PSNR between the unmodified x264 source code and the Heartbeat-enabled



9

implementation which adjusts its encoding parameters. In the worst case, the
adaptive version of x264 can lose as much as one dB of PSNR, but the average
loss is closer to 0.5 dB. This quality loss is just at the threshold of what most
people are capable of noticing. However, for a real-time encoder using these
parameters on this architecture the alternative would be to drop two out of
every three frames. Dropping frames has a much larger negative impact on the
perceived quality than losing an average of 0.5 dB of PSNR per frame.

This experiment demonstrates how an application can use the Heartbeats
API to monitor itself and adapt to meet its own needs. This allows the program-
mer to write a single general application that can then be run on different hard-
ware platforms or with different input data streams and automatically maintain
its own real-time goals. This saves time and results in more robust applications
compared to writing a customized version for each individual situation or tuning
the parameters by hand.

Videos demonstrating the adaptive encoder are available online. These videos
are designed to capture the experience of watching encoded video in real-time
as it is produced. The first video shows the heart rate of the encoder without
adaptation2. The second video shows the heart rate of the encoder with adap-
tation3.

4.3 External Heartbeat Usage

In this example, Heartbeats are used to help an external system allocate re-
sources while maintaining required application performance. The application
communicates performance information and goals to an external observer which
attempts to keep performance within the specified range using the minimum
number of cores possible. Three of the Heartbeat-enabled PARSEC benchmarks
are run while an external scheduler reads their heart rates and adjusts the num-
ber of cores allocated to them. The applications tested include the PARSEC
benchmarks bodytrack, streamcluster, and x264.

bodytrack The bodytrack benchmark is a computer vision application that
tracks a person’s movement through a scene. For this application a heartbeat is
registered at every frame. Using all eight cores of the x86 server, the bodytrack
application maintains an average heart rate of over four beats per second. The
external scheduler starts this benchmark on a single core and then adjusts the
number of cores assigned to the application in order to keep performance between
2.5 and 3.5 beats per second.

The behavior of bodytrack under the external scheduler is illustrated in Fig-
ure 3(a). This figure shows the average heart rate as a function of time measured
in beats. As shown in the figure, the scheduler quickly increases the assigned cores
until the application reaches the target range using seven cores. Performance
stays within that range until heartbeat 102, when performance dips below 2.5

2 Available here: http://www.youtube.com/watch?v=c1t30MDcpP0
3 Available here: http://www.youtube.com/watch?v=Msr22JcmYWA



10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250

Time (Heartbeat)

H
e

a
rt

 R
a

te
 (

b
e

a
t/

s
)

0

1

2

3

4

5

6

7

8

9

C
o

re
s

Heartrate
Target Min
Target Max
Cores

(a) bodytrack

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80

Time (Heartbeat)

H
ea

rt
 R

at
e 

(b
ea

t/
s)

0

1

2

3

4

5

6

7

8

C
o

re
s

Heartrate
Target Min
Target Max
Cores

(b) streamcluster

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600

Time (Heartbeat)

H
ea

rt
 R

at
e 

(b
ea

t/
s)

0

1

2

3

4

5

6

7

8

9

10

C
o

re
s

Heart Rate
Target Min
Target Max
Cores

(c) x264

Fig. 3. Behavior of selected PARSEC applications coupled with an external scheduler.

beats per second and the eighth and final core is assigned to the application.
Then, at beat 141 the computational load suddenly decreases and the scheduler
is able to reclaim cores while maintaining the desired performance. In fact, the
application eventually needs only a single core to meet its goal.

The streamcluster benchmark solves the online clustering problem for a
stream of input points by finding a number of medians and assigning each point
to the closest median. For this application one heartbeat is registered for every
5000 input points. Using all eight cores of the x86 server, the streamcluster
benchmark maintains an average heart rate of over 0.75 beats per second. The
scheduler starts this application on a single core and then attempts to keep
performance between 0.5 and 0.55 beats per second.

The behavior of streamcluster under the external scheduler is displayed
in Figure 3(b). This figure shows the average heart rate as a function of time
(measured in heartbeats). The scheduler adds cores to the application to reach
the target heart rate by the twenty-second heartbeat. The scheduler then works
to keep the application within the narrowly defined performance window. The



11

figure illustrates that the scheduler is able to quickly react to changes in appli-
cation performance by using the Heartbeats interface.

x264 The x264 benchmark is the same code base used in the internal optimiza-
tion experiment described above. Once again, a heartbeat is registered for each
frame. However, for this benchmark the input parameters are modified so that
x264 can easily maintain an average heart rate of over 40 beats per second using
eight cores. The scheduler begins with x264 assigned to a single core and then
adjusts the number of cores to keep performance in the range of 30 to 35 beats
per second.

Figure 3(c) shows the behavior of x264 under the external scheduler. Again,
average heart rate is displayed as a function of time measured in heartbeats. In
this case the scheduler is able to keep x264’s performance within the specified
range while using four to six cores. As shown in the chart the scheduler is able to
quickly adapt to two spikes in performance where the encoder is able to briefly
achieve over 45 beats per second. A video demonstrating the performance of the
encoder running under the adaptive external scheduler has been posted online4.

These experiments demonstrate a fundamental benefit of using the Heart-
beats API for specifying application performance: external services are able to
read the heartbeat data and adapt their behavior to meet the application’s needs.
Furthermore, the Heartbeats interface makes it easy for an external service to
quantify its effects on application behavior. In this example, an external sched-
uler is able to adapt the number of cores assigned to a process based on its heart
rate. This allows the scheduler to use the minimum number of cores necessary
to meet the application’s needs. The decisions the scheduler makes are based
directly on the application’s performance instead of being based on priority or
some other indirect measure.

4.4 Heartbeats for Fault Tolerance

The final example in this section illustrates how the Heartbeats framework can
be used to aid in fault tolerance. This example reuses the adaptive H.264 en-
coder developed above in Section 4.2. The adaptive encoder is initialized with
a parameter set that can achieve a heart rate of 30 beat/s on the eight-core
testbed. At frames 160, 320, and 480, a core failure is simulated by restricting
the scheduler to running x264 on fewer cores. After each core failure the adaptive
encoder detects a drop in heart rate and adjusts its algorithm to try to maintain
its target performance.

The results of this experiment are shown in Figure 4. This figure shows a
moving average of heart rate (using a 20-beat window) as a function of time
for three data sets. The first data set, labeled “Healthy,” shows the behavior
of unmodified x264 for this input running on eight cores with no failures. The
second data set, labeled “Unhealthy,” shows the behavior of unmodified x264
when cores “die” (at frames 160, 320, and 480). Finally, the data set labeled

4 Available here: http://www.youtube.com/watch?v=l3sVaGZKgkc



12

“Adaptive” shows how the adaptive encoder responds to these changes and is
able to keep its heart rate above the target even in the presence of core failures.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600
Time (Heartbeat)

H
ea

rt
 R

at
e 

(b
ea

ts
/s

)

Healthy
Unhealthy
Adaptive

Fig. 4. Using Heartbeats in an adaptive video encoder for fault tolerance. The line
labeled “Healthy” shows the performance of the encoder under normal circumstances.
The line labeled “Unhealthy” shows the performance of the encoder when cores fail.
The line labeled “Adaptive” shows the performance of an adaptive encoder that adjusts
its algorithm to maintain a target heart rate of greater than 30 beats/s.

Figure 4 shows that in a healthy system, x264 is generally able to main-
tain a heart rate of greater than 30 beat/s. Furthermore, the performance in the
healthy case actually increases slightly towards the end of execution as the input
video becomes slightly easier at the end. In the unhealthy system, where cores
die, the unmodified x264 is not able to maintain its target heart rate and per-
formance falls below 25 beat/s. However, the adaptive encoder is able to change
the algorithm and maintain performance in the face of hardware failures.

The adaptive encoder does not detect a fault or attempt to detect anything
about which, or how many, cores are healthy. Instead, the adaptive encoder only
attempts to detect changes in performance as reflected in the heart rate. The
encoder is then able to adapt its behavior in order to return performance to its
target zone.

The generality of this approach means that the encoder can respond to more
than just core failures. For example, if a cooling fan failed and the hardware low-
ered its supply voltage to reduce power consumption, the encoder would detect
the loss of performance and respond. Any event that alters performance will be
detected by this method and allow the encoder a chance to adapt its behavior in
response. Thus, the Heartbeats framework can aid fault tolerance and detection
by providing a general way to detect changes in application performance.



13

5 Related Work

The problem of performance monitoring is fundamental to the development
of parallel applications, so it has been addressed by a variety of different ap-
proaches. This work includes research on monitoring single- and multi-core ar-
chitectures [2, 11, 12], networks [13], complex software systems and operating
systems [14–20]. Most of this work focuses on off-line collection and visual-
ization of performance data. More complex monitoring techniques have been
presented in [21, 19]. This work represents a shift in approach as the research
community moves from using simple hardware-based metrics, i.e.,cache miss
rate, to more advanced statistics. Hardware assistance for system monitoring,
often in the form of event counters, is included in most common architectures.
However, counter-based techniques suffer common shortcomings [22]: too few
counters, sampling delay, and lack of address profiling. In addition, adaptive
systems based on hardware event counters must infer application performance
from low-level hardware statistics.

A software approach for application monitoring is proposed in [14]. This
work proposes an assertion based framework which can be used to verify that
the runtime performance meets expected performance. Using the assertions, the
programmer specifies performance expectations which the application can use at
runtime to adapt itself. This framework allows a rich description of the program
performance in terms of hardware specific parameters like the expected rate of
floating point operations; however, use of the framework requires extensive code
annotation and only allows the application to make internal updates to itself. In
contrast, the Heartbeat framework is designed to specify performance in terms
of a simple, and general mechanism and directly communicate this performance
to external systems which can customize their behavior to meet those goals. We
envision the use of the Heartbeat framework within a broader context where
multiple applications can be executed in parallel, each using heartbeats to com-
municate performance and relying on the external services to help them meet
their goals.

The rise of adaptive computing systems creates new challenges and demands
for system monitoring [23]. One example of these emerging adaptive systems
can be found in the self-optimizing memory controller described in [24]. This
controller optimizes its scheduling policy using reinforcement learning to esti-
mate the performance impact of each action it takes. As designed, performance
is measured in terms of memory bus utilization. The controller optimizes mem-
ory bus utilization because that is the only metric available to it, and better
bus utilization generally results in better performance. However, it would be
preferable for the controller to optimize application performance directly and
the Heartbeats API provides a mechanism with which to do so. Furthermore,
the Heartbeats API is kept simple, which makes it easy for not only the end-users
to get started with the framework but also to hook up third party auto-tuning
tools such as Orio [25], Autopilot [26], Active Harmony [27], to make the ap-
plication adaptation decisions based on the observed heartbeat rates. The fact



14

that this research could be built on top of the Heartbeat interface demonstrates
the API’s usefulness.

System monitoring, as described in this section, is a crucial task for several
very different goals: performance, security, quality of service, etc. Different ad
hoc techniques for self-optimization have been presented in the literature, but the
Heartbeats approach is the only one that provides a simple, unified framework
for reasoning about and addressing all of these goals.

6 Conclusion

Our prototype results indicate that the Heartbeats framework is a useful tool
for both application auto-tuning and externally-driven optimization. Our ex-
perimental results demonstrate three useful applications of the framework: dy-
namically reducing output quality (accuracy) as necessary to meet a throughput
(performance) goal, optimizing system resource allocation by minimizing the
number of cores used to reach a given target output rate, and tolerating failures
by adjusting output quality to compensate for lost computational resources. The
authors have identified several important applications that the framework can
be applied to: self-optimizing microarchitectures, self-tuning software libraries,
smarter system administration tools, novel “Organic” operating systems and
runtime environments, and more profitable cloud computing clusters. We be-
lieve that a unified, portable standard for application performance monitoring
is crucial for a broad range of future applications.

References

1. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2) (2009) 1–42

2. Kumar, R., Farkas, K., Jouppi, N., Ranganathan, P., Tullsen, D.: Processor power
reduction via single-isa heterogeneous multi-core architectures. Computer Archi-
tecture Letters 2(1) (Jan-Dec 2003) 2–2

3. Govil, K., Chan, E., Wasserman, H.: Comparing algorithm for dynamic speed-
setting of a low-power CPU. In: MobiCom ’95: Proceedings of the 1st Annual
Inter. Conf. on Mobile Computing and networking. (1995) 13–25

4. Pering, T., Burd, T., Brodersen, R.: The simulation and evaluation of dynamic
voltage scaling algorithms. In: ISLPED ’98: Proceedings of the 1998 Inter. Symp.
on Low Power Electronics and Design. (1998) 76–81

5. Eastep, J., Wingate, D., Santambrogio, M.D., Agarwal, A.: Smartlocks: Self-
aware synchronization through lock acquisition scheduling. Technical Report MIT
CSAIL, MIT (Nov 2009)

6. Ansel, J., Chan, C., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Amaras-
inghe, S.: PetaBricks: A language and compiler for algorithmic choice. In: Conf.
on Programming Language Design and Implementation. (Jun 2009)

7. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive dy-
namic optimization. In: Proceedings of the international symposium on code gen-
eration and optimization. (2003)



15

8. Hoffmann, H., Misailovic, S., Sidiroglou, S., Agarwal, A., Rinard, M.: Using Code
Perforation to Improve Performance, Reduce Energy Consumption, and Respond
to Failures . Technical Report MIT-CSAIL-TR-2009-042, MIT (September 2009)

9. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: Charac-
terization and architectural implications. In: PACT-2008: Proceedings of the 17th
Inter. Conf. on Parallel Architectures and Compilation Techniques. (Oct 2008)

10. x264. Online document, http://www.videolan.org/x264.html
11. Intel Inc.: Intel itanium architecture software developer’s manual (2006)
12. Azimi, R., Stumm, M., Wisniewski, R.W.: Online performance analysis by statis-

tical sampling of microprocessor performance counters. In: ICS ’05: Proceedings
of the 19th Inter. Conf. on Supercomputing. (2005) 101–110

13. Wolski, R., Spring, N.T., Hayes, J.: The network weather service: a distributed
resource performance forecasting service for metacomputing. Future Generation
Computer Systems 15(5–6) (1999) 757–768

14. Vetter, J., Worley, P.: Asserting performance expectations. In: Supercomputing,
ACM/IEEE 2002 Conference. (Nov. 2002) 33–33

15. Caporuscio, M., Di Marco, A., Inverardi, P.: Run-time performance management
of the siena publish/subscribe middleware. In: WOSP ’05: Proc. of the 5th Inter.
Work. on Software and performance. (2005) 65–74

16. De Rose, L.A., Reed, D.A.: SvPablo: A multi-language architecture-independent
performance analysis system. In: Inter. Conf. on Parallel Processing. (1999)

17. Cascaval, C., Duesterwald, E., Sweeney, P.F., Wisniewski, R.W.: Performance and
environment monitoring for continuous program optimization. IBM J. Res. Dev.
50(2/3) (2006) 239–248

18. Krieger, O., Auslander, M., Rosenburg, B., W., R.W.J., Xenidis, Silva, D.D., Os-
trowski, M., Appavoo, J., Butrico, M., Mergen, M., Waterland, A., Uhlig, V.: K42:
Building a complete operating system. In: EuroSys ’06: Proc. of the 1st ACM
SIGOPS/EuroSys Euro. Conf. on Computer Systems. (2006)

19. Wisniewski, R.W., Rosenburg, B.: Efficient, unified, and scalable performance mon-
itoring for multiprocessor operating systems. In: SC ’03: Proc. of the ACM/IEEE
conf. on Supercomputing. (Nov 2003)

20. Tamches, A., Miller, B.P.: Fine-grained dynamic instrumentation of commodity
operating system kernels. In: OSDI ’99: Proc. of the third symp. on Operating
systems design and implementation. (1999)

21. Schulz, M., White, B.S., McKee, S.A., Lee, H.H.S., Jeitner, J.: Owl: next generation
system monitoring. In: CF ’05: Proc. of the 2nd conf. on Computing Frontiers.
(2005)

22. Sprunt, B.: The basics of performance-monitoring hardware. IEEE Micro 22(4)
(Jul/Aug 2002) 64–71

23. Dini, P.: Internet, GRID, self-adaptability and beyond: Are we ready? (Aug 2004)
24. Ipek, E., Mutlu, O., Martnez, J.F., Caruana, R.: Self-optimizing memory con-

trollers: A reinforcement learning approach. In: ISCA ’08: Proc. of the 35th Inter.
Symp. on Comp. Arch. (2008)

25. Hartono, A., Norris, B., Sadayappan, P.: Annotation-based empirical performance
tuning using orio. In: IPDPS ’09: Proc. of the Inter. Symp. on Parallel&Distributed
Processing. (2009)

26. Ribler, R., Vetter, J., Simitci, H., Reed, D.: Autopilot: adaptive control of dis-
tributed applications. In: High Performance Distributed Computing. (Jul 1998)

27. Hollingsworth, J., Keleher, P.: Prediction and adaptation in active harmony. In:
High Performance Distributed Computing, 1998. Proceedings. The Seventh Inter-
national Symposium on. (Jul 1998) 180–188


