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Chapter 1 Introduction

The course of development of understanding the fundamental laws of physics has
been dictated by the study of symmetry. Uncovering symmetries of space-time and
understanding their consequences has led to the development and understanding of
quantum field theories (QFTs). QFTs are the most successful framework to describe
the interactions between elementary particles as well as the statistical properties of
collective excitations of particles. Studying the symmetry of systems allows one to
severely constrain the allowed spectrum of particles and their interactions.

These interactions are organized based on the energy scales at which they are
probed. The renormalization group describes how the interaction strengths or cou-
plings change with the energy scale. The idea is to construct an effective description
by coarse-graining the short distance degrees of freedom. This leads to a flow in the
space of allowed theories [1].

An extremely important class of QFTs called Conformal Field Theories (CFTs)
live at the fixed points of these flows. The symmetries of these field theories in-
clude space-time scale invariance, in addition to space-time translations and rota-
tions which are present in any relativistic quantum field theory. These conformal
symmetries are highly constraining and importantly emerge in the large distance
description of a wide variety of physical systems such as those undergoing phase
transition [2]. Working out the consequences of the presence of this symmetry has
led to important insights in theoretical physics. This dissertation focuses on under-
standing the constraining power of conformal symmetry, primarily in 2 space-time
dimensions.

The symmetries of CFTs are so constraining that they allow calculations to be
done in regimes where interaction strengths are too strong to allow a perturbative
description. In fact, this has led to the development of the conformal bootstrap
[3], an ambitious approach of bypassing a Lagrangian description of field theories to
constrain them using symmetry alone.

Quantum gravity also provides a compelling reason to develop an understand-
ing of CFTs. According to our current understanding, one of the only known self-
consistent descriptions of quantum gravity in which we have a degree of qualitative
control is via the holographic duality [4]. This is a conjectured duality between a cer-
tain gravitational theory living on (d+ 1)-dimensional asymptotically anti-de Sitter
(AdS) space-time and a quantum field theory living on its d-dimensional boundary.
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Crucially, it allows one to sharply formulate the black information paradox, first
defined by Hawking [5]. The puzzle refers to the tension between the following two
statements: i) as seen by an external observer, a black hole can be described in terms
of a quantum system which evolves unitarily under time evolution, ii) a black hole
has a temperature and is described as a thermal ensemble. Many studies attempt to
use the AdS/CFT duality to describe the gravitational collapse of matter in AdS, in
terms of the approach towards thermal equilibrium of the boundary CFT. The final
formation of the black hole is expected to correspond to thermalization in the CFT
[6].

So what is the mechanism that explains how a closed quantum system (satisfying
certain conditions) is described as a thermal ensemble at late enough times, under
unitary time evolution? An important modern tool to understand this process of
thermalization in quantum mechanics is given by the Eigenstate Thermalization
Hypothesis (ETH) [7]. ETH tells us that we only need to study the matrix elements
of probe observable quantities in the energy eigenstates of a system in order to
discern whether the system can be described by a canonical thermal ensemble at late
enough times. The condition that the matrix elements need to satisfy is that the
diagonal elements need to be smooth functions of the energy and the off-diagonal
elements need to be exponentially suppressed. ETH has been extensively studied
theoretically and it’s predictions have found agreement with numerical simulations
of lattice systems [8].

In two-dimensional CFTs, the conformal symmetry algebra is enhanced to the
infinite-dimensional Lie algebra of holomorphic and anti-holomorphic local conformal
transformations, the Witt algebra. Since we are in interested in quantum mechanical
theories with such symmetries, we are led to study the centrally extended version of
this symmetry algebra, which is called the Virasoro algebra. These symmetries allow
all 2d CFTs to admit an integrable sector with an infinite set of conserved charges
[9]. Thus one naturally expects that in order to understand thermalization of an
integrable 2d CFT, one should consider thermalization to an ensemble defined by
these non-trivial charges in addition to the Hamiltonian. Holographically, this point
of view could enable us to describe the formation of a black hole in an AdS3 space-
time. Here, when quantum corrections are taken into account, conserved quantum
KdV or qKdV charges would be present and understood to be soft hair of the black
hole [10]. There are however a number of questions we have to answer before making
progress on this challenging question, the first of them being how to calculate the
spectrum of qKdV charges. In Chapter 2, we make initial steps in this direction
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by understanding the spectrum of charges in the holographically relevant large cen-
tral charge perturbative expansion. This chapter is based on my paper Spectrum
of quantum KdV hierarchy in the semiclassical limit, written in collaboration with
Anatoly Dymarsky, Sotaro Sugishita and Kiril Pavlenko [11].

Indeed, using the symmetries of a CFT is important for better understanding
the holographic dictionary itself. Consider for example, a region A in the boundary
CFT. The dual region in the AdS bulk is referred to as the entanglement wedge and
corresponds to a region enclosed by an extremal surface anchored on A [12]. How
does the bulk geometry of this entanglement wedge emerge from the CFT data on the
boundary? This important question has attracted a lot of intense research and sig-
nificant ideas from quantum information theory have been shown to be instrumental
in understanding it.

In quantum information theory, a useful measure of distinguishability between
two quantum states is the Bures distance. It is natural to expect this metric to
emerge in the bulk. This is because the distinguishability of states in the bulk is
expected to increase as the points where these states have support are geometrically
separated in the boundary [13]. In Chapter 3, we explore perturbative corrections to
the information metric associated with correlators in holographic CFTs. This chapter
is based on my paper Information geometry and holographic correlators, written in
collaboration with Allic Sivaramakrishnan and Hardik Bohra [14].

A recurring theme in both Chapters 2 and 3 is the constraining power of confor-
mal symmetry. Interestingly, the symmetry constraints of a two-dimensional CFT
can be formulated in terms of the consistency conditions that its correlation func-
tions need to satisfy. The 4-point correlation functions admit a decomposition into
conformal blocks. This decomposition then needs to satisfy unitarity and crossing
symmetry. This technique is known as the conformal bootstrap and has been ex-
ploited in classifying all 2d CFTs with central charge less than 1 [15]. For central
charge greater than 1, the expressions for conformal blocks are difficult to obtain
and this regime has largely been unexplored.

These constraints are even more interesting when the CFT lives on higher genus
Riemann surfaces, the simplest example being the torus. In these cases, in addi-
tion to the infinitesimal conformal transformations, there are also large or modular
transformations which cannot be continuously connected to the identity. Invariance
of CFT partition functions under such modular transformations, have been success-
fully applied to constrain CFTs and obtain universal bounds on the spectrum of 3d
AdS gravity [16].
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The celebrated Cardy formula is an important example of the physical conse-
quences of studying this modular symmetry. It relates the density of states of a
CFT at low and high temperatures, and via holography, has led to a microscopic
description of the microstates of black holes in AdS3 [17].

The modular bootstrap program aims to chart the space of all allowed 2d CFTs
using the modular invariance and positivity of the torus partition function. In chiral
CFTs, classical codes have been known to provide a natural mathematical framework
which leads to solutions of the modular bootstrap equations [18]. More recently, this
framework was extended to include a class of non-chiral CFTs [19]. These are perhaps
the tip of the iceberg of interconnections between the bootstrap equations and areas
of mathematics, the other well studied example being the sphere packing problem
[20].

In [21], it was shown that and there are many modular-invariant “fake” partition
functions that are not partition functions of any known theory. Many examples
of isospectral yet physically distinct theories also exist. This leads one to ask the
question: can the consideration of higher genus partition functions allow one to
rule out unphysical theories? Perhaps the higher genus partition functions can tell
apart physically distinct theories because they probe the spectrum as well as its
interactions.

In order to approach these questions, in Chapter 4, we first extend the connection
between classical codes and chiral CFTs to those that are defined on higher genus
surfaces. We find that studying the higher genus partition function along with
constraints arising from considering certain degeneration limits does allow one to
constrain the space of allowed theories. The contents of this chapter are in my paper
Classical codes and chiral CFTs at higher genus, written in collaboration with Brian
McPeak and Johan Henriksson [22].

In Chapter 5, we extend to higher genus, the connection between quantum codes
and partition functions of non-chiral CFTs defined by them. We find that in this
class of theories, the constraints of higher genus modular transformations take the
simple form of linear transformations on a certain set of variables. This allows one
to solve these constraints. This chapter is based on my paper Narain CFTs and
Quantum Codes at Higher Genus, written in collaboration with Brian McPeak and
Johan Henriksson [23].

In the following sections of the introduction, I introduce in more detail various
aspects of CFTs and other relevant background material that lead into the chapters
that follow.
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1.1 Integrability in 2d CFTs

The conserved current associated with conformal symmetry in 2d CFTs is the energy-
momentum tensor. Conservation in the conformal z plane allows a split into a
holomorphic component T (z) = Tzz (z) and an anti-holomorphic component T̄ (z̄) =

Tz̄z̄ (z̄). These can be expanded in Laurent modes as follows:

T (z) =
∑
n∈Z

Lnz
−n−2, T̄ (z̄) =

∑
n∈Z

L̄nz̄
−n−2 . (1.1.1)

The modes Ln satisfy the Virasoro algebra with central charge c:

[Ln, Lm] = (n−m)Ln+m +
c

12

(
n3 − n

)
δn+m,0 ,

[L̄n, L̄m] = (n−m) L̄n+m +
c

12

(
n3 − n

)
δn+m,0 ,

[Ln, L̄m] = 0 . (1.1.2)

The Hilbert space of states is built by a collection of highest weight states (also
referred to as primary states) |h⟩ which are created by a primary field with weight
h inserted at the origin and satisfy L−n|h⟩ = 0 for n > 0 and L0|h⟩ = h|h⟩.

In this section we will focus on the systems where there are an infinite number of
conserved currents. At the classical level conservation of T directly implies conserva-
tion of an infinite set of composite fields built from taking its powers and derivatives,
T 2, T 3, · · · .

In a seminal work, [9] it was shown that even at the quantum level, by taking
powers of T and its derivatives, one can construct an infinite set of currents J2k
such that their associated conserved charges (which will be refferred to as the qKdV
charges) Q2k−1 =

∫ 2π

0
dx
2π
J2k form an infinite mutually commuting set,

[Q2k−1, Q2l−1] = 0 . (1.1.3)

The first few currents have the following form:

J2 = T, J4 =: T 2 :, J6 =: T 3 : +
c+ 2

12
+ (∂T )2 , (1.1.4)

where :: is the normal ordering symbol and the derivative terms are added by con-
struction to ensure 1.1.3 holds. These charges have important physical interpreta-
tions. The first chargeQ1 is the generator of time tranlations ie. the Hamiltonian and
the charge Q3 generates a flow in phase space which is equivalent to the well-known
KdV equation.
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In order to study the classical spectrum of these charges in the classical field
theory setting, we first look at how the problem of generating all integrals of motion
is solved in finite-dimensional integrable systems. The relevant object to study is a
pair of operators L,M called a Lax pair, which are defined such that commutator of
the pair is equivalent to equations of motion, ie.

d

dt
L = [M,L] . (1.1.5)

This is a useful reformulation of the equations of motion because they generate all the
integrals of motion or action variables Ik which can be calculated via the following
trace over the phase space:

Ik = TrLk. (1.1.6)

The integrals of motion are now automatically conserved by cyclicity of trace d
dt
Ik =

TrLk−1[M,L] = 0. So, the strategy to find the integrals of motion is to find such a
pair of operators {L,M}.

In fact, such a pair of differential operators exists for the kdV equation and is
given by

L = − d2

dx2
+ u ,

M = −4 d
3

dx3
− 3

(
u
d

dx
+ u

d

dx
u

)
. (1.1.7)

It is straightforward to check that L̇ = [M,L] is equivalent to

u̇ = 6uu′ − 4u′′′ . (1.1.8)

We will solve the integrable field theory by means of the inverse scattering method
[24]. This method transforms between the field on a time slice and a set of abstract
scattering data. The object to study is a Schrödinger type equation, referred to as
Hill’s equation:

− d2

dx2
ψ + uψ = 0 , (1.1.9)

where x ∈ S1 is the spatial circle in the CFT on a fixed time slice and u(x) is a
periodic potential u(x+ 2π) = u(x).

We know that the vector fields that generate reparametrizations on a circle follow
the Witt algebra. We would like to demand that Hill’s equation continues being

6



satisfied under reparametrizations x −→ x̃(x). This is ensured if ψ(x) and u(x)

transform as

ψ̃(x̃) = ψ(x)

(
dx̃

dx

)1/2

, (1.1.10)

ũ(x̃) =

(
dx̃

dx

)−2

(u(x) + 2{x̃, x}) . (1.1.11)

Here {x̃, x} is the conventional Schwarzian derivative, with the following definition

{y, x} = y′′′

y′
− 3

2

(
y′′

y′

)2

. (1.1.12)

The appearance of the Schwarzian derivative and correct scalings in the transforma-
tion law for u(x) tells us that we should be thinking of u(x) as the energy momentum
tensor T of the 2d CFT. T is known to transform as a primary field of weight 2 with
an extra Schwarzian term. To make this more precise, consider an infinitesimal
transformation

x̃ = c+ ϵf(x) . (1.1.13)

To keep Hill’s equation satisfied, the potential transforms as

u(x̃) = u(x) + ϵDf , (1.1.14)

where
D := ∂u+ 2u∂ − 2∂3 .

This flow generated by u(x) can be written in terms of a Poisson bracket:

c

24
{u(x1), u(x2)} = −2πD δ(x1 − x2) . (1.1.15)

Fourier expanding u(x)

c

24
(u(x) + 1) =

∑
k

lke
ikx , (1.1.16)

lets us identify the Virasoro algebra satisfied by its generators

{ln, lm} = (n−m)ln+m +
c

12
k2(k − 1)δn+m . (1.1.17)

In the above analysis, we found Poisson bracket structure for u by demanding that
Hill’s equation was kept invariant under reparametrization of coordinates (which are
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secretly conformal transformations). It turns out that in order to generalize this
to include the flow generated by the composite fields Qcl

2k−1 which are conserved
classically, the auxiliary spectral problem to consider is

− d2

dx2
ψ +

u

4
ψ = λψ . (1.1.18)

The eigenvalues λ of periodic and anti-periodic wavefunctions ψ are the spectral
data. The crucial statement is that the iso-spectral deformations of u are generated
by the kdV generators Qcl

2k−1

δu =
c

24
{Qcl

2k−1, u} . (1.1.19)

An illustrative example of this is that the original kdV equation is just an example
of the flow generated by Q3

u̇ =
c

24
{Q3, u} = 6uu′ − 4u′′′ . (1.1.20)

We will now clarify what we mean by thermalization to an ensemble described
by this infinite set of integrable charges in 2d CFTs.

1.2 Generalized Eigenstate Thermalization

Understanding the set of conditions to determine if a system will thermalize, has
important consequences in understanding the emergence of thermodynamics from
the well known princeples of quantum mechanics. This question was posed sharply
in [25], [7] as, what is the criterion to determine if the expectation values of few-body
observable O in an isolated quantum system prepared initially in a far from equi-
librium state, will towards those of a thermal ensemble. Eigenstate Thermalization
Hypothesis gives us one way of answering this question. The relevant object to study
is the matrix elements of O in energy eigenstates |Ei⟩.
The condition is that the diagonal elements are smooth functions f0 of the energy
expectation Ei, ie.

⟨Ei|O|Ei⟩ = fO(Ei) (1.2.1)

and the off-diagonal elements are exponentially suppressed by the entropy S(E) as
e−

S(E)
2 .

If this condition holds, and we tune the temperature β such that

⟨Ei|O|Ei⟩ = Tr He−βH (1.2.2)
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then expectations values of O are given by the canonical ensemble at late times

⟨Ei|O|Ei⟩ = Tr Oe−βH . (1.2.3)

ETH has not been proven from first principles but has passed numerous numerical
and experimental checks. When the system is integrable and has many conserved
charges Q2k−1 (where we label H = Q1), it does not equilibrate in the usual sense.
However, there is a natural generalization of the of ETH criterion because we expect
it to thermalize to the generalized gibbs ensemble (GGE) decorated by the charges
Q2k−1.
We define a set of mutual eigenstates |Ei⟩ of Q2k−1 and examine the probe operator
O in this set of eigenstates. If the diagonal elements are smooth functions of

⟨Ei|O|Ei⟩ = fO Q2k−1(Ei) (1.2.4)

with the off diagonal elements being suppressed as e−
S(E)

2 and we tune chemical
potentials µ2k−1 such that

⟨Ei|Q2k−1|Ei⟩ = Tr Q2k−1e
−

∑
k µ2k−1Q2k−1 (1.2.5)

then expectations values of O are given by the GGE

⟨Ei|O|Ei⟩ = Tr Oe−
∑

k µ2k−1Q2k−1 (1.2.6)

1.3 Large c expansion in Holography

A generic 2d CFT is not expected to satisfy the holographic duality. The conditions
that the CFT is assumed to follow for this to be the case are having a large c and
a sparseness constraint on the low-lying spectrum. The matching of the algebra of
asymptotic symmetries of the AdS3 with the Virasoro symmetry of the boundary
CFT, allows one to identify c = 3GN/2l where GN is the Gravitational Newtons
constant and l is the AdS radius. In this sense, performing a 1/c expansion is
equivalent to a semi-classical 1/GN expansion in the bulk.

In fact, more generally, for large-N boundary field theories, the correlation func-
tions factorize. The quantum effects in the correlation functions are suppressed
by powers of N, which leads one to identify that 1/N controls the effective theory
expansion.
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Chapter 2 In Chapter 2, we employ quasi-classical quantization to calculate spec-
trum of quantum KdV charges in a large c expansion. The classical KdV charges can
be expressed in terms of action variables Ii as a power series expansion. Quantum-
mechanically this series becomes the expansion in 1/c, while action variables become
boson occupation numbers ni. Crucially, classical expression, which is homogeneous
in Ii, acquires quantum corrections which include terms of subleading powers. We
conjecture that these “quantum” terms can be unambiguously fixed from the analytic
form of Q2k−1 acting on the highest weight (primary) states. We confirm this hypoth-
esis and find explicit expressions for the spectrum of Q2k−1 up to first three orders
in 1/c expansion. This knowledge of the spectrum of Q2n−1 can help understand
the qKdV generalized Gibbs ensemble (GGE) [26, 27, 28, 29] and corresponding
partition function and free energy.

Chapter 3 In Chapter 3, we explore perturbative corrections to quantum informa-
tion geometry. In particular, we study a Bures information metric naturally associ-
ated with the correlation functions of a CFT. We compute the metric of holographic
four-point functions and include corrections generated by tree Witten diagrams in
the bulk. In this setting, we translate properties of correlators into the language of
information geometry. Cross terms in the information metric encode non-identity
operators in the OPE. We find that the information metric is asymptotically AdS.
We also discuss an information metric for transition amplitudes.

1.4 Modular invariance of 2d CFTs

The partition function of 2d CFTs on a torus is given by

Z =
∑

h,h̄ ∈ states

qh−
c
24 q̄h̄−

c̄
24 (1.4.1)

Here, we assume that there is a unique vacuum state with h = h̄ = 0. The partition
function on a Euclidean torus of modulus τ equals Z(τ, τ̄) restricted to τ̄ = τ ∗.
Modular invariance of the partition function is the following statement:

Z

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
= Z (τ, τ̄) ,

(
a b

c d

)
∈ SL (2,Z) (1.4.2)
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The states are organized by the symmetry of the theory so admit a decomposition
into characters

Z (τ, τ̄) = χvac (τ, τ̄) + χh,h̄ (τ, τ̄) (1.4.3)

χh,h̄ gives the contribution to the sum given by the primary field of dimension h, h̄

and all it’s decendants. For the theory to be unitary, the coefficients in the expansion
of characters must be positive, where c1, c2 are also positive.

χh,h̄ = qh−
c
24 q̄h̄−

c̄
24 (1 + positive coefficients qc1 q̄c2 + ...) (1.4.4)

We will now see how modular symmetry leaves the partition function of compact
periodic scalar fields invariant by considering the example of the conformal field
theory of a single periodic scalar field X which satisfies X ∼ X + 2πR.

Since all states are left invariant by translations by R, the states must have mo-
mentum quantized by k = n

R
, n ∈ Z Compactness has the important consequence

that the field may wind around the compact dimension

X(x+ 2π) = X(x) + 2πRw, w ∈ Z (1.4.5)

States are labelled by their momentum eigenvalue n and their winding number w
which define the spectra of these theories. The momentum of the holomorphic (left)
and anti-holomorphic (right) components of the field (labelled here by pL, pR) are
written in terms of the quantum numbers n,w as follows:

pL =
n

R
+
wR

2
, (1.4.6)

pR =
n

R
− wR

2
. (1.4.7)

The set of points pL, pR define an even self-dual lattice in Λ = R(1,1). By a standard
construction [30], the fourier expansion of these fields allows one to relate pL, pR to
the Virasoro generators by

L0 =
p2L
2

+
∑
n=1

α−nαn , (1.4.8)

L̄0 =
p2R
2

+
∑
n=1

ᾱ−nᾱn . (1.4.9)

The partition function for a single boson can now be written as:

Z(τ, τ̄) = (qq̄)1/24Tr
(
qL0 q̄L̄0

)
(1.4.10)

= |η(τ)|−2
∑
n,w

qp
2
L/2q̄p

2
R/2 (1.4.11)
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In this form, it can be seen that the partition function arises by summing over all
possible vectors in the lattice Λ. Infact, in chapter 4 and 5, we consider multiple
compact scalar fields, whose momentum and winding modes define Euclidean or
Narian lattices.

Chapter 4 In chapter 4, we derive explicit expressions for the higher genus parti-
tion functions of a specific class of CFTs: code CFTs, which are constructed using
classical error-correcting codes. An error correcting code can be used to define a
lattice, simply by identifying the vectors in the code with the unit cell of the lattice.
A key element of the relationship between codes and CFTs is that the CFT partition
function is given by the code enumerator polynomial WC, which counts the degen-
eracy of codewords much like the partition function counts the states of the theory.
The relation between the enumerator and the torus partition function is

Z(τ) =
WC(ϑ0, ϑ1)

Φ(τ)
, (1.4.12)

where ϑi = ϑi(τ) are Jacobi theta functions. In this chapter, we show that the rela-
tionship (1.4.12) extends to higher genus partition functions, which are computed by
the “higher-weight” enumerator polynomials. In this setting, the Sp(2g,Z) modular
transformations of genus g Riemann surfaces can be recast as a simple set of linear
maps acting on 2g polynomial variables. The CFT partition function is directly re-
lated to the enumerator polynomial, meaning that solutions of the linear constraints
from modular invariance immediately give a set of seemingly consistent partition
functions at a given genus. By requiring that the enumerator polynomial has pos-
itive integer coefficients, we can list every partition function which could possibly
derive from an error-correcting code. Finally, we impose a further constraint, called
“factorization limits:” when the higher genus Riemann surface degenerates into two
lower-genus Riemann surfaces connected by an infinitely thin, long tube, then the
higher genus partition function must factorize into the products of lower-genus par-
tition functions. The higher genus constraints, plus consistency under degeneration
limits of the Riemann surface, greatly reduces the number of possible code CFTs.

Chapter 5 In Chapter 5, we explore the connection between quantum error cor-
recting codes and a certain class of Narain CFTs at higher genus. We prove that the
higher-genus partition functions take the form of polynomials of higherweight theta
functions, and that the higher-genus modular group acts as simple linear transfor-
mations on these polynomials. We explain how to solve the modular constraints
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explicitly, which we do for genus 2. The result is that modular invariance at genus
1 and genus 2 is much more constraining than genus 1 alone. This allows us to
drastically reduce the space of possible code CFTs. We also consider a number of
examples of “isospectral theories” – CFTs with the same genus 1 partition function
– and we find that they have different genus 2 partition functions. Finally, we make
connection to some 2d CFTs known from the modular bootstrap. The n = 4 theory
conjectured to have the largest possible gap, the SO(8) WZW model, is a code CFT,
allowing us to give an expression for its genus 2 partition function.
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Chapter 2 Spectrum of quantum KdV hierarchy in the semiclassical
limit

This chapter is essentially identical to:
Spectrum of quantum KdV hierarchy in the semiclassical limit [11]

2.1 Introduction: Quantum KdV symmetry

Conformal invariance in two dimensions is a very powerful tool which gives rise to
many non-pertubative relations constraining dynamics of 2d CFTs. Among them is
universality of stress-energy tensor sector [2], namely any correlation function which
includes only stress-energy tensor and its descendants depends only on central charge
c but not on any other details of the theory. An analytic form of all such correlators
can in principle be found in a recursive form [31]. The stress-energy sector can be
regarded as integrable, even if the whole theory is understood to be chaotic [32].
This can be justified formally by noting there is an infinite number of mutually
commuting quantum KdV charges [9, 33, 34] – local charges Q2n−1 of the form

Q2n−1 =
1

2π

∫ 2π

0

T2n(φ) dφ, (2.1.1)

where the densities T2n are appropriately regularized polynomials in stress-energy
tensor T (φ) and its derivatives. First charge

Q1 = L0 −
c

24
=

1

2π

∫ 2π

0

T dφ (2.1.2)

is the CFT Hamiltonian. (Here and below we consider 2d CFT on a cylinder. Because
of standard factorization into left and right-moving sectors we restrict the discussion
to one sector only.) Interest in integrable structure of 2d CFT stress-energy sector
has been reignited recently in the context of Eigenstate Thermalization Hypothesis
(ETH) [25]. Following original works [35, 36, 37, 38, 39, 40, 41, 27, 28] it has been
conjectured and confirmed in [42] that 2d CFTs exhibit generalized ETH with the
local equilibrium being described by qKdV Generalized Gibbs Ensemble (GGE).
Schematically the role of qKdV charges is as follows. The CFT Hamiltonian (2.1.2)
is highly degenerate with all CFT descendant states of the form

|E⟩ = L−m1 . . . L−mk
|∆⟩,

k∑
i=1

mi = m (2.1.3)
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sharing the same energy E = ∆+m− c/24. Since all Q2n−1 commute, they can be
simultaneously diagonalized giving rise to mathematically unique “integrable” basis
of eigenstates. Unlike the energy eigenstates of the form (2.1.3), which fail the ETH,
integrable eigenstates carry specific values of Q2k−1-charges and obey generalized
ETH. This novel role of qKdV symmetries motivates the question of “solving” in-
tegrable structure, i.e. evaluating spectrum of qKdV charges and finding integrable
eigenstates, which would allow detailed studies of generalized ETH and qKdV GGE
thermodynamics.

In certain sense the question of finding qKdV spectra can be regarded as solved:
there is not one but two distinct ways to write an algebraic Bethe-ansatz reducing
the problem of finding spectra to a bunch of algebraic equations [43, 44]. In practice
complexity of these equations grows very rapidly with the level m (2.1.3), making
this approach useless in the context of ETH, at least so far. The ETH holds in
thermodynamic limit, it may not and does not hold beyond that regime. Thermo-
dynamic limit assumes the length of the spatial circle L goes to infinity, with the
energy density E/L kept fixed. Using rescaling, one can always bring the circle to
unit radius, the notations we use throughout the chapter. The energy E then must
go to infinity as L2 with L → ∞ being an auxiliary parameter keeping track of
corrections to various ETH-related identities. For any given primary state |∆⟩ this
essentially means the descendant level m must be taken to infinity, i.e. we arrive
exactly at the limit where algebraic Bethe equations become most difficult.

A progress was achieved by taking an additional limit of large central charge. In
this case Q2k−1-eigenstates, akin to (2.1.3), can be parametrized by a set of natural
numbers, which can be conveniently combined into a Young tableau [28].1 It is most
convenient to use representation when nk ≥ 0 for k = 1, 2, . . . counts the number of
rows of length k,

|ni⟩ ≡ |n1, . . . ⟩,
∞∑
k=1

k nk = m. (2.1.4)

We emphasize (2.1.4) are eigenstates of Q2n−1 and thus differ from (2.1.3). Corre-
1Appearance of nk to parametrize the eigenstates can be understood from the Virasoro alge-

bra, which in the large c limit reduces to a product of Heisenberg algebras, with nk being the
corresponding quantum numbers [45, 46].
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sponding eigenvalues at leading order were conjectured in [29]2

Q2n−1|ni⟩ = Q2n−1|ni⟩, (2.1.5)

Q2n−1 = ∆̃n +
n−1∑
p=0

ξpn ∆̃
n−1−p c̃p

(
∞∑
k=1

k2p+1nk +
ζ(−2p− 1)

2

)
+O(c̃n−2),

ξpn =
(2n− 1)

√
π Γ(n+ 1)

2 Γ(p+ 3/2)Γ(n− p)
, ∆̃ = ∆− c̃, c̃ =

c− 1

24
. (2.1.6)

Here we assume the scaling when c→∞ while ∆̃/c̃ = h is kept fixed. No thermody-
namic limit is assumed. This is the limit of holographic correspondence, when CFT
is dual to semiclassical gravity. The holographic picture provides an easy deriva-
tion for the leading 1/c terms in (2.1.6) and provides interpretation for nk as the
boson occupation numbers of the boundary gravitons, see Appendix ??. From the
mathematical point of view simplicity of eigenstates parametrization with help of
Young tableaux as well as relatively simple form of (2.1.6) can be readily under-
stood from the semiclassical quantization of the co-adjoint orbit of Virasoro algebra.
Indeed, as is explained in [45] in the large c limit Virasoro algebra can be understood
in quasi-classical terms, as quantization of the Kirillov-Kostant-Souriau symplectic
form. Because of U(1) symmetry semiclassical quantization of Q1 is exact,

Q1 = ∆̃ +

(
∞∑
k=1

k nk −
1

24

)
= ∆+m− c

24
, (2.1.7)

but for all higher Q2n−1, n > 1 it is not. It is a perturbation series in 1/c̃, which
plays the effective role of Planck constant. In this chapter we develop a perturbative
scheme to obtain the spectrum of Q2n−1 as a series in 1/c̃ expansion and calculate
first two non-trivial terms. The result is summarized in (2.4.15).

In the strict c→∞ limit when the problem becomes classical, CFT stress-tensor
T can be substituted by an element of the co-adjoint orbit of Virasoro algebra 24

c
u,

where u is a potential of an auxiliary periodic Schrödinger equation. Then quan-
tum KdV charges (2.1.1) reduce to conventional KdV Hamiltonians of the periodic
problem

Q2n−1 =
1

2π

∫ 2π

0

(un + . . . ) dφ, (2.1.8)

which we denote the same as the quantum ones, as it clear from the constant which,
classical or quantum version, we had in mind. For the states with large but fi-
nite level m number of non-zero nk will also be finite. At the classical level this

2Since Ref. [29] was working in the regime of both large central charge and thermodynamic
limit Q1 ∝ cL2, it only conjectured the term linear in nk, as the nk-independent term is 1/L2

suppressed.
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corresponds to finite-zone potentials u, which form a finite-dimensional symplectic
manifold equipped with the structure of a completely integrable system. Hamilto-
nians Q2n−1 can be re-expressed in terms of the action variables Ik and the orbit
invariant h,

Q2n−1 = hn +
∞∑
k=1

n−1∑
j=0

ξjn h
n−1−jk2j+1 Ik +O(I2) (2.1.9)

which at semiclassical level become integral quantum numbers Ik → nk/c̃. It is
then easy to see that (2.1.9) becomes (2.1.6), up to an overall factor c̃n and certain
corrections. At each power of 1/c̃ classical expression Q2n−1(h, Ik) predicts only
leading power of nk while all subleading powers are “quantum corrections” which
must be fixed separately.

At leading 1/c̃ order quantum correction is just nk-independent constant term
proportional to ζ(−2p − 1)/2, see (2.1.6). It can be fixed trivially by introducing
Maslov index Ik → (nk + 1/2)/c̃, such that constant term can be formally rewritten
as the vacuum energy of “quantum oscillators” with frequencies ωk and occupation
numbers nk

Q2n−1 = ∆̃n +
∞∑
k=1

(nk + 1/2)ωk +O(c̃n−2), ωk =
n−1∑
j=0

ξjn ∆̃
n−1−j c̃j k2p+1.(2.1.10)

Unfortunately this simple trick fails beyond the leading order in 1/c̃. At 1/c̃2 order
one has to fix both constant and linear in nk terms, while simple Ik → (nk + 1/2)/c̃

substitution leads to incorrect results.
We propose and verify up to 1/c̃2 order that the subleading “quantum correction”

terms can be unambiguously fixed starting from the analytic expression in terms of
1/c̃ pertubative series of the eigenvalues Q0

2n−1 of Q2n−1 acting on the primary state
|∆⟩. For leading 1/c̃ term this statement is trivial – taking all nk = 0 yields the
constant term, which is simply leading 1/c̃ term in Q0

2n−1. At the 1/c̃2 order this
statement is more nuanced: naively Q0

2n−1 only fixes the constant term with all
nk = 0, but we show linear in nk terms can be also fixed starting from Q0

2n−1.
As a result we obtain spectrum of Q2n−1 up to first three orders in 1/c expansion,
including the leading ∆n term. We then apply the obtained result to evaluate thermal
expectation values of Q2n−1, free energy of the KdV Generalized Gibbs Ensemble at
first few leading orders in 1/c.

The chapter is organized as follows. In section 2.2 we discuss classic completely
integrable system associated with the finite zone potentials and evaluate Q2n−1(h, Ik)
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as a perturbative series in Ik. In section 2.3 we discuss analytic form of Q2k−1 acting
on primary states. These two pieces are combined in section 2.4 where we employ
semiclassical quantization to obtain the spectrum of qKdV charges in the first three
orders of 1/c̃ expansion. We also perform consistency checks, confirming our result.
Section 2.5 is devoted to applications of the obtained result. In section 2.5 we
calculate thermal expectation values of Q2n−1 and fix two leading orders in 1/c of
the associated differential operator Dn

Tr∆(Q2k−1 q
Q1) = Dnχ∆, χ∆ ≡ Tr∆(qQ1). (2.1.11)

We conclude with a discussion in section 2.6. Appendix A.1 provides technical details
concerning Novikov’s one-zone potentials. Appendix A.2 develops the technique of
dealing with the multi-zone potentials in the limit of the infinitesimally small zones.
Finally, appendix A.3 provides the details of calculating the spectrum of Q2n−1 acting
on primary states based on ODE/IM correspondence.

2.2 Calculation of Q2n−1(h, Ik)

In this section our goal is to find expression for Q2n−1 in terms of the orbit invariant
h and action variables Ik, by expanding pertubatively up to cubic order in Ik,

Q2n−1 = hn +
∑
k

f
(n,1)
k Ik + f

(n,2)
k I2k + f

(n,3)
k I3k +

∑
k<ℓ

f
(n,2)
k,ℓ IkIℓ+ (2.2.1)∑

k ̸=ℓ

f
(n,3)
k,ℓ I2kIℓ +

∑
k<ℓ<p

f
(n,3)
k,ℓ,p IkIℓIp +O(I

4).

Coefficients f are h-dependent. First three f (n,1)
k , f

(n,2)
k , f

(n,3)
k will be found using

one-zone potentials in section 2.2. Using two-zone potentials we will find f
(n,2)
k,ℓ and

f
(n,3)
k,ℓ in section 2.2, while coefficient f (n,3)

k,ℓ,p will be fixed using three-zone potentials
in section 2.2. An alternative brute-force derivation of (2.2.1) up to quadratic order
in Ik is given in the appendix ??.

Finite zone potentials: an introduction

The starting point is the “Schrödinger” equation

−ψ′′ +
u

4
ψ = λψ, (2.2.2)

with the periodic real-valued potential u(φ + 2π) = u(φ). For any real λ there are
two linearly-independent quasi-periodic solutions

ψ±(φ+ 2π) = e±2πi p(λ)ψ±(φ). (2.2.3)
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Here quasi-momentum p(λ) could be either real or pure imaginary. Values of λ ∈ R
for which p(λ) is imaginary are called “forbidden zone.” At the end of forbidden
zones p(λ) is integer or half-integer such that ψ± become periodic or antiperiodic
and linearly dependent. Normally, for such λ, another linearly independent singular
solution appears. Yet occasionally there are two linearly independent regular periodic
or antiperiodic solutions for the same λ. In this case forbidden zone degenerates and
disappears, with p(λ) being real everyone in the vicinity of that point. We provide
examples below.

A general potential u would have an infinite number of forbidden zones, but there
are special classes when only a finite number of forbidden zones are non-degenerate,
Such u are called finite zone potentials. They were introduced in a famous work [47]
and often refereed to as Novikov potentials.

Example: zero zone potential

Let us consider a constant potential u = 4λ0 = Q1 with some real Q1. A solution to
(2.2.2) can be readily found

ψ±(φ) = e±ip(λ)φ, p(λ) =
√
λ− λ0. (2.2.4)

For any λ > Q1/4 quasi-potential is real, i.e. there are no forbidden zones, except
for λ ∈ (−∞;Q1/4). The solutions (2.2.4) are linearly independent, including λ =

(Q1+ k
2)/4 for natural k, when ψ± are (anti)periodic. Values λ = (Q1+ k

2)/4 mark
the ends of degenerate forbidden zones.

Example: “opening” a zone

Let us now consider the potential u = Q1+ϵ cos(kφ)+O(ϵ
2) where Q1 is a constant, k

is positive integer, and ϵ is some infinitesimal parameter. Using quantum mechanics
perturbation theory we find at leading order that all eigenvalues of periodic and
anti-periodic problems remain the same and double-degenerate, except for λk which
splits into

λ±k =
Q1 + k2

4
± ϵ

2
. (2.2.5)

Hence now there are two forbidden zones, (−∞, Q1/4) and (λ−k , λ
+
k ).

Finite-zone potentials are characterized by the ends of non-degenerate zones λi.
For the zero-zone potential above there is only one parameter λ0 = Q1/4. After one
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zone is opened, there are three parameters: “energy” of the ground state λ0, λ1 = λ−k
and λ2 = λ+k . In general an m-zone potential is characterized by

λ0 < λ1 < · · · < λ2m, (2.2.6)

with the forbidden zones (−∞, λ0) and (λ2i−1, λ2i), i = 1,m. For each set {λi} we
can define a hyperelliptic curve

y2 =
2m∏
i=0

(λ− λi), (2.2.7)

while the quasi-momentum p being fixed in terms of its differential

dp =
λm + rm−1λ

n−1 + . . . r0
2 y

dλ, p(λ0) = 0. (2.2.8)

The latter is defined in such a way that the integrals of dp over a-cycles vanish∮
ai

dp = 2

∫ λ2i

λ2i−1

dp = 0. (2.2.9)

This fixes m coefficients r0, . . . , rm−1. Furthermore for the potential associated with
{λi} to be 2π-periodic we must additionally require integrals over b-cycles

wi =

∮
bi

dp = 2

∫ λ2i−1

λ2i−2

dp (2.2.10)

to be integer-valued

wi = ki − ki−1. (2.2.11)

Here natural ki satisfying ki+1 > ki, k0 ≡ 0, label opened zones. These are additional
m constrains, which reduce the total number of independent parameters λi to m+1.

A given set {λi} which satisfies (2.2.9,2.2.11), such that only m + 1 parameters
are independent, defines periodic potential u(φ), but in a non-unique way. Individual
potentials are labeled by points of the Jacobian of curve (2.2.7), with all of them shar-
ing the same spectrum. In other words isospectral potentials form an m-dimensional
torus, while full space of m-zone potentials is therefore 2m+ 1 dimensional.

At this point we would like to make a connection with the Virasoro algebra.
Consider Hill’s equation, which is “Schrodinger” equation (2.2.2) with λ = 0,

−ψ′′ +
u

4
ψ = 0. (2.2.12)

20



One can re-parametrize the circle going from φ to φ̃(φ) such that φ̃(φ + 2π) =

φ̃(φ) + 2π. Then wave-function and the potential also change accordingly

ψ̃(φ̃) = ψ(φ)

(
dφ̃

dφ

)−1/2

, (2.2.13)

ũ(φ̃) =

(
dφ̃

dφ

)−2

(u+ 2(Sφ̃)(φ)) , (2.2.14)

where Schwarzian derivative

(Sθ)(φ) ≡ θ′′′

θ′
− 3

2

(
θ′′

θ′

)2

. (2.2.15)

From (2.2.14) it is clear that u is an element from the co-adjoint orbit of Virasoro
algebra with the Schwarzian derivative term appearing because of central extension
[45]. All potentials u(φ) related by circle reparametrizations, i.e. belonging to the
same co-adjoint orbit share the same invariant – quasi-momentum at zero,

ψ(2π)/ψ(0) = e2πip(0), (2.2.16)

which is evident from (2.2.13). In other words

−4p(0)2 = h (2.2.17)

is the invariant of u characterizing the orbit itself. By choosing an appropriate φ̃ the
potential always3 can be brought to a constant form, in which case

ũ(φ̃) = h. (2.2.18)

The co-adjoint orbit is a symplectic space equipped with the Kirillov-Kostant-
Souriau bracket

c

24
{u(φ), u(φ′)} = −2πDδ(φ− φ′), D = ∂u+ 2u∂ − 2∂3. (2.2.19)

Here, using linearity of symplectic form we introduce a formal parameter c, which
later will be identified with the CFT central charge. Any Hamiltonian flow defined
by (2.2.19) leaves h invariant.

There is an infinite tower of the so-called KdV Hamiltonians Q2k−1, which can
be defined recursively with help fo Gelfand-Dikii polynomials Rn,

Q2n−1 =
1

2π

∫ 2π

0

Rndφ ∂Rn+1 =
n+ 1

2n+ 1
DRn, (2.2.20)

R0 = 1, R1 = u, R2 = u2 − 4

3
∂2u, R3 = u3 − 4u∂2u− 2(∂u)2 +

8

5
∂4u, . . .

3An implicit assumption here is that u belongs to the regular orbit diff(S1)/S1, which upon
quantization, becomes Verma module.
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Their Hamiltonian flows generate isospectral deformations of u

δu =
c

24
{Q2n−1, u} = (2n− 1)∂Rn, (2.2.21)

while they all remain in involution {Q2n−1, Q2ℓ−1} = 0.
We now consider a space of all m-zone potentials sharing the same h. This is a

2m-dimensional subspace within the orbit parametrized by h, which we will denote
as Fm(h). The pullback of the symplectic form on this space is non-degenerate,
hence it is also a symplectic manifold equipped with the Poisson bracket. Isospec-
tral flows leave this manifold invariant. Upon restricting to Fm(h), only first n KdV
Hamiltonians remain algebraically independent. The flows they generate move u
along the Jacobian of (2.2.7), which is the Liouvillian torus of a completely inte-
grable dynamical system defined by Q2n−1, n ≤ m. In other words the geometry of
Fm(h) is a m-dimensional torus parametrized by angle variables fibered above a base
parametrized by m variables Q2n−1. Alternatively, one can introduce m action vari-
ables Ik parameterizing the base and forming canonical conjugate pairs with angle
variables.

In terms of dp (2.2.8) values of KdV charges are given by an expansion at infinity

Q2n−1 =
2Γ(n+ 1)Γ(1/2)

Γ(n+ 1/2)

4n

2πi

∮
∞

dp λn−1/2, (2.2.22)

while the action variables are

Ik =
i

π

∮
ak

p
dλ

λ
=

1

iπ

∮
ak

dp lnλ. (2.2.23)

Functional dependence of Q2n−1 for n > m on the first m ones readily follows from
(2.2.22) and the form of dp (2.2.8).

Our task is conceptually trivial: we want to learn an explicit change of variables
on the base of Fm(h) from Q2n−1 to Ik. The expressions for Q2n−1(h, Ik) is not
available in the closed form, we therefore will find first few orders by expanding it in
powers of Ik. There is one notable exception, using Riemann bilinear relation with
two one-forms dp and pdλ/λ one can show in full generality

Q1 = h+
∑
k

k Ik. (2.2.24)

Our main approach will be based on parameterizing both Q2n−1 and Ik in terms
of the spectral curve i = 0,m, with the infinitesimal λ2i − λ2i−1, and then re-
expressing Q2n−1 in terms of Ik. There is an alternative straightforward approach,
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to parametrize the potential u(φ) in terms of its Fourier modes uℓ, and then express
both Q2n−1 and Ik in terms of uℓ. We develop this method in the appendix ?? and
confirm the expansion (2.2.1) up to second order in Ik.

One-zone potentials

Before we consider one-zone potential in detail, we revisit the zero-zone potential
u = Q1 ≡ 4λ0 and readily find differential

dp =
dλ

2
√
λ− λ0

(2.2.25)

to be defined on a Riemann sphere. This is the simplest possible case. In this case
p =

√
λ− λ0, u(φ) = h = 4λ0 and the whole symplectic space F0(h) shrinks to a

point. All KdV Hamitonians are fixed by h, Q2n−1 = hn with all action variables
identically equal to zero.

Next, we consider the differential

dp =
(λ− r)dλ

2
√

(λ− λ0)(λ− λ1)(λ− λ2)
(2.2.26)

parameterized by λi, r0. It is defined on a torus – a Riemann curve of genus one. We
assume that (λ2, λ1) correspond to k-th zone. After satisfying (2.2.9) and (2.2.11),
which requires evaluating elliptic integrals, we find one-parametric family

λ2 = λ0 +
k2

4
θ3(τ)

4, λ1 = λ0 +
k2

4
θ4(τ)

4, r = λ0 +
k2

4
θ4(τ)

4

(
1 + 2

∂ ln θ23(τ)

∂ lnm

)
,

(2.2.27)

where m = θ42(τ)/θ
4
3(τ) and τ = iτ2 with positive τ2. In what follows we use4 q = eiπτ

such that θ2 =
∑

n q
(n+1/2)2 , θ3 =

∑
n q

n2 , θ4 =
∑

n(−1)nqn
2 .

To impose the orbit constraint −4p(0)2 = h it is more convenient to use the
following trick. First we evaluate

Q1 = 4(λ0 + λ1 + λ2)− 8r, (2.2.28)

which expresses λ0 in terms of Q1 and q expansion,

4λ0 = Q1 − k2
(
θ42 − 4θ44

∂ ln θ23(τ)

∂ lnm

)
= Q1 − 32k2q2

(
1 + 2q2 + 4q4 + 4q6 + . . .

)
,

(2.2.29)

4Our definition of q is aligned with Wolfram Mathematica. In this section q denotes modular
parameter of the genus one elliptic curve y(λ). In section 2.5 we use q to denote modular parameter
of the CFT spacetime torus.
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and then use (2.2.23) to evaluate action variable perturbatively in q,

Ik =
2

π

∫ λ2

λ1

dλ(λ− r) log λ√
(λ− λ0)(λ− λ1)(λ2 − λ)

(2.2.30)

=
∞∑
n=1

2(−1)n(λ1−λ0)n+1

n
√
λ2−λ0λn0

[
F
(
3
2
, 1
2
, 1;m

)
F
(
1
2
, 1
2
, 1;m

)F (n+1

2
,
1

2
, 1;m

)
−F

(
n+

3

2
,
1

2
, 1;m

)]
.

(2.2.31)

Here F ≡ 2F1 is the hypergeometric function such that F
(
3
2
, 1
2
, 1;m

)
= θ23.

An infinite sum over n above has to be evaluated individually for each term in q
expansion. This gives Ik as a function of λ0 and q, Ik = 32k3q2

k2+4λ0
+ O(q4), which with

help of (2.2.29) can be expressed as a function of Q1 and q,

Ik =
32k3

k2 +Q1

q2 +
64k3 (17k4 + 12k2Q1 + 3Q2

1)

(k2 +Q1)
3 q4 (2.2.32)

+
128k3 (5k2 +Q1) (77k

6 + 69k4Q1 + 27k2Q2
1 + 3Q3

1)

(k2 +Q1)
5 q6 +O(q8).

At this point we use (2.2.24), which is exact, Q1 = h + kIk.. Using Ik given as
a q-series expansion with Q1-dependent coefficients (2.2.32), with help of (2.2) we
express Q1 as a series in q with h-dependent coefficients by iteratively substituting
Q1 written as an h-dependent series in q. Once we find Q1 = Q1(h, q), Ik can be
deduced from (2.2),

Ik =
32k3

h+ k2
q2 +

64 (3h2k3 + 12hk5 + k7)

(h+ k2)3
q4 (2.2.33)

+
128k3 (3h4 + 42h3k2 + 108h2k4 − 58hk6 + k8)

(h+ k2)5
q6 +O(q8). (2.2.34)

At this point it is straightforward to re-express q as a h-dependent power series in
Ik, q2 = h+k2

32k3
Ik +O(I2k).

To obtain coefficients f (n,i) (2.2.1) we act as follows. From the definition (2.2.22)
we can find Q2n−1 as a polynomial in λi and r. Using expressions for λi, r (2.2.27)
and (2.2.29), where Q1 is understood as a function of h, q we write Q2n−1 as an
h-dependent power series in q. After that it is straightforward to use q2 = q2(h, Ik)

to re-express Q2n−1 as an h-dependent power series in Ik,

Q2n−1 = hn + f
(n,1)
k Ik + f

(n,2)
k I2k + f

(n,3)
k I2k +O(I3k), (2.2.35)
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thus fixing f (n,i),

f
(n,1)
k =

n−1∑
j=0

√
π(2n− 1)Γ(n+ 1)

2Γ(j + 3
2
)Γ(n− j)

hn−1−jk2j+1 =
n−1∑
j=0

ξjn h
n−1−jk2j+1, (2.2.36)

f
(n,2)
k =

n−1∑
j=0

√
π(2n− 1)Γ(n+ 1)(j(2n+ 1)− 2n+ 2)

16 Γ
(
j + 3

2

)
Γ(n− j)

hn−1−jk2j, (2.2.37)

f
(n,3)
k =

(2n− 1)n(n− 1)

64k3
hn+ (2.2.38)

n−1∑
j=0

√
π(2n− 1)Γ(n+ 1) p

1536 Γ
(
j + 5

2

)
Γ(n− j)

hn−1−jk2j−1,

p = 4j3(2n+ 1)(2n+ 3)− 2j2(2n+ 1)(10n− 21)− 3j(2n+ 3)(10n− 7)

+ 36(n− 1)(2n− 1). (2.2.39)

More technical details concering one-zone calculation can be found in appendix A.1.

Two-zone potentials

In case of two zones the differential

dp =
(λ− r1)(λ− r2)dλ

2
√∏4

i=0(λ− λi)
(2.2.40)

depends on seven parameters subject to 4 constraints (2.2.9) and (2.2.11). Cor-
responding integrals can not be evaluated analytically. We therefore proceed by
expanding perturbatively, assuming both zones, and hence corresponding action vari-
ables, are small. We introduce two infinitesimal variables ϵ1, ϵ2 of the same order,
such that λ2 − λ1 is of order ϵ1 and λ4 − λ3 is of order ϵ2. Action variables are
quadratic in ϵi, Ik ∼ ϵ21, Iℓ ∼ ϵ22, where we assumed (λ1, λ2) and (λ3, λ4) correspond
to k-th and ℓ-zones respectively. Our goal is to find Q2n−1 up to third order in the
pertubative expansion in Ik, Iℓ. Hence in what follows we must expand all quantities
in ϵi up to sixth order. The details of this calculation can be found in in Appendix
A.2.

After satisfying (2.2.9) and (2.2.11) we find λi for i ≥ 1 and ri in terms of λ0 and
ϵ1, ϵ2, as a perturbative expansion in ϵi. Then, we evaluate Ik, h and Q2n−1 also as
function of λ0 and ϵ1, ϵ2, similarly expanding in ϵi up to and including sixth order.
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By matching both sides of (2.2.1) we find coefficients f (m,n)
k,ℓ , yielding

f
(n,2)
k,ℓ =

n−1∑
j=1

√
π(2n− 1)2Γ(n+ 1)

4Γ(n− j)Γ
(
j + 3

2

) hn−1−j

j−1∑
s=0

k2(j−s)−1ℓ2s+1, (2.2.41)

f
(n,3)
k,ℓ =

ℓ

(k2 − ℓ2)2

(
−(2n− 1)n(n− 1)

4
hn +

n−1∑
j=0

√
π(2n− 1)2Γ(n+ 1)

64Γ(n− j)Γ
(
j + 5

2

) hn−1−j q

)
,(2.2.42)

q = −4(2n+ 1)
k2j+4 − ℓ2j+4

k2 − ℓ2
+ k2j+2(3 + 2j)(j(2n+ 1)− 4n+ 5)

+ℓ2j+22(3j + n+ 5) + k2jℓ2(3 + 2j)(j(2n+ 1)− 2n+ 2)

+k2ℓ2j(3 + 2j)(4n− 1). (2.2.43)

Three-zone potentials

Extending calculations of the previous section using the technique of appendix A.2
to the three-zone case we can fix

f
(n,3)
k,ℓ,p =

n−3∑
j=0

√
π(2n−1)3Γ(n+ 1)(n−2−j)
8Γ(n−1−j)Γ

(
j + 7

2

) hn−3−j

j∑
s1=0

j−s1∑
s2=0

k2j+1−2(s1+s2)ℓ2s1+1p2s2+1.

(2.2.44)

Consistency check

In case of an m-zone potential we can parametrize the differential dp with help of λ0
and ϵi, 1 ≤ i ≤ m, cf. (A.2.1-A.2.6),

λi = λ0 + . . . , 1 ≤ i ≤ 2m, (2.2.45)

ri = λ0 + . . . , 1 ≤ i ≤ m, (2.2.46)

where dots stand for ϵi but not λ0-dependent terms. Similarly action variables Ik,
charges Q2n−1 and the orbit parameter h = −4p(0)2 will be some functions of λ0 and
ϵi. While dependence of Ik and h on λ0 is non-trivial, since Q2n−1 are the coefficients
of 1/λ expansion of p(λ) at infinity and λ0 is simply the shift of the argument of
p(λ), we find

Q2n−1 =
n∑

k=0

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
(4λ0)

n−kQ0
2k−1. (2.2.47)

Here Q0
2k−1 are the charges evaluated with help of (2.2.22) taking λ0 = 0 in

(2.2.45,2.2.46). Assuming we know Q2n−1(h, Ik) where h = h(λ0, ϵi) and Ik =

Ik(λ0, ϵi), one can introduce I0k = Ik(0, ϵi) such that Q0
2k−1 = Q2k−1(0, I

0
k). Here first
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argument is zero simply because h(0, ϵi) = 0. Then both sides of equation (2.2.47)
become functions of λ0 and ϵi, providing a non-trivial check.

There is an alternative way to use (2.2.47) to check the consistency of the per-
turbative expansion(2.2.1) with the coefficients found in the text. We can invert
h = h(λ0, ϵi) and Ik = Ik(λ0, ϵi) to express both λ0 and I0k via h and Ik,

λ0 = h+
∑
k

−hIk
k

+
h (h+5k2) I2k

8k4
−h (5h

2+30hk2+41k4) I3k
128k7

+
∑
k<ℓ

hIkIℓ
kℓ

+
∑
k ̸=ℓ

hI2kIℓ (h
2ℓ2−h (k4−4k2ℓ2+ℓ4)−5k6+11k4l2−5k2ℓ4)

8k4ℓ(k−ℓ)2(k+ℓ)2
−
∑

k<ℓ<p

hIkIℓIp
kℓp

+O(I4),

I0k = Ik+
hIk
k2
−hI

2
k (h+5k2)

8k5
+
hI3k (5h

2+30hk2+41k4)

128k8
−
∑
ℓ̸=k

hIkIℓ (h+k
2)

k2ℓ (k2−ℓ2)

+
1

8k5l (k2−ℓ2)3
∑
ℓ̸=k

[
hI2kIℓ

(
2h2

(
−k4+2k2ℓ2+ℓ4

)
+hk2

(
7k4−14k2ℓ2+15ℓ4

)
+k4

(
5k4−10k2ℓ2+9ℓ4

)) ]
+

1

8k2ℓ4 (k2−ℓ2)3
∑
ℓ ̸=k

[
hIkI

2
ℓ

(
h2
(
k4+5k2ℓ2−2ℓ4

)
+h
(
k6+10k4ℓ2−9k2ℓ4+6l6

)
+k2ℓ2

(
5k4−7k2ℓ2+6l4

)) ]
+
∑

p ̸=ℓ̸=k

hIkIℓIp (2h
2+3hk2+k4)

k2ℓp (k2−ℓ2) (k2−p2)
+O(I4).

Now Q0
2n−1(0, I

0
k(h, Ik)) is a function of h, Ik and (2.2.47) provides a non-trivial check

for the coefficients in (2.2.1).
This check also ensures that Q2n−1(h, Ik) satisfy another identity

1

n+ 1

∂Q2n+1

∂u0
= Q2n−1, (2.2.48)

which follows from the properties of Gelfand-Dikii polynomials (2.2.20). Here
Q2n−1[u(φ)] are understood as functionals of u(φ) and the derivative is with respect
the zero Fourier mode of u(φ), while all other Fourier modes are kept fixed. The
shift of u0 with all other modes intact is equivalent to a shift of the spectrum by a
constant, hence (

∂

∂u0

)
uℓ

= 4

(
∂

∂λ0

)
ϵi

. (2.2.49)

Then (2.2.48) follows immediately from the right-hand-side of (2.2.47).
For an m-zone potential, all higher KdV charges Q2n−1 are some functions of first

m+ 1 charges. Thus for one-zone potentials Q5, Q7, . . . are functions of Q1, Q3, see
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e.g. section 2.4 of [10] for details. For the three-zone potentials higher Q2n−1 would
depend on Q1, Q3, Q5, Q7 In principle this provides additional consistency check for
(2.2.1). In practice the dependence is so complicated, it doesn’t provide a useful
check even for the one-zone case.

2.3 “Energies” of primary states via ODE/IM correspondence

In the previous section we found classical expression for Q2n−1 in term of action
variables Ik and the orbit invariant h. Following the standard rules of semiclassical
quantization Ik should be promoted to an integer quantum number, while h will
become the dimension of the highest weight (primary) state ∆, marking representa-
tion of the Virasoro algebra. It is easy to see, this naive receipt fails already for the
values of Q2n−1 on a primary state |∆⟩. Indeed, taking all Ik to zero, we readily find
Q2n−1 = hk, which upon the naive quantization yields Q0

2n−1 = ∆n where

Q2n−1|∆⟩ = Q0
2n−1|∆⟩. (2.3.1)

This answer is missing c-dependent terms. Explicit values of Q0
2n−1 for n ≤ 8 were

calculated in [48] via brute-force approach, using explicit expressions for Q2n−1 in
terms of free field representation. The pattern is clear, while ∆n is indeed the leading
term, full expression is a polynomial in both ∆ and c of order n.

There is no known receipt to obtain exact Q0
2n−1 from the semiclassical quanti-

zation, hence our strategy will be the following. We will combine exact expression
for Q0

2n−1 in the large c limit, which will be obtained in this section by a different
method, with the classical result of section 2.2, to find spectrum of excited states in
the large c limit in next section.

To find Q0
2n−1 we use ODE/IM correspondence, initiated in [49, 50] and more

recently developed in [51] (also see [52]), which relates qKdV spectrum to solutions
of an auxiliary Schrödinger equation

∂2xΨ(x) +

(
E − x2α − l(l + 1)

x2

)
Ψ(x) = 0, (2.3.2)

where

(l + 1/2)2 = 4(α + 1)∆̃, c̃ = − α2

4(α + 1)
. (2.3.3)

Equation (2.3.2) can be solved using WKB approximation by systematically ex-
panding in a small parameter. This leads to a quadratic ODE which can be solved
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iteratively. We delegate all details to Appendix A.3 and only write down iterative
relation which defines coefficients c(n)k for n ≥ 1, n ≥ k ≥ 0,

n∑
j=0

j∑
p=0

n−j∑
q=0

δp+q,kc
(j)
p c(n−j)

q − 2

[
n− k − u− n− 2

2α

]
c
(n−1)
k−1 + (2k − 3n+ 4) c

(n−1)
k = 0,

(2.3.4)

and we formally assumed c(n)−1 = c
(n)
n+1 = 0, u2 = −∆̃/c̃, and the starting values are

c
(0)
0 = − 1

α
, c

(1)
0 = −1

2
, c

(1)
1 =

1

2α
− u. (2.3.5)

Coefficients c(n)k determine values of Q2n−1 acting on primaries [51],

Q0
2n−1 =

(2n− 1)Γ(n+ 1)√
πΓ(1− 2n−1

2α
)4n(α + 1)n

2n∑
k=0

c
(2n)
k Γ

(
k +

3

2
− 3n

)
Γ

(
2n− k − 2n− 1

2α

)
.

(2.3.6)

Although this is not obvious, Q0
2n−1 given by (2.3.6) is a polynomial in terms of ∆̃

and c̃. After some algebra we find leading order expansion

Q0
2n−1 = ∆̃n +

n−1∑
j=0

R̃
(1)
n,j∆̃

n−j−1 c̃j +
n−2∑
j=0

R̃
(2)
n,j∆̃

n−j−2 c̃j +
n−3∑
j=0

R̃
(3)
n,j∆̃

n−j−3 c̃j +O(c̃n−3).

(2.3.7)

where

R̃
(1)
n,j =

(2n− 1)
√
πΓ(n+ 1)

4Γ(j + 3
2
)Γ(n− j)

ζ(−2j − 1) = ξjn
ζ(−2j − 1)

2
, (2.3.8)

R̃
(2)
n,j =

(2n− 1)
√
πΓ(n+ 1)

24× 4Γ(j + 5
2
)Γ(n− j − 1)

× (2.3.9){
−6ζ(−2j − 3) (2j + 3− (2n− 1)y1(j + 1)) + 3(2n− 1)ζ2(j)

}
,

R̃
(3)
n,j =

(2n− 1)
√
πΓ(n+ 1)

242 × 4Γ(j + 7
2
)Γ(n− j − 2)

{
62ζ(−2j − 5)(2j2 + 7j + 5)− (2n− 1)rn,j

}
,

rn,j = 12ζ3(j) + 36ζ2(j + 1)(y1(j + 2) + j + 2) + 3
(
4j2 + 18j + 23

)
ζ(−2j − 3)+

36ζ(−2j − 5)
(
y21(j + 2) + 2(j + 2)y1(j + 2) + y2(j + 2)

)
+ (2n+ 1)pj.

(2.3.10)

Functions ζ2, ζ3, y1, y3 are defined in the Appendix A.3, where we also give values of
pj for 0 ≤ j ≤ 17.
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2.4 Spectrum of quantum Q2k−1

At this point we are ready to combine classical pertubative expression forQ2n−1(h, Ik)

(2.2.1) with the “energies” of primary state (2.3.7) to obtain Q2n−1 up to first two
non-trivial orders in 1/c̃ expansion.

The naive semi-classical quantization would map the co-adjoint orbit invariant h
and the actions variables Ik on the classical side to dimension of the primary state
∆ and the excited state quantum numbers nk correspondingly,

h→ 24∆

c
, Ik →

24nk

c
. (2.4.1)

Also classical charge Q2n−1 should be rescaled by (c/24)n. Starting from (2.2.1) this
correctly reproduces full quantum spectrum of Q1 and the leading ∆n term in Q2n−1.
But it falls short of reproducing sub-leading terms even for the primary state (2.3.7).
The relation between classical and quantum quantities (2.4.1) is only correct at the
leading c order. In [29] we observed that using c−1 as an expansion parameter leads
to more elegant expressions. This is confirmed by (2.3.7), which looks most naturally
if written in terms of ∆̃ and c̃. We therefore propose the following quantization map,
which agrees with the naive one at leading order,

h→ ∆̃

c̃
, Ik →

nk

c̃
, ∆̃ = ∆− c̃, c̃ =

c− 1

24
. (2.4.2)

This does not solve the problem of reproducing subleadig terms in Q0
2n−1, but this

can be fixed, at least at first subleading order, by introducing the Maslov index,
nk → ñk = nk + 1/2. We thus arrive at the following map,

Q2n−1(h, Ik)→ Q2n−1 = c̃nQ2n−1(∆̃/c̃, (nk + 1/2)/c̃). (2.4.3)

Infinite sums due to Maslov index contributing to “vacuum energy” should be regu-
larized using zeta-function regularization. It is now straightforward to see that we
immediately reproduce the leading 1/c̃ term (2.3.8),

Q2n−1 = hn +
∑
k

f
(n,1)
k (h) Ik +O(I2)

→ Q2n−1 = ∆̃n + c̃n−1
∑
k

f
(n,1)
k (∆̃/c̃) ñk +O(c̃n−2)

= ∆̃n +
∑
k

n−1∑
j=0

ξjn ∆̃
n−1−j c̃jk2j+1(nk + 1/2) +O(c̃n−2)

= ∆̃n +
n−1∑
j=0

ξjn ∆̃
n−1−j c̃j

(∑
k

k2j+1nk +
ζ(−2j − 1)

2

)
+O(c̃n−2) (2.4.4)

30



In other words, at first sub-leading order c̃n−1 the quantization prescription (2.4.3)
leads to (2.1.6) which passes all available tests: matches the spectrum of Q1, Q3, Q5

(see section 2.4 below) and thermal expectation values for Q9, . . . , Q13 (see section
2.5 below) at the order c̃n−1.

There is another way to write (2.4.4). We can express Q2n−1 as Q0
2n−1 plus the

terms from the classical Q2n−1 (2.2.1) which non-trivially depend on Ik using the
substitution (2.4.2), i.e. without the Maslov index,

Q2n−1 = Q0
2n−1 + c̃n−1

∑
k

f
(n,1)
k (∆̃/c̃)nk +O(c̃n−2). (2.4.5)

At c̃n−1 order it is the same as (2.4.4).
To obtain the quantum spectrum at next order c̃n−2, we could try the prescription

(2.4.3), apply the zeta-function regularization and notice that many but not all
terms from (2.3.9) are reproduced. Thus, we see that the quantization (2.4.3) is
exact only at leading 1/c̃ order, at higher orders the expression obtained from the
classical Q2n−1 has to be modified as well. Indeed, starting from the classical (2.2.1)
and using substitution (2.4.2) we would find that terms contributing at the order
c̃n−p are homogeneous polynomials in nk of order p. This is very restrictive and
obviously incorrect. We already saw that even at the first sub-leading order c̃n−1 the
homogeneous (linear) in nk terms have to be amended by a constant, i.e. (nk)

0 term.
This suggest the following “quantization rules”: to obtain the quantum spectrum
Q2n−1 in 1/c̃ expansion, one starts with the classical perturbation expression (2.2.1)
and make the substitution (2.4.2), together with the overall rescaling by c̃n. As the
order c̃n−p this fixes leading, homogeneous in nk terms of order p. These terms should
be amended by the sub-leading terms of order p− 1, p− 2, . . . , 0 in nk. These terms
should be regarded as quantum corrections and should be determined separately,
they do not follow from the classical answer in any simple way. More explicitly,

Q2n−1 = ∆̃n+c̃n−1

(∑
k

g
(1)
k nk+g

(1)

)
+c̃n−2

(∑
k1,k2

g
(2)
k1,k2

nk1nk2+
∑
k

g
(2)
k nk+g

(2)

)

+c̃n−3

( ∑
k1,k2,k3

g
(3)
k1,k2,k3

nk1nk2nk3+
∑
k1,k2

g
(3)
k1,k2

nk1nk2+
∑
k

g
(3)
k nk+g

(3)

)
+ . . . (2.4.6)

Here g(p) with different number of indexes denote different quantities. The leading
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terms g(p)k1,...,kp
are given by classical expressions (2.2.1) upon the substitution (2.4.2)

g
(1)
k = f

(n,1)
k (∆̃/c̃), (2.4.7)

g
(2)
kℓ =

1

2
f
(n,2)
kℓ , g

(2)
kk = f

(n,2)
k , (2.4.8)

g
(3)
kℓm =

1

6
f
(n,3)
kℓm , g

(3)
kkℓ =

1

3
f
(n,3)
kℓ , g

(3)
kkk = f

(n,3)
k , (2.4.9)

for k ̸= ℓ ̸= m and g(p) are given by (2.3.8,2.3.9,2.3.10). This is essentially the
generalization of (2.4.5) to higher orders in 1/c̃. Coefficients g(2)k , g(3)kℓ , g

(3)
k , etc. are

quantum corrections and a priory not known.
To fix g(2)k we employ the following strategy, we will try to “salvage” the Maslov

index quantization (2.4.3) by adding minimal possible terms subleading in powers of
nk,

Q2n−1 = ∆̃n + c̃n−1
∑
k

g
(1)
k ñk + c̃n−2

(∑
k1,k2

g
(2)
k1,k2

ñk1ñk2 +
∑
k

g̃
(2)
k ñk + g̃(2)

)
+ . . .

(2.4.10)

This expression is understood in terms of the zeta-function regularization and
g̃
(2)
k , g̃(2) are different from g

(2)
k , g(2). Our goal is to reproduce “vacuum energy”

Q0
2n−1. There is infinitely many ways to do that, for example by taking g

(2)
k = 0,

g̃(2) = g(2), but we will additionally require that the zeta-functions from (2.3.9) will
become the sums of the form

∑
k k

p in (2.4.10). This leads to

g̃
(2)
k =

n−1∑
j=0

1

4
ξjn ((2n− 1)y1(j)− 2j − 1) ∆̃n−1−j c̃jk2j+1, (2.4.11)

and very simple

g̃(2) = −n(n− 1)(2n− 1)∆̃n−1

96c̃
. (2.4.12)

This term is necessary to subtract nk-independent ∆̃n−1c̃−1 term coming from∑
k g̃

(2)
k ñk to match Q0

2n−1 (2.3.7) which has no terms with the negative powers of c.
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For convenience we give the full expression (2.4.10) explicitly

Q2n−1 = ∆̃n +
∑
k

n−1∑
j=0

(2n− 1)
√
π Γ(n+ 1)

2Γ(j + 3
2
)Γ(n− j)

∆̃n−1−j c̃jk2j+1ñk (2.4.13)

− n(n− 1)(2n− 1)∆̃n−1

96c̃

+
∑
k

n−1∑
j=0

(2n− 1)
√
π Γ(n+ 1)

8Γ(j + 3
2
)Γ(n− j)

((2n− 1)y1(j)− 2j − 1) ∆̃n−1−j c̃j−1k2j+1ñk

−
∑
k

n−1∑
j=0

(2n− 1)
√
π Γ(n+ 1)(2nj + 2n− 3j − 2)

16 Γ
(
j + 3

2

)
Γ(n− j)

∆̃n−j−1c̃j−1k2jñ2
k

+
1

2

∑
k,ℓ

n−1∑
j=1

(2n−1)2
√
π Γ(n+1)

4Γ
(
j+3

2

)
Γ(n−j)

∆̃n−j−1c̃j−1

j−1∑
s=0

k2(j−s)−1ℓ2s+1ñkñℓ+O(cn−3).

We conjecture this is the full quantum spectrum of Q2n−1 up to c̃n−2 order and verify
that it passes all available checks.

From here it is now straightforward to find Q2n−1 in the representation (2.4.6).
Coefficient

g
(2)
k =

n−1∑
j=0

(2n− 1)
√
π Γ(n+ 1)

8Γ
(
j + 3

2

)
Γ(n− j)

v(n, j, k)∆̃n−j−1c̃j−1, (2.4.14)

v(n, j, k) = (2n− 1)

j−1∑
s=0

ζ(2(s− j) + 1)k2s+1 + ((2n− 1)y1(j)− 2j − 1)k2j+1

−1

2
(2nj + 2n− 3j − 2)k2j

is significantly more bulky than (2.4.11), while the full expression is

Q2n−1 = Q0
2n−1 +

∑
k

n−1∑
j=0

ξjn∆̃
n−j−1c̃jk2j+1nk (2.4.15)

+
∑
k,ℓ

n−1∑
j=1

ξjn
(2n− 1)

4
∆̃n−j−1c̃j−1

j−1∑
s=0

k2(j−s)−1ℓ2s+1nknℓ

−
∑
k

n−1∑
j=0

ξjn
(2nj + 2n− 3j − 2)

8
∆̃n−j−1c̃j−1k2jn2

k

+
∑
k

n−1∑
j=0

ξjn
v(n, j, k)

4
∆̃n−j−1c̃j−1nk +O(cn−3).

To summarize, we have found the (conjectured) spectrum of all qKdV charges
at first two sub-leading orders in 1/c expansion (2.4.13,2.4.15) and observed certain
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patterns which may help fix the spectrum at higher orders. Let us spell the step
to find the next 1/c̃3 order, i.e. fix the terms of order c̃n−3 in (2.4.6). The classical
result for Q2n−1 in terms of action variables Ik was calculated up to cubic order in
(2.2.38,2.2.42,2.2.44). “Energies” of primary states Q0

2n−1 were also calculated to this
order, see eq. (2.3.10). Thus g(3)k1k2k3

and g(3) are known, and to find the spectrum one
would only need to fix g

(3)
k1k2

and g
(3)
k . To do that one would need to find g̃

(3)
k1k2

and
g̃
(3)
k from the expansion (2.4.10) to reproduce (2.3.10) via zeta-function regularization

and minimal possible g̃(3), which presumably will only include terms with negative
powers of c̃. “Restoring” g̃(3)k1k2

and g̃(3)k from R̃
(3)
n,j is not a mathematically well-posed

problem. We expect that all zeta-functions ζ(−2j − 1) in R̃
(3)
n,j to lead to the sums∑

k k
2j+1ñk – the rule which successfully worked at second 1/c̃ order. At third order

this rule should be amended by others, as suggested by a non-polynomial dependence
on k in (2.2.42). In practice, restoring g̃(3)k from R̃

(3)
n,j may require establishing the

analytic form of coefficients pj in (2.3.10) and then reverse-engineering corresponding
k1, k2, k3-dependent sums. Once hypothetical g̃(3)k1k2

and g̃
(3)
k , and accordingly g

(3)
k1k2

and g
(3)
k are fixed, a non-trivial set of checks is provided by the spectrum of Q3, Q5

generated by computer algebra, as well as the requirement that thermal expectation
values ⟨Q2n−1⟩q discussed in section 2.5 must have certain modular properties.

Computer algebra check

For n = 1 the expansion (2.4.15) reduces to (2.1.7) which is a simple check. A more
sophisticated check is provided by Q3 and Q5 which are known explicitly in terms of
the Virasoro algebra generators [9]

Q3 =

(
L2
0 −

c+ 2

12
L0 +

c(5c+ 22)

2990

)
+ Q̃3, (2.4.16)

Q̃3 = 2
∞∑
k=1

L−kLk,

Q5 =

(
L3
0 −

c+ 4

8
L2
0 +

(c+ 2)(3c+ 20)

576
L0 −

c(3c+ 14)(7c+ 68)

290304

)
+ Q̃5,(2.4.17)

Q̃5 =
∞∑

k,l=0

L−k−lLkLl + 2
∞∑

k=1,l=0

L−kLk−lLl +
∞∑

k,l=1

L−kL−lLk+l +

+
∞∑
n=1

(
c+ 2

6
m2 − c

4
− 1

)
L−nLn − L3

0, (2.4.18)

and [53]
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Using computer algebra spectrum of Q3, Q5 for all descendants at a small levels
m can be evaluated explicitly, as an expansion in powers of 1/c. The resulting
expressions can be compared with the spectrum following from (2.4.15), which we
will write in terms of quantum numbers nk packaged as follows

mp,r ≡
∑
k

kpnr
k, mp ≡ mp,1, m ≡ m1, h = ∆̃/c̃, (2.4.19)

Q3 = ∆̃2 + ∆̃

(
6m1 −

1

4

)
+ c̃

(
4m3 +

1

60

)
+ (2.4.20)(

m3−
3

2
m2−

1

4
m1

)
−3

2
m2,2 + 3m2

1 +
3

2
h(2m1−m0−m0,2) +

3

320
+O(1/c̃),

and similarly

Q5 =∆̃3 +

(
15m1 −

5

8

)
∆̃2 + ∆̃ c̃

(
20m3 +

1

12

)
+ c̃2

(
8m5 −

1

63

)
+

∆̃

(
5

12
(−5m1−42m2+44m3)−

35

2
m2,2+25m2

1+
15

2
h(2m1−m0−m0,2)+

23

192

)
+

c̃

(
1

12
(m1 − 10m3 − 120m4 + 64m5)− 10m4,2 + 20m1m3 −

85

6048

)
+O(c̃0),

(2.4.21)

and
We checked, these expressions are in agreement with the computer algebra gen-

erated spectrum for m ≤ 12, which serves as a non-trivial consistency check of
(2.4.15).

2.5 Miscellaneous results

Explicit expression for the spectrum of quantum Q2n−1 in large c limit opens the
opportunity to make progress in a number of adjacent directions. In this section we
discuss several applications of our results.

Thermal expectation values of Q2n−1

Our first application is toward thermal exaction value of Q2n−1, i.e. averaged over
the CFT Gibbs ensemble ⟨Q2n−1⟩q ≡ Tr(qL0−c/24Q2n−1). This question appears
naturally, though in a more complicated form, to calculate the averaged value of
Q2n−1 over the KdV Generalized Gibbs Ensemble (see section ?? below), if one
wants to match the GGE chemical potentials to describe equilibration endpoint of
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some initial state. The expectation value ⟨Q2n−1⟩q, which is essentially the one-
point function of T2n (2.1.1) on the torus, exhibits modular properties and can
be represented as a covariant differential operator acting on the CFT torus par-
tition function [54]. In fact, one can average Q2n−1 over a particular Verma module,
⟨Q2n−1⟩∆ ≡ Tr∆(qL0−c/24Q2n−1), where sum goes over all Virasoro descendants of
the primary state |∆⟩. This sum too is a modular object and can be evaluated with
help of the same differential operator

⟨Q2n−1⟩∆ = Dnχ∆, χ∆ ≡ Tr∆(qL0−c/24) = q∆̃− 1
24/η, (2.5.1)

Dn = Dn +
n−1∑
j=1

P j
n(c, q)D

n−j−1, Dn = D2(n−1) . . . D2D0, (2.5.2)

and Dr = q∂q − r
12
E2 is Serre derivative. Each P j

n is a degree j polynomial in c with
each coefficient being a modular form of weight 2j + 2,

P j
n(c, q) =

j+1∑
k=1

P
(k)
n,j c̃

j−k+1E
(n,k)
2j+2(q). (2.5.3)

Here P (k)
n,j are numerical coefficients and E(n,k)

2j+2 is some modular form, which is a linear
combination of Ea

4E
b
6 with 4a+6b = 2j +2 for non-negative integer a, b, normalized

such that E(n,j)
2j+2 = 1+O(q). For j = 1, 2, 3, 4, 6 there is a unique modular form of the

weight 2(j + 1) and therefore for these j, independently of n and k, E(n,k)
2j+2 = E2j+2

where

E2n = 1 +
2

ζ(1− 2n)
σ2n−1, σp =

∞∑
k=1

kpqk

1− qk
. (2.5.4)

For instance, in the simplest case of Q3 the operator D2 is given by

⟨Q3⟩∆ = D2χ∆ =
[
D2 +

c

1440
E4

]
χ∆. (2.5.5)

In this case P (1)
2,1 = 1/60 and P

(2)
2,1 = 1/1440. Explicit expressions for Dn for n ≤ 7

were found in [54]. For higher n the modular form E
(n,j)
2i+2 and coefficients P (k)

n,j are
not known.

Strictly speaking (2.5.1,2.5.2) is an unproven ansatz proposed in [54]. We find it
to be consistent with the large c spectrum of Q2n−1 (2.4.15) and fix two leading in c
terms in P j

n. To compare with (2.5.1), we need to calculate ⟨Q2n−1⟩∆ starting from
(2.4.15). Here the following straightforward identities will be helpful

⟨
∞∑
k=1

nkk
p⟩∆ = σpχ∆, ⟨

∞∑
k=1

n2
kk

p⟩∆ = (2q∂qσp−1 − σp)χ∆, (2.5.6)

⟨
∞∑
k=1

nkk
p

∞∑
ℓ=1

nℓℓ
p′⟩∆ = (q∂qσp+p′−1 + σpσp′)χ∆, (2.5.7)
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where by nk we mean the quantum numbers (2.1.4). Then (2.1.6) immediately yields

⟨Q2n−1⟩∆ = ∆̃nχ∆ +
n−1∑
j=0

∆̃n−p−1c̃pξpn

(
σ2p+1 +

ζ(−2p− 1)

2

)
χ∆ +O(c̃n−2), (2.5.8)

where we assumed the usual limit, h = ∆̃/c̃ is kept fixed while c̃→∞. Comparing
this with (2.5.1), we immediately see that the leading ∆̃n term is coming from (we
drop χ∆ for simplicity)

Dn → (q∂q)
n → ∆̃n. (2.5.9)

Similarly we can trace origin of all c̃n−1 terms,

Dn → (q∂q)
n − n(n− 1)

12
E2(q∂q)

n−1 → ∆̃n−1n

(
σ1 −

1

24

)
− ∆̃n−1n(n− 1)

12
E2

= −n(2n− 1)

24
E2,

which agrees with (2.5.8), and

P
(1)
n,j c̃

jE
(n,1)
2j+2D

n−j−1 → P
(1)
n,j c̃

jE
(n,1)
2j+2(q∂q)

n−j−1 → P
(1)
n,j ∆̃

n−j−1c̃jE
(n,1)
2j+2, (2.5.10)

for n− 1 ≥ j > 0. From here immediately follows

P
(1)
n,j = R̃

(1)
n,j, E

(n,1)
2j+2 = E2j+2, n− 1 ≥ j ≥ 1. (2.5.11)

To fix P (2)
n,j it is convenient to take q → 0 limit and compare ⟨Q2n−1⟩∆ with (2.3.7),

yielding

P
(2)
n,1 = R̃

(2)
n,0 −

n(n− 1)(12n2 − 16n− 1)

3456
=
n(n− 1)(12n2 − 38n+ 31)

8640
,

P
(2)
n,j = R̃

(2)
n,j−1 +

(n− j)(2(n− j)− 1)

24
P

(1)
n,j−1, n− 1 ≥ j ≥ 2.

Evaluation of E(n,2)
2j+2 is a more challanging task and requires first using (2.5.6,2.5.7)

and then combining pieces into modular forms to match (2.5.1,2.5.2). We note, there
are terms in (2.4.15) proportional to ∆̃n−1c̃−1, but (2.5.1) has no negative powers of
c. Hence these terms must vanish after averaging, which follows from the identity
q∂qσ−1 − σ1 = 0 and serves as a consistency check. The final expression reads

P
(2)
n,jE

(n,2)
2j+2 =

(2n− 1)
√
πΓ(n+ 1)

8Γ(j + 3/2)Γ(n− j)

(
((2n− 1)y1(j)− 2j − 1)

ζ(−2j − 1)

2
E2j+2 −

(n−1−j)ζ(−2j + 1)D2jE2j +
(2n−1)

4

j−2∑
s=1

ζ(−2s−1)ζ(−2(j−s) + 1)E2s+2E2(j−s)

)
.

(2.5.12)
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It is valid for n− 1 ≥ j ≥ 2. For j = 1, there is a unique modular form E
(n,2)
2j+2 = E4.

Also, as was mentioned above E(n,2)
2j+2 = E2j+2 for j = 2, 3, 4, 6, which can be checked

straightforwardly. Because of the identities between modular forms there are other
ways to write (2.5.12).

Explicit form of Q0
2n−1 up to c̃n−3 order allows us, in principle, to calculate P (3)

n,j ,
although calculation of E(n,3)

2j+2 would require first extending (2.4.15) to the next 1/c

order. Given involved form of P (2)
n,j and E

(2)
n,j we do not expect the answer to be

simple.

2.6 Discussion

In this chapter we obtained spectrum of quantum KdV charges Q2n−1 in first two
non-trivial orders in 1/c expansion. Our result (2.4.13) and (2.4.15) is valid in the
semiclassical limit of large central charge c → ∞ with the ratio of ∆/c kept fixed.
This limit is inspired by holographic correspondence, when CFT is dual to weakly
coupled gravity. Accordingly, dynamics of stress-energy sector becomes semiclassical,
with the leading (classical) contribution governed by integrable dynamics on the co-
adjoint orbit of the Virasoro algebra. Under semiclassical quantization classical
action variables Ik are promoted to integer quantum numbers nk, and the spectrum
of Q2n−1 looks most elegant in terms of variables ∆̃ and c̃ (2.4.2). At each order
in 1/c̃ the quantum answer is a polynomial in nk. Classical calculation fixes the
leading term with the highest power of nk, while all other terms should be regarded
as “quantum corrections.” We have seen that semiclassical quantization, combined
with the values of qKdV charges Q2n−1 acting on primary states, is sufficient to
completely fix these quantum corrections and obtain the spectrum of excited states
at least in first two orders in 1/c. We conjecture this quantization scheme can be
extended to higher orders in 1/c. We laid the groundwork for the next order 1/c3 by
calculating classical Q2n−1(h, Ik) as well as “energies” on primary states Q0

2n−1, albeit
in the latter case not all terms are known analytically. To complete the job one would
need to find analytic expressions for Q0

2n−1 and develop a dictionary that maps each
term to an infinite sum, yielding this term back via zeta-function regularization.

The obtained spectrum has several immediate applications. First, in section 2.5
we calculated two leading terms in large c expansion of the “thermal expectation
values” ⟨Q2n−1⟩∆ ≡ Tr∆(qL0−c/24Q2n−1), where sum goes over a particular Verma
module, and compared them with the predictions of [54]. Covariance under modular
transformation of ⟨Q2n−1⟩∆ in each order in 1/c serves as a non-trivial check of our
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main result (2.4.15). We also fixed two leading terms in the differential operator Dn

yielding thermal expectation values via ⟨Q2n−1⟩∆ = DnTr∆(qL0−c/24), see (2.5.11)
and (2.5.12).

There are several potential applications of our results, which we hope to address
in the future. The obtained spectrum of Q2n−1 will be helpful to study generalized
Eigenstate Thermalization Hypothesis of 2d CFTs [42] at the subleading order in
1/c. We also expect the semiclassical quantization approach developed in this chapter
could be helpful in the context of Intermediate Long Wave hierachry, which is closely
related to qKdV problem. More generally, it would be interesting to bridge the gap
between the semiclassical approach of this work with the Bethe anzatz approach of
[44] by taking “holographic” limit c → ∞ with fixed h = ∆̃/c̃ of the appropriate
Bethe anzatz equations.
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Chapter 3 Information geometry and holographic correlators

This chapter is essentially identical to:
Information geometry and holographic correlators [14]

3.1 Introduction: Information geometry and holographic dictionary

How does quantum information encode effective field theory? This question is rel-
evant in holography, where the quantum extremal surface proposal for quantum
corrections implies novel features of black hole evaporation [12, 55, 56]. Despite
recent progress, effective field theory remains far less understood in terms of quan-
tum information than in the language of Lagrangians, correlation functions, and the
S-matrix. Developing this subject may prove useful. We may learn more about
effective field theory via constraints coming from quantum information. We may
also identify new perturbative structures in a quantum information description of
gravity. Even a better technical understanding of quantum corrections at first order
may have far-reaching implications for our understanding of black holes.

While computations of entanglement entropy in AdS/CFT have been illuminat-
ing, the mechanics of effective field theory can be studied in another setting as well.
In certain cases, quantum information quantities can be related directly to corre-
lation functions or the S-matrix, or to their ingredients. For recent results in this
direction, see for example [57, 58, 59, 60, 61, 62, 63]). This approach exposes the
role of effective field theory, allowing direct study of its interplay with quantum
information.

In this work we study the Bures information metric, which is a measure of the
distinguishability of nearby states. We explore perturbative corrections and focus
in particular on the information metric associated with correlators in holographic
conformal field theories (CFTs). To summarize the setup, we consider the Bures
distance between pure states DB(ψ(x1, x2), ψ(x3, x4))

2 near x1 = x3, x2 = x4 using
states,

|ψ(x1, x2)⟩ =
O2(x2)O1(x1) |0⟩√

⟨O1(x∗1)O2(x∗2)O2(x2)O1(x1)⟩
, (3.1.1)

where we use the notation (O(x))† = O(x∗). Up to a normalization factor, the Bures
distance is a four-point function,

DB(ψ(x1, x2), ψ(x3, x4))
2 ∼ ⟨O1(x

∗
1)O2(x

∗
2)O1(x3)O2(x4)⟩ . (3.1.2)
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In a holographic CFTs, the Bures information metric of this two-operator state is

gxµ
1x

ν
2
≡ d2

dxµ1dx
ν
2

DB(ψ(x1, x2), ψ(x3, x4))
2 ≈ g

(0)

xµ
1x

ν
2
+

1

N2
g
(2)

xµ
1x

ν
2
+ . . . (3.1.3)

and encodes features of four-point correlators in a simple way.1 Taking a similar
approach, we also discuss transition amplitudes induced by a unitary U = e−iλH

and work perturbatively in λ. Our aim here is to take initial steps in describing
the information geometry of 2n-point processes in quantum field theory, but it is
straightforward to explore this story more fully using standard methods.

As four-point functions appear explicitly, the connection to 1/N perturbation
theory is direct. The 1/N corrections are computed by four-point Witten diagrams
in the bulk, which have been studied extensively at tree level and more recently at
one loop [64, 65, 66, 67, 68, 69, 70, 71]. By using these known results as input,
computing the information metric itself is relatively simple (3.1.3). This approach
applies equally well in all dimensions. By comparison, it is more challenging to probe
1/N corrections by taking the partial trace of density matrix [72, 13]. The reduced
density matrix approach probes entanglement wedge structure and has been explored
to order O(N0) in CFT2. However, we expect that computing 1/N corrections on
a replica manifold will be more challenging than in the original theory, and far less
tractable in general dimensions. In short, the pure state and reduced density matrix
approaches probe different and complementary features of the information metric,
and may be useful for different purposes.

Here, we give an outline of this chapter. In Section 2, we review basics of informa-
tion geometry and then discuss perturbative corrections to the information metric.
We show that when the fidelity factorizes, the information metric also factorizes.
In Section 3, we review the two-point function metric derived in [72, 13], and then
study the metric of four-point functions in CFTd. We show that correlators with a
weak-coupling expansion have an information metric that also has a weak-coupling
expansion. In Section 4, we compute the information metric in explicit four-point
examples. Correlators in mean field theory (MFT) with pairwise-identical operators
factorize and have a factorized information metric. MFT correlators with identical
scalars do not factorize, or equivalently have operators besides the identity exchanged
in every channel. The resulting information metric does not factorize. We then com-

1To highlight the physics involved, we will refer to this metric as the metric of the correlator.
Note that there is a one-to-one mapping between the information distance of two n-operator states
and a certain set of 2n-point correlators in the appropriate kinematic configuration. The normal-
ization factor is understood, though note that it is a correlator as well. A ratio of correlators may
seem strange, but universal properties will appear nevertheless.

41



pute an O(1/N2) correction dual to a tree Witten diagram in bulk ϕ2
1ϕ

2
2 theory.

While the MFT contribution factorizes, the tree-level information metric does not,
and the tree diagram has operator exchanges besides the identity in all channels.
In all four-point examples, we find that the information metric is asymptotically
AdS. In Section 5, we address similar questions for transition amplitudes of qubits,
a simple model for the S-matrix. In this context, we find an information metric for
transition amplitudes with identical in and out states. The metric takes the form
⟨H2⟩ − ⟨H⟩2. In Section 6, we discuss future directions.

3.2 Information metric basics

Review

We review the Bures distance D2
B and the associated metric, which we will refer to

as the information metric. We follow the approach in [13, 72], to which we refer
the reader for further details and discussion of other distance measures. The Bures
distance between density matrices ρ1, ρ2 is

DB(ρ1, ρ2)
2 = 2

(
1−

√
F (ρ1, ρ2)

)
, (3.2.1)

where F is the fidelity,

F (ρ1, ρ2) =

(
tr
(√√

ρ1ρ2
√
ρ1

))2

. (3.2.2)

Though not manifest above, fidelity is symmetric. We will study pure states, for
which D2

B takes a simple form. When ρi = |ψi⟩ ⟨ψi| with |ψi⟩ normalized, F (ρ1, ρ2) =
| ⟨ψ1|ψ2⟩ |2 and

DB(ρ1, ρ2)
2 = 2(1− | ⟨ψ1|ψ2⟩ |). (3.2.3)

In other words, the Bures distance between pure states is simply the magnitude of
the inner product.

Consider a family of density matrices ρ(λi) that depend smoothly on parameters
λi. The Bures distance of nearby ρ’s can be described by a metric as

DB(ρ(λi), ρ(λi + dλi))
2 ≈

∑
i

dλi
d

dλ′i

∣∣∣∣
λ′
i=λi

DB(ρ(λi), ρ(λ
′
i))

2 +
∑
i,j

gij(λi)dλidλj,

(3.2.4)
where

gij ≡
d2

dλ′idλ
′
j

∣∣∣∣λ′
i=λi

λ′
j=λj

√
F (ρ(λi), ρ(λ′i)) (3.2.5)
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is the Bures metric. Assuming DB(ρ(λi), ρ(λ
′
i))

2 is analytic in a neighborhood of
λ′i = λi, then it has a minimum at λ′i = λi and so

DB(ρ(λi), ρ(λi + dλi))
2 ≈

∑
i,j

gij(λi)dλidλj, (3.2.6)

The information metric therefore captures the distinguishability of nearby density
matrices. Following the quantum Cramer-Rao bound, the inverse metric g−1

ij bounds
the error in estimating values of λi through measurement.

Perturbative corrections

We now study the information metric in the context of perturbation theory. For a
family of density matrices ρ parametrized by λ1, λ2,

DB(ρ(λ1, λ2), ρ(λ1, λ2 + dλ2))
2 ≈ g22(λ1, λ2)(dλ2)

2. (3.2.7)

Suppose ρ(λ1, λ2) has an expansion in λ1 about for example λ1 = λ. It follows that
g22(λ1, λ2) can also be expanded in λ1,

g22(λ1, λ2) =
∑
n=0

g
(n)
22 (λ, λ2)(λ1 − λ)n. (3.2.8)

This statement is intuitive when the g(n)22 (λ1, λ) are computed from objects within the
same Hilbert space, which is natural in quantum mechanics. In weakly coupled quan-
tum field theory, expanding an interacting quantity in a coupling λ1 gives g(n)22 (λ, λ2)

computed from elements of the Hilbert space of the free theory. λ2 parametrizes the
state in the exact theory. Concretely, when λ1 is a coupling constant, λ2 can be the
position or momentum that specifies the state.

Finally, we show that factorization of the fidelity into the fidelities of subsystems
implies factorization of the information metric. Suppose that

DB(ρ(λ1, λ2), ρ(λ3, λ4))
2 = 2

(
1−

√
F1(λ1, λ3)F2(λ2, λ4)

)
, (3.2.9)

where F1, F2 are themselves fidelities,

DB(ρ1(λ1), ρ1(λ3))
2 = 2

(
1−

√
F1(λ1, λ3)

)
,

DB(ρ2(λ2), ρ2(λ4))
2 = 2

(
1−

√
F2(λ2, λ4)

)
, (3.2.10)

for families of density matrices ρ1(λ1), ρ2(λ2) that admit information metrics g11dλ21
and g22dλ

2
2 respectively. Expanding DB(ρ(λ1, λ2), ρ(λ3, λ4))

2 using λ3 = λ1 + dλ1

and λ4 = λ2 + dλ2 therefore gives what we refer to as a factorized metric,

DB(ρ(λ1, λ2), ρ(λ1 + dλ1, λ2 + dλ2))
2 ≈ gλ1λ1dλ

2
1 + gλ2λ2dλ

2
2. (3.2.11)
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The cross term

d2

dλ3dλ4

∣∣∣∣
λ3=λ1
λ4=λ2

DB(ρ(λ1, λ2), ρ(λ3, λ4))
2

= −2

(
d

dλ3

∣∣∣∣
λ3=λ1

√
F (ρ1(λ1), ρ1(λ3))

)(
d

dλ4

∣∣∣∣
λ4=λ2

√
F (ρ2(λ2), ρ2(λ4))

)
= 0,

(3.2.12)

because each factor equals the first order term in DB(ρ1(λ1), ρ1(λ1 + dλ1))
2 and

DB(ρ2(λ2)ρ2(λ2 + dλ2))
2 respectively. As these Bures distances admit information

metrics by assumption, the first order terms are zero. An immediate corollary is
that the presence of cross terms in the metric implies the failure of factorization of
fidelity into sub-fidelities.2 As we will see shortly, this notion of factorization will be
related to factorization in correlators.

3.3 CFT correlators

Our main focus will be four-point correlators in holographic CFTd. Some of the
explicit expressions we give will be for CFT2 for simplicity. Nevertheless, we expect
many of our conclusions apply more generally.

Review: two-point function

Following [13, 72], we review the information metric for the Euclidean two-point
function of scalar primaries. We work with real operators, which obey (O(x, τ))† =
O(x,−τ) [73]. We begin with density matrix

ρ(x) =
O(x) |0⟩ ⟨0| O(x∗)
⟨O(x)O(x∗)⟩

, (3.3.1)

where O(x)|0⟩√
⟨O(x∗)O(x)⟩

has unit norm. We use notation xµ = (xi, τ) with (xµ)∗ ≡ (xi,−τ)
and suppress the indices in the arguments of O for compactness. Raised indices run
over spatial coordinates while subscripts label external points. Expectation values
are taken in the vacuum. The information distance is

DB(ρ(x1), ρ(x2))
2 = 2

(
1− | ⟨O(x∗1)O(x2)⟩ |√

⟨O(x∗1)O(x1)⟩ ⟨O(x∗2)O(x2)⟩

)
. (3.3.2)

2While it may be true that the absence of cross terms implies factorization into sub-fidelities,
we do not claim this. In principle, the fidelity could factorize into two functions that are not
themselves fidelities.
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The CFT two-point function is fixed by conformal symmetry to be ⟨O(x)O(y)⟩ =
(x− y)−2∆, where ∆ is the scaling dimension of O.

DB(ρ(x1), ρ(x2))
2 = 2

(
1− (4τ1τ2)

∆

((xi1 − xi2)2 + (τ1 + τ2)2)∆

)
. (3.3.3)

An information metric is obtained from the expansion

xµ2 = xµ1 + dxµ1 . (3.3.4)

The resulting metric describes the distinguishability of states created by inserting
operators at nearby locations. The information metric in CFT2 is [13, 72]

ds2 =
∆

2τ 21

(
dx21 + dτ 21

)
, (3.3.5)

which is proportional to the metric of Poincare AdS3. See [72] for additional examples
of this equivalence. The general dimension case is similar to the two-dimensional
case. For relating CFT2 expressions to those in CFTd, it is useful to note that
d

dxi
1

d

dxj
1

((xi1−xi2)2+(τ1+τ2)
2) = 2 d

dxj
1

(x1−x2)i = 2δij. This implies gxixj ∼ δij for the
two-point function metric. As we expand about xi2 = xi1, we also have gxiτ = gτxi = 0.
The information metric in d-dimensions is therefore

ds2 =
∆

2τ 21

(∑
i

(dxi1)
2 + dτ 21

)
, (3.3.6)

which is proportional to the Euclidean Poincare AdSd metric. As the two-point
function is determined by conformal symmetry, this metric is the same for all CFTd.
The reduced density matrix obtained by tracing out a spatial subregion does probe
theory-dependent information [13, 72], but we take a different approach here.

The four-point function

In order to obtain a theory-specific information metric, we now turn to two-operator
states,

ρ(x1, x2) =
O2(x2)O1(x1) |0⟩ ⟨0| O1(x

∗
1)O2(x

∗
2)

⟨O1(x∗1)O2(x∗2)O2(x2)O1(x1)⟩
. (3.3.7)

The Bures distance is

DB(ρ(x1, x2), ρ(x3, x4))
2

= 2

(
1− | ⟨O1(x

∗
3)O2(x

∗
4)O2(x2)O1(x1)⟩ |√

⟨O1(x∗1)O2(x∗2)O2(x2)O1(x1)⟩ ⟨O1(x∗3)O2(x∗4)O2(x4)O1(x3)⟩

)
.

(3.3.8)
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With τ1 < τ2 < 0 < −τ4 < −τ3, the correlators above are time-ordered in Euclidean.3

This expression is a valid Bures distance for all τi < 0.
Various limits of D2

B are determined by familiar properties of the four-point
function. D2

B is finite in the OPE limits x212 → 0, x234 → 0 and determined by
the O1O2 OPE. In the limit τi → 0, the normalization factor diverges and gives
D2

B → 0. As is standard, τ acts as a UV regulator for a state formed by inserting
local operators, which would otherwise contain arbitrarily high energy excitations.
Cluster decomposition implies that when we translate x3, x4 by a large distance,

DB(ρ(x1, x2), ρ(x3, x4))
2

≈ 2

(
1− | ⟨O1(x

∗
1)O2(x

∗
2)⟩ ⟨O1(x3)O2(x4)⟩ |√

⟨O1(x∗1)O2(x∗2)O2(x2)O1(x1)⟩ ⟨O2(x∗4)O1(x∗3)O1(x3)O2(x4)⟩

)
.

(3.3.9)

We consider the information metric obtained from the expansion

xµ3 = xµ1 + dxµ1 , xµ4 = xµ2 + dxµ2 . (3.3.10)

One can check that the first-order terms are automatically zero,

d

dxµ3

∣∣∣∣x3=x1
x4=x2

DB(ρ(x1, x2), ρ(x3, x4))
2 = 0,

d

dxµ4

∣∣∣∣x3=x1
x4=x2

DB(ρ(x1, x2), ρ(x3, x4))
2 = 0.

(3.3.11)
In the next section, we find that the small-τ limit gives Euclidean Poincare AdS,

τk → 0 : gµνdx
µdxν ≈ ∆k

2

∑
i(dx

i
k)

2 + dτ 2k
τ 2k

. (3.3.12)

Specifically, we will show that the identity contribution to the OPE in the 13 →
24 channel gives an asymptotically-AdS information metric. We expect this is the
leading contribution to the information metric for general correlators, including at
higher points.

As the four-point function is theory-dependent, we can study perturbative cor-
rections. Suppose the states have a perturbative expansion in λ1 about λ. The
correlators and D2

B can also be expanded in λ1. To every order in λ1 − λ, the Bures
distance is 0 for x3 = x1, x2 = x4 because the states are identical at these locations
by construction for all λ1. x3 = x1, x2 = x4 is therefore a minimum of D2

B for any
λ1, and so the information metric that arises from expanding about this point is still

3See [73] for discussion.
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the leading correction to D2
B at all orders in λ1 − λ. (3.2.8) now follows, which is

that the metric has an expansion to all orders in λ1 − λ:

gµν =
d2

dxµ3dx
ν
4

∣∣∣∣x3=x1
x4=x2

DB(ρ(x1, x2, λ1), ρ(x3, x4, λ1))
2 =

∑
n=0

g(n)µν (λ)(λ1 − λ)n. (3.3.13)

The same argument applies to states created by n operator insertions.

3.4 Four-point examples

We now demonstrate the statements in the previous section. We first study the MFT
correlator, which captures the contribution of the identity operator to any CFT
correlator. We find the MFT information metric is asymptotically AdS. We then
consider a 1/N2 correction in holographic CFTs computed by a tree Witten diagram
in the bulk. We find that the tree-level contribution preserves the asymptotically
AdS behavior of the information metric, consistent with the fact that the block
decomposition of tree diagrams does not contain the identity exchange. We will
often present CFT2 expressions for notational simplicity.

Mean Field Theory

The MFT correlator is computed by taking Wick contractions as in free field theory.
The MFT four-point function is

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩MFT =
δO1,O2δO3,O4

x2∆1
12 x2∆3

34

+
δO1,O3δO2,O4

x2∆1
13 x2∆4

24

+
δO1,O4δO3,O2

x2∆1
14 x2∆2

32

.

(3.4.1)
Choosing O3 = O1,O4 = O2 with O1 ̸= O2,

⟨O1(x1)O2(x2)O1(x3)O2(x4)⟩MFT = x−2∆1
13 x−2∆2

24 . (3.4.2)

The Bures distance is

DB(ρ(x1, x2), ρ(x3, x4))
2 = 2

(
1− (2τ1)

∆1(2τ2)
∆2(2τ3)

∆1(2τ4)
∆2

((x1−x3)2+(τ1+τ3)2)∆1((x2−x4)2+(τ2+τ4)2)∆2

)
.

(3.4.3)
Using the expansion

xµ3 = xµ1 + dxµ1 , xµ4 = xµ2 + dxµ2 , (3.4.4)

the information metric for CFTd is

ds2 =
∆1

2τ 21

(∑
i

(dxi1)
2 + dτ 21

)
+

∆2

2τ 22

(∑
i

(dxi2)
2 + dτ 22

)
. (3.4.5)
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The lack of cross terms in the metric above is consistent with (3.2.11), as this MFT
correlator factorized into products of lower-point correlators. In CFT language, this
factorization is the statement that only the identity operator is exchanged in the
13 → 24 channel. Operators with the dimensions of double trace operators [O1O2]

are exchanged in other channels.
Next, we consider a MFT correlator with four identical operators,

⟨O(x1)O(x2)O(x3)O(x4)⟩MFT =
1

x2∆12 x
2∆
34

+
1

x2∆13 x
2∆
24

+
1

x2∆14 x
2∆
32

. (3.4.6)

Unlike the pairwise-identical case, this correlator does not factorize. The expression
for the full metric is large but straightforward to obtain, so we only give some explicit
expressions at specific values of ∆. We have also checked that the first order terms
vanish, confirming the information metric is the leading contribution to D2

B. Even
with ∆ = 1 the full metric is a large expression, but it simplifies for x1 = x2,

ds2 =
(τ1 − τ2) 2

2τ 21 τ
2
2 (τ1 + τ2) 2 (τ 41 + 14τ 22 τ

2
1 + τ 42 )

2(
(dτ 21 τ

2
2+dτ

2
2 τ

2
1 )
(
τ 41+62τ 22 τ

2
1+τ

4
2

)
(τ1+τ2)

4+(τ 22 dx
2
1+τ

2
1 dx

2
2) (τ1+τ2)

4
(
τ 21−τ 22

)
2

+ 64
(
dx1dx2τ

4
1 τ

4
2 (τ1 − τ2) 2 − dτ1dτ2τ 31 τ 32

(
τ 41 + 3τ2τ

3
1 + 8τ 22 τ

2
1 + 3τ 32 τ1 + τ 42

)))
(3.4.7)

The full metric (with x1 ̸= x2) has the limiting behavior

τ1 → 0 : ds2 ≈ 1

2τ 21
(dx21 + dτ 21 ), (3.4.8)

and similarly for τ2 → 0 due to symmetry in τ1, τ2. For general ∆, we find

τi → 0 : ds2 ≈ ∆

2τ 2i
(dx2i + dτ 2i ), (3.4.9)

which we verified explicitly in d = 2 up to ∆ = 7 for integer values of ∆. As xi does
not appear in the CFT2 expression above, we expect the same asymptotic behavior
in CFTd.

The information metric in the identical operator case did not factorize. In the
correlator, operators above the identity are exchanged in the 13 → 24 channel. All
cross terms in the metric associated with an OPE channel are therefore proportional
to the OPE coefficients of some operator exchanged in that channel.
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Holographic correction: tree level

Now we specialize to a holographic CFT. At each order in the 1/N expansion, cor-
relators of light single trace operators are computed by Witten diagrams in AdS.4

The O(N0) contribution is dual to free propagation in the bulk and is computed by
MFT correlators. The next correction to four-point functions occurs at O(1/N2),
and is computed by tree Witten diagrams. We consider pairwise identical operators
O1 = O3,O2 = O4. We assume the bulk theory has a (ϕ1ϕ2)

2 vertex, where ϕi are
dual to Oi. The tree-level contribution is therefore the contact diagram

Aϕ2
1ϕ

2
2(xi) =

∫
AdS

dd+1y
√
−g

4∏
i

K∆i
(xi, y) ≡ D∆1∆2∆1∆2 , (3.4.10)

where K∆i
(x, y) is the bulk to boundary propagator for the bulk field with boundary

dual Oi. For particular scaling dimensions, D-functions are known in closed form.
For instance,

2x213x
2
24

Γ
(
2− d

2

)D1111(xi) =
1

z − z̄

(
2Li2(z)− 2Li2(z̄) + log(zz̄) log

1− z
1− z̄

)
. (3.4.11)

The contact diagram for other integer scaling dimensions can be found using D-
function identities. We choose O1,O2 to be distinct scalars with equal dimension,
∆1 = ∆2 = 1. We will once again work in d = 2, in which ∆ = 1 is above the
unitarity bound. The information metric is found by expanding D2

B in the small
parameter 1/N2. We have checked explicitly that the first order terms, 1

N2dx
µ
i , are

zero. The leading contribution to D2
B therefore comes from the information metric.

The metric is

ds2 =
dx21 + dτ 21

2τ 21
+
dx22 + dτ 22

2τ 22
+
∑
i,j

1

N2
g
(2)
ij dx

idxj, (3.4.12)

where the leading term is the metric of pairwise identical MFT correlator studied
earlier. The leading term factorizes but the 1/N2 correction does not. As in the
MFT case, the explicit form of the 1/N2 contribution to the metric is lengthy. With
x1 = x2, the metric takes a simpler form,

ds2 =
πd/2Γ

(
2− d

2

)
(τ1 − τ2) 4 (τ1 + τ2) 4(

− 8 (τ1 + τ2)
2 (τ1 − τ2) 2

(
τ 21 (dx

2
2 + dτ 22 )− τ2τ1(dτ1dτ2 + dx1dx2) + τ 22

(
dτ 21 + dx21

))
+ (τ1 − τ2) 4 log

(
(τ1 − τ2) 4

16τ 21 τ
2
2

)
X−(τ1, τ2)− 2 (τ1 + τ2)

4 log

(
(τ1 + τ2)

2

4τ1τ2

)
X+(τ1, τ2)

)
4This is true only under certain assumptions and has only been studied in generality up to one

loop, but these details will not be relevant in this work.
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where

X−(τ1, τ2) = 4(τ 21 (dx
2
2 + dτ 22 ) + τ 22 (dx

2
1 + dτ 21 )) + (dx1dx2+dτ1dτ2)

(
τ 21 − 6τ2τ1 + τ 22

)
,

X+(τ1, τ2) = −4(τ 21 (dx22 + dτ 22 ) + τ 22 (dx
2
1 + dτ 21 )) + (dx1dx2 + dτ1dτ2) (τ1 + τ2)

2.

(3.4.13)

We have checked numerically that the full metric (x1 ̸= x2) obeys

lim
τi→0

τi g
(2)
µν (τ1, τ2, x1, x2) = 0. (3.4.14)

In other words, g(2)µν (τ1, τ2, x1, x2) does not change the 1/τ 2i divergence we found
coming from the MFT contribution. The metric therefore remains asymptotically
AdS up to order 1/N2.

3.5 Transition amplitudes

We now discuss transition amplitudes and find somewhat different structure from
the correlation function case. Nevertheless, we find that transition amplitudes admit
an information metric in a certain sense. We study a quantum-mechanical setup
that describes relevant features of transition amplitudes in quantum field theory.
Consider a transition between states |ψf⟩ , |ψi⟩ induced by unitary U . The transition
amplitude is ⟨ψf |U |ψi⟩. In order to extract an information metric, we must expand
about D2

B = 0, but for U ̸= 1, this does not necessarily occur when |ψi⟩ = |ψf⟩.
With density matrices ρi = |ψi⟩ ⟨ψi| and ρf = |ψf⟩ ⟨ψf |, the following Bures

distance contains the transition amplitude.

DB(U
†ρiU, ρf )

2 = 2

(
1−

√
U †ρiUρf

)
. (3.5.1)

Suppose U = e−iλH for some dimensionless hermitian operator H.

DB(U
†ρiU, ρf )

2 = 2 (1− | ⟨ψf |U |ψi⟩ |) . (3.5.2)

Expanding in λ,

DB(U
†ρiU, ρf )

2 ≈2
(
1−

(
| ⟨ψf |ψi⟩ |2 − 2λIm (⟨ψf |H|ψi⟩ ⟨ψi|ψf⟩)

+ λ2
(
| ⟨ψi|H|ψf⟩ |2 −

1

2
|
〈
ψi|H2|ψf

〉
|(⟨ψi|ψf⟩+ ⟨ψf |ψi⟩)

))1/2)
,

(3.5.3)
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where Im(a + ib) ≡ b. If we choose |ψi⟩ = |ψf⟩, the order λ term above becomes
zero. Expanding in λ then gives

DB(U
†ρiU, ρf )

2 ≈ λ2
(〈
H2
〉
− ⟨H⟩2

)
. (3.5.4)

At |ψf⟩ = |ψi⟩, the transition amplitude therefore admits the information metric at
order O(λ2)

ds2 = dλ2
(〈
H2
〉
− ⟨H⟩2

)
. (3.5.5)

For |ψi⟩ ≠ |ψf⟩, the states that have D2
B = 0 are |ψf⟩ = U |ψi⟩. If we allow the states

to vary independently, the full metric is the sum of (3.5.5) and the λ = 0 metric.
To understand this discussion more explicitly, consider the following two qubit

system.

|ψi⟩ =

(
cos θ

sin θ

)
⊗

(
cosϕ

sinϕ

)
, |ψf⟩ =

(
cos θ′

sin θ′

)
⊗

(
cosϕ′

sinϕ′

)
. (3.5.6)

For λ = 0,
F (U †ρiU, ρf ) = |cos (θ′ − θ) cos (ϕ′ − ϕ)|2 . (3.5.7)

Expanding with θ′ = θ + dθ, ϕ′ = ϕ+ dϕ, the information metric is

ds2 = dθ2 + dϕ2. (3.5.8)

Turning on the interaction H = σ1
z ⊗ σ2

z gives

DB(U
†ρiU, ρf )

2 ≈ 2

(
1−
√

(cos (θ′−θ) cos (ϕ′−ϕ))2+λ2 (cos (θ′+θ) cos (ϕ′+ϕ))2
)
.

(3.5.9)
Because the states and H chosen were real, there is no O(λ) term above. Neverthe-
less, we still must check whether expanding about the point θ′ = θ+dθ, ϕ′ = ϕ+dϕ

gives a consistent information metric.

DB(U
†ρiU, ρf )

2 ≈λ2
(
1− cos2 2θ cos2 2ϕ

)
+dϕ

(
λ2 cos2 2θ sin 4ϕ

)
+dθ

(
λ2 sin 4θ cos2 2ϕ

)
−dθdϕ

(
λ2 sin 4θ sin 4ϕ

)
+dθ2

(
1+

λ2

4
(3 cos 4θ−1) cos2 2ϕ

)
+dϕ2

(
1+

λ2

4
(3 cos 4θ−1) cos2 2θ

)
. (3.5.10)

The O(dθ, dϕ) terms are first order, proportional to λ, and non-zero. This was
expected from the fact that D2

B ̸= 0 at θ = θ′, ϕ = ϕ′ once the interaction H is
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included. We therefore have no meaningful information metric in dϕ, dθ at higher
order in λ. The expansion of the information metric in λ terminates,

ds2 = dθ2 + dϕ2 + dλ2
(
1− cos2 2θ cos2 2ϕ

)
, (3.5.11)

which agrees with (3.5.5) with dθ = dϕ = 0.
Applying this approach to the S-matrix may require some modification. Consider

a unitary matrix S written as S = 1 + iT . To obtain a form similar to (3.5.5), we
write

S = e−iHS , (3.5.12)

where H†
S = HS. Suppose HS can be expanded in a small parameter, HS =∑

n λ
nH

(n)
S . This leads to

ds2 = dλ2
(〈

(H
(1)
S )2

〉
−
〈
H

(1)
S

〉2)
, (3.5.13)

of which (3.5.5) is a special case. (3.5.13) corresponds to a transition amplitude
with identical initial and final states.5 According to the quantum Cramer-Rao theo-
rem, the error in estimating λ from measuring the states is bounded from below by(〈

(H
(1)
S )2

〉
−
〈
H

(1)
S

〉2)−1

.

(3.5.13) is a completely general formula for transition amplitudes. It applies
to transition amplitudes in position space as well as momentum space. Transition
amplitudes have been studied in AdS/CFT [74, 75, 76, 77, 78, 79, 65, 80]. The
modular Hamiltonian KA = log ρA generates unitary evolution within subsystem
A, where states are defined on slices of constant modular time. (3.5.13) therefore
applies to transition amplitudes within the domain of dependence of A. It may be
interesting to note that the quantity ⟨K2

A⟩ − ⟨KA⟩2 has been studied recently [81,
82, 83].

3.6 Future directions

We found that factorization, the OPE, and the 1/N expansion are encoded by in-
formation metric of correlators. It would be natural to flesh out this information
geometry description: one can explore higher points, odd points, Lorentzian signa-
ture, operators with spin, twist operators, and so on. The interplay between 1/N

corrections and quantum information ideas can be explored in this context. Spe-
cial cases of our results yield the information metric of the two-point function in

5Note that the information metric is nonzero only when these states are not eigenstates of H(1)
S .
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excited states, and of multitrace operators. Applications of more sophisticated ideas
in quantum information geometry may produce new constraints on CFT data. We
conclude by discussing a few directions in more detail.

The information metric in principle encodes some or all of the same information as
the original correlator. In this way, the information metric geometrizes the correlator
in a seemingly novel fashion. It would be interesting if this description served as a
useful organizing tool for CFT data. However, note that the information metric
is derived from the normalized four-point function, which is a ratio of correlators
and not a correlator itself. It would be interesting to understand this object better,
though its appearance may suggest that quantities that are natural in information
geometry are obscured in standard correlator language. In this spirit, it may be useful
to understand what CFT features are encoded by the curvature scalar and tensors of
the information metric. As multiple OPE channels are encoded by the information
metric, can we impose crossing as a condition on the information geometry? If so,
can this be used to derive new constraints on OPE data? It would be interesting to
identify the information geometry of a single conformal block. On a more basic level,
how do conformal transformations of the correlator act on the information metric?

We have shown that cross terms in the metric signal a failure of factorization.
They also represent non-trivial interplay between several different parts of the infor-
mation geometry boundary, each of which is asymptotically AdS. It may be inter-
esting to develop a better understanding of the full geometry. One could also ask
whether higher-genus manifolds are allowed, and if so, what this would imply for the
correlator. More modestly, can information manifolds of correlators have conjugate
points, which appear in studies of complexity [84, 85]?

The relationship between OPE data and complexity in holographic CFTs is not
yet well-understood, though is natural to explore in light of recent work [86, 87].
Ideas used in our work may be useful for studies of CFT complexity. Computing
1/N corrections to complexity may clarify its possible bulk dual [88].

In short, we have shown that information geometry provides a new representation
of a large class of CFT correlators. While the usefulness of this representation
remains to be seen, many new avenues are now open for exploration.
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Chapter 4 Classical codes, Chiral CFTs and Lattices

This chapter is essentially identical to:
Classical codes and chiral CFTs at higher genus [22]

4.1 Introduction: Chiral CFTs and classical error correcting codes

Two-dimensional conformal field theories are among the best understood quantum
field theories, and yet a lot remains unknown. This is especially true for theories
with central charge c > 1, where unitarity allows for infinite-dimensional represen-
tations of the Virasoro algebra. The resulting theories are, in general, much more
complicated than those theories with c < 1. One powerful method for studying 2d
conformal field theories (CFTs) is the modular bootstrap [89], which constrains the
torus partition function based on the requirement that it be invariant under the
PSL(2,Z) group of modular transformations. The constraints from genus 1 modular
invariance have been used to derive universal bounds on the spectrum, including
bounds on the dimension gap, twist gap, and operator degeneracies [17, 90, 91, 92,
93, 94, 95, 96, 97, 98, 99, 100, 101, 20].

The torus partition function fully specifies the spectrum of the theory, but con-
tains no information about the dynamics, i.e. the OPE coefficients. For this reason,
it is unable to completely define a theory. This is clear from specific cases where
different theories have the same genus 1 partition function, the most famous of which
arise from Milnor’s example of two isospectral self-dual even lattices in 16 dimensions
which define isospectral CFTs with c = 16 [102]. Perhaps more surprisingly, there
exist examples of modular invariant functions, decomposable in Virasoro characters
with non-negative integer multiplicities, which do not correspond to any known CFT;
for an example in the non-chiral case, see section 6 of [19]. The dynamical infor-
mation captured by the OPE coefficients can, in principle, be addressed using the
full conformal bootstrap method [103] to bound sphere four-point functions using
crossing symmetry, however these constraints are not easily combined with those of
modular invariance.

Considering higher genus partition functions might offer a way to bound the spec-
trum and OPE coefficients at the same time. It was argued in [104] that consistency
of 2d CFTs with crossing symmetry and modular invariance implies that the theory
can be consistently defined on Riemann surfaces of any genus. The same Riemann
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surface can be obtained by sewing together simple three-holed spheres in different
ways – higher genus consistency essentially means that the resulting partition func-
tion must not depend on the sewing procedure. This leads to the requirement that
the partition function is invariant under the full genus-g modular group Sp(2g,Z).
Unlike the torus partition function, the higher genus partition functions do contain
information about the OPE coefficients. This leads to the natural question: to what
degree does the set of higher genus partition functions characterize a 2d CFT? The
view that a 2d CFT may be defined by its vacuum amplitudes for all genera, origi-
nally advanced in [105], has been addressed more recently in [106, 107]. Other recent
interest in deriving universal bounds from higher genus modular invariance include
[108, 109, 110].

In this chapter, we will use 2d CFTs defined by error-correcting codes (ECCs)
to study higher genus modular invariance. Simply speaking, an n-dimensional code
C is a collection of binary vectors, “codewords,” of length n. These vectors can be
visualized as vertices on a unit hypercube. Importantly, this means that an error
correcting code can be used to define a lattice, simply by identifying the vectors
in the code with the unit cell of the lattice (this is the so-called “Construction A,”
of Leech and Sloane [111]). This, in turn, allows us to define a chiral CFT with
central charge c = n as the compactification of n free bosons on this lattice [18].
The relationship between code and CFTs has been known for a long time [112, 113].
Recently it has been shown [21, 19] that the correspondence between classical codes
and chiral CFTs has a generalization to quantum error correcting codes and full
non-chiral CFTs.

Code CFTs provide an interesting setting for studying higher genus modular
invariance for two main reasons. The first is that a number of codes are known
explicitly, allowing us to construct higher genus partition functions of true CFTs di-
rectly by computing their higher-weight enumerator polynomial. The second is that
the higher genus modular transformations act linearly on partition functions which
take the form of code enumerator polynomials.1 This means that we can actually
solve the transformations explicitly. By requiring that the enumerator polynomial
has positive integer coefficients, we can list every partition function which could pos-
sibly derive from an error-correcting code. Finally, we impose a further constraint,
called “factorization limits:” when the higher genus Riemann surface degenerates into
two lower-genus Riemann surfaces connected by an infinitely thin, long tube, then

1In fact, any lattice CFT has partition functions which can be written in the form of a code
enumerator polynomial, and thus must transform the same way.
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the higher genus partition function must factorize into the products of lower-genus
partition functions.

For cases where the full set of codes is known, such as for c = 24, we find that
this procedure correctly reproduces every code partition function, plus a number of
“fake” partition functions, which are known not to correspond to codes. Whether
or not they correspond to CFTs at all is an open question. Interestingly, imposing
constraints from higher genus decreases the number of fake partition functions. For
example, at c = 24, there are only 9 codes. At genus 1, there are 190 partition
functions consistent with modular invariance. However, we find that only 29 of these
partition functions can arise from modular invariant genus 2 partition functions via
factorization. Only 21 can arise from genus 3 partition functions. We speculate that
performing the algorithm laid out in this chapter for arbitrarily high genus would
eliminate every partition function except those arising from ECCs.

For genus g ⩽ 3 and central charge c = 24, we can look at the location of
the true theories inside the space of all allowed theories, revealing an interesting
geometric structure. The requirement that the partition functions have positive
integer coefficients means that the allowed partition functions form a discrete set
indexed by a few coefficients which obey simple linear inequalities. More specifically,
these coefficients live in a polytope whose dimension is equal to one less than the
number of independent Siegel modular forms with weight c/2. This dimension grows
as the genus grows, but the higher genus polytope can always be projected to the
lower-genus space, and its projection must be inside the polytope defined by the
lower-genus constraints. This means that each genus gives stricter constraints than
the previous one, at least for g ⩽ 3.

The outline of the chapter is as follows. In section 4.2, we review the correspon-
dence described above in the case of chiral CFTs at genus 1. In section 4.3, we
show how to extend the correspondence between codes and CFTs to higher genus,
focusing on the higher-weight enumerator polynomial and how it is constrained by
the symmetries and factorization properties required by the CFT. We also comment
on some issues related to genus g > 3. In section 4.4, we show explicitly how to
use these constraints to determine every allowed enumerator polynomial for a given
genus g and dimension c. We do this for c up to 48 for genus 2 and c up to 24

for genus 3. We show where the real ECCs lie in the space of allowed enumerator
polynomials. We also use our results to fix the genus 2 Siegel modular forms in terms
of the polynomial variables of ECCs.
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Table 4.1: Dictionary relating error correcting codes and CFTs.

Code C Lattice Λ Chiral CFT

code dimension n dimension n of Rn central charge c = n

codewords c ∈ Fn
2 lattice vectors v⃗ states

weight g enumerator
polynomial W (g)

C

genus g theta series Θg
Λ genus g partition func-

tion Z(g)

code variables xi =
x0, x1, . . .

theta constants ϑi(Ω)
(4.3.20)

theta constants ϑi(Ω)

Hamming weight w(c) vector length ∥v∥ dimension h

doubly-even self dual even self-dual modular invariant

4.2 Review: Classical Codes and Chiral CFTs

In this section, we will review the relation between classical error-correcting codes
and two-dimensional chiral CFTs. See table 4.1 for a summary.

Error-correcting codes and enumerator polynomials

In this chapter, we are considering the problem of listing all possible enumerator
polynomials by generating all polynomials consistent with a set of particular sym-
metries. So let us first review how classical error-correcting codes define enumerator
polynomials, and their relation to CFTs. For a more extensive recent review of these
topics, see [19]. For an earlier review, see [114, 115].

A binary code C is a set of codewords c ∈ Fn
2 , which are length n vectors over F2,

the finite field of two elements. The idea of an error-correcting code is to facilitate
communication over a noisy channel: if a message is encoded, the message may still
be readable even when a certain number of flipped bits (errors) occur between the
sender and receiver. The simplest example is the repetition code. The length 3

repetition code is defined by the encoding

(0) → (000) ,

(1) → (111) .
(4.2.1)

Suppose that each bit has a 10% chance of being flipped when transmitting the
message. If the original message is encoded as (1), then it has a 90% chance of being
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read correctly by the receiver. But if the sender instead transmits (111), then the
receiver may interpret the original message (1) from any of (111) (no errors) or (110),
(101), or (011) (one error). If there are two or three errors, however, the receiver
will incorrectly reconstruct the original message. So the receiver has a 97.2% chance
of correctly interpreting the message.

In the example above, the receiver reconstructed the message by replacing a
three-bit signal, (e.g. (110)), with the “nearest” codeword (e.g. (111)). Nearest, in
this case, means with the lowest Hamming distance d. For two vectors c1, c2 ∈ Fn

2 ,
the Hamming distance is defined as the number of bits in c1 and c2 which are different,
equivalently |c1−c2|. The Hamming distance for a code C is defined as the minimum
of the Hamming distance between each distinct elements c ∈ C. The Hamming
distance gives a measure of error-correcting abilities; a code with Hamming distance
d can correct errors in up to t = ⌊(d− 1)/2⌋ errors. A code which has 2k codewords
living in Fn

2 , and which has Hamming distance d, is called a [n, k, d] code. For
example, the repetition code defined in (4.2.1) is a [3, 1, 3] code, and is thus able to
correct up to 1 error.

The key to error-correcting codes is redundancy – the more redundancy there is,
the more errors are allowed before the receiver will misinterpret the message. For
example, if we used (00000) and (11111) as the codewords, we would find 99.144%

chance of guessing the correct message. This would correspond to a [5, 1, 5] code,
and could therefore detect up to 2 errors. A central question in coding theory is how
to design codes which give the highest error-correcting ability, represented by d, for
fixed values of n and k.

Doubly-even self-dual codes

To proceed, we will need to invoke a few more definitions from coding theory. A
code is linear if the sum of two codewords is a codeword. From here on, we will only
consider linear codes. For a linear code C, we can define the dual code C⊥

C⊥ = {c̃ | c̃ · c ≡ 0 (mod 2)∀ c ∈ C} . (4.2.2)

If C is a type [n, k, d] code, then its dual C⊥ will be of type [n, n− k, d′]. A code for
which C = C⊥ is called self-dual. Clearly, this is only possible when n = 2k.

We also need to define the Hamming weight : for a vector c ∈ Fn
2 , the Hamming

weight w(c) is simply the number of 1s in c: w(c) = |c|. A linear code is called
even if the Hamming weight of all codewords is divisible by two. It is doubly-even
if all Hamming weights are divisible by four. Looking ahead, doubly-even self-dual
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codes are particularly relevant since they define lattices which are even and self-dual.
Such lattices define chiral CFTs according to a construction by Dolan, Goddard and
Montague [112, 113].

Enumerator polynomials

A convenient quantity for describing codes is the (weight one) enumerator polyno-
mial, defined by

WC(x0, x1) =
∑
c∈C

x
n−w(c)
0 x

w(c)
1 . (4.2.3)

The enumerator polynomial essentially counts all of the codewords with given Ham-
ming weight. Linear codes always contain the codeword 0⃗, so the enumerator poly-
nomial always contains the monomial xn0 with coefficient 1. The coefficients of each
monomial are all positive integers because they are degeneracies, and they must add
up to 2k. For example, the simplest self-dual double even code, the Hamming [8, 4, 4]

code has the enumerator polynomial

WHamming(x0, x1) = x80 + 14x40x
4
1 + x81 . (4.2.4)

The enumerator polynomial describes a code in terms the Hamming weights of its
elements much like the partition function describes a CFT in terms of the dimensions
of its states; later, we will describe how this analogy is precise for lattice CFTs. This
analogy also serves to emphasize that it is not, in general, possible to extract the
entire code its (genus 1) enumerator polynomial.

Code duality C 7→ C⊥ can be expressed as a transformation on the enumerator
polynomials according to the MacWilliams identity [116]:

x0 7→
x0 + x1√

2
, x1 7→

x0 − x1√
2

. (4.2.5)

Enumerator polynomials for self-dual codes must therefore be invariant under this
transformation. Furthermore, doubly-even codes must be invariant under

x1 7→ ix1 . (4.2.6)

The transformations (4.2.5) and (4.2.6) are directly related to the S and T modular
transformations on CFT partition functions. They represent a powerful set of con-
straints on the possible enumerator polynomials. This idea is central to the method
of this chapter. At a given polynomial degree, we can solve these constraints to find
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the most general set of polynomials which are invariant under these transformations.
If we require that the coefficients are positive and integer, there are finite number
of solutions which may be enumerated explicitly. This will give a list which must
include the enumerator polynomials of every real code. However, in general it will
also include a number of “fake” enumerator polynomials. We cannot tell if a poly-
nomial corresponds to a real code without additional information. This motivates
our study of higher-weight enumerator polynomials, which are related to the higher
genus partition functions.

Lattices and CFTs from codes: Construction A

An error-correcting code can be viewed as a collection of points in Fn
2 . Let us imagine

embedding this cube into Zn, and then requiring symmetry under translating any
direction by two. The result is a lattice in Zn. This is known as Construction A,
originally due to Leech and Sloane [117]. More precisely, the lattice Λ associated to
a code C by Construction A is defined as

Λ(C) =
{
v/
√
2 | v ∈ Zn, v ≡ c (mod 2), c ∈ C

}
. (4.2.7)

Now we may explain why we are concerned with doubly-even self-dual codes. First,
consider a doubly-even code. The Hamming weight of all codewords must be divisible
by four. If v ≡ c (mod 2), and c is a codeword whose weight is divisible by 4, then v2

is also divisible by 4. The element of the lattice, v/
√
2, therefore has a square-length

that is divisible by 2. A lattice where every vector has an even norm is, by definition,
an even lattice.

Next consider the lattice of the dual of code, Λ(C⊥). Consider an element ṽ/
√
2

of this lattice, and take its inner product with an element v/
√
2 of the lattice Λ(C).

ṽ√
2
· v√

2
=

1

2
(c̃+ 2a⃗) · (c+ 2⃗b)

=
1

2
c̃ · c+ a⃗ · c+ b⃗ · c̃+ 2a⃗ · b⃗,

(4.2.8)

where in the first line, we have used the definition of an element of a code lattice,
with a⃗ some element of Zn. The dual of a lattice is defined as the lattice of points
with integer inner products with points in the original lattice. The inner product in
(4.2.8) is an integer if and only if c̃ · c is even. But this is the definition of the dual
code C⊥. Therefore the lattice of the dual of a code is the same as the dual of the
lattice of a code:

Λ(C⊥) = Λ(C)∗ . (4.2.9)
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In summary, each doubly-even self-dual error-correcting code defines an even self-
dual lattice via Construction A. These lattices are particulary interesting because
they are the precisely the lattices which define conformal field theories. This idea
was originally discussed by Narain [118, 119] for the case of Lorentzian lattices. The
idea is to consider a free CFT compactified on a lattice. Then requiring modular
invariance of the partition function amounts to the requirement that the lattice
is even and self-dual. In the present case, we are discussing Euclidean lattices.
Compactifying c free bosons on a c-dimensional lattice results in a chiral CFT with
central charge c.

Lattice theta-functions

We will need one more element which will make the connection between codes and
CFTs clearer – the lattice theta function. On one hand, the lattice theta-function
can be related to the partition function of the CFT corresponding to free bosons
compactified on that lattice. On the other hand, for a lattice described by a code,
the lattice theta function will be directly related to the enumerator polynomial. An
integral self-dual lattice Λ of rank n = 0 (mod 8), equipped with a Euclidean metric
can be associated with a lattice theta series, or theta function, ΘΛ. The (genus 1)
theta-function of a lattice is defined by

ΘΛ(τ) =
∑
v∈Λ

qv
2/2 , q = e2πiτ . (4.2.10)

The theta-function of a c-dimensional even self-dual lattice is related to the partition
function of a CFT by

Z(τ) =
ΘΛ(τ)

η(τ)c
. (4.2.11)

Here η(τ) denotes the Dedekind eta function

η(τ) = e
2iπτ
24

∞∏
k=1

(1− e2πikτ ). (4.2.12)

Partition functions of 2d CFTs are required to be invariant under the modular trans-
formations

T : τ → τ + 1 , S : τ → −1

τ
. (4.2.13)

The theta-function for the dual lattice may be related to the the original theta-
function by

ΘΛ∗(τ) = µ(−iτ)c/2Θ(−1/τ) , (4.2.14)
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where µ is a volume factor which is one for self-dual lattices. Using the fact that
η(−1/τ) =

√
−iτη(τ), it is clear that self-dual lattices correspond to partition func-

tions which are invariant under S. If the lattice is even, then Θ(τ) = Θ(τ + 1).
However the Dedekind eta function picks up a phase under T transformations:
η(τ +1) = exp(2πi/24) η(τ). This phase cancels when the number of eta functions is
a multiple of 24. The result is that modular invariance of chiral CFTs requires that
the central charge is divisible by 24.

Theta-functions and enumerator polynomials

We are now ready to complete the correspondence between error-correcting codes
and conformal field theories. The key element is the relation between the enumerator
polynomial and the lattice theta-function (and thus the CFT partition function).
The relation is

ΘΛ(C)(τ) = WC(θ3(q
2), θ2(q

2)), (4.2.15)

where θ3 and θ2 are two of Jacobi’s theta functions. These are defined by2

θ1(q) =
∞∑

n=−∞

(−1)nq
(n+1/2)2

2 = 0 , θ2(q) =
∞∑

n=−∞

q
(n+1/2)2

2 , (4.2.16)

θ3(q) =
∞∑

n=−∞

q
n2

2 , θ4(q) =
∞∑

n=−∞

(−1)nq
n2

2 . (4.2.17)

Essentially, (4.2.15) states that the theta function of a lattice corresponding to a code
is computed by the enumerator polynomial of the code with the Jacobi θ functions as
arguments. As we will be generalizing equation (4.2.15) to higher genus in section 4.3,
it will be useful to present its derivation. First, consider that each vector in the lattice
lies in the equivalence class defined by a specific codeword. So we may rewrite the
sum as the sum over all vectors as

v⃗ =
c⃗+ 2a⃗√

2
, c⃗ ∈ C, a⃗ ∈ Zn (4.2.18)

So we can rewrite the theta function:

Θ(q) =
∑
c⃗,⃗a

q
c⃗2

4 qc⃗·⃗a+a⃗2

=
∑
c⃗

q
c⃗2

4

(∑
a1

qc1a1+a21

)(∑
a2

qc2a2+a22

)
· · ·

(∑
an

qcnan+a2n

)
,

(4.2.19)

2In Mathematica, EllipticTheta[m,0,q] = θm(q2).
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where we have expanded using the components ci and ai of the vectors c⃗ and a⃗. Now,
c⃗ has w(c) entries equal to 1, and n− w(c) entries equal to 0, so

Θ(q) =
∑
c⃗

q
w(c)
4

(∑
j

qj+j2

)w(c)(∑
j

qj
2

)n−w(c)

=
∑
c⃗

(∑
j

q(j+1/2)2

)w(c)(∑
j

qj
2

)n−w(c)

=
∑
c⃗

(
θ2(q

2)
)w(c) (

θ3(q
2)
)n−w(c)

= WC
(
θ3(q

2), θ2(q
2)
)
,

(4.2.20)

which finishes the proof.
For convenience when we consider the higher genus case, let us introduce the

following notation

ϑ0(τ) := θ3(q
2), ϑ1(τ) := θ2(q

2), q = e2πiτ . (4.2.21)

With this definition, we can write

ΘΛ(C)(τ) = WC (ϑ0(τ), ϑ1(τ)) , (4.2.22)

where the right-hand side is WC evaluated at xA = ϑA(τ). Note that the stan-
dard modular transformations of the Jacobi theta functions imply that the ϑA(τ)

transform as

T : ϑ0(τ) 7→ ϑ0(τ) , ϑ1(τ) 7→ iϑ1(τ) , (4.2.23)

S : ϑ0(τ) 7→
√
−iτ ϑ0(τ) + ϑ1(τ)√

2
, ϑ1(τ) 7→

√
−iτ ϑ0(τ)− ϑ1(τ)√

2
(4.2.24)

The S transformation mimics the MacWilliams identity (4.2.5) and thus guarantees
the transformation (4.2.14) of the lattice theta function.

4.3 Chiral CFTs at Higher Genus

Having reviewed the relation between error-correcting codes and CFTs, we are now
ready to develop the central points of this chapter, which is how this correspondence
works at higher genus. The results of this are summarized in table 4.2. At genus 2
and 3, this is relatively straightforward. After developing this correspondence, we
will be able to show, in section 4.4, how the modular invariance at genus 2 and 3
effectively constrain the space of possible enumerator polynomials, and therefore of
code CFTs. At genus g > 3, the situation is more complicated, as we will review in
section 4.3.
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Table 4.2: Summary of the differences between genus 1 and higher genus.

Genus g = 1 General genus

Enumerator polynomial W (x0, x1), Higher-weight enumerator polynomial
W (x0, . . . , x2g−1),

Modular parameter τ , Period matrix Ω,

Modular group PSL(2,Z) acting on
{Im τ > 0},

Modular group PSp(2g,Z) act-
ing on the Siegel upper half-plane
{Ω = ΩT , ImΩ ≻ 0},

ϑA(τ) expressible in terms of Jacobi
theta functions θ2,3(q2),

ϑA(Ω) expressible in terms of theta
constants of second order characteris-
tic θ

[
ci/2
0

]
(0, 2Ω),

Evaluation at ϑA: W (ϑ0(τ), ϑ1(τ)), Map Th : xA 7→ ϑA(Ω).

Higher genus partition function from codes

The central question answered by this chapter is how the correspondence reviewed in
the previous section can be generalized to higher genus Riemann surfaces. The higher
genus partition function for a 2d CFT on a lattice can be expressed schematically as

Z(g)(Ω) =
Ẑ(g)(Ω)

Φg(Ω)
. (4.3.1)

The partition function Z(g) depends on the period matrix Ω, which describes the
Riemann surface in an analogous way to τ in the genus 1 case. The numerator
Ẑ(g) of the partition function is equal to the higher genus lattice theta function for
theories defined by a self-dual even lattice Λ,

Ẑ(g)(Ω) = ΘΛ(Ω) . (4.3.2)

As we will discuss, this function has simple transformations under the higher genus
modular group (it is a Siegel modular form of weight c/2).

We will primarily be interested in the numerator, but let us make some comments
about the denominator, Φg(Ω) = Fg(Ω)

c, which corresponds to a sum over oscillator
modes. At each genus, Fg(Ω) is universal and can in principle be evaluated by
considering just one representative lattice CFT. At genus 1, F1(τ) = η(τ). At higher
genus, no simple compact expression is known for the denominator. There exist
some formal expressions [120] and at genus 2 a useful series expansion [107]. While

64



these constructions give a denominator with the correct weight to cancel the weight
of the modular form in the numerator, the resulting partition function picks up
phases under the modular transformations that generalize the T transformation in
(4.2.13). At genus 1, one needs c = 24k for integer k to cancel phases and render
Z(1) completely modular invariant, and indeed, ∆12 = η(τ)24 is a Siegel modular
form of degree 12, see section 4.3. For higher genus, it is not generally possible to
find a nowhere vanishing denominator that is also a Siegel modular form,3 meaning
that, in general, the partition function will always be defined up to phases.4

Lattice theta functions at higher genus

We consider a compact Riemann surface Σ with genus g with 2g cycles ai, bi where
i ∈ {1, . . . , g}. The canonical choice for the cycles is for their intersection numbers
ι(, ) to satisfy

ι(ai, aj) = ι(bi, bj) = 0, ι(ai, bj) = δij. (4.3.3)

A choice of a cycles fixes the normalization of the g holomorphic 1 forms ωj associated
with the surface according to

∮
ai
ωj = δij. The b cycles fix the matrix defined by∮

bi

ωj = Ωij. (4.3.4)

Ωij is called the Riemann period matrix associated with Σ and is a symmetric matrix
with positive definite imaginary part: ImΩ ≻ 0.

The genus g lattice theta series is defined as a sum over g-tuples of lattice vectors
by

ΘΛ(Ω) =
∑

v⃗1,...,v⃗g∈Λ

eπiv⃗i·v⃗jΩij . (4.3.5)

For instance, at genus 2 this gives

Θg=2
Λ (Ω) =

∑
v⃗1,v⃗2∈Λ

eπi(v⃗1·v⃗1Ω11+2v⃗1·v⃗2Ω12+v⃗2·v⃗2Ω22), (4.3.6)

which can also be rewritten as

Θg=2
Λ (Ω) =

∑
v⃗1,v⃗2∈Λ

q
v⃗1·v⃗1

2 rv⃗1·v⃗2s
v⃗2·v⃗2

2 , (4.3.7)

with the the modular parameters q, r, s are defined as

q = e2πiΩ11 , r = e2πiΩ12 , s = e2πiΩ22 . (4.3.8)
3At genus 2, there is a nowhere vanishing modular form of degree 10: χ10, see section 4.3.
4If the chiral CFT is paired with its complex conjugate to give a full CFT, all phases picked up

by modular transformations are canceled and the full CFT is modular invariant for any c. This is
what happens, for instance, in the case of Narain CFTs [121].
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Higher-weight enumerator polynomials

Above we have seen that Construction A can be used to define a lattice from a
code, and that the lattice theta function can be computed from the code enumerator
polynomial by replacing the code variables with theta constants according to

Θg=1
Λ(C)(q) = WC (ϑ0(τ), ϑ1(τ)) . (4.3.9)

Now we would like to construct the analogous function at higher genus, which repro-
duces the higher genus lattice theta series from the code. The appropriate function is
the higher-weight enumerator polynomial and has been known in the math literature
for some time [122], but to our knowledge its connection to higher genus CFTs has
never been pointed out.

The higher-weight enumerator polynomial generalizes the weight 1 enumerator
polynomial by comparing more than one codeword at a time. We will see later
that this is related to the genus g partition function. Specifically, the gth weight
polynomial is defined by summing over g-tuples of codewords, and can be represented
compactly as [123]

W
(g)
C (xi) =

∑
M∈Cg

n∏
i=1

xrowi(M). (4.3.10)

In this expression, the sum over all g-tuples of codewords is represented by the sum
over all choices of the n × g matrix M. Each column of M is a codeword, which
is vector of length n for an n-dimensional code. rowi(M) denotes the ith row of
M. When writing xrowi

, we interpret the index of x as the binary representation
of the index. Specifically x0 = x[0...00], x1 = x[0...01], x2 = x[0...10], etc. We can see
from this that the weight g enumerator polynomial will be a homogeneous degree n
polynomial in the 2g variables x0, x1, . . . x2g−1.

For a specific case of this abstract definition, consider the g = 2 enumerator
polynomial, sometimes called the biweight polynomial. It can be written as

W
(2)
C (x0, x1, x2, x3) =

∑
c1, c2 ∈C

x
n+c1·c2−w(c1)−w(c2)
0 x

w(c2)−c1·c2
1 x

w(c1)−c1·c2
2 xc1·c23 . (4.3.11)

We sum over all pairs of codewords. The exponents of the variables now involve
the dot product of c1 and c2, as well as their individual weights. The result is
a homogeneous degree n polynomial of four variables. For example, the biweight
polynomial of the [8, 4, 4] Hamming code is given by

W
(2)
Hamming = x80 + x81 + x82 + x83 + 168x20 x

2
1 x

2
2 x

2
3

+ 14x40 x
4
1 + 14x40 x

4
2 + 14x40 x

4
3 + 14x41 x

4
2 + 14x41 x

4
3 + 14x42 x

4
3.

(4.3.12)
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In fact, we will see below that this is the unique degree eight genus two polyno-
mial which satisfies some appropriate symmetries which we will derive in the next
subsection.

Proving that this polynomial captures the theta function amounts to repeating
the proof presented in (4.2.19) and (4.2.20) for our higher genus theta function. The
key is to use the fact that each lattice vector is in the equivalence class of a codeword,

v⃗i =
c⃗i + 2m⃗i√

2
, (4.3.13)

to rewrite the lattice theta function (4.3.5) as

ΘΛ(C)(Ω) =
∑

{c⃗1,...,⃗cg}∈C

∑
{m⃗1,...,m⃗g}∈Zn

e
1
2
πi(c⃗i+2m⃗i)·(c⃗j+2m⃗j)Ωij . (4.3.14)

Now we want to consider the elements c⃗i entry-by-entry. So we define c(i)k to denote
the kth entry of c⃗i. Then the lattice theta function equals

ΘΛ(Ω) =
∑

{c⃗1,...,⃗cg}∈Cg

 ∑
{m(1)1,...,m(g)1}∈Zg

e
1
2
πi(c(i)1c(j)1+2c(i)1m(j)1+2m(i)1c(j)1+4m(i)1m(j)1)Ωij


×

 ∑
{m(1)2,...,m(g)2}∈Zg

e
1
2
πi(c(i)2c(j)2+2c(i)2m(j)1+2m(i)2c(j)2+4m(i)2m(j)2)Ωij

×
· · · ×

 ∑
{m(1)n,...,m(g)n}∈Zg

e
1
2
πi(c(i)nc(j)n+2c(i)nm(j)n+2m(i)nc(j)n+4m(i)nm(j)n)Ωij


(4.3.15)

Next we will define M = {c⃗1, . . . , c⃗g} ∈ Cg. Then the c(i)k appearing in the kth

term in parentheses form the kth row of M. Let us define a vector 2ak = c(i)k.
Furthermore, for any k, the range of m(i)k in the sum is the same, so let us define
m = m(i)k. With these replacements, the lattice theta function becomes

ΘΛ(Ω) =
∑

M∈Cg

(∑
m∈Zg

eπi(a1+m)·(2Ω)·(a1+m)

)
× · · · ×

(∑
m∈Zg

eπi(an+m)·(2Ω)·(an+m⃗)

)
.

(4.3.16)

At this point, we need to introduce the higher genus versions of the Jacobi theta
functions. These are conventionally defined by (see e.g. [124])

θ

[
a

b

]
(z,Ω) =

∑
m∈Zg

exp (πi(m+ a) · Ω · (m+ a) + 2πi(m+ a) · (z + b)) .

(4.3.17)

67



We can see that each of the terms in parentheses in (4.3.16) is equal to a theta
constant. So we find

ΘΛ(Ω) =
∑

M∈Cg

(
θ

[
a1

0

]
(0, 2Ω)

)
× · · · ×

(
θ

[
an

0

]
(0, 2Ω)

)
. (4.3.18)

Now recall that 2ai = ci are the rows of M. So this formula is equal to the genus
g enumerator polynomial with the xi replaced by a corresponding theta expression.
Following [123], we call this replacement the theta map:

Th : x[c1,c2,...] 7→ θ

[
c/2

0

]
(0, 2Ω). (4.3.19)

More precisely, the specific functions that appear on the right-hand side of (4.3.19)
are known as theta constants of second order characteristic [123]. We will make more
comments on the theta map in section 4.3, where we will see that it is injective only
for g < 3 and surjective only for g < 4 [125].

Now recall that xA = x[a1,a2,...] if [a1, a2, . . .] is the binary representation of A.
Then it is convenient to introduce the following short form of the theta constants of
second order characteristic,

ϑA(Ω) := θ

[
a/2

0

]
(0, 2Ω) , (4.3.20)

allowing us to write the theta map as

Th : xA 7→ ϑA(Ω) . (4.3.21)

This leads to one of the central equations we will use in this chapter:

ΘΛ(Ω) = W
(g)
C (ϑ0(Ω), ϑ1(Ω) , . . . , ϑ2g−1(Ω)) . (4.3.22)

In order to use this relationship to constrain code CFTs, we will need to determine the
higher-weight MacWilliams identities obeyed by the enumerator polynomials. These
transformations were already known in the math literature on error-correcting codes
[122], and the connection to modular forms was stressed in [126, 127, 128, 129]. Here,
we will review how to derive these relations, taking the viewpoint that they arise as
a consequence of modular invariance of the higher genus partition function.

Modular transformations at higher genus

Two-dimensional chiral CFTs on a Riemann surface of genus g enjoy more symmetries
than just the modular transformations of a genus-one surface. The higher genus
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modular group is Sp(2g,Z), which arises from the fact that there are different ways
of choosing the cycles satisfying (4.3.3) on a given Riemann surface. Specifically, for
an element (

A B

C D

)
∈ Sp(2g,Z) , (4.3.23)

the period matrix Ωij transforms as

Ω 7→ Ω̃ = (AΩ +B)(CΩ +D)−1. (4.3.24)

These transformations act on the lattice theta function according to

ΘΛ(Ω̃) = det(CΩ +D)
n
2ΘΛ (Ω) . (4.3.25)

The determinant factor in front of this is canceled by the transformation of the
denominator factor to ensure that the partition factor is invariant (up to phase).

In [130], an explicit basis for the generators of Sp(2g,Z) is given. It is generated
by three matrices for g = 2, 3 and only two matrices for g > 3. We give the generators
for g = 2 and g = 3, which we call Tg, Rg, and Dg. These will allow us to determine
the transformations of the code variables xi. For g = 2, we have

Tg=2 =


1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

 , Rg=2 =


1 0 0 0

1 1 0 0

0 0 1 −1
0 0 0 1

 , Dg=2 =


0 1 0 0

0 0 −1 0

0 0 0 1

1 0 0 0

 .

(4.3.26)

For g = 3, the generators are 6× 6 matrices:

Tg=3 =



1 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, Rg=3 =



1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 −1 0

0 0 0 0 1 0

0 0 0 0 0 1


,

Dg=3 =



0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0


.

(4.3.27)
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These generators determine how the transformations act on the period matrix Ω

through (4.3.24). This, in turn, determines the transformation of the theta constants.
The derivation requires use of the Poisson resummation formula. As it is rather
tedious, we will merely record the answers.

Tg=2 : ϑ0(Ω) 7→ ϑ0(Ω), ϑ1(Ω) 7→ ϑ1(Ω), ϑ2(Ω) 7→ iϑ2(Ω), ϑ3(Ω) 7→ iϑ3(Ω),

Rg=2 : ϑ0(Ω) 7→ ϑ0(Ω), ϑ1(Ω) 7→ ϑ3(Ω), ϑ2(Ω) 7→ ϑ2(Ω), ϑ3(Ω) 7→ ϑ1(Ω),

Dg=2 : ϑ0(Ω) 7→
√
−iΩ11

ϑ0(Ω) + ϑ2(Ω)√
2

, ϑ1(Ω) 7→
√
−iΩ11

ϑ0(Ω)− ϑ2(Ω)√
2

,

ϑ2(Ω) 7→
√
−iΩ11

ϑ1(Ω) + ϑ3(Ω)√
2

, ϑ3(Ω) 7→
√
−iΩ11

ϑ1(Ω)− ϑ3(Ω)√
2

.

(4.3.28)

It is important that det(CΩ+D) is equal to 1 for Tg=2 and Rg=2 and Ω11 for Dg=2.
This ensures

Dg=2 : W
(2)
C (ϑ0(Ω), . . .) 7→ det(CΩ +D)

n
2W

(2)
C

(
ϑ0(Ω) + ϑ2(Ω)√

2
, . . .

)
(4.3.29)

and likewise for any other Sp(4,Z) transformation. Therefore we see that the trans-
formation of the theta function (4.3.25) requires that the enumerator polynomial
satisfy the higher-weight MacWilliams identities :

Tg=2 : x0 7→ x0, x1 7→ x1, x2 7→ ix2, x3 7→ ix3,

Rg=2 : x0 7→ x0, x1 7→ x3, x2 7→ x2, x3 7→ x1,

Dg=2 : x0 7→
x0 + x2√

2
, x1 7→

x0 − x2√
2

, x2 7→
x1 + x3√

2
, x3 7→

x1 − x3√
2

,

(4.3.30)

For genus 3 the analysis is the same. We skip the transformations of the theta
constants and simply present

Tg=3 : x4 → ix4 , x5 → ix5 , x6 → ix6 , x7 → ix7 ,

Rg=3 : x2 → x6 , x3 → x7 , x6 → x2 , x7 → x3 ,

Dg=3 : x0 →
x0 + x4√

2
, x1 →

x0 − x4√
2

, x2 →
x1 + x5√

2
, x3 →

x1 − x5√
2

,

x4 →
x2 + x6√

2
, x5 →

x2 − x6√
2

, x6 →
x3 + x7√

2
, x7 →

x3 − x7√
2

.

(4.3.31)

These transformations will be crucial to the algorithm we describe in section 4.4.
For genus 2 they were already known [122]. We do not know if they have been
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written down in the code literature for genus 3. They effectively express a very
complicated set of transformations, i.e. the higher genus modular transformations of
the partition function, in terms of a small set of linear transformations. We use the
term “invariant polynomials” to refer to those polynomials which are unchanged by
these transformations.

Factorization limits

Further constraints may be imposed on the higher genus partition function based on
the limit where the Riemann surface becomes singular [105]. For a genus g Riemann
surface Σg we may smoothly deform Σg so that it consists of two Riemann surfaces of
genus h and g− h, connected by a long, infinitely thin tube. In this limit, the genus
g partition function must behave as the product of a genus h partition function, and
a genus g − h partition function. We refer to these deformations as “factorization
limits”. The case of h = 1 is depicted in figure 4.1.

⇓

Figure 4.1: Factorization of a genus g Riemann surface.

In the factorization limit, the period matrix becomes block-diagonal. For in-
stance, for h = 1,

Ω→ τ ⊕ Ω′, (4.3.32)

where τ = Ω11 and Ω′
ij = Ωi+1,j+1 (i.e. we have Ω1J = ΩJ1 = 0). From the CFT

perspective, in the factorizatin limit only the identity operator flows across the thin
tube, and the partition function is expected to factorize into a product of the lower
genus partition functions. Equivalently, for a lattice theta function,

Θ
(g)
Λ (Ω)→ Θ

(g)
Λ (τ ⊕ Ω′) = Θ

(1)
Λ (τ)Θ

(g−1)
Λ (Ω′). (4.3.33)

The case of arbitrary h is completely analogous.
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We shall see that factorization imposes strong constraints on which enumera-
tor polynomials can correspond to CFT partition functions. There are a number
of higher-weight polynomials which are modular invariant but which do not factor-
ize properly. This allows us to eliminate them from the list of possible partition
functions. Let us see how the factorization property (4.3.33) acts on the level of
the polynomial variables xi. First recall the binary form of the genus g polynomial
variables,

x
(g)
[ig−1ig−2···i0] ←→ x

(g)
i , i =

g−1∑
n=0

in2
n. (4.3.34)

Then (4.3.33) is consistent with the factorization map

x
(g)
[ig−1ig−2···i0] 7→ x

(1)
ig−1

y
(g−1)
[ig−2···i0], (4.3.35)

or, equivalently

xi 7→

x0 yi, 0 ⩽ i < 2g−1,

x1 yi−2g−1 , 2g−1 ⩽ i < 2g.
(4.3.36)

Here xi and yi refer to the polynomial variables of the two resulting Riemann surfaces.
It can be seen that these definitions are consistent with the factorization property
of code enumerator polynomials,

W
(g)
C (xi) 7→ W

(1)
C (xi)W

(g−1)
C (yi), (4.3.37)

under (4.3.35).

Genus 2 example: It is easy to see that this is correct requirement with the simple
example of genus 2. On the genus 2 Riemann surface one can choose a cycles and b
cycles as indicated in figure 4.2, and introduce the variables q = e2πiΩ11 , r = e2πiΩ12

and s = e2πiΩ22 according to (4.3.8). In the degeneration limit, q and s reduce to the
modular parameters e2πiτ and e2πiτ

′ of the respective tori. Moreover, the one-form
ω2 dual to the a2 cycle on the right torus becomes approximately zero on the left
torus (and vice versa), showing that Ω12 → 0, or equivalently, the r → 1 limit.5 For
the lattice theta function in this example, we have (see (4.3.7))

Θg=2
Λ (Ω) =

∑
v⃗1,v⃗2∈Λ

q
v⃗1·v⃗1

2 rv⃗1·v⃗2s
v⃗2·v⃗2

2 . (4.3.38)

5There are subleading corrections to factorization [131], which are conveniently expressed in
plumbing fixture coordinates giving a recipe for stitching together two tori with modular parameter
τ1, τ2 via a tube of radius ϵ. This gives r = 1 + O(ϵ). For our purposes we shall always consider
the complete factorization r = 1.
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⇓
a1 a2

b1 b2

Figure 4.2: Factorization of a genus 2 Riemann surface. The a cycles are depicted in
red, b cycles in green. Under the factorization, the one-form ω2 dual to a2 vanishes
on the left torus. Hence Ω12 =

∮
b1
ω2 = 0, so that r = e2πiΩ12 → 1.

In the limit r → 1, the resulting lattice theta function then breaks into the product
of two sums,

Θg=2
Λ (Ω12 = 0) =

∑
v⃗1∈Λ

q
v⃗1·v⃗1

2

∑
v⃗2∈Λ

s
v⃗2·v⃗2

2 , (4.3.39)

which are each equal to a genus 1 lattice theta function. For the polynomial variables,
it is easy to see from the definition of θ

x[0,0] = θ


0

0

0

0

 (0, 2Ω)
Ω12→0−−−−→

(
θ

[
0

0

]
(0, 2Ω11)

)(
θ

[
0

0

]
(0, 2Ω22)

)
= x0 y0 , (4.3.40)

etc.
It is also sometimes convenient to consider the Siegel map Φ. This maps the

polynomial variables according to

Φ(x
(g)
i ) =

x
(g−1)
g , 0 ⩽ i < 2g−1,

0, 2g−1 ⩽ i < 2g.
(4.3.41)

The Siegel Φ map is equivalent to taking first the factorization Z(g) → Z(1)Z(g−1)

and then taking the limit τ → i∞, which sets x0 = 1, x1 = 0.

Genus g > 3 and Siegel modular forms

In most of this chapter we are interested in the case where g = 2 or g = 3, mainly
because these are the cases where the enumerator polynomials are small enough to
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make explicit calculations tractable. Here we would like to broaden our discussion
to any genus, which will require some additional mathematical formalism. The
reader primarily interested in our results at genus 2 and 3 may proceed directly to
section 4.4.

In particular, we are interested in properties of the evaluation map Th, which
sends polynomial variables (functions of xi) to theta expressions (functions of Ω).
The Th map is a ring homomorphism between invariant polynomials and modular
covariant functions in the Siegel upper half plane

Hg = {Ω = ΩT , ImΩ ≻ 0} . (4.3.42)

Such covariant forms are known in the mathematics literature as Siegel modular
forms. In section 4.3 we review the most important facts about Siegel modular
forms in order to explain the properties of the Th map at higher genus. Starting
at genus 3, the Th map ceases to be one-to-one; there exist a degree 16 polynomial
j8 which maps to 0. This implies a non-trivial relation among the genus-3 theta
functions. More complications arise at even higher genus, which we will discuss in
section 4.3

Siegel modular forms

A Siegel modular form (for the group Sp(2g,Z)) of degree k is a function fk : Hg → C
which transforms covariantly with weight k. This is to say that under the transfor-
mation

Ω 7→ Ω′ = (AΩ +B)(CΩ +D)−1,

(
A B

C D

)
∈ Sp(2g,Z) , (4.3.43)

fk transforms as
fk(Ω

′) = det(CΩ +D)kfk(Ω). (4.3.44)

The space of Siegel modular forms at genus g defines a ring graded by degree, Mg =⊕
Mk

g . If we let Rg be the ring of invariant polynomials, i.e. those satisfying the
generalized MacWilliams identities, the map Th : Rg → Mg defined by (4.3.19)
becomes a ring homomorphism compatible with the grading. In fact, we have the
commuting diagram [123]

R2k
g Mk

g

R2k
g−1 Mk

g−1,

Th

Φ Φ

Th

(4.3.45)
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where Φ is the Siegel map (4.3.41). Here Rg has the obvious grading by degree. The
ring Mg of modular forms (of even degree) is known for g ⩽ 3, and has the following
generators

g = 1 G4, G6, (4.3.46)

g = 2 E4, E6, χ10, χ12, (4.3.47)

g = 3
α4, α6, α10, α12, α

′
12, β14, α16, β16, χ18, α18,

α20, γ20, β22, β
′
22, α24, γ24, γ26, χ28, α30,

(4.3.48)

where the indices denote the degree of the respective generator. The result at genus
2 is due to Igusa [132]. At genus 3, an overcomplete list of 34 generators was given in
[133], and was recently reduced to the minimal set of 19 generators listed in (4.3.48)
[134].6 At genus 1 and 2, the ring is generated by the holomorphic Eisenstein series:
Gk, k = 4, 6 (genus 1) and Ek, k = 4, 6, 10, 12 (genus 2). See appendix A.5 for
relations between the generators at genus 2.

Since we have c divisible by 8, only Siegel modular forms of degree divisible by
four will enter our discussion. At genus 1, this subring can be generated by G4 and
any degree 12 modular form. A convenient choice of the latter is ∆12 =

1
1728

(G3
4−G2

6).
In the next section, we will find the following expressions for these forms:7

G4(τ) = ϑ0(τ)
8 + ϑ1(τ)

8 + 14ϑ0(τ)
4ϑ1(τ)

4,

∆12 =
1

16
ϑ0(τ)

4ϑ1(τ)
4
(
ϑ0(τ)

4 − ϑ1(τ)
4
)4
.

(4.3.50)

Likewise, at genus 2, it is convenient to introduce the notation ψ12 =
1

1728
(E3

4 −E2
6).

The map Th : Rg → Mg is one-to-one for genus g = 1 and g = 2. However, at
genus 3, there is a degree 16 polynomial j(3)8 (x0, . . . x7) which maps to a non-trivial
relation among the genus 3 theta constants. It turns out that this is the only such
relation at genus 3 [126]. In summary, for g ⩽ 3 we have

M1
∼= R1, M2

∼= R2, M3
∼= R3/⟨j(3)8 ⟩, (4.3.51)

where ⟨j(3)8 ⟩ denotes the ideal generated by j(3)8 . So we see that at g = 3, Th fails to
be injective, but the quotient in (4.3.51) makes the situation easy to deal with. The

6The normalization of the genus 3 generators differ between [133] and [134]; we will not need
the normalization of the genus 3 modular forms.

7In the literature, the following compact expressions are also common

G4 =
1

2

(
θ2(q)

8 + θ3(q)
8 + θ4(q)

8
)
, ∆12 = η(τ)24 =

1

256
θ3(q)

8θ2(q)
8θ4(q)

8, (4.3.49)

where the Jacobi theta functions θ2, θ3 and θ4 have arguments q and not q2 as in (4.3.50) (see the
definition (4.2.21)).
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situation at higher genus is further complicated by additional relations, and by the
fact that Th is no longer surjective either, as we discuss in section 4.3.

Siegel modular forms under factorization In the factorization limit, defined in
section 4.3, genus g Siegel modular forms factor into products of lower-genus forms.
For the purposes of this chapter, we will only need to consider the factorization of
genus 2 Siegel modular forms, which is given by (with q = e2πiτ1 , s = e2πiτ2):

E4(q, r, s) −→ G4(q)G4(s),

E6(q, r, s) −→ G6(q)G6(s),

χ10(q, r, s) −→ 0,

χ12(q, r, s) −→ ∆12(q)∆12(s),

ψ12(q, r, s) −→ G4(q)
3∆12(s) + ∆12(q)G4(s)

3 − 1728∆12(q)∆12(s).

(4.3.52)

Siegel modular forms under degeneration limits The Siegel Φ operator re-
lates modular forms at different genus according to equation (4.3.41). For the forms
of degree up to 12, it acts as follows:

α4 7→ E4 7→ G4 7→ 1,

α6 7→ E6 7→ G6 7→ 1,

α10 7→ χ10 7→ 0,

α12 7→ χ12 7→ 0,

α′
12 7→ 0.

(4.3.53)

Forms that map to zero under Φ are called cusp forms. χ10, χ12 and α′
12 are cusp

forms. At genus 1, the modular discriminant ∆12 is a cusp form.

Beyond Genus 3

The method employed in this chapter is suitable for genus g ⩽ 3. Apart from the
polynomial j8(xi) at genus 3, which maps onto a nontrivial relation among the theta
functions, there is a one-to-one map between enumerator polynomals, Siegel modular
forms, and CFT partition functions:

W (g)(xi) (mod j8)←→ W (g)(ϑi(Ω))←→ Z(g)(Ω). (4.3.54)

Moreover, for genus g ⩽ 3 the ringMg of genus g Siegel modular forms (for Sp(2g,Z))
has been fully characterized, and one can search for partition functions in this space.
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Table 4.3: Summary of the differences between genus g ⩽ 3 and higher genus.

Genus g ⩽ 3 Genus g ⩾ 4

Th : Rg → Mg surjective (one-to-one
for g ⩽ 2)

Th : Rg → Mg neither surjective nor
injective

Ring Mg of Siegel modular forms
known

Ring Mg unknown

Moduili spaceMg of Riemann sur-
faces dense inside moduli space Ag of
ppavs

Locus ofMg inside Ag is non-trivial,
and not known for g > 4

However, as summarized in table 4.3, starting from genus 4 there are complications
to each of these statements.

Consider first the ring homomorphism Th : Rg → Mg mapping invariant poly-
nomials to Siegel modular forms. At genus 1 and 2 it is completely invertible. At
genus 3 it is surjective but injectivity fails; the kernel is generated by j8, a degree 16
polynomial, see (4.3.51). At higher genus there exist more relations like Th(j(3)8 ) = 0.
For instance, at genus 4, the first element of the kernel of Th is a degree 24 polyno-
mial [135], and there are additional relations, one at degree 28 and five at degree 32

[123]. (It is not known if additional relations exist at higher degree.) Starting from
genus 4, moreover, it has been shown that the map Th is not even surjective [125],8

meaning that there are Siegel modular forms that do not descend from enumerator
polynomials. For instance, as shown already in [136], at genus 5, the unique degree 6
Siegel modular form (which maps to α6 7→ E6 7→ G6 under successive applications of
the Siegel Φ operator) has no pre-image in R5 – no polynomial maps to it under Th.
Note, however, that there is a polynomial which maps to the genus 5 counterpart
of G4, as expected on the grounds that each code has an enumerator polynomial at
every genus.9 While non-surjectivity of Th does not prevent us from finding code
CFTs using our method, it means that our method will not be able to find other
CFTs whose high-genus partition function derives from Siegel modular forms but
not from any enumerator polynomial.

8We thank R Salvati Manni for pointing out this reference.
9To see how this is possible, consider the problem of writing an alternative type of enumerator

polynomials at genus 1 in terms of the variables a = θ3(q), b = θ2(q) (i.e. in terms of Jacobi theta
functions with argument q and not q2). Then one finds from (4.3.49), and the Jacobi relation
θ2(q)

4 − θ3(q)
4 + θ4(q)

4 = 0, that E4 = a8 + b8 − a4b4, ∆12 = 1
256a

8b8(a4 − b4)2, while E6 =√
E3

4 − 1728∆12 is not a polynomial.
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Next, consider the fact that the ring of Siegel modular forms is unknown at
higher genus. As reviewed above, the complete set of relations for at genus 3 was
only recently determined [134], although the generators have been known for a while
[133]. At genus 4 the complete set of generators is not even known. Combined with
non-surjectivity of the map Th, the lack of a complete set of generators poses another
obstacle of extending our program beyond code CFTs at high genus.

Finally, consider the last obstacle, namely the construction of a partition function
given a Siegel modular form f ∈ Mg. For concreteness, focus on the numerator of
the partition function, Ẑ ∈ λc/2(Mg).10 The relation to the Siegel upper half plane
Hg, on which the Siegel modular forms are functions, is as follows. Consider first
the quotient space

Ag = Hg/Sp(2g,Z), (4.3.55)

denoted the moduli space of principally polarized abelian varieties (ppavs). This
space generalizes the fundamental region−1

2
< Re τ < 1

2
, |τ | > 1 to higher genus. By

modular covariance, Siegel modular forms f ∈Mg of weight k are mapped to sections
of the kth power of the determinant line bundle on Ag. By the Torelli theorem,
there is an embeddingMg → Ag mapping a Riemann surface to its Jacobian.11 For
g ⩽ 3, the moduli space Mg of genus g Riemann surfaces is dense in Ag, meaning
that almost every point in Ag represents a genus g Riemann surface. However, as
the dimension formulas

dimMg =

1 g = 1,

3g − 3 g > 1,
dimAg =

1

2
g(g + 1) (4.3.56)

show, for g ⩾ 4 the embedding of Mg inside Ag has a non-zero co-dimension. At
genus 4, with dimM4 = 9, dimA4 = 10, the locus of (the closure of)M4 inside A4

is known, and given by the vanishing of a specific degree eight modular form J
(4)
8 :

JacM4 = {J (4)
8 = 0} ⊂ A4. (4.3.57)

At higher genus, the embedding is not known. The modular form J
(4)
8 is called the

Schottky form, and is related to the polynomial j(3)8 , as we will discuss in detail
below.

10Here we stressed that the numerator of the partition function is not a function on Mg, but
instead a section on λc/2(Mg), where λ(Mg) denotes the determinant line bundle onMg. This in
turn descends from the determinant line bundle on Ag, see for instance comments in [137].

11Concretely, the Jacobian of a Riemann surface with period matrix Ω is the complex torus
given by Cg/(Zg +ΩZg)
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There are two consequences of JacMg ̸= Ag for g ⩾ 4. Firstly, the existence of
non-zero Siegel modular forms f which vanish on the moduli space, means that the
map f 7→ Ẑ is not injective. More importantly, there may be sections Ẑ of λc/2(Mg)

(i.e. numerators of partition function) that do not lift to sections of λc/2(Ag) at
sufficiently high genus. This means that when considering candidate CFTs with
enumerator polynomial at g ⩽ gmax and which lack enumerator polynomial at g >
gmax, if gmax ⩾ 3 we cannot rule out the existence of a CFT corresponding to this
set of enumerator polynomials.

The Schottky form and the codes associated to e8 ⊕ e8 and d+
16 Let us

now consider in more detail an example of the consequences of the considerations
discussed here. This is Milnor’s example [102] of isospectral lattices mentioned in
the introduction, which is based on a result by Witt [138]. Consider the codes
associated via Construction A to the lattices e8 ⊕ e8 and d+16, which are the root
lattices of E8 × E8 and spin(32)/Z2 [138].12 In fact, e8 = d+8 and d+16 are the first
two elements of a general class of lattices d+8k with the following description (see e.g.
[139]). Let Λ0 = {(v1, . . . v8k) ∈ Z8k | v1 + . . . + v8k = 0 (mod 2)}. Then the lattice
for d+8k is given by

Λd+8k
= Λ0 ∪

(
1
2
(1, 1, . . . , 1) + Λ0

)
. (4.3.58)

In the sum defining the lattice theta function, the restriction to v1 + . . . + v8k =

0 (mod 2) can be implemented by 1→ 1+(−1)v1+...+v8k

2
, and using the definition (4.3.17)

of the higher genus theta functions we find that13

Θd+8k
=

1

2g

∑
A

θ[A](Ω)8k. (4.3.59)

Here the sum is over all 2g−1(2g + 1) vectors A ∈ {
(
0
0

)
,
(
1/2
0

)
,
(

0
1/2

)
,
(
1/2
1/2

)
}g that give

a non-zero theta constant.14

Define j(g)8 to be the difference between the enumerator polynomials of the codes
corresponding to the lattices e8 ⊕ e8 and d+16,

j
(g)
8 = (W (g)

e8
)2 −W (g)

d+16
. (4.3.60)

12The code associated with the e8 lattice is in fact the Hamming [8, 4, 4] code, the unique even
self-dual binary code at c = 8.

13Note that the argument here is Ω and not 2Ω as in (4.3.19).
14At genus g = 1, this list contains the three elements A =

(
0
0

)
,
(
1/2
0

)
, and

(
0

1/2

)
, corresponding

to the Jacobi theta functions θ3(q), θ2(q) and θ4(q) respectively, see (4.2.16).
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For the case of genus 3, we will recover an expression for j(3)8 in the next section, see
(4.4.30). The polynomial j(g)8 evaluates under Th to the Schottky form J

(g)
8 :

Th(j
(g)
8 ) = J

(g)
8 :=

1

2g

((∑
A

θ[A](Ω)8
)2

− 2g
∑
A

θ[A](Ω)16
)
. (4.3.61)

It was first written down at genus 4 in a different format by Schottky in 1888 [140]
and was later found by Igusa [141] to be proportional to the expression above. As
advertised in the previous section, at genus 4 the Schottky form has the important
property that its vanishing solves the Schottky problem, that is to determine the
locus ofMg inside Ag.

Now return to the partition functions corresponding to the codes e8⊕ e8 and d+16.
For genus 1 and 2, their enumerator polynomials agree: W (g)

e8⊕e8 = W
(2)

d+16
, g = 1, 2.

At genus 3, their enumerator polynomials are different, W (3)

d+16
= W

(3)
e8⊕e8 − j

(3)
8 , but

the associated Siegel modular forms are equal: Th(W
(3)

d+16
) = Th(W

(3)
e8⊕e8). At genus

4 the associated Siegel modular forms are different, but coincide on M4, so that
Ẑ

(4)

d+16
= Ẑ

(4)
e8⊕e8 ∈ λ8(M4).15 Finally, at genus 5, it was shown in [142] that at genus

5 the partition functions in fact do differ,

Ẑ
(g)

d+16
= Ẑ

(g)
e8⊕e8 , g ⩽ 4, Ẑ

(g)

d+16
̸= Ẑ

(g)
e8⊕e8 , g ⩾ 5. (4.3.62)

An alternative proof of this fact was given in [106]. In conclusion, the example we
have considered shows that at c = 16 there are two chiral conformal field theories,
corresponding to the codes/lattices e8 ⊕ e8 and d+16, that share partition functions
for g ⩽ 4 and are only distinguished at genus 5.

In fact, the non-vanishing of J8 on M5 was found in [142] with the motivation
of computing the chiral superstring measure, and implies the non-vanishing of the
cosmological constant at genus 5 in type II and heterotic superstring theory. This
follows from an all-genus ansatz of the superstring measure proposed in [143] based
on results at lower genus [144, 145, 146]. This ansatz, when summed over even spin
structures (equivalent to the summation variables in (4.3.58)), becomes proportional
to J (g)

8 (see [147] for an overview).16

15Again, Ẑ refers to the numerator of the partition function, see (4.3.1).
16An alternative ansatz was proposed in [148], also leading to non-vanishing cosmological con-

stant at genus 5. The two ansätze can in principle be combined to give a vanishing genus 5
cosmological constant, but this approach runs into difficulties at genus 6, see [147, 149, 150]. See
also [151, 152] for a relation to the bosonic string theory measure.
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4.4 Counting Higher Genus Enumerator Polynomials

In section 4.3, we examined how the correspondence between classical error-
correcting codes and 2d chiral CFTs extends to higher genus. Now we would like
demonstrate the utility of this correspondence by explicitly showing how the higher
genus modular symmetries, combined with the required factorization properties,
drastically shrinks the space of allowed enumerator polynomials.

We aim to present the algorithm used in this section in a fairly self-contained
way. However we will not include many details, such as the action of the modular
group and the factorization limits, which are discussed in section 4.3.

Method

In practice, our method is very simple. There are four steps:

1. write down the most general genus g polynomial,

2. reduce undetermined coefficients by imposing the symmetries,

3. list solutions where all coefficients are positive integers,

4. eliminate all solutions which don’t factorize.

The logic behind these steps has been considered at length in the previous section,
so let us just remind the reader of a few important points. Then we will turn to
some specific examples, which should make the procedure clear.

In the first step, the polynomial we start with depends on both the genus g and the
dimension c of the code. Specifically, it will be the most general homogeneous degree
c polynomial of 2g variables. Recall the definition of the enumerator polynomial of
a code: the coefficients of each term represent degeneracies of codewords. True
enumerator polynomials must have positive integer coefficients, thereby motivating
step 3.

The second step amounts to imposing modular invariance. This is a strict con-
straint on the polynomials which can possibly correspond to codes. The size of the
modular group grows, leading to stricter constraints. However, the size of the poly-
nomials in step 1 also increases quickly with the genus, so the number of solutions
in step 2 will increase quickly with the genus. It is only by requiring the correct
factorization limits, which we do in step 4, that we find a reduction in the number
of potential codes.

81



Example: enumerating c = 24 polynomials

Let us now show how this works for the specific example of 24-dimensional codes. It
was found by Conway (unpublished, see note in [153]) that there are 9 doubly-even
self-dual codes in 24 dimensions.

We will see that our algorithm restricts the number of potential enumerator
polynomials. At genus 1, there are 190 possible polynomials which satisfy steps 1, 2,
and 3. At genus 2, we will have an explosion in the number of possible polynomials
which satisfy 1, 2 and 3. However only a tiny subset consisting of 29 polynomials, will
properly factorize into genus 1 polynomials. This effectively rules out 190−29 = 161

of the genus 1 polynomials. They cannot correspond to codes because if they did,
they would lead to a factorizing genus 2 polynomial. Repeating the procedure at
genus 3 leads to a further reduction from 29 to 21 possible polynomials, as we will
see.

Genus 1

The genus 1, c = 24 partition function is an order-24 polynomial of x0 and x1. We
start by writing the most general polynomial with one for the leading coefficient
(which is required because the identity is always a codeword).

P (1)
gen = x240 + a1x

23
0 x1 + a2x

22
0 x

2
1 + a3x

21
0 x

3
1 + . . . . (4.4.1)

Next, we recall the invariances of this polynomial

x0 7→
x0 + x1√

2
, x1 7→

x0 − x1√
2

, (4.4.2)

and

x1 7→ ix1 . (4.4.3)

Imposing these conditions places a number of constraints on the allowed values for
ai. The resulting polynomial therefore depends on far fewer coefficients:

P
(1)
inv = x240 + a4 x

20
0 x

4
1 + (759− 4a4)x

16
0 x

8
1 + (2576 + 6a4)x

12
0 x

12
1

+ (759− 4a4)x
8
0x

16
1 + a4 x

4
0x

20
1 + x241 .

(4.4.4)

Now that we have determined the most general invariant polynomial, we must impose
that all of the coefficients are positive integers. It is easy to see that this is the case
when a4 is an integer satisfying

0 ≤ a4 ≤ 189 . (4.4.5)
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So we find that there are 190 possible genus 1 polynomials. Any possible ECC must
have one of these enumerator polynomials, because no other polynomial satisfies all
of the necessary conditions. Note that in the case of genus 1, there is no step 4.

Also note that we have only a single undetermined coefficient. This reflects the
fact that the ring of genus 1 Siegel modular forms has only two independent elements
at degree 12: G3

4 and G2
6. This gives one degree of freedom once the leading coefficient

is set to one. We shall find a similar story for genus 2 and genus 3.
To relate this result to the physical spectrum of the theory, we can write the

partition function,

Z
(1)
c=24 =

P
(1)
inv

η(τ)24
, (4.4.6)

and expand in small q to find17

Z
(1)
c=24(τ) =

1

q

(
1 + (72 + 16a4)q + 196884q2 + 21493760q3 + . . .

)
. (4.4.7)

From this expansion we can see that the number of conserved currents Ncurrents =

72 + 16a4. The genus 1 allowed polynomials, therefore, could have between 72 and
3,096 currents.

Genus 2

The algorithm for genus 2 is largely the same for the first three steps. First we have

P (2)
gen = x240 + a1,0,0x

23
0 x1 + a0,1,0x

23
0 x2 + a0,0,1x

23
0 x3 + a2,0,0x

22
0 x

2
1 + . . . . (4.4.8)

The result is a 2,925-term polynomial in x0, x1, x2, x3. Next we impose the symme-
tries (4.3.30). The expression for P 2

inv is very long, but it has a shorter set of unique
17Recall that the genus 1 partition function expands as q−

c
24 times an expansion in state multi-

plicities.
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coefficients, which must be positive integers. The result is

a4,0,0 ⩾ 0 ,

759− 4a4,0,0 ⩾ 0 ,

2576 + 6a4,0,0 ⩾ 0 ,

2a2,2,2 + 5a4,0,0 ⩾ 0 ,

−2a2,2,2 + 250a4,0,0 ⩾ 0 ,

22770 + 36a2,2,2 − 540a4,0,0 ⩾ 0 ,

a2,2,2 ⩾ 0 ,

−12a2,2,2 + 480a4,0,0 ⩾ 0 ,

22a2,2,2 + 2112a4,0,0 ⩾ 0 ,

340032− 52a2,2,2 − 2432a4,0,0 ⩾ 0 ,

212520 + 76a2,2,2 − 3480a4,0,0 ⩾ 0 ,

1275120 + 36a2,2,2 − 1530a4,0,0 ⩾ 0 ,

4080384− 8a2,2,2 + 29952a4,0,0 ⩾ 0 .

(4.4.9)

This list of unique coefficients implies some redundant inequalities, but we have
include the entire set for completeness. Using Mathematica, we can easily extract
the set of integer solutions to these inequalities. The result is a set of 135,065
solutions. Note also that there are two undetermined parameters after imposing
a0,0,0 = 1. This is again a reflection that there are three independent modular forms
at genus 2: E3

4 , E2
6 and χ12 (see section 4.3).

Here we can demonstrate how step 4, the factorization limit, can be imposed
to further restrict the number of polynomials. It is important to note the this
will provide a restriction on the genus 1 polynomials as well: we will rule out all
genus 2 polynomials which don’t factorize properly, and we will rule out all genus 1
polynomials which don’t arise from factorizing a genus 2 polynomial. The logic here
is simple: a real code must have a genus 2 polynomial, and it must factorize into the
square of that code’s genus 1 polynomial.

Recall how the factorization limit acts on our genus 2 polynomials:18

x0 → x20, x1 → x0x1, x2 → x0x1, x3 → x21 . (4.4.10)

So we merely need to check each of our 135,065 genus 2 polynomials. If the factor-
ization limit turns it into the square of a genus 1 polynomial, then it is allowed.

18Technically we could represent the polynomials on each torus with different variables, e.g.
x0 → x0y0, etc. In principle this could lead to stronger constraints on the allowed polynomials, but
interestingly we find no difference in these procedures.
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Remarkably, there are only 29 such polynomials on our entire list! Each of these
polynomials is the square of one of our 190 genus 1 polynomials. Therefore we have
shown that only 29 of our genus 2 polynomials can possibly come from codes, and
only 29 of our genus 1 polynomials can possibly come from codes. See table 4.4 for
a summary.

For genus 2 at c = 24, the set of constraints defines a two-dimensional polytope,
and it is interesting to consider the way that the allowed polynomials sit inside it.
This is displayed in figure 4.3. We see that a single genus 1 polynomial is excluded
near the origin, and then a large number of polynomials are excluded in the upper
range for the a2,2,2. It is also interesting to note that a4,0,0 satisfies 759 ≥ 4a4,0,0 ≥ 0,
the same bound that we found on a4 at genus 1. However the rest of the constraints
eventually give stronger constraints on a4,0,0, meaning that if we project figure 4.3
(a) to the y axis, and identify a4,0,0 ∼ a4, we find that the space of allowed genus
2 polynomials lies inside the space of allowed genus 1 polynomials. We believe this
pattern will persist to higher g and c. A final interesting feature is that the real
theories display a quadratic relationship between a2,2,2 and a4,0,0. This appears to
be related to the fact that, in equation (4.19) of [108], there are two undetermined
coefficients b2 and b3 appearing in the genus 2 partition function which are linear
and quadratic in the number of currents Nc, respectively. It would be interesting
to see if any version of this pattern persists – already at c = 32, it is known that
the undetermined coefficients can depend on the number of currents and the OPE
coefficients of low-lying states [108].

Genus 3

The procedure for genus 3 follows the same idea as genus 1 and 2, however some
tricks are required to deal with the large number of terms in the polynomial P (3)

gen

and the large number of solutions, i.e. polynomials of the form P
(3)
inv with positive

coefficients.
First, we do not start with the most general polynomial; instead we eliminate

from the beginning a large number of terms which could never appear (analogous
to how terms with odd powers could never appear at genus 1, due to the x1 → ix1

transformation). The precise procedure for doing this is laid out in [129] in the
discussion on “admissible polynomials.”

Then we can impose the symmetries on this smaller polynomial to construct
P

(3)
inv . We find that it depends on four independent parameters. This should reflect

five independent modular forms at this order. However there are actually only four!
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Figure 4.3: Allowed polytope for the genus 2 coefficients. Green dots represent
polynomials which lie inside the bounds, and red outside. Plot (a) shows all 29
allowed genus 2 polynomials with integer coefficients. In (b), we zoomed into the
bottom left, and allowed for half-integer coefficients in P 1

inv allowing a larger number
of solutions. Black stars represent lattices. We can see the k = 4, k = 5, and k = 6
lattices outside the allowed region.

This is due to the existence of a “theta relation,” discussed in section 4.3. This is a
non-trivial combination of theta functions which equals zero, i.e. an element of the
kernel of the theta-map. The conclusion is that, at genus 3, the space of polynomials
is larger than the space of modular forms.
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Another trick we use is that we do not enumerate every solution. In general each
coefficient of P (3)

inv must be positive, giving an inequality. For genus 3 (or genus 2, at
large c), it becomes impossible to enumerate every solution. However it is possible
to determine which genus 1 polynomials can arise as the factorization limit of genus
3 polynomials without determining the full set of genus 3 polynomials.

Our upgraded approach is thus to search through each of the 29 genus 1 polyno-
mials which are allowed by genus 2 factorization, and determine if it can also arise
from genus 3 factorization. Specifically, we look at the factorization limit of P (3)

inv and
then we solve for the undetermined a-coefficients for each of the genus 1 polynomials.
In every case, we find solutions, but for some of the genus 1 polynomials, all of the
solutions result in disallowed (negative coefficient) genus 3 polynomials. In this way,
we are able to rule out more genus 1 polynomials from our list.

The final result from this procedure is given in table 4.4. From our original list of
190 polynomials, we first reduce to 29 genus 2 polynomials (this number was already
known in [129]). Then we find that demanding the existence of a consistent genus 3
polynomial further reduces this to a set of 21 polynomials. As far as we know, we
are the first to count this number. It is easy to see from table 4.4 that each of the
polynomials which corresponds to a real code is allowed by our procedure.

It is possible to continue for higher genus. At genus 3 (for c = 24), we are at
the edge of what is possible with our desktop computers. Probably to address this
problem at higher genus, a new computational algorithm is necessary. The positivity
conditions are linear, and the resulting spaces of solutions are convex polytopes in
the space of ai,j,k,..’s. This suggests that some sort of linear programming approach
could drastically improve the efficiency of our rather basic method by searching for
the edges of the space rather than enumerating every solution inside.

Finding lattice theta functions

Above we have seen that our method may be used to find enumerator polynomials
for every code that exists at c = 24. These define lattices, so our method is able to
find some lattice theta functions. However there are other theta functions, deriving
from non-code lattices, which are not captured by our approach. In general it occurs
for lattices whose theta functions correspond to enumerator polynomials with half-
integer coefficients and, in the case of u(1)24, negative coefficients. We would like to
understand how these lattice theta functions fit into our discussion so far.

By examining explicitly some of the theta functions for non-code lattices, we find
that they can be written in enumerator polynomial form, but have fractional and
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Table 4.4: Polynomials organized by number of spin 1 currents Ncurrents = 24k. The
number of currents may be computed from the genus 1 polynomial using Ncurrents =
72 + 16a4. See [106] for the list of lattices organized by the number of currents.

k g = 2 g = 3 lattice code
1 u(1)24

3 ✓ ✓ (a1)24 ✓
4 (a2)12

5 (a3)8

6 (a4)6

7 ✓ ✓ (d4)6, (a5)4d4 ✓
8 (a6)4

9 ✓ (a7)2(d5)2

10 (a8)3

11 ✓ ✓ (d6)4, (a9)2d6 ✓
13 ✓ ✓ (e6)4, a11 d7 e6
14 (a12)2

15 ✓ ✓ (d8)3 ✓
17 ✓ ✓ a15 d9
19 ✓ ✓ a17e7, d10(e7)2 ✓
21 ✓ ✓
23 ✓ ✓ (d12)2 ✓
25 ✓ ✓
26 a24
27 ✓ ✓
29 ✓ ✓
31 ✓ ✓ d16 e8, (e8)3 ✓·2
33 ✓ ✓
35 ✓ ✓
37 ✓ ✓
39 ✓ ✓
41 ✓ ✓
43 ✓ ✓
45 ✓ ✓
47 ✓ ✓ d24 ✓
49 ✓
51 ✓
53 ✓
55 ✓
57 ✓
59 ✓
61 ✓
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negative coefficients. The specifics are quite interesting. For genus 1, there is a single
lattice with negative coefficients. This is the u(1)24 lattice, corresponding to k = 1 in
our table. At genus 2, we find that the k = 4, 5, and 6 lattices also yield enumerator
polynomials with negative coefficients. The lattices are visible as the black stars 4.3,
(b), where it is easy to see that these three polynomials are ruled out. So it appears
that even if we repeat our procedure and allow for fractional coefficients, this will
still not be enough to enumerate all lattices due to this negativity.

It seems likely that the coefficients are not allowed to be arbitrarily negative,
because they still need to lead to a positive state expansion. For example, for the
u(1)24 theory, has the following theta-function in polynomial form

Θu(1)24(x0, x1) = x240 − 3x200 x
4
1 + 771x160 x

8
1 + 2558x120 x

12
1 + 771x80x

16
1 − 3x40x

20
1 + x241 .

(4.4.11)

We see that a4 = −3, corresponding to 24 currents. This is the smallest value of
all lattices; every other lattice has a4 > 0. It seems that what happens is that the
enumerator polynomial, which represents the numerator of the partition function,
is able to be slightly negative because as long as it can be compensated by the
denominator (e.g. η(q)c in the genus 1 case) to ensure that the expansion in q, which
counts the actual state degeneracies, is purely positive. Thus it seems that arbitrary
amounts of negativity are probably not allowed in the enumerator polynomial.

It is known that there are 24 even self-dual Euclidean lattices in dimension 24
[154]. These are a subset of the 71 meromorphic chiral CFTs [155].19 It would be
very interesting to find the correct generalization of our procedure to enumerate
lattices or general meromorphic theories, rather than just codes.

Summary of results

Counting polynomials with positive integer coefficients

Having performed this procedure, we may now list our results for a variety of different
values of c.

• c = 8:

– there is a single polynomial at genus 1, 2, and 3,

– these all correspond to the Hamming [8,4,4] code.
19The famous cases of the Leech lattice and Monster module correspond to Ncurrents = 24 and

Ncurrents = 0 respectively. The Golay code gives the lattice (a1)24 through Construction A, however
through the twisted Construction A (see e.g. [19]) it gives rise to the Leech lattice.
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• c = 16:

– at genus 1 and 2, there is a single polynomial,

– at genus 3, we find 1,681 polynomials, which all factorize into the
unique genus 1 polynomial. These 1,681 polynomials are a linear
combination of the enumerator polynomials of two different codes –
the codes associated to the e8 ⊗ e8 and d+16 lattices – which may be
averaged in 1,681 ways to form positive integer polynomials.20

• c = 24:

– there are 190 genus 1 polynomials. 29 come from consistent genus 2
polynomials, and 21 at genus 3,

– these come from 9 codes. Note however that the genus 1 partition
functions of two of the code theories agree, so that there are eight
unique genus 1 code theory partition functions,

– we find 135,065 invariant polynomials at genus 2.

• c = 32:

– we find 284 genus 1 polynomials,

– at genus 2, there are 210,116 polynomials with the correct factoriza-
tion limits, but they only result in 161 unique genus 1 polynomials,

– There are 85 codes [156, 157], but only 37 unique genus 1 enumerator
polynomials. 80 have Hamming distance d = 4, and 5 have d = 8.

• c = 40:

– there are 400 genus 1 polynomials,

– 246 of these come from genus 2 polynomials,

– we are not able to compute the total number of genus 2 polynomials

– there are 94,343 codes, 77,873 with Hamming distance d = 4, the
rest with d = 8 [158].

• c = 48:

– there are 14,381,890 genus 1 polynomials,
20As discussed in detail in section 4.3, these two codes are resolvable by the enumerator poly-

nomials at genus 3, while in fact they have the same partition functions for all genus g < 5. This
is due to non-trivial relations between the theta constants.
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– 2,580,972 come from genus 2 polynomials,

– we are not able to enumerate all genus 2 polynomials.

Siegel modular forms in the code variables

We have seen that the lattice theta series ΘΛ(Ω) transforms as modular form of
weight c

2

ΘΛ(Ω̃) = det(CΩ +D)
c
2ΘΛ (Ω) . (4.4.12)

Modular forms of even weight are generated by a ring (4.3.46) which allows us fix ΘΛ

in terms of the generators of the ring. This is possible for genus 2 and 3 as well since
the generators of the ring of Siegel modular forms is known (4.3.47). In this section,
we constrain the space of code genus 2 CFT partitions functions and reproduce the
results established in the previous subsection in this manner. The motivation for
doing so is that the constraints of factorization on ΘΛ can be imposed by exploiting
the known factorization properties of the Siegel modular forms (4.3.52). This was
precisely the strategy used in [108] to constrain the space of genus 2 chiral CFTs.
In this section we show that by expressing genus 2 Siegel modular forms in terms of
code variables, factorization constraints can be easily put on code CFT’s.

Siegel forms in code basis

In order write the Siegel forms in terms of the code variables, one only needs to know
the number of generators in the ring and the action of the Siegel Φ operator (4.3.53).
We first consider how this works at genus 1. For c = 8, the only allowed modular
form of weight 4 is G4, which fixes the associated ΘΛ. The associated Construction
A lattice arises from the unique code of dimension 8 – the Hamming [8, 4, 4] code.
Applying the theta map to this code gives us an expression for G4 in terms of code
variables.

G4
∼= x80 + 14x40x

4
1 + x81. (4.4.13)

Similarly, at c = 24, the only the most general ΘΛ of weight 12 is characterized by
the number of spin 1 currents N1

Θg=1
Λ = G3

4 + (N1 − 744)∆12. (4.4.14)

This statement in terms of enumerator polynomials is a well known result in coding
theory and is called Gleasons theorem for binaray self dual codes. It states that the
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enumerator polynomial for any self dual code can be written as a linear combination
of the expressions for G4 and ∆ written in the code basis. We can work backwards
and express ∆12 in code variables since it must be given by a linear combination of
G3

4 in code variables and the enumerator polynomial of any even self dual c = 24

code of choice. We then fix the overall normalization of ∆12 by demanding that it
maps to zero under the Siegel theta map Φ. The identity ∆12 =

1
1728

(G3
4 −G2

6) fixes
G6 in terms of code variables as well

G6
∼= x120 − 33x80x

4
1 − 33x40x

8
1 + x121 , (4.4.15)

∆12
∼=

1

16
x40x

4
1(x

4
0 − x41)4 . (4.4.16)

We proceed in a completely analogous fashion at genus 2. In this case again, at c = 8

the unique weight 4 Siegel form, E4, must be the biweight enumerator polynomial of
the Hamming [8, 4, 4] code. At c = 24, there is more freedom and the most general
lattice theta series that can arise is:

Θg=2
Λ = E3

4 + a1ψ12 + a2χ12. (4.4.17)

We can take any 2 distinct Θg=2
Λ to be ones arising from the biweight enumerator

polynomials of any two distinct c = 24 codes. This gives us 2 equations of the form
(4.4.17) which we can use to solve for ψ12 and χ12. Demanding the normalization
(4.3.53) allows us to fix the coefficients a1 and a2 and the end result is that can
express them in code variables (A.5.2)–(A.5.5). The remaining Siegel form χ10 first
appears at c = 32 and it is fixed by repeating this procedure by taking the biweight
enumerator polynomial of any self dual c = 32 code and expressing it terms of known
Siegel forms in the code basis according to

Θg=2
Λ = E4

4 + a1E4ψ12 + a2E4χ12 + a3E6χ10. (4.4.18)

The unknown constants a1, a2, a3 are fixed by demanding that χ10 7→ 0 under the
action of the Siegel Φ operator.

Factorization constraints

We have seen that under the factorization limit the period matrix becomes block
diagonal and the lattice theta function factorizes

Θg=2
Λ (Ω)→ Θg=2

Λ (τ1 ⊕ τ2) = Θg=1
Λ (τ1)Θ

g=1
Λ (τ2). (4.4.19)

Using the expressions for code variables (A.5.2)–(A.5.5), we can write down putative
enumerator polynomials or equivalently code CFT partition functions. For these to
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come from codes, we now demand that these polynomials have positive and integer
degeneracy of codewords and that they factorize into squares of well defined lower
genus enumerator polynomials in the factorization limit.

c = 24 (4.4.17) must devolve to the square of the genus 1 lattice theta function
given by (4.4.14). This is straightforward to implement since factorization properties
of the Siegel forms are known (4.3.52). The result is

Θg=2
Λ = E3

4 + (N1 − 744)ψ12 + ((N1 − 744)(N1 + 984))χ12. (4.4.20)

It is important to emphasise that the above constraint is true in any meromorphic
c = 24 CFT and these constraints for various c are discussed in [108]. Here, we use it
to constrain the space of allowed codes factorize because we know how to express the
Siegal modular forms in terms of code variables. In fact, demanding that (4.4.20)
has positive integer coefficients when written in code variables lets us recover the
result that there are only 29 enumerator polynomials which factorize at genus 2 out
of the 190 consistent genus 1 code polynomials.

c = 32 The allowed enumerator polynomial is parametrized by the number of spin
1 currents N1:

Θg=1
Λ = G4

4 + (N1 − 992)∆G4. (4.4.21)

Demanding factorization gives us

Θg=2
Λ = E4

4 + (N1 − 992)∆E4ψ12 + (N1 − 992) (N1 + 736)E4χ12 + c1E6χ10.

(4.4.22)

Here c1 is an unknown constant which cannot be determined by factorization con-
straints since χ10 → 0 under factorization. For Θg=1

Λ to possibly arise from a code,
we must have N1 = 16k for 6 ⩽ k ⩽ 289 and k ∈ Z. In order for Θg=2

Λ to possibly
arise from a code, the range of allowed reduces to 6 ⩽ k

leqslant166. We should note however that in general each of these k have multiple
consistent c1 associated with them obeying inequalities. The different c1 correspond
to allowed values of the 3 point structure coefficient ci,j,k of light primary operators.
Imposing unitarity does not rule out any code CFT’s.

c = 40 The allowed enumerator polynomial is parametrized by N1,

Θg=1
Λ = G5

4 + (N1 − 1240)∆12G
2
4. (4.4.23)
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For Θg=1
Λ to possibly arise from a code, we must have N1 = 120+16k for 0 ⩽ k ⩽ 399

and k ∈ Z. Demanding a factorizable genus 2 enumerator polynomial gives:

Θg=2
Λ = E5

4 + (N1 − 1240)E2
4ψ12 + (N1 − 1240)(N1 + 488)E2

4χ12 (4.4.24)

+ c1E4E6χ10 + c2χ
2
10.

where c1 and c2 are unknown coefficients. In order for Θg=2
Λ to possibly arise from

a code, the range of allowed reduces to 0 ⩽ k ⩽ 246 and these are not further
constrained by demanding unitarity.

c = 48 The allowed genus 1 partition function is

Θg=1
Λ = G6

4 + (N1 − 1488)G3
4∆12 + (N2 − 743N1 + 159769)∆2

12 (4.4.25)

For this arise from a code, we must have N1 = 144+16k1 and N2 = 10199+2160k1+

256k2 with k1 and k2 satisfying

0 ⩽ k1 ⩽ 374 0 ⩽ k2 ⩽
1

8
(17296 + 733k1) (4.4.26)

or

375 ⩽ k1 ⩽ 766 0 ⩽ k2 ⩽
1

28
(1997688− 2607k1) (4.4.27)

This gives 14,381,890 genus 1 polynomials.

Θg=2
Λ = E6

4 + E3
4 (N1 (N1 + 238)− 2 (N2 + 338329))χ12 (4.4.28)

+ E3
4 (N1 − 1488)ψ12 − (N1 + 1968) (743N1 −N2 − 159769)χ12ψ12

+ (−743N1 +N2 + 159769) (985N1 +N2 + 574489)χ2
12

+ (−743N1 +N2 + 159769)ψ2
12 + c1E

2
4E6χ10 + c2E4χ

2
10.

Demanding that the genus 1 polynomials arise from genus 2 code polynomials gives
us 2,580,972 polynomials.

Genus 3 As reviewed in sections 4.3 and 4.3, starting from genus 3, there are
invariant polynomials that map to zero under Th. This is due to non-trivial relations
among the higher genus theta functions. At genus 3, the kernel of Th is generated by
the degree 16 polynomial j8. This means that we can write down a unique pre-image
of the rank 4 form α4

α4
∼= W (3)

e8
=

7∑
i=0

x8i + 14
∑
i<j

x4ix
4
j + 1344

7∏
i=0

+168
∑

i<j<k<l
i+j+k+l=6, 14, 22

x2ix
2
jx

2
kx

2
l

+ 168
(
x20x

2
1x

2
4x

2
5 + x20x

2
2x

2
4x

2
6 + x21x

2
3x

2
5x

2
7 + x22x

2
3x

2
6x

2
7

)
, (4.4.29)
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but at c ⩾ 16 the modular forms in the code variables will only be defined up to
adding terms proportional to j8. For instance, the 1,681 polynomials found at c = 16

are all of the form
P =

(
W (3)

e8

)2
+

a

1344
j
(3)
8 (4.4.30)

for integer a in the range −1344 ⩽ a ⩽ 366. The code d+16 corresponds to a = −1344.
An explicit expression for j8 is given in (A.5.8).

4.5 Discussion

In this chapter, we have shown how code CFTs provide a simple setup to explore
higher genus modular invariance: the weight-g enumerator polynomial evaluated at
theta constants is the numerator of the genus-g partition function of a code CFT.
The higher genus modular transformations take the form of linear transformations
on the enumerator polynomial. It is possible to solve the constraints completely,
yielding the entire set of possible code enumerator polynomials. These are further
reduced by requiring that the partition function factorizes as the genus-g Riemann
surface factorizes into two lower-genus Riemann surfaces. The result is that the
higher genus constraints are much more restrictive than the lower genus constraints.
In the case of c = 24, we find 190 candidate polynomials at genus 1, 29 candidates at
genus 2, and 21 candidates at genus 3 (see table 4.4). There are exactly 9 doubly-
even self-dual codes at c = 24 so we speculate that this process, if pushed to even
higher genus, will eventually converge to 9.

So what to make of the ruled out theories, for instance the “fake” genus 1 partition
functions which have no corresponding partition function at genus 2 or 3? Indeed,
our work was largely motivated by this question, posed in [19] for non-chiral CFTs
but with a direct counterpart in the chiral case. If the fake partition functions indeed
do not correspond to any CFT, their existence poses a clear limitation of the genus
1 modular bootstrap. Here we have shown that extending the modular bootstrap to
higher genus gives a significant improvement.

It is possible, however, is that the “fake” genus 1 partition functions may cor-
respond to CFTs which are not derived from error-correcting codes. Therefore it
would be desirable to enlarge the class of theories that can be captured by our ap-
proach. In section 4.4, we investigated what relaxations are needed to find lattice
theories, which may or may not come from codes. These theories have partition
functions which can be written in “enumerator polynomial form”, meaning that they
are homogeneous polynomials of theta-constants. However, unlike code theories, the

95



polynomials have coefficients which may be fractional and slightly negative. The
negativity, in particular, makes it difficult to devise a finite algorithm to enumerate
them. However, they do not seem to be allowed to be arbitrarily negative, which
leaves open the possibility that it may be possible to enumerate them by only slightly
relaxing the positivity constraint. It is natural to try this at c = 24, where there
are 24 even self-dual Euclidean lattices [154], and 71 meromorphic theories in total
[155].

Another interesting direction for future work would be to try to make contact
with the traditional bootstrap program [103]. Higher genus partition functions con-
tain some information about OPE coefficients, so some constraints on dynamical
information are implied by higher genus modular invariance. It would be interesting
to try to understand the extent of this – in particular, are the constraints implied
by modular invariance at all genera equivalent to those implied by consistency of
sphere n-point functions with crossing, or is one constraint stronger than the other?
It would also be interesting to see in detail how the factorization limits, which go
beyond the symmetries of the theory, might be related to OPE data. Specifically,
do the higher genus partition functions which do not factorize correctly lead to OPE
data which is somehow pathological? In this chapter, we considered the complete
factorization limit, where Ω is made strictly block diagonal. However one can con-
sider subleading corrections to this factorization, taking off-diagonal elements of Ω
to be small expansion parameters. This yields information about averages of OPE
coefficients for light operators [108]. We leave exploring this systematically to future
work.

Our work opens avenues to explore the relationship between quantum error-
correcting codes, Lorentzian lattices, and (non-chiral) CFTs [21, 19, 159] at higher
genus. As we will discuss in [160], this relationship admits a higher genus gener-
alization similar to the one presented in this chapter. The enumerator polynomial
of a quantum error-correcting code at genus g is a polynomial in 2g−1(2g + 1) =

3, 10, 36, . . . variables. This polynomial evaluated at theta constants gives the higher
genus partition function of a putative non-chiral CFT. The constraints on higher
genus partition functions from modular invariance and factorization are interesting
and largely unexplored areas, and the techniques developed in this chapter give clear
directions to understand them. This will be explored in a future chapter [160].

Another interesting byproduct of our work is a set of explicit expressions for genus
2 and 3 Siegel modular forms in terms of the polynomials of theta constants. These
expressions facilitate easy manipulation of the forms – for example, it is obvious
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in our basis if a form is a product of two other forms. In principle, one could
use our method to determine the full ring of modular forms for genus g ⩽ 3. We
believe that this approach would be particularly interesting in the case of quantum
error-correcting codes, which correspond to non-chiral CFTs and where the theory
of modular forms is much less developed.

Interesting recent work has given a possible holographic bulk interpretation to
the average over Narain lattice CFT’s [121, 161], which are computed using the
Siegel-Weil formula. The chiral version of this formula averages even unimodular
Euclidean lattices of dimension c, to give a (holomorphic) Siegel modular form at
every genus, e.g. see [162], ∑

Λ

1

Aut(Λ)
ΘΛ = m c

2
E

(g)
c
2
, (4.5.1)

where E(g)
k is the genus g holomorphic Eisenstein series. Here the sum is weighted

by the number of automorphisms of each lattice and mk = Bk

2k
B2

4
B4

8
· · · B2k−2

4k−4
where

Bk denotes the kth Bernoulli number. The appearance of the Siegel modular form
suggests that a bulk interpretation of the chiral average may also be possible [163].
In this context, it would be interesting to see if our discussion on factorization of
individual lattice partition functions provides a simple setting to study statistical
properties of the averaged partition function.
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Chapter 5 Quantum codes, lattices and CFTs

This chapter is essentially identical to:
Narain CFTs and Quantum Codes at Higher Genus [23]

5.1 Introduction: Partition functions of Narain CFTs and quantum error
correcting codes

There is a fascinating relationship between error-correcting codes (ECCs) and two-
dimensional conformal field theories. This relationship was first explored in the
context of classical binary codes – codes over F2 – which are related to chiral mero-
morphic CFTs. Any doubly-even self-dual code defines an even self-dual lattice by
“Construction A” of Leech and Sloane [117], and such a lattice can be used to define a
free meromorphic CFT by the work of Dolan, Goddard and Montague [112, 113, 18].
In this relation, also reviewed in [19], a code of length n provides an n-dimensional
lattice, which gives rise to a meromorphic CFT of central charge c = n. The con-
struction makes it extremely easy to compute the partition function of the resulting
CFT. It takes the form

Z(g=1)(τ) =
W (θ3(q

2), θ2(q
2))

η(τ)n
. (5.1.1)

Here q = e2πiτ for the modular parameter τ , η(τ) is the Dedekind eta function and
θi(q

2) are Jacobi theta functions. The function W (x0, x1) is the so-called enumerator
polynomial, a central object of this chapter. It is trivially computable given the
codewords defining the code. The conditions required for the partition function to
be modular invariant (up to phases) follow immediately from simple properties of
the code. These are the so-called MacWilliams identities [116]1

W (x0, x1) = W (x0, ix1) , W (x0, x1) = W
(

x0+x1√
2
, x0−x1√

2

)
. (5.1.2)

The construction above is naturally extended to higher genus, where the general-
ized MacWilliams identities acting on the higher-weight enumerator polynomial in
2g variables guarantee genus g modular invariance of the corresponding partition
function [160]. The upshot is two-fold: firstly, since the enumerator polynomial

1Technically the MacWilliams identity of [116] refers to only the second transformation, while
the first one follows from doubly-evenness. For convenience, we use the term “MacWilliams identi-
ties” to refer to both conditions.
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is directly computable from the code, one gets immediate access to higher-genus
partition functions of code CFTs; secondly, since the classification of the involved
entities – codes, lattices and CFTs – is incomplete,2 the enumerator polynomial form
provides a simple way to analyze modular invariance as linear relations.

Solving the constraints from higher-genus modular invariance amounts to char-
acterizing the ring of invariant polynomials, which for genus g ⩽ 3 determines the
space of partition functions for meromorphic chiral CFTs via the theory of Siegel
modular forms.3 In [160], we showed that by imposing higher-genus modular in-
variance, the number of possible genus 1 partition functions of code CFT is greatly
reduced. We also noted that there exist conformal field theories that do not derive
from codes, but which still admit the “code enumerator form” of (5.1.1), however
with non-negative and non-integer coefficients. This holds for instance for all of the
71 meromorphic CFTs at c = 24 classified by Schellekens [155].

In this chapter, we turn to an interesting generalization of the above relation,
namely between quantum error-correcting codes and non-chiral CFTs. This relation
was spelled out in detail in [19]. The starting point is a class of quantum error-
correcting codes known as stabilizer codes. These have an equivalent description in
terms of classical codes over the finite field F4. In general, one can consider codes
defined over any finite field F , and it has been shown recently that ternary codes,
defined over F = F3, define N = 1 supersymmetric 2d CFTs [164]. Other work on
the relation between error-correcting codes and conformal field theories include [21,
165, 163, 166, 159, 167]. Interestingly, by the Gray map F4 can be related to F2⊕F2,
which is the first case of a series of constructions of Narain CFTs from codes over
Fp ⊕ Fp for p prime [168].

Via the “New Construction A,” a code over F4 defines a Lorentzian lattice, on
which a 2d non-chiral (“full”) CFT can be defined by the construction of Narain [118,
119]. Compared to the chiral case discussed above, there are now several differences.
In the New Construction A, the central charge n = c = c̄ can take any positive
integer value, and the phases showing up in the modular constraints always cancel,
rendering completely modular invariant partition functions of the form

ZC(q, q̄) =
WC(θ3(q)θ3(q̄) + θ4(q)θ4(q̄), θ3(q)θ3(q̄)− θ4(q)θ4(q̄), θ2(q)θ2(q̄))

2n|η(τ)|2n
, (5.1.3)

2The codes involved in the construction – binary double-even self-dual codes, also known as
type II codes – have length n divisible by 8 and have been classified for n ⩽ 40 [158]. The
corresponding lattices (even self-dual lattices) and CFTs (meromorphic CFTs) have been classified
for n = c ⩽ 24 by [154] and [155] respectively.

3For more details on the case at g ⩾ 4 for chiral CFTs, see our previous work [160].
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where q = e2iπτ and q̄ = e−2iπτ̄ . WC(x0, x1, x2) is called the refined enumerator
polynomial, to be defined below. On the other hand, this construction gives rise to
a discrete set of CFTs, which lies inside but is not dense in the continuous Narain
moduli space. For instance, in the simplest case of central charge n = 1, the unique
equivalence class of quantum codes gives rise to the Narain CFT of the compact
boson at the radius 1, whereas at c = 1, Narain CFTs can be defined for any
compactification radius.

As in the chiral case, the partition function will be constructed by a sum over
vectors in a lattice defined by the code, and it will be described in terms of higher-
genus theta functions with known modular properties. The theory of such functions
is less developed compared the chiral case, where indeed the theory of Siegel modular
forms has led to strong constraints on meromorphic CFTs at low c [106, 107, 108,
109, 110]. Nevertheless, we shall see that the set of partition functions in the form
dictated by (5.1.3) does capture some interesting theories also outside the class of
code CFTs,4 to be discussed more in section 5.5, which may hint at the possibility
to develop a theory of non-chiral modular forms.

The main novelty of this chapter is to generalize the relation between quantum
ECCs and full CFTs to higher-genus partition functions. This amounts to writing
down higher-weight enumerator polynomials suitable for codes over general fields.
In general, for a field F , there is a natural construction of a weight-g enumerator
polynomial in |F |g variables as a sum over g-tuples of codewords, see (5.3.28) below.
For the case at hand, where F = F4, the genus 1 version was called the complete
enumerator polynomial in [19]. However, we will see that the identical vanishing
of some modular functions – at genus 1 manifested by θ1(q) = 0 – suggests the
use of a refined enumerator polynomial in 2g−1(2g + 1) = 3, 10, 36, . . . variables.
(In fact, the counting is the same as the number of even spin structures on the
Riemann surface, familiar from higher-loop superstring computations.) We will give
a complete description of this construction, and give many details at genus 2.

A puzzle with fake partition functions

One of our motivations to study the relation between quantum ECCs and full CFTs,
was to resolve the following puzzle that emerged from the considerations at genus 1
in [19]. At genus 1, the refined enumerator polynomial for a code C is homogeneous

4It remains possible that they may be code theories defined by some suitable generalization of
New Construction A. See [166] for a broader set of Narain CFTs with code counterparts. Through-
out this chapter, “code theories” means those defined by New Construction A.
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degree n, in three variables, and can be written as a sum over all codewords

WC(x0, x1, x2) =
∑
c∈C

x
n−wX(c)−wY (c)−wZ(c)
0 x

wY (c)
1 x

wX(c)+wZ(c)
2 , (5.1.4)

where we think of the codewords c ∈ C as vectors with entries in the set {1, X, Y, Z},
and wt(c) counts the number of entries ci = t.5 For codes to define CFTs, the
enumerator polynomial defined in (5.1.4) must satisfy the generalized MacWilliams
identities [116, 169, 170, 171, 172], which is to say that WC(x0, x1, x2) is invariant
under

x0 7→
1

2
(x0 + x1 + 2x2) , x1 7→

1

2
(x0 + x1 − 2x2) , x2 7→

1

2
(x0 − x1) , (5.1.5)

and

x1 7→ −x1. (5.1.6)

The work of [19] proposed to study solutions W (x0, x1, x2) of (5.1.5)–(5.1.6) without
explicitly constructing any quantum code. Combining these equations with the as-
sumption that W (x0, x1, x2) has non-negative integer coefficients, which must be the
case for code CFTs, one finds a discrete set of solutions for each degree n. Only some
of these solutions correspond to known codes. The simplest non-trivial example is
at n = 3. In this case, [19] found 10 solutions, however only four of them correspond
to known codes:

W 3
1 = (x0 + x2)

3 , (5.1.7)

W1W2 = (x0 + x2)(x
2
0 + x21 + 2x22) (5.1.8)

W3 = x30 + 3x0x
2
2 + 3x21x2 + x32 , (5.1.9)

W̃3 = x30 + 3x0x
2
1 + 4x32 . (5.1.10)

The six remaining polynomials also give rise to seemingly consistent partition func-
tions with n = 3, which we denote as “fake partition functions.”6 These fake partition
functions have enumerator polynomials in xi with non-negative integer coefficients
and could therefore correspond to code enumerator polynomials. Furthermore, they

5As explained in detail in section 5.2, there is a direct relation between the elements {1, X, Y, Z},
which represent Pauli matrices, and the elements {0, ω, 1, ω2} that represent the finite field F4.

6In fact, all of these fake partition functions can be constructed from linear combinations of the
real theories. Specifically, all partition functions are non-negative linear combinations of the ones
deriving from W 3

1 . W3 and W̃3, see figure 5.2 below.
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have character decompositions with non-negative integer coefficients – both in Vi-
rasoro characters and U(1)c × U(1)c characters. The latter decomposition takes the
form

Z(τ, τ̄) =
∑
h,h̄

dh,h̄
qhq̄h̄

η(τ)cη(τ̄)c
. (5.1.11)

For instance, consider one of the fake theories,

Wfake =
2

3
W 3

1 +
1

3
W̃3 (5.1.12)

The first few degeneracies of U(1)c × U(1)c primaries for Wfake read

d0,0 = 1 , d 1
8
, 1
8
= 4 , d 1

4
, 1
4
= 12 , d 3

4
, 3
4
= 8 ,

d1,1 = 12 , d1,0 = d0,1 = 0 , . . . .
(5.1.13)

Since this fake theory, like all fake theories found by examining solutions to the
Macwilliams identities, has all non-negative integer degeneracies, we cannot prove
that it does not correspond to a CFT by genus 1 considerations alone. However, in
this chapter, we find that by considering the constraints from genus 2 modular invari-
ance on code CFT partition functions, we can prove that a number of fake partition
functions cannot be defined by error-correcting codes through New Construction A.
This includes all six fake theories at n = 3. Continuing to higher values of central
charge n, we find that the higher-genus constraints will not rule out all fake partition
functions, but drastically reduce their number.

Structure of this chapter

The rest of this chapter is structured as follows. In section 5.2, we review the con-
struction of 2d CFTs from quantum error-correcting codes. This includes a number
of elements. First we review classical codes over general fields, and how they can
be used to define lattices and enumerator polynomials. Then we present the gener-
alization to quantum codes. After giving a description of quantum error-correcting
codes and an explanation of how error correction is achieved, we show how quantum
ECCs define Lorentzian lattices and therefore Narain CFTs. A brief overview and
an explicit example of the construction are given in section 5.2.

Section 5.3 is where we explain how this construction may be extended to higher
genus. This is essentially the main result of the chapter. We show how higher-genus
partition functions are related to the so-called higher-weight enumerator polynomials
of the codes. These need to be evaluated with higher-weight Jacobi theta functions

102



as arguments. We determine how modular invariance acts on these higher-weight
enumerator polynomials.

We use these observations to aid the classification of code CFTs. In section 5.4,
we describe how to characterize the ring of polynomials defined by invariance under
higher-genus modular transformations. This allows us to count the number of po-
tentially valid genus 1 and genus 2 partition functions explicitly for n ⩽ 6. We show
that only a fraction of the valid genus 1 partition functions arise as the factorization
limit of valid genus 2 partition functions, which underlies our claim that genus 2
modular invariance is a strong constraint on the space of theories. We also discuss
how we can resolve several sets of isospectral theories – such theories have the same
genus 1 partition function, but we find different genus 2 partition functions. Finally,
in section 5.5 we point out the “enumerator polynomial form” is a useful ansatz for
the partition function that applies to many non-code theories as well. We use it to
construct modular invariant functions with a large gap in primaries.

5.2 Quantum codes and Narain CFTs

The purpose of this section is to review the construction of CFTs from error-
correcting codes. The original construction, due to [112, 113], associates chiral
CFTs to binary codes. In this chapter, we will be primarily interested in the more
recent construction, due to [21, 19], which associates non-chiral CFTs to classical
codes over F4, or equivalently, quantum stabilizer codes. None of the material pre-
sented in this section is new: it is merely meant as a review of that work. A large
part of the discussion also follows [173] – see that textbook for a more thorough
introduction.

We have included a much briefer version of this discussion in section 5.2. The
reader who wants to proceed more quickly towards the results of this chapter may
prefer to start there.

Classical codes over general fields

Error-correcting codes are designed to encode information redundantly to protect
against corruption. The classical example is the repetition code, where 0 is encoded
as 000 and 1 is encoded as 111. In the information-theoretic context then, error-
correcting codes should be thought of as a map from length-k vectors to length-n
vectors, where n > k. However for our purposes, we shall simply think of them as
a collection of codewords, i.e. as the image of this map. For classical codes, these
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elements may be vectors over F2 (for the common case of binary codes) or any other
finite field F . For quantum codes, the elements are spins, or qubits. Before turning
to quantum codes, let us briefly review some facts about codes. These ideas are also
reviewed in [114, 115], and more recently for a physics audience by [19, 160].

Additive codes are those where the sum of any two codewords is a codeword.
These may be easily specified by a generator matrix G:

c = Gx, c ∈ C ⊂ F n, x ∈ F k . (5.2.1)

Here we use C to denote the code and c to denote its element codewords. It is
clear then that G must be an n × k matrix, and that there are |F |k codewords.
Alternatively, a code may be specified by its parity check matrix H, defined to
satisfy

Hc = 0 if and only if c ∈ C . (5.2.2)

The parity check matrix is an (n − k) × n matrix, and also satisfies HG = 0. The
parity check matrix is directly useful in error correction. If a codeword is corrupted,
c→ c′ = c+ e, this can be easily detected by applying the parity check

Hc′ = H(c+ e) = He . (5.2.3)

We shall see that this step has a direct analogue when we discuss the case of quantum
error-correcting codes.

The error-correction ability of a code is directly related to how far apart its
codewords are, which is measured by the Hamming distance. The Hamming distance
d(c1, c2) for two codewords is defined as the ℓ0 norm, or the number of entries which
are different. The Hamming distance for a code is defined as the minimum distance
between any two codewords. An error-correcting code with length n, |F |k elements,
and Hamming distance d is denoted as an [n, k, d] code.

Enumerator polynomials A coarse description of a code is provided by its enu-
merator polynomial, which counts the degeneracy of codewords. The most general
such object is the complete enumerator polynomial, defined by

WC(x0, . . .) =
∑
c∈C

(
n∏

i=1

xci

)
. (5.2.4)

This is a function of |F | variables, x0, . . . , x|F |−1. The coefficient of each monomial
xn0
0 x

n1
1 , . . . is the number of codewords with n0 0s, n1 copies of the first non-zero
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element of F , and so on. Here we imagine x0 to correspond to 0 ∈ F , and the other
xi to the other elements of F in a fixed but otherwise arbitrary order.

For codes over F2, the enumerator polynomial simply counts the non-zero ele-
ments in each codeword. The number of non-zero elements is called the Hamming
weight, defined by w(c) = d(c, 0). In this case, we can write the enumerator polyno-
mial as

WC(x0, x1) =
∑
c∈C

x
n−w(c)
0 x

w(c)
1 . (5.2.5)

Error-correcting codes can be used to define lattices by embedding them into a
bigger vector space, and identifying lattice vectors as living in cosets defined by each
codeword. The classic example of this is Construction A of Leech and Sloane [117],
which associates lattices in Rn to binary codes via

Λ(C) =
{
v√
2

∣∣∣ v ∈ Zn, v ≡ c (mod 2) for some c ∈ C
}
. (5.2.6)

This identification leads to a relationship between the code enumerator polynomial
and lattice theta function:7

ΘΛ(τ) = WC
(
θ3(q

2), θ2(q
2)
)
, (5.2.7)

i.e. the lattice theta function can be found by substituting the polynomial variables
x0, . . . with Jacobi theta functions. This formula has generalizations for other fields,
including the one relevant for our purposes: F4. It has elements 0, 1 , ω , ω2 which
satisfy

ω ∗ ω2 = 1, ω + 1 = ω2, 1 + 1 = ω + ω = ω2 + ω2 = 0 . (5.2.8)

We may think of ω as being a third-root of unity (in which case the last requirement,
x+ x = 0, must be input by hand).

We shall primarily be interested in self-dual codes, since these will lead to
modular-invariant partition functions. The dual of a code over a field F is given by

C⊥ ≡ {a ∈ F n | (a, c) = 0, for allc ∈ C} . (5.2.9)

Here the algebra is over F . For fields with characteristic 2, such as F2 or F4, this
amounts to the requirement that (a, c) = 0 (mod 2). The definition of duality de-
pends on the definition of the inner product ( . ) used. We will be interested in the

7Recall the definition of the lattice theta function of a Euclidean lattice Λ: ΘΛ(τ) =
∑

λ∈Λ qλ
2/2.
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inner-product defined by

a · c =
n∑

i=1

āici + aic̄i , (5.2.10)

where ā is the complex conjugate of a when viewing ω as a third root of unity.
For a general field, code-duality acts on the Hamming enumerator polynomial by

[116]

WC⊥(x0, x1) =
1

|C|
WC(x0 + (|F | − 1)x1, x0 − x1) . (5.2.11)

Self-dual codes are for which C = C⊥. As a result, their enumerator polynomials are
unchanged under duality and WC(x0, x1) = WC⊥(x0, x1).

Example: extended Hamming [8,4,4] code The extended Hamming [8,4,4]
code is a classical binary code defined by the generator matrix

GT =


0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

 . (5.2.12)

This code has 24 = 16 codewords, which are the length 8 vectors defined by multi-
plying all 16 of the length 4 binary vectors by G. The Hamming code is the unique
doubly-even self-dual binary code of length 8. Its enumerator polynomial is

WHamming(x0, x1) = x80 + 14x40x
4
1 + x81 , (5.2.13)

were we used the formula (5.2.5).

Quantum codes

In direct analog to classical codes, quantum error-correcting codes are designed to
protect quantum information, denoted by a state |ψ⟩, from corruption. Errors in
quantum computation can take the form of an operator E acting on the |ψ⟩. These
errors are taken to be in the Pauli group Pn . The n-qubit Pauli group consists of
tensor products of I,X, Y and Z (these are the usual Pauli operators, also known by
I, σx, σy, σz) and an overall phase of ±i or ± 1. Let E denote the linear space of
errors acting on the Hilbert space. A subspace C of the n-qubit Hilbert space is said
to form a code iff

⟨ψ|E†E|ψ⟩ = c (E) , (5.2.14)

for all E ∈ E where c (E) does not depend on the state |ψ⟩ . This is referred to as
the Knill–Laflamme condition [174].
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Example: three qubit flip code Let us consider a very simplified example where
the only possible errors are acting by X which flips the states |0⟩ (spin up) and |1⟩
(spin down). We can protect against such errors by by encoding

a|0⟩+ b|1⟩ → a|000⟩+ b|111⟩ . (5.2.15)

The space of states spanned by |000⟩ and |111⟩ is called the code subspace, a subspace
of the bigger three qubit Hilbert space. Now we transmit the message, and want to
be able to correct any bit flips that may have happened. This process has two steps:
1) syndrome diagnosis, where we determine the errors, and 2) recovery, where we
return the system to its initial state.

Syndrome diagnosis is done via measurements of the four projection operators:

P0 = |000⟩⟨000|+ |111⟩⟨111| ,

P1 = |100⟩⟨100|+ |011⟩⟨011| ,

P2 = |010⟩⟨010|+ |101⟩⟨101| ,

P3 = |001⟩⟨001|+ |110⟩⟨110| .

(5.2.16)

If no bit is flipped, then measuring P0 will give 1. If only the ith bit is flipped,
then only Pi will give 1. This code is constructed to detect and correct a maximum
of 1 error on any qubit and will fail if there are two or three errors. Importantly,
measuring these operators does not change the state (which is required for us to
perform all four measurements).

The second step is recovery. In this case it is very simple – if a bit has been
flipped, we apply X to that bit to flip it back.

These steps are directly analogous to the classical case: syndrome diagnosis for
classical codes is performed by applying the parity check matrix H, and recovery is
simply the step of interpreting the message as the closest codeword. This example
was rather artificial, because we only allowed for particular kinds of errors, but it
illustrates the error-detection and recovery steps. In particular, it shows that there
are methods of detecting and correcting errors without destroying the state. Next
we shall discuss a broader class of codes, which will be relevant to our interest in
CFTs.
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Stabilizer codes

A simple way to specify the code subspace is to specify a set of operators which
stabilize that subspace. For example, the state

|ψ⟩ = 1√
2
(|00⟩+ |11⟩) (5.2.17)

is stabilized by the operators Z1Z2 and X1X2, because these do not change |ψ⟩. In
fact, up to a phase, |ψ⟩ is the unique such state. Therefore specifying the stabilizer,
in this case, completely specifies the state |ψ⟩.

There are two basic requirements for a group to stabilize a non-trivial set of
states: 1) that it does not include the element −I (which obviously cannot stabilize
any state) and 2) that all the elements commute. The latter follows because operators
in Gn either commute or anti-commute. If g1 and g2 anti-commute, then any element
|ψ⟩ which is stabilized by g1g2 cannot be stabilized by g2g1.

Now consider an operator S which is in the stabilizer of the code subspace – it
has an eigenvalue +1 for any state |ψ⟩. Then measuring S will detect any errors E
which anticommute with S, because SE|ψ⟩ = −E|ψ⟩. Each set of errors E will anti-
commute with a set of operators S, and this set of operators S defines a stabilizer
code. If S is an Abelian subgroup of order k of the Pauli group Pn and −I /∈ S,
then the space of states stabilized by all elements of S is an [[n, n − k, d]] quantum
stabilizer code. Here, d is the quantum Hamming distance of the code and is defined
as the minimum weight of an operator which commutes with S but is not in S. The
weight of an operator is the number of Xs, Y s, and Zs comprising it.

Stabilizer codes are related to classical codes over F4, discovered by Calderbank,
Rains, Shor, and Sloane [175]. The key to this relation is the Gray map between F4

and F2
2, which associates

0↔ (0, 0) , 1 ↔ (1, 1) ,

ω ↔ (1, 0) , ω̄ ↔ (0, 1) .
(5.2.18)

It is a F2-linear map that also relates the inner product (5.2.10) to the symplectic
inner product

(a, b) · (a′, b′) =
∑
i

aib
′
i + a′ibi . (5.2.19)

This map can be used to relate classical codes over F4 with quantum stabilizer
codes in the following way. Consider a classical code C over F4. Then c ∈ C is a
length-n vector whose entries are 0, 1, ω, ω2. Through the Gray map, this can be
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related to a pair of vectors, α and β, with entries in F2,

c ↔ (α, β) . (5.2.20)

The result is that each codeword c ∈ C can be used to specify a stabilizer in the
related quantum code, C∗ through the relation

g = iα·β
(
Xα1

1 Xα2
2 . . . Xαn

n

)(
Zβ1

1 Z
β2

2 . . . Zβn
n

)
. (5.2.21)

We have specified each generator by the position of itsXs and Zs, which are packaged
into the binary vectors α and β. The relationship goes both ways and a set of
stabilizers can be used to specify a set of codewords in (F4)

n, or equivalently elements
of (F2)

2n.
Representing each generator as a pair of (row) vectors lets us represent the full

set as the matrix H = [α|β]. This is broken into two n× (n− k) submatrices: A “1”
in αij means that generator gi includes Xj. A “1” in βij means that the generator gi
includes Zj. The presence of a Yj is indicated by a “1” in both α and β.

Example: Steane [7,1,3] code This is entirely specified by the stabilizer group
generated by

g1 = X4X5X6X7 ,

g2 = X2X3X6X7 ,

g3 = X1X3X5X7 ,

g4 = Z4Z5Z6Z7 ,

g5 = Z2Z3Z6Z7 ,

g6 = Z1Z3Z5Z7 .

(5.2.22)

As an example, the parity check matrix of the Steane code is

H =



0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1


. (5.2.23)

Clearly H is the quantum version of the classical parity check matrix. The condition
that the stabilizers form an Abelian subgroup equivalent to

HgHT = 0 , (5.2.24)
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where

g =

(
0 In×n

In×n 0

)
. (5.2.25)

This equation is equivalent to

gigj − gjgi = 0 ⇔ αi · βj − αj · βi ≡ 0 (mod 2) (5.2.26)

⇔ c̄i · cj − ci · c̄j ≡ 0 (over F4) . (5.2.27)

The second line here amounts to the requirement that the code over F4 is self-
orthogonal, meaning C ⊂ C⊥. Self-duality (C = C⊥) is a stronger requirement. A
vector in Fn

4 can be thought of as having real dimension 2n through the Gray map.
Therefore if C is an [n,m, d] code, then its dual will be an [n, 2n −m, d] code. As
a result, self-dual codes over F4 must be [n, n, d] codes. In fact, classical [n,m, d]
codes define quantum [[n, n − m, d̃]] codes, so we see that self-dual codes over F4

define quantum codes which cannot actual transmit any information.8 From here on
out,we will consider k to define the size of the quantum [[n, k, d̃]] code. For self-dual
codes, k = 0.

The codewords are the vectors stabilized by the generators defined by H, and the
space of all linear combinations of codewords is called the “code subspace.” Just as
in the classical case, the codewords are given by the kernel of H, with multiplication
defined in (5.2.19).

To make this more precise, we can define a binary “generator matrix” G of di-
mension 2n× (n+ k) whose columns form a basis of codewords. It must be defined
to satisfy

HgG = 0 , (5.2.28)

for all g. G can be chosen so that its first n− k rows coincide with those of H. The
remaining rows, spanning logical operations on the code subspace, will not matter
for our purposes because we have k = 0.

For the Steane code, the logical operators (operators which commute with the
stabilizers but are not in the code subspace) are

XL = X1X2X3X4X5X6X7 ,

ZL = Z1Z2Z3Z4Z5Z6Z7 .
(5.2.29)

8These are sometimes referred to as error-detection, rather than error-correction, protocols.
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The logical states or eigenstates of these logical operators are

|0⟩L =
1√
8

(
|0000000⟩+ |1010101⟩+ |0110011⟩+ |1100110⟩

+ |0001111⟩+ |1011010⟩+ |0111100⟩+ |1101001⟩
)
,

|1⟩L =
1√
8

(
|1111111⟩+ |0101010⟩+ |1001100⟩+ |0011001⟩

+ |1110000⟩+ |0100101⟩+ |1000011⟩+ |0010110⟩
)
.

(5.2.30)

The Steane code is an example of Calderbank–Shor–Steane (CSS) codes. These
codes will be interesting to us because they may be constructed from classical codes.
In particular, consider two classical binary codes, an [n, k1] code C1, and an [n, k2]

code C2, and which satisfy C2 ⊆ C1. Then we can form an [n, k1 − k2] code, denoted
CSS(C1, C2) in the following way: For a given codeword of x ∈ C1, we define

|x+ C2⟩ =
1√
|C2|

∑
y∈C2

|x+ y⟩ . (5.2.31)

If we do this for each codeword, we will end up with k1 codewords in the quantum
code. But many of these may be the same – this will happen for two codewords x and
x′ ∈ C1 whenever x− x′ ∈ C2. So in fact, the code C1 breaks into cosets determined
by the structure of C2, and the resulting code has 2k1−k2 unique codewords.

The Steane code is able to correct “arbitrary single-qubit errors.” This includes
a phase flip (applying Z to a single bit) and a single bit flip (applying X to a single
bit). We will define e1 to be a vector with a single 1, which denotes the position of
the phase flip, and a similar vector e2 to denote the position of the bit flip.

If the codewords becomes corrupted, then |ψ⟩ → |ψ′⟩ becomes

1√
|C2|

∑
y∈C2

|x+ y⟩ → 1√
|C2|

∑
y∈C2

(−1)(x+y)·e1|x+ y + e2⟩ . (5.2.32)

Syndrome diagnosis for the bit flip is accomplished by first adding auxiliary qubits
to the system, i.e. to write |x+ y + e2⟩ as |x+ y + e2⟩|0⟩aux and then mapping9

9It is a non-trivial fact that the transformation |x⟩|0⟩aux → |x⟩|Hx⟩aux can always be accom-
plished using a quantum circuit composed of CNOT gates. |x+ y+ e2⟩|0⟩aux → |x+ y+ e2⟩|H(x+
y + e2)⟩aux = |x+ y + e2⟩|He2⟩aux.

Detecting the phase flip errors is almost identical, after using a trick: a phase flip, which acts
by |0⟩ → |0⟩, |1⟩ → −|1⟩, acts the same as a bit flip in the basis |+⟩ = |0⟩+ |1⟩, |−⟩ = |0⟩ − |1⟩. So
we change basis (formally, apply a Hadamard gate) and then we see that we can detect this error
using the same procedure as for the bit flip errors.
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Enumerator polynomials for quantum codes

Using the Gray map, we can define various types of enumerator polynomials for
quantum codes. For classical codes, the enumerator polynomial will count the num-
ber of 0s, 1s, ωs, and ω2s, of each codeword. For the quantum code, this corresponds
to counting the number of Is, Y s, Xs, and Zs in each stabilizer. Therefore we define
the weights

wx(c) = 1⃗ · α, wy(c) = α · β, wz(c) = 1⃗ · β . (5.2.33)

As a result, the complete enumerator polynomial can be written as

WC(x0, x1, x2, x3) =
∑
c∈C

x
n−wx(c)−wy(c)−wz(c)
0 x

wx(c)
1 x

wy(c)
2 x

wz(c)
3 . (5.2.34)

However we will not need this. By an argument from [19], which we will revisit in
section 5.3, it is convenient to instead study the refined enumerator polynomial,

WC(x0, x1, x2) =
∑
c∈C

x
n−wx(c)−wy(c)−wz(c)
0 x

wy(c)
1 x

wx(c)+wz(c)
2 . (5.2.35)

Self-duality, on the level of the refined enumerator polynomial, takes the form of the
requirement that WC(x0, x1, x2) is invariant under10

x0 →
1

2
(x0 + x1 + 2x2) , x1 →

1

2
(x0 + x1 − 2x2) , x2 →

1

2
(x0 − x1) . (5.2.36)

We need another criterion beyond self-duality: a stabilizer code is called real if
the stabilizers are all real, i.e. the number of Y s in each stabilizer is even. What
happens if we just multiply each Y by i? This requires wy(c) to be an even number,
which means that real codes are invariant under

x1 → −x1 . (5.2.37)

CFTs from quantum codes

Having reviewed most of the required elements, we are now ready to explain the so-
called New Construction A, due to Dymarsky and Shapere, which is a construction
of non-chiral, “full,” CFTs from stabilizer codes, or equivalently from codes over F4.
The central point is that each code defines a lattice through

Λ(C) =
{
v√
2

∣∣∣v ∈ Z2n, v ≡ (α, β) (mod 2) for some (α, β) = c ∈ C
}
. (5.2.38)

10This follows from a general identity for the complete enumerator polynomial [169] (Theorem 10
of chapter 5), see also [170], Theorem 8.
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To define a CFT, we would like to think of this as a Lorentzian lattice. This can
be done by embedding Λ(C) in R2n. If we use v ↔ (a, b), which is the same as the
c↔ (α, β) basis for the codewords, then we use the symplectic metric

g =

(
0 I

I 0

)
, (5.2.39)

leading to |v|2 = 2a · b. This can be transformed to coordinates where we have the
usual Lorentzian metric, |v|2 = p2L − p2R, by defining

pL =
a+ b√

2
, pR =

a− b√
2
. (5.2.40)

When considered as a Lorentzian lattice, the following result [19] follows:

• The lattice defined by a code will be self-dual if and only if the code is self-dual.

• A lattice defined by a code will be even if and only if the code is real.

Lattices may be characterized by their theta functions, which for a Lorentzian
lattice takes the form11

ΘΛ(τ, τ̄) =
∑
v∈Λ

qp
2
L/2 q̄p

2
R/2 , q = e2πiτ , q̄ = e−2πiτ̄ . (5.2.41)

Just as in the case of Euclidean lattices, the theta function for a Lorentzian lat-
tice is related to the enumerator polynomial of its defining code. In this case, the
relationship takes the form [19]:

ΘΛ(C)(τ, τ̄) = WC(Θ3 +Θ4,Θ3 −Θ4,Θ2) , (5.2.42)

where we have defined Θm(τ, τ̄) = θm(e
2πiτ )θm(e

−2πiτ̄ ). We will give the derivation
of this formula in section 5.3 as a special case of the general-genus result.

Narain CFTs

Consider now the theory of n free bosons compactified on a lattice Γ [118, 119], i.e.
moving freely in Rn/Γ. This theory is described by the action

S = − 1

4πα′

∫
dtdσ
√
−g
(
∂µΦ

I∂µΦI + ϵµνBIJ∂µΦ
I∂νΦ

J
)
. (5.2.43)

11Here we define the theta function the following way. For a Lorentzian lattice in (n, n) signature,
move to coordinates where the metric is of the form g = In,×n⊕ (−In×,n), so that any lattice vector
can be written v = (ℓ, r). Then the lattice theta function is defined as ΘΛ =

∑
v∈Λ qℓ

2/2q̄r
2/2.

113



The antisymmetric field B is required to construct the most general theory of this
type.

Consider now the case where spacetime is also a 2d torus. Then periodicity
requires that Φ⃗(t, σ) ∼ Φ⃗(t, σ + 2π). But the lattice compactification implies we
have also identified Φ⃗(t, σ) ∼ Φ⃗(t, σ) + 2πλ⃗, where λ⃗ ∈ Γ (note that Γ is different
from Λ, which will be formed from Γ and Γ∗). So the most general possibility is

Φ⃗(t, σ + 2π) = Φ⃗(t, σ) + 2πλ⃗ , (5.2.44)

where λ⃗ is zero or any other element of Γ. Now consider the following solution to
the equations of motion:

Φ⃗L(t+ σ) =
1

2
Φ⃗(0, 0) +

1

2
α′(t+ σ)p⃗L +

1

2
i
∑
n̸=0

a⃗n
n
e−in(t+σ) , (5.2.45)

Φ⃗R(t+ σ) =
1

2
Φ⃗(0, 0) +

1

2
α′(t− σ)p⃗R +

1

2
i
∑
n̸=0

b⃗n
n
e−in(t+σ) , (5.2.46)

where Φ⃗(t, σ) = Φ⃗L(t+σ)+Φ⃗R(t−σ). From the solution, we see that if σ → σ+2π,
then

Φ⃗→ Φ⃗ + πα′(p⃗L − p⃗R) . (5.2.47)

Thus if the periodicity condition of (5.2.44) is to be satisfied, we must have

1

2
α′(p⃗L − p⃗R) = λ⃗ ∈ Γ . (5.2.48)

Furthermore, compactification on the lattice Γ implies that the momenta P⃗ is in the
dual lattice Γ∗. By computing the canonical momentum, we find that

V⃗ = α′P⃗ +Bλ⃗ , (5.2.49)

where V⃗ is defined as the coefficient multiplying t in the solution Φ⃗(t, σ). From
(5.2.46), it must be

V⃗ =
1

2
α′(p⃗L + p⃗R) . (5.2.50)

Solving for p⃗L and p⃗R, we find

p⃗L = P⃗ +
1

α′ (B + I)λ⃗, p⃗R = P⃗ +
1

α′ (B − I)λ⃗ . (5.2.51)

The set of all (p⃗L, p⃗L) in this parametrization forms the lattice Λ. From here on,
we will set α′ = 2 to keep p⃗L and p⃗R dimensionless, as they are in the previous
subsection.
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The Narain theories have a U(1)n × U(1)n symmetry, corresponding to moving
Φ⃗L or Φ⃗R around the compact directions. The primary operators with respect to
this symmetry are

VpL,pR = eip⃗LΦ⃗Leip⃗RΦ⃗R . (5.2.52)

Since the elements v of the lattice Λ are labeled by p⃗L and p⃗R, we see that we have
a single primary for each lattice vector. The weights of these primaries are simply
h = p2L/2, h̄ = p2R/2.

The characters of the U(1)n × U(1)n symmetry group are

χh,h̄(τ, τ̄) =
qhq̄h̄

η(τ)nη(τ̄)n
. (5.2.53)

Therefore, the final result for the partition function takes the form

Z(τ, τ̄) =
∑
v∈Λ

qp
2
L/2q̄p

2
R/2

η(τ)nη(τ̄)n
. (5.2.54)

The numerator of this sum is precisely the lattice theta function introduced
in (5.2.41). Combining this with the result (5.2.42) yields a formula for the genus 1
partition function:

ZC =
WC(Θ3 +Θ4,Θ3 −Θ4,Θ2)

2n|η(τ)|2n
, (5.2.55)

for the CFT defined by the code. The numerator in this expression is simply the
refined enumerator polynomial, evaluated at combinations of the Jacobi theta func-
tions in the notation Θm(τ, τ̄) = θm(e

2πiτ )θm(e
−2πiτ̄ ).

Code theories

We have now reviewed how a code C defines a Lorentzian lattice Λ(C), via (5.2.38),
and how a lattice Λ defines a CFT, essentially through the definition of the vertex
operators (5.2.52), where (p⃗L, p⃗R) ∈ Λ. Thus it is clear how to associate a CFT to
a code.

In practice, however, different codes may define the same theory, and it may be
useful to have a way of classifying all distinct theories. There is a large group of
code equivalences, which are transformations between codes which define the same
theory. They include permuting the components of codewords and swapping Xi and
Zi for any i. These lead to different lattices which are related by T-dualities, so the
corresponding CFT will ultimately be the same. In fact, all T-dualities which relate
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two code theories are of this form, i.e. permutations of components and swaps of X
and Z [19].

Recall now that self-dual real codes can be specified by n pairs of (row) vectors
(αi, βi), which define the code’s generator matrix:

GT =


α1

α2

...
αn

β1

β2
...
βn

 . (5.2.56)

One of the main results of [19] is that, due to code equivalences, every code theory
defined from New Construction A can be described by a code whose generator matrix
has the form

GT =
(
B I

)
, (5.2.57)

where B is an antisymmetric binary matrix. Codes in this form are called B-form
codes. Therefore the result can be stated in the following way: any real self-dual
code is equivalent to a B-form code. The generators for a B-form code take the form

gi = Zi

n∏
j=1

(Xj)
Bij . (5.2.58)

One way to organize the set of possible matrices B is through graphs. A graph
can be defined by an adjacency matrix M where the entry Mij contains information
about the link between node i to node j. B is a binary antisymmetric matrix, which
is equivalent (mod 2) to a symmetric matrix with zeroes on the diagonal. Hence the
resulting graph is undirected and has no self-links. The end result is that, due to
code equivalences, each code theory can be represented by a binary n×n matrix B or
by an undirected graph with n nodes. We shall use both throughout this chapter.12

Recap and overview

Since this section includes a number of diverse elements, we will conclude with an
executive summary.

12The B-form, and related graph, are not necessarily unique. This is due to the existence of
certain T-dualities that relate two different B-form codes. These act on the graphs. This issue is
important for the classification of code theories in [19].
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Codes A stabilizer code is defined by its codewords, which take the form

g = iα·β
(
Xα1

1 Xα2
2 . . . Xαn

n

)(
Zβ1

1 Z
β2

2 . . . Zβn
n

)
. (5.2.59)

Here n is the dimension of the code space. The number of generators is k, so there
are 2k codewords. The set of codewords can then be specified by the length-n binary
vectors α and β. There is one pair (α, β) for each codeword.

The Gray map (5.2.18) associates tuples in F2 with elements of F4. This allows a
pair (α, β) of binary vectors to be combined into a vector over F4, which we denote
c. We then think of the collection of cs as elements of a code over F4.

Enumerator polynomials There is a natural definition of enumerator polynomi-
als for codes over general fields, so the Gray map allows us to define an enumerator
polynomial for our quantum codes. First we define the weights

wx(c) = 1⃗ · α, wy(c) = α · β, wz(c) = 1⃗ · β . (5.2.60)

The enumerator polynomial of interest for us is the refined enumerator polynomial

WC(x0, x1, x2) =
∑
c∈C

x
n−wx(c)−wy(c)−wz(c)
0 x

wy(c)
1 x

wx(c)+wz(c)
2 . (5.2.61)

The abelian group structure of the stabilizer codes already ensures that all F4 codes
defined this way are additive and self-orthogonal (C ⊂ C⊥). The F4 code will be
even provided that the quantum codes are real, meaning all generators g in the
form (5.2.59) are real. Self-duality is equivalent to the requirement that the code
is self-orthogonal, which is automatically satisfied, plus the requirement that |C| =
|C⊥|. This means that the F4 code is an [n, n, d] code, so the quantum code has
n generators. The enumerator polynomials of such codes are invariant under the
transformations

x0 →
1

2
(x0 + x1 + 2x2) , x1 →

1

2
(x0 + x1 − 2x2) , x2 →

1

2
(x0 − x1) , (5.2.62)

and

x1 → −x1 . (5.2.63)

Lattices Codes over F4 define lattices via

Λ(C) =
{
v√
2

∣∣∣v ∈ Z2n, v ≡ (α, β) (mod 2) for some (α, β) = c ∈ C
}
. (5.2.64)
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It follows from the definition that the lattice will be self-dual if the code is self-dual
(with respect to the symplectic metric), and it will be even if the code is real.

Lattices are characterized by their theta functions, defined in (5.2.41). The lat-
tice theta function can be directly computed from the error-correcting code via the
formula

ΘΛ(C)(τ, τ̄) = WC(Θ3 +Θ4,Θ3 −Θ4,Θ2) , (5.2.65)

with Θm(τ, τ̄) = θm(e
2πiτ )θm(e

−2πiτ̄ ).

CFT partition function The code CFT is defined as the Narain theory associated
to the lattice,

ZCFT =
∑
h,h̄

χh,h̄ , (5.2.66)

for the U(1)n × U(1)n characters (5.2.53). Via the lattice construction, we related
this to the enumerator polynomial, and arrived at the expression

ZC =
WC(Θ3 +Θ4,Θ3 −Θ4,Θ2)

2n|η(τ)|2n
, (5.2.67)

for the CFT defined by the code. The numerator in this expression is simply given
by the refined enumerator polynomial; the denominator is a universal factor, corre-
sponding to a one-loop determinant.

The conformal weights in (5.2.66) are given by

(h, h̄) =

(
1

2
p⃗ 2
L,

1

2
p⃗ 2
R

)
, (p⃗L, p⃗R) =

(
a+ b

2
,
a− b
2

)
, a = 2P⃗ +Bλ⃗, b = λ⃗ ,

(5.2.68)
where λ⃗ and P⃗ take all values in the integer lattice Zn. A parametrization in terms
of the codewords c↔ (α, β) (using the Gray map), is

(p⃗L, p⃗R) =

(
a+

α

2
, b+

β

2

)
, a, b ∈ Zn, (α, β)↔ c . (5.2.69)

The sum over all (p⃗L, p⃗R) then becomes a sum over all codewords c and all integer
values for a and b.

Modular invariance of the partition function (5.2.67) follows from MacWilliams
identities (5.2.62) and (5.2.63). One can check that the involved Jacobi theta func-
tions in Θm(τ, τ̄) satisfies transformation identities under the modular T and S trans-
formations. These may introduce powers of |τ |. These factors are compensated for
by the corresponding transformations of |η(τ)|2.
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B-form codes There are a number of code equivalences which relate different
codes to the same theory. These equivalences act as T-dualities at the level of the
CFT. The result is that all real self-dual codes are equivalent to a code with the
form

GT =


α1

α2

...
αn

β1

β2
...
βn

 =
(
B I

)
, (5.2.70)

where B is an antisymmetric binary matrix. The generators (5.2.59) of codes in this
form are simply given by

gi = Zi

n∏
j=1

(Xj)
Bij (5.2.71)

Therefore every code theory can be specified by (at least) one binary antisymmetric
n×n matrix B. Such matrices can be used to define undirected graphs with n nodes
and no self-links

Example: n = 3 code Let us illustrate these elements with a simple example.
Take

B =

0 1 1

1 0 1

1 1 0

 . (5.2.72)

This corresponds to the graph complete graph on 3 vertices (see figure 5.1).

Figure 5.1: Graph defining the matrix in equation (5.2.72).

We can use this to compute the generators:

g1 = Z1X2X3 , (5.2.73)

g2 = X1Z2X3 , (5.2.74)

g3 = X1X2Z3 . (5.2.75)

119



The full set of elements is then G = {I, g1, g2, g3, g1g2, g1g3, g2g3, g1g2g3}. This
allows us to compute the refined enumerator polynomial using (5.2.61). The result
is

W̃3(x0, x1, x2) = x30 + 3x0x
2
1 + 4x32 . (5.2.76)

This agrees with equation (6.21) of [19], and is equal to the W̃3 used in the introduc-
tion. Here the tilde denotes that this is the extremal code at n = 3. We will return
to this topic in section 5.4.

5.3 Narain lattices and code theories at higher genus

The goal of this section is to spell out the relation between quantum error-correcting
codes and CFT partition functions at higher genus. Recall that a quantum error-
correcting code can be specified by a collection of generators g which satisfies certain
properties. Each codeword is essentially a string of Pauli matrices, described by the
symbols 1, X, Y, Z, which can also be specified by a pair of binary vectors (α, β). By
relating the Pauli matrices to the elements of F4 = {0, ω, 1, ω2} via the Gray map,
there is a relation to classical codes over F4.

In this section we will give a construction at higher-genus that is the exact coun-
terpart of (5.2.67). This will give a genus g partition function of the form

Z(g)(Ω, Ω̄) =
fn
(
Θm(Ω, Ω̄)

)
|Φg|

. (5.3.1)

Here Ω is the period matrix of the genus-g Riemann surface, which is the direct
higher-genus analog of the complex structure parameter τ . |Φg| generalizes the con-
tribution of 2n|η(τ)|2n in the genus 1 case and takes into account the contribution
to the partition function due to oscillator modes. Formally, |Φg| = |det′∂̄|n, which
corresponds to the determinant of the Laplacian operator ∂̄ on the genus-g Riemann
surface with zero modes removed [176]. This does not depend on the choice of Narain
Lattice so it will not factor into our discussion.

Finally, fn is a degree n homogeneous polynomial in 2g−1(2g +1) theta functions
Θm. In this chapter, we will relate fn(Θm) to the refined higher-weight enumerator
polynomial, which we will define below.
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Higher-weight theta functions

Given a Euclidean lattice Λ, it is natural to define the higher-weight lattice theta
series

ΘΛ(Ω) =
∑
v1∈Λ

· · ·
∑
vg∈Λ

exp (2πiviΩijvj) , (5.3.2)

which is an analytic function of the Siegel upper half plane Hg, defined by

Hg =
{
Ω ∈ Matg×g(C)|Ω = ΩT , ImΩ ≻ 0

}
, (5.3.3)

with known modular transformation properties. In general, ΘΛ will evaluate to a
combination of higher-weight theta functions, see [177, 178, 179], [124], or [123].
Their general definition is through the sum

θ

[
m

n

]
(z,Ω) =

∑
k∈Zg

(−1)2(k+m)·(z+n) exp (iπ(k +m) · Ω(k +m)) , (5.3.4)

where all quantities in bold font are length-g (column) vectors. The theta functions
(5.3.4) have well-known transformation properties under the genus g modular maps,
which will be discussed in detail in section 5.3.

A number of the theta functions have a zero at z = 0, generalizing the statement
that θ1(q) = 0 in the genus 1 case. To see this at higher genus, we first introduce
the notation

Θm(Ω, Ω̄) = θm(Ω)θm(Ω), m ∈ eveng . (5.3.5)

For Θm in (5.3.5) to be non-zero, m ranges over the set of genus-g even characteristics
– the subset of {1, 2, 3, 4}g that contains an even number of “1”s. There are 2g−1(2g+

1) such even characteristics. For example, at genus 1 and 2, the theta functions are
indexed by

even1 = {2, 3, 4} , even2 = {11, 22, 23, 24, 32, 33, 34, 42, 43, 44} . (5.3.6)

The holomorphic function θm(Ω) in (5.3.5) is defined by

θm(Ω) = θ

[
a(m)

b(m)

]
(0,Ω) , (5.3.7)

where a(m) and b(m) have entries according to

mi = 1 : (ai, bi) = (1
2
, 1
2
) , mi = 2 : (ai, bi) = (1

2
, 0) , (5.3.8)

mi = 3 : (ai, bi) = (0, 0) , mi = 4 : (ai, bi) = (0, 1
2
) . (5.3.9)

121



For instance, at genus 1, we have

θ2(τ) = θ

[
1/2

0

]
(0, τ) , θ3(τ) = θ

[
0

0

]
(0, τ) , θ4(τ) = θ

[
0

1/2

]
(0, τ) ,

(5.3.10)
which are the usual Jacobi theta functions.

Factorization limit In the analysis of higher-genus partition functions we will
make use of the “factorization limit,” where a genus g Riemann surface degenerates
into two parts of genus g−h and h respectively, connected by an infinitely long thin
tube. In this limit, Ω becomes block-diagonal,

Ωg → Ωg−h ⊕ Ωh , (5.3.11)

and it is easy to verify that

Θa1a2···ag(Ωg)→ Θa1a2···ag(Ωg−h ⊕ Ωh) = Θa1···ag−h
(Ωg−h)Θag−h+1···ag(Ωh) . (5.3.12)

From code to lattice theta series

The lattice theta series is a function of the period matrices. At genus g = 1, there
is a definition of a theta function on a Lorentzian lattice Λ, defined by

Θ
(1)
Λ (q, q̄) =

∑
(p⃗L,p⃗R)∈Λ

q
p⃗L·p⃗L

2 q̄
p⃗R·p⃗R

2 . (5.3.13)

With this definition, the generalization of to genus 2 is

Θ
(2)
Λ (q, q̄, r, r̄, s, s̄) =

∑
(p⃗L,p⃗R),(k⃗L ,⃗kR)∈Λ

q
p⃗L·p⃗L

2 q̄
p⃗R·p⃗R

2 rp⃗L ·⃗kL r̄p⃗R ·⃗kRs
k⃗L·k⃗L

2 s̄
k⃗R·k⃗R

2 . (5.3.14)

Here q, r, and s are defined by

q = e2iπΩ11 , r = e2iπΩ12 , s = e2iπΩ22 , q̄ = e−2iπΩ̄11 , r̄ = e−2iπΩ̄12 , s̄ = e−2iπΩ̄22 .

(5.3.15)

Derivation at genus 1

Consider the (complete) genus 1 enumerator polynomial, introduced in (5.2.34),

W
(1)
C (x0, x1, x2, x3) =

∑
c∈C

x
n−wx(c)−wy(c)−wz(c)
0 x

wx(c)
1 x

wy(c)
2 x

wz(c)
3 . (5.3.16)
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We will now write it in a different form, which is suitable for generalizations both to
arbitrary fields and to higher genus,

W
(1)
C (x[1], x[X], x[Y ], x[Z]) =

∑
c⃗∈C

n∏
i=1

x[ci] . (5.3.17)

where x[1] = x0, x[X] = x1, x[Y ] = x2 and x[Z] = x3. Each code-word c has entries
ci, taking the value in a size four set. We have given three equivalent formulations,
where this set is

{1, X, Y, Z} ≃ {0, ω, 1, ω2} ≃ {(0, 0), (1, 0), (1, 1), (0, 1)} . (5.3.18)

The first of these equivalences correspond to relating the quantum code to a classical
code over F4. The second corresponds to using the Gray map, and is what will be
used when relating the quantum error-correcting code to the theta function of a
Lorentzian lattice. We write

ci ↔ (αi, βi) . (5.3.19)

The genus 1 theta series of the Lorentzian lattice Λ(C) associated to the code C
by (5.2.38), is given by

ΘΛ(C) =
∑
c⃗∈C

n∏
i=1

∑
ai∈Z

∑
bi∈Z

q
1
2
(ai+

αi
2
+bi+

βi
2
)2 q̄

1
2
(ai+

αi
2
−bi−

βi
2
)2 , (5.3.20)

where we substituted (5.2.40) into (5.3.13).
Let us study the contribution in (5.3.20) from a given c⃗ in the outermost sum

and a given i in the product. This corresponds to determining

Th(x[ci]) :=
∑
ai∈Z

∑
bi∈Z

q
1
2(ai+

αi
2
+bi+

βi
2 )

2

q̄
1
2(ai+

αi
2
−bi−

βi
2 )

2

. (5.3.21)

We would like to simplify (5.3.21) so that it splits into two terms, in such a way
that in each term the two infinite sums separate. This is achieved by introducing
the summation variables

µ = ai + bi, ν = ai − bi, (5.3.22)

and summing over even values of µ + ν. The restriction to even µ + ν can be
implemented by inserting the “complicated unit” 1+(−1)µ+ν

2
. With this substitution,

Th(x[ci]) =
1

2

(∑
µ∈Z

q
1
2(µ+

αi+βi
2 )

2
)(∑

ν∈Z

q̄
1
2(ν+

αi−βi
2 )

2
)

+
1

2

(∑
µ∈Z

(−1)µq
1
2(µ+

αi+βi
2 )

2
)(∑

ν∈Z

(−1)ν q̄
1
2(ν+

αi−βi
2 )

2
)
. (5.3.23)
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Depending on the values of αi and βi, each of the factor in (5.3.23) evaluates to one
of the Jacobi theta functions

(αi, βi) = (0, 0) , Th(x[1]) =
1

2
(θ3(q)θ3(q̄) + θ4(q)θ4(q̄)) , (5.3.24)

(αi, βi) = (1, 0) , Th(x[X]) =
1

2
(θ2(q)θ2(q̄) + θ1(q)θ1(q̄)) , (5.3.25)

(αi, βi) = (1, 1) , Th(x[Y ]) =
1

2
(θ3(q)θ3(q̄)− θ4(q)θ4(q̄)) , (5.3.26)

(αi, βi) = (0, 1) , Th(x[Z]) =
1

2
(θ2(q)θ2(q̄)− θ1(q)θ1(q̄)) . (5.3.27)

Now we can see why we introduced the refined enumerator polynomial with x[X] =

x[Z], since Th(x[X]) = Th(x[Z]) by the vanishing of θ1(q).

Derivation at higher genus

It is natural to consider the higher-genus enumerator polynomial of a code over F ,

W
(g)
C (x[A]) :=

∑
M∈Cg

n∏
i=1

x[rowi(M)] . (5.3.28)

This is a polynomial in |F |g variables x[A], where A ∈ F g. Here the sum is over all
possible g-tuples of codewords, packaged into the n× g matrix M.

Having worked out the derivation of the genus 1 lattice theta series from a code,
the generalization to higher-genus is straightforward.

The higher-weight enumerator polynomial (5.3.28) is a sum over g-tuples of code-
words, where each summand is a product over the entries indexed by i. We will now
study each factor in such a product, i.e. for a fixed set of codewords c⃗(1), . . . , c⃗(g)
and index i. Define ci with components (c(1),i, . . . , c(g)i), and further ci ∼ (αi,βi)

by (5.3.19). Then

Th(x[ci]) =
∑
a∈Zg

∑
b∈Zg

exp

(
2πi

2

(
a+ αi

2
+ b+ βi

2

)
Ω
(
a+ αi

2
+ b+ βi

2

))
× exp

(
2πi

2

(
a+ αi

2
− b− βi

2

)
Ω̄
(
a+ αi

2
− b− βi

2

))
.

(5.3.29)

Now let µ = a+ b and ν = a− b, and write the sum as

∑
a∈Zg

∑
b∈Zg

(· · · ) = 1

2g

∑
µ∈Zg

∑
ν∈Zg

g∏
h=1

(
1 + (−1)µ(h)+ν(h)

)
(· · · ) (5.3.30)
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It is now clear that the resulting expression,

Th(x[ci]) =
1

2g

∑
µ∈Zg

∑
ν∈Zg

exp
(
πi
(
µ+ αi+βi

2

)
Ω
(
µ+ αi+βi

2

))
× exp

(
πi
(
ν + αi−βi

2

)
Ω̄
(
ν + αi−βi

2

)) g∏
h=1

(
1 + (−1)µ(h)+ν(h)

)
,

(5.3.31)

will be a linear combination of the Θm(Ω, Ω̄) defined in (5.3.5) above.
In general, the variable x[ci] for ci ↔ (αi,βi) maps to

Th(x[ci]) =
∑
r1

∑
r2

· · ·
∑
rg

(−1)σ1(r1)+σ2(r2)+...+σg(rg)Θr1r2···rg(Ω, Ω̄) , (5.3.32)

where the sum over rh is determined by the following

(α(h),i, β(h),i) = (0, 0) rh = 3, 4, σh(3) = σh(4) = 0 , (5.3.33)

(α(h),i, β(h),i) = (1, 0) rh = 2, 1, σh(2) = σh(1) = 0 , (5.3.34)

(α(h),i, β(h),i) = (1, 1) rh = 3, 4, σh(3) = 0, σh(4) = 1 , (5.3.35)

(α(h),i, β(h),i) = (0, 1) rh = 2, 1, σh(2) = 0, σh(1) = 1 . (5.3.36)

Explicit formulas at genus 2

Like the case at genus 1, some of the variables in the complete enumerator polynomial
map to identical theta functions. At genus two, there are ten non-zero theta functions
Θm, while six theta functions identically vanish: Θ12 = Θ13 = Θ14 = Θ21 = Θ31 =

Θ41 = 0. Taking this into account, we find that

y0 := x[11] 7→ Θ33 +Θ34 +Θ43 +Θ44 , (5.3.37)

y1 := x[1Y ] 7→ Θ33 −Θ34 +Θ43 −Θ44 , (5.3.38)

y2 := x[Y 1] 7→ Θ33 +Θ34 −Θ43 −Θ44 , (5.3.39)

y3 := x[Y Y ] 7→ Θ33 −Θ34 −Θ43 +Θ44 , (5.3.40)

y4 := x[1X] = x[1Z] 7→ Θ32 +Θ42 , (5.3.41)

y5 := x[X1] = x[Z1] 7→ Θ23 +Θ24 , (5.3.42)

y6 := x[XX] = x[ZZ] 7→ Θ11 +Θ22 , (5.3.43)

y7 := x[Y X] = x[Y Z] 7→ Θ32 −Θ42 , (5.3.44)

y8 := x[XY ] = x[ZY ] 7→ Θ23 −Θ24 , (5.3.45)

y9 := x[XZ] = x[ZZ] 7→ −Θ11 +Θ22 . (5.3.46)
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We see that compared to the original 16 code variables x[cic′i], we are now considering
a subspace spanned by ten variables yi. This is the genus 2 version of going from
the complete enumerator polynomial to the refined enumerator polynomial.

One may also write an expression that gives the genus two enumerator polynomial
directly in terms of the yi, but the resulting formula is not particularly illuminating:

Wg=2(y0, . . . , y9) =
∑
c∈C

∑
c̃∈C

y
|(1−α)∧(1−β)∧(1−α̃)∧(1−β̃)|
0 y

|(1−α)∧(1−β)∧α̃∧β̃|
1 y

|α∧β∧(1−α̃)∧(1−β̃)|
2

× y|α∧β∧α̃∧β̃|3 y
|(1−α)∧(1−β)∧α̃∧(1−β̃)|+|(1−α)∧(1−β)∧(1−α̃)∧β̃|
4

× y|α∧(1−β)∧(1−α̃)∧(1−β̃)|+|(1−α)∧β∧(1−α̃)∧(1−β̃)|
5

× y|α∧(1−β)∧α̃∧(1−β̃)|+|(1−α)∧β∧(1−α̃)∧β̃|
6 y

|α∧β∧α̃∧(1−β̃)|+|α∧β∧(1−α̃)∧β̃|
7

× y|α∧(1−β)∧α̃∧β̃|+|(1−α)∧β∧α̃∧β̃|
8 y

|(1−α)∧β∧α̃∧(1−β̃)|+|α∧(1−β)∧(1−α̃)∧β̃|
9 ,

(5.3.47)

where ∧ denotes the component-wise “and” operator.
We are also interested in the factorization limit (5.3.12) in terms of code variables.

For the case of genus 2, it takes the form

y0 7→ x0x
′
0 , y1 7→ x0x

′
1 , y2 7→ x1x

′
0 , y3 7→ x1x

′
1 , y4 7→ x0x

′
2 ,

y5 7→ x2x
′
1 , y6 7→ x2x

′
2 , y7 7→ x1x

′
2 , y8 7→ x2x

′
1 , y9 7→ x2x

′
2 , (5.3.48)

where the xi refer to variables on the left genus 1 Riemann surface and x′i to the
variables on the right genus 1 Riemann surface.

From theta relations to polynomial relations

The goal now will be to study the transformation properties of the higher-weight
theta functions in order to determine how they lift to transformations of the enu-
merator polynomials. The modular transformations are

Ω 7→ Ω′ = (AΩ +B)(CΩ +D)−1, Γ =

(
A B

C D

)
∈ Sp(2g,Z) . (5.3.49)

The corresponding transformations of the higher-genus theta functions is given by
[177] (see also e.g. [124])

θ

[
a′

b′

]
(0,Ω′) = ϵ(Γ) exp(−iπϕ(a, b,Γ))

√
det(CΩ +D) θ

[
a

b

]
(0,Ω) , (5.3.50)

where (
a′

b′

)
=

(
D −C
−B A

)(
a

b

)
+

1

2

(
(CDT )diag

(ABT )diag

)
, (5.3.51)
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where ϵ(Γ) is a phase which is an eighth root of unity, ϕ(a, b,Γ) = a ·DTBa + b ·
CTAb − 2a · BTCb + (a · DT − b · CT )(ABT )diag, and Mdiag denotes the diagonal
entries of a matrix M , seen as a column vector.

In our construction, the theta functions always come in pairs θ(Ω)θ(Ω̄), so any
phases appearing from the modular transformations will cancel between the holomor-
phic and antiholomorphic parts. Furthermore, under the modular transformations
5.3.49, the denominator |Φg| transforms covariantly with modular weights (n

2
, n
2
).

This is required to cancel the square-root factor in (5.3.50).
Consider now the set of Sp(2g,Z) transformation acting on the theta functions

Θm. Up to the weights imposed by the square-root factor in (5.3.50), such transfor-
mations amount to mapping the Θm among each other. We now wish to lift these
relations to the polynomial variables. It is clear that we only need to exhibit this lift
for the generators of Sp(2g,Z).

As a warm-up, consider the case g = 1. We can take as generators

T : τ 7→ τ + 1, S : τ 7→ −1

τ
. (5.3.52)

The corresponding transformations of the Jacobi theta functions induce

T :


Θ2(τ + 1) = Θ2(τ) ,

Θ3(τ + 1) = Θ4(τ) ,

Θ4(τ + 1) = Θ3(τ) ,

S :


Θ2(−1/τ) = |τ |Θ4(τ) ,

Θ3(−1/τ) = |τ |Θ3(τ) ,

Θ4(−1/τ) = |τ |Θ2(τ) .

(5.3.53)

These relations lift to

T :


x0 7→ x0 ,

x1 7→ −x1 ,

x2 7→ x2 ,

S :


x0 7→ 1

2
(x0 + x1 + 2x2) ,

x1 7→ 1
2
(x0 + x1 − 2x2) ,

x2 7→ 1
2
(x0 − x1) ,

(5.3.54)

which are exactly the MacWilliams identities (5.2.36) and (5.2.37) given in sec-
tion 5.2.

To generalize to higher genus, it is convenient to use the generators of Sp(2g,Z)
as given by [130] and reviewed in [160]. At genus g = 2 and g = 3, there are three
generators; in all other cases there are only two. At genus 2, the generators can be
taken to be T , R, and D, with the corresponding matrices Γ of the form

T : Γ =


1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

 , R : Γ =


1 0 0 0

1 1 0 0

0 0 1 −1
0 0 0 1

 , D : Γ =


0 1 0 0

0 0 −1 0

0 0 0 1

1 0 0 0

 .

(5.3.55)
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These are related to the more familiar set of genus 2 generators, T1, T2, U , S1, S2,
by the following:

T1 = T , T2 = D−1TD, U = DRD−1 , S1 = TD2TD2T , S2 = DRD2RD2R ,

(5.3.56)
where D−1 = D7. Using (5.3.50), the transformations of the theta functions
Θm(Ω, Ω̄) can be determined, and the corresponding equations for the polynomial
variables are

T1 :


y2 7→ −y2 ,

y3 7→ −y3 ,

y7 7→ −y7 ,

T2 :


y1 7→ −y1 ,

y3 7→ −y3 ,

y8 7→ −y8 ,

U :


y7 7→ −y7 ,

y8 7→ −y8 ,

y9 7→ −y9 ,

(5.3.57)

S1 :



y0 7→ 1
2
(y0 + y2 + 2y5) ,

y1 7→ 1
2
(y1 + y3 + 2y8) ,

y2 7→ 1
2
(y0 + y2 − 2y5) ,

y3 7→ 1
2
(y1 + y3 − 2y8) ,

y4 7→ 1
2
(y4 + y6 + y7 + y9) ,

y5 7→ 1
2
(y0 − y2) ,

y6 7→ 1
2
(y4 + y6 − y7 − y9) ,

y7 7→ 1
2
(y4 − y6 + y7 − y9) ,

y8 7→ 1
2
(y1 − y3) ,

y9 7→ 1
2
(y4 − y6 − y7 + y9)

S2 :



y0 7→ 1
2
(y0 + y1 + 2y4) ,

y1 7→ 1
2
(y0 + y1 − 2y4) ,

y2 7→ 1
2
(y2 + y3 + 2y7) ,

y3 7→ 1
2
(y2 + y3 − 2y7) ,

y4 7→ 1
2
(y0 − y1) ,

y5 7→ 1
2
(y5 + y6 + y8 + y9) ,

y6 7→ 1
2
(y5 + y6 − y8 − y9) ,

y7 7→ 1
2
(y2 − y3) ,

y8 7→ 1
2
(y5 − y6 + y8 − y9) ,

y9 7→ 1
2
(y5 − y6 − y8 + y9) .

(5.3.58)

5.4 Partition functions for code theories

In the previous section, we have described how code CFTs are constrained by modular
invariance for general genus, and by factorization limits, which relate different genera.
Now we shall explicitly demonstrate how to use these requirements to constrain
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the space of possible code theories. This is essentially a primitive example of the
modular bootstrap – because modular invariance is so simple for the code theories, we
can enumerate all of its possible solutions. Genus 1 modular invariance completely
determines all of the n = 1 and n = 2 code theories. We shall see that genus 2
considerations are enough to fix the space of n = 3 code theories, so this will be
our primary example, given in section 5.4. At n > 3, genus 2 constraints greatly
reduce the space of theories but do not entirely fix them. We will summarize the
classification of invariant polynomials for general n in section 5.4, and for n ⩽ 6 we
will compare the number of valid (modular invariant polynomial with positive integer
coefficients) genus 1 partition functions, genus 2 partition functions, and actual code
theories in section 5.4.

Finding invariant polynomials: example at n = 3

Let us start by presenting the case n = 3 in full detail. For genus 1, the most general
homogeneous degree 3 polynomial is

P (1)
gen[3] = x30 + a2,1,0x

2
0x1 + a2,0,1x

2
0x2 + . . . , (5.4.1)

which has 10 terms in total. Now recall that for genus 1, modular invariance implies
that the polynomial is invariant under

S : x0 →
1

2
(x0 + x1 + 2x2) , x1 →

1

2
(x0 + x1 − 2x2) , x2 →

1

2
(x0 − x1) ,

T : x1 → −x1 .
(5.4.2)

This fixes all but two of the undetermined coefficients, so we are left with

P
(1)
inv [3] = x30 + (4− a0,0,3)x0x22 + (−1 + a0,0,3)x0x

2
1

+ (4− a0,0,3 − a0,2,1)x20x2 + a0,2,1x
2
1x2 + a0,0,3x

3
2 .

(5.4.3)

Requiring that all of these coefficients are non-negative leads to the inequalities

0 ≤ a0,2,1 ≤ 3, 1 ≤ a0,0,3 ≤ 4− a0,2,1 , (5.4.4)

which can be displayed as the two-dimensional region shown in figure 5.2(a). Finally,
we require that each of these coefficients is an integer, which leads to 10 solutions,
the dots in figure 5.2(a).

Now consider genus two. We again write the most general polynomial and then
impose modular invariance using (5.3.57)–(5.3.58). The result is a large polynomial

P
(2)
inv [3] = y30 + a0,0,0,0,0,0,0,1,1,1y3y7y8 + . . . , (5.4.5)
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(a)

(b)

Figure 5.2: Allowed regions for n = 3. Plot (a): 2d region for genus 1. Dots represent
polynomials with integer coefficients. Red dots, appearing at (0, 1), (3, 1), (1, 2),
and (0, 4), represent factorization limits of genus 2 polynomials, as well as physical
code theories. Plot (b): rough 3d plot of genus 2 allowed region. Remarkably, the
factorizing, positive integer solutions lie on the vertices of this polytope!

which has a total of 48 terms and 3 undetermined parameters. Requiring positivity
of all coefficients again gives a finite region, which we have displayed in figure 5.2
(b). If we require that the coefficients are all integers, we find 11 solutions. So there
are 11 potential genus 2 partition functions.
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However code theories must have genus 2 partition functions which factorize into
genus 1 partition functions in the limit where the genus 2 Riemann surface becomes
degenerate. Recall that this limit gives

y0 7→ x0x
′
0 , y1 7→ x0x

′
1 , y2 7→ x1x

′
0 , y3 7→ x1x

′
1 , y4 7→ x0x

′
2 ,

y5 7→ x2x
′
1 , y6 7→ x2x

′
2 , y7 7→ x1x

′
2 , y8 7→ x2x

′
1 , y9 7→ x2x

′
2 . (5.4.6)

Doing this, one finds that only four factorize of the genus 2 polynomials factorize into
genus 1 polynomials, and in fact these are precisely the four the genus 1 polynomials
which come from actual codes via New Construction A, given in (5.1.7)-(5.1.10)! The
factorizing polynomials, which correspond to the set of real theories in this case, are
displayed in red in figure 5.2 (a). They sit at the vertices of the polytope in figure 5.2
(b).

This is the general procedure we will follow for n = 3, 4, 5, 6 in the later sections.
Actually, the case of n = 3 is a little special. We could have determined all real
theories by only requiring factorization, without positivity at genus 1 or genus 2.
We believe this is related to the fact that at n = 3, genus 2 is enough to eliminate all
fake theories – essentially, it fully fixes the partition function (given the assumption
that it has enumerator polynomial form). We conclude that at n = 3, there are no
non-code theories with EP form because only the four code theories are consistent
with factorization at genus 2.

At n = 4, where genus 2 does not remove all of the fake theories, factorization
without positivity is not enough to find all of the modular invariant polynomials.
Furthermore, just like n = 3 at genus 1, the real n = 4 theories do not all lie at the
vertices of the genus 1 and genus 2 polytopes; some lie on the edges, faces, and in
the bulk. Thus we find two special properties obeyed by n = 3 at genus 2: 1) the
set of real theories is fixed only by factorization, and 2) the real theories lie on the
corners of the polytope. As such, it would be very interesting to push our calculation
to genus 3, to see if these two patterns persist, but we leave this for future work.

Invariant polynomial ring

Now let us be more general, and describe the method of classifying invariant polyno-
mials, valid for any n. We will be interested in the ring Rg of polynomials invariant
under the genus g modular relations. Rg admits a grading by degree

Rg =
∞⊕
n=0

R[n]
g , (5.4.7)
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where dimR
[n]
g can be computed by Molien’s formula, which we will now review (see

e.g. [180]). For a matrix group G acting on n variables x0, . . . xn−1, Molien’s formula
gives the dimension of the space R[n]

g of degree n invariant polynomials

M(r) =
∞∑
n=0

rn dim(R[n]
g ) =

1

|G|
∑
g∈G

det(1− rg)−1 , (5.4.8)

where |G| is the number of (distinct) elements in G, and g are the individual matrices
in the representation in question.

Genus 1: Recall that invariance under the modular group SL(2,Z) = SP (2,Z)
acting on the three-dimensional vector space of {x0, x1, x2}, is given by equa-
tion (5.4.2). Using (5.4.8), we find that Molien series for this group acting on 3
variables is given by

M(r) =
1

(1− r)(1− r2)(1− r3)
= 1 + r + 2r2 + 3r3 + 4r4 + 5r5 + 7r6 + 8r7 + . . . .

(5.4.9)

The number of solutions to the transformations (5.4.2) for general degree-n homo-
geneous polynomials is given by the rn coefficient in the Molien series in (5.4.9).
This lets us infer the number of new generators at each order. The whole ring R1 is
generated by three polynomials p(g=1)

n (x0, x1, x2), of degree n for n = 1, 2, 3 [21].

Genus 2: At genus 2, we have a 10-dimensional representation of SP (4,Z) fur-
nished by the 10 y-variables. The transformations are given in (5.3.57)–(5.3.58) and
we find that |G| = 720. This allows us to calculate the Molien series

M(r) =
f(r)

(1− r)2(1− r2)(1− r3)2(1− r4)2(1− r5)2(1− r6)
, (5.4.10)

where

f(r) = 1 + r + r4 + r5 + 3r6 + 2r7 + 3r8 + 3r9 + 5r10 + 3r11 + 10r12 + 6r13

+ 9r14 + 7r15 + 4r16 + 2r17 + r19 .

(5.4.11)

From (5.4.10), the number of generators is calculated. In principle, there could
appear non-trivial relations between the generators. We find that there are no
non-trivial relations among the terms constructed from generators at lower degree.
Therefore, the generators organize as given in table 5.1.
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Table 5.1: Number of linearly independent invariant polynomials, and number of
generators of degree n at genus g = 2.

n 1 2 3 4 5 6 7 8 9 10 11 12
invariant polynomials 1 2 4 8 14 27 46 82 140 237 386 630

new generators 1 1 2 3 4 6 7 9 11 10 4 0

There are new generators only up to n = 11. A general method to completely
specify this full set is to use enumerator polynomials of actual code theories as a set
of generators. At each n from n = 1 to n = 11 one can choose the new generators
arising at each n in Table 5.1 to be those from actual (inequivalent) code theories.

Finding invariant polynomials: results for various n

Now let us describe the results of counting invariant polynomial for general values
of n. There are too many genus 2 solutions to count above n = 6, but in principle
our method will work for any order n.

There are 58 generators, as described in table 5.1 above. Rather than list all of
them, we will list the full set of adjacency graphs associated with matrices B which
can be used to calculate the complete ring of invariant polynomials using (5.3.47).
The set of generators is given in appendix A.6.

n = 1 At genus 1, we have a single polynomial:

W1 = x0 + x2 . (5.4.12)

At genus 2, we also find one polynomial,

W
(2)
1 = y0 + y4 + y5 + y6 , (5.4.13)

which reproduces W1(x0, x1, x1)W1(x
′
0, x

′
1, x

′
2) in the factorization limit in (5.3.48).

These polynomials correspond to the single unique code with B = 0, or equivalently
the graph with one node and zero vertices .

n = 2 At genus 1, we have two polynomials:

W2 = x20 + x21 + 2x22

(W1)
2 = (x0 + x2)

2
(5.4.14)
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There are two genus 2 polynomials which reproduce each of these polynomials in
the factorization limit. They are

W
(2)
2 = y20 + y21 + y22 + y33 + 2(y24 + y25 + y26 + y27 + y28 + y29) ,(

W
(2)
1

)2
= (y0 + y4 + y5 + y6)

2 .
(5.4.15)

These polynomials correspond to two unique codes corresponding to

B =

(
0 1

1 0

)
(5.4.16)

and

B =

(
0 0

0 0

)
. (5.4.17)

These polynomials can be taken to be the new generators at this order.

n = 3 At genus 1, we have 10 polynomials, out of which only 4 arise from in-
equivalent codes.

At genus 2, there are 11 polynomials but only 4 factorize. There are only 4 B-
form codes, so the set of codes is entirely determined by consistency with genus 2
modular invariance.

Since there are 2 new generators at this order, we can choose the following code
generator matrices to define them:

B =

0 1 1

1 0 1

1 1 0

 , B =

0 1 0

1 0 1

0 1 0

 (5.4.18)

to get

W
(2)
3 =y30+3y21y4+3y0y

2
4+y

3
4+3y22y5+3y0y

2
5+y

3
5+3y23y6+6y4y5y6+3y0y

2
6+y

3
6+3y5y

2
7

+3y6y
2
7+6y3y7y8+3y4y

2
8+3y6y

2
8+6y2y7y9+6y1y8y9+3y4y

2
9+3y5y

2
9 ,

W̃
(2)
3 =y30+3y0y

2
1+3y0y

2
2+6y1y2y3+3y0y

2
3+4y34+4y35+4y36+12y4y

2
7+12y5y

2
8+12y6y

2
9 .

It is straightforward to check that the the most general invariant polynomial can be
written as a linear combination of W (2)

3 , W̃
(2)
3 , W

(2)
2 W

(2)
1 , and

(
W

(2)
1

)3. For conve-
nience, these are collected in appendix A.7. This procedure of using explicit codes
to construct generators is carried on to n = 11 to obtain the full set. The results are
given in graph form in appendix A.6.
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n = 4 At genus 1, we have 20 polynomials.
At genus 2, there are 45 polynomials but only 10 factorize.
9 of these polynomials derive from real codes, leaving only one fake polynomial.

n = 5 At genus 1, we have 395 polynomials.
At genus 2 there are 1078 polynomials, but only 23 factorize.
21 of these polynomials derive from real codes, leaving only two fake polynomials.

n = 6 At genus 1, we have 27,280 polynomials.
At genus 2, 79 polynomials factorize to genus 1 polynomials. We are unable to

count the total number of polynomials.
64 of these polynomials derive from real codes.

n = 7 At genus 1, we have 2,224,626 polynomials.
We are unable to count the number of genus 2 polynomials.
There are 218 polynomials from actual codes.

Isospectral CFTs differ at genus 2

The partition function is a coarse observable. At genus 1, it only contains information
about the spectrum of the theory, and it is possible that different theories may have
the same genus 1 partition function.13 Higher-genus partition functions contain
information about averages of OPE coefficients. In principle increasing the genus
increases the amount of information extractable, though it is hoped [105] that with
enough partition functions, the theory will be completely specified. A more precise
understanding of this idea is one of the primary motivations of the present work.

For chiral CFTs, a demonstration is provided by Milnor’s example of isospec-
tral lattices. These correspond to chiral CFTs defined by compactification on the
isospectral d16 and E2

8 lattices. It has been known since [142] that these two theories
can actually be distinguished by going to genus 5, i.e. the partition functions are
the same for g ⩽ 4.

In [19] a non-chiral version of this phenomenon was discovered. This example
consists of two different CFTs at n = 7 which have the same genus 1 partition
function. These CFTs have the same spectrum, but it is clear from their definition

13Such theories can also be differentiated by introducing chemical potentials for the U(1)n ×
U(1)n currents [21].
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through inequivalent B-form codes that they must be different. The B-forms are
given as

B1 =



0 1 0 0 0 1 0

1 0 1 0 0 0 1

0 1 0 1 1 1 1

0 0 1 0 1 0 0

0 0 1 1 0 0 0

1 0 1 0 0 0 1

0 1 1 0 0 1 0


, B2 =



0 1 0 0 0 1 1

1 0 1 0 0 0 1

0 1 0 1 1 1 1

0 0 1 0 1 0 0

0 0 1 1 0 0 0

1 0 1 0 0 0 1

1 1 1 0 0 1 0


. (5.4.19)

An explicit computation shows that these matrices yield the same genus 1 enumerator
polynomial,

W = y70 + y50y
2
1 + 5y40y

2
1y2 + 5y20y

4
1y2 + y50y

2
2 + 12y30y

2
1y

2
2 + 9y0y

4
1y

2
2 + 4y40y

3
2 (5.4.20)

+ 22y20y
2
1y

3
2 + 4y41y

3
2 + 5y30y

4
2 + 25y0y

2
1y

4
2 + 11y20y

5
2 + 11y21y

5
2 + 10y0y

6
2 + 2y72 .

Likewise, the genus 2 enumerator polynomialsW (2)
1 andW (2)

2 can be constructed from
B1 and B2 using (5.3.47). We will not record them here since they are quite lengthy
expressions, but they are distinct. One can further check that under factorization,
both W (2)

1 and W (2)
2 factorize to (W )2. Holomorphic modular forms at higher genus

that degenerate in the factorization limit are referred to as cusp forms. The non-
chiral analogs of such cusp forms would be W (2)

1 −W
(2)
2 .

At c = 8, the situation is more interesting as there are 61 pairs of isospectral
theories and 5 isospectral triples. We find that the genus 2 partition functions are
different for all pairs of isospectral theories. We also find that the genus 2 partition
functions are different for all 5 isospectral triples.

5.5 Beyond code theories

Throughout this chapter, we have used the enumerator polynomial to simplify the
form of the partition function. The primary benefit of this is that the constraints
of modular invariance become very simple, allowing us to solve them exactly, i.e.
to write the most general partition function (in enumerator polynomial form) which
satisfies the constraints.

In our previous work [160], we pointed out that in fact, the partition function
of every meromorphic CFT should have enumerator polynomial form, albeit with
potentially negative or fractional coefficients. This follows directly from the fact
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that the (numerator of the) partition functions must be linear combinations of Siegel
modular forms, combined with standard results relating these modular forms to code
enumerator polynomials (e.g. [129]). Non-chiral CFTs are much richer however, and
to our knowledge, it is not known what subset of these CFTs might have partition
functions with enumerator polynomial form. Let us explore a few examples.

Minimal models

The first example is the 2D Ising CFT, which has the following genus 1 partition
function:

Z
(g=1)
4,3 =

1

2|η(τ)|

(√
θ2(q)θ2(q̄) +

√
θ3(q)θ3(q̄) +

√
θ4(q)θ4(q̄)

)
. (5.5.1)

The Ising CFT has c = 1/2, so we see that

Z
(g=1)
4,3 =

W (x0, x1, x2)

|
√
2 η(τ)|2c

, (5.5.2)

where

W (x0, x1, x2) =

√
x0 + x1

2
+

√
x0 − x1

2
+
√
x2 . (5.5.3)

The Ising model can be written as a sum of square roots of the code variables. It
is easy to verify that the S transformation merely cycles these terms. The potential
implications of the form (5.5.1) for the Ising CFT partition function has previously
been discussed in [181], and the generalization to higher genus in [182].

One might hope that this extends to other minimal models as well, but it appears
that it does not. Consider for instance the Lee–Yang CFT, a non-unitary minimal
model with c = −22/5. The genus 1 partition function is known,14

Z
(g=1)
5,2 = |q−1/60G(q)|2 + |q11/60H(q)|2 . (5.5.4)

The functions G(q) and H(q) are the Rogers–Ramanujan functions, defined by

G(q) =
∞∑
n=0

qn
2+ 1

24

η(q)
, H(q) =

∞∑
n=0

qn
2+n+ 1

24

η(q)
. (5.5.5)

This is not equal to
∑4

i=2 |θi(q)/η(τ)|c/2, as the naive pattern would suggest.
It remains possible that some non-trivial identity relates this partition function to
Jacobi theta functions, but we were not able to find it. As far as we can tell,

14See also [183], which includes a calculation of the genus 2 partition function
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the “enumerator polynomial form” displayed by the Ising CFT is an accident. Or
perhaps it is related to the fact that the theory can be realized as a single free fermion.
Perhaps the other minimal models are obtainable from a suitable generalization of
New Construction A, such as the one of [168]. It would be interesting to understand
this better in the future.

Chiral CFTs revisited

As a motivating example, let us consider a simple case of meromorphic, or chiral
CFTs. We use “meromorphic” in the sense of [155], where it is taken to mean theories
where Z = χ(τ)χ(τ̄), with χ(τ) = χ(−1/τ). This is a strong constraint on the form
of the partition function, and it leads to the requirement that c be a multiple of 8.
Furthermore, if c is a multiple of 24, then χ(τ) will be individually modular invariant
and therefore can be the full partition function of a chiral CFT.

The connection between ECCs and chiral CFTs was considered in [160], where
it was observed that every meromorphic CFT should have a partition function with
enumerator polynomial form. This simply follows from the requirement that every
chiral character χ(τ) must be a modular form. For g < 4, the ring of modular
forms is completely captured by the ring of invariant polynomials after the standard
substitutions xi → θi(q) [129, 125].

Let us now see some concrete examples of these observations. One interesting set
of examples are the three “extremal c = 24 theories.” The first is the theory coming
from the “Golay code:”

WGolay(x0, x1) = x240 + 759x160 x
8
1 + 2576x120 x

12
1 + 759x80x

16
1 + x241 . (5.5.6)

The Golay code is the classical binary length 24 code which maximizes the Ham-
ming distance. Relatedly, its enumerator polynomial has the largest gap between
consecutive powers of x0 (i.e. there is no x200 term). The next example is the Leech
lattice, with

WLeech(x0, x1) = x240 − 3x200 x
4
1 + 771x160 x

8
1 + 2558x120 x

12
1 + 771x80x

16
1 − 3x40x

20
1 + x241 .

(5.5.7)

This theory does not derive from a code through Construction A. However, it is
related to the Golay code by the twisting procedure [112, 113], reviewed in [19],
which relates a self-dual even lattice to a new self-dual even lattice. The Leech
lattice is “extremal” in the sense that it is known to provide the densest possible
sphere packing in 24 dimensions [184].
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The final interesting example is the Monster CFT, the theory whose automor-
phism group is the Monster group. Its partition function is given in enumerator
polynomial form by

WMonster(x0, x1) = x240 −
9

2
x200 x

4
1+777x160 x

8
1 + 2549x120 x

12
1 + 777x80x

16
1 +

9

2
x40x

20
1 +x241 .

(5.5.8)

The Monster is the CFT which maximizes the spectral gap – the gap in Virasoro
primaries – for c = 24. It is neither a code nor a lattice theory, but it is related to
the Leech lattice by Z2 orbifolding. So we see that these three theories are related.

The extremality of the Leech lattice can also be phrased in CFT language – it is
the CFT which maximizes the gap in U(1)c primaries. This remarkable connection
was explored in [20], where it was used to provide exact analytic functionals for the
modular bootstrap. In fact, it turns out that the extremality of the Golay code
theory also has a CFT interpretation as the maximization of the gap in SU(2)c

characters. This will be explored in a future paper [185].
We can push this further. For the Monster theory, the extremal theory (the theory

with the maximium gap in Virasoro primaries) at c = 24, we have constructed the
genus 2 and genus 3 partition function. We can also construct the genus 1 and genus
2 partition functions of the conjectured extremal c = 48 theory, analogous to the
Monster. We have collected a few of these lengthy expressions in appendix A.7.

Non-chiral CFTs and the maximal gap

Next let us consider the more general, non-chiral case. The general strategy will
be to still assume enumerator polynomial form for the partition function, but to
go beyond code theories by allowing negative polynomial coefficients. The goal will
be to identify interesting theories, such as the “extremal theories” which maximize
the gap in Virasoro primaries ∆gap. We will do this by considering first the most
general (modular invariant) enumerator polynomial, and then simply choosing the
coefficients ai,j,k to maximize the gap. We will focus on the genus 1 partition function
but in a few cases with low central charge n, we will be able to provide genus 2
expressions as well.

n = 1 In this case, W1 = x0 + x2 is the only invariant polynomial. Its gap is
∆gap = 1/4

139



n = 2 Now we have a one parameter family of solutions. The gap is maximized
by W2 = x20 + x21 + 2x22, which has ∆gap = 1/2

n = 3 In this case, the maximal gap is ∆gap = 3/4, coming from the polynomial

W̃3 = x30 + 3x0x
2
1 + 4x32 . (5.5.9)

We can recognize that this is the enumerator polynomial of (5.2.76), which came
from the B-form code corresponding to the complete graph K3, the fully-connected
graph with three nodes.

There is a unique genus 2 enumerator polynomial which factorizes into this genus
1, fixing the genus 2 partition function of this theory to be

W̃
(2)
3 = y30 + 3y0y

2
1 + 3y0y

2
2 + 3y0y

2
3 + 6y1y2y3

+ 4y34 + 4y35 + 4y36 + 12y4y
2
7 + 12y5y

2
8 + 12y6y

2
9 .

(5.5.10)

n = 4 Here we find the same thing: the extremal theory, which now has ∆gap = 1,
also corresponds to a code theory. It has

W̃4 = x40 + 6x20x
2
1 + x41 + 8x42 . (5.5.11)

This theory, also realizable as the SO(8) WZW with level 1, or the theory of 8 free
fermions with diagonal GSO projection, was shown to saturate the modular boot-
strap constraints at n = 4 [95]. So in this case the extremal theory with enumerator
polynomial form is the same as the most general extremal theory (in contrast to the
cases of n = 1, 2, and 3, where the bounds of [95] are not saturated by our EP-form
partition functions). W̃4 is the B-form code deriving from the complete graph K4.
So in both of these cases, the extremal theories are given by the complete graphs.

Again, we can fix the genus 2 partition function from this:

W̃
(2)
4 = y40 + 6y20y

2
1 + y41 + 6y20y

2
2 + 6y20y

2
2 + y42 + 6y20y

2
3 + 6y21y

2
3

+ y43 + 24y0y1y2y3 + 8y44 + 8y45 + 8y46 + 8y47

+ 8y48 + 8y49 + 48y24y
2
7 + 48y25y

2
8 + 48y26y

2
9 .

(5.5.12)

n = 5 Here something new happens. From the Molien series, the general n = 5

polynomial has 4 undetermined coefficients, but if we use this to cancel out the max-
imum number of states, the resulting “extremal theory” has negative degeneracies.
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Instead, we may only cancel 3, rather than 4 undetermined degeneracies. This
results a function with ∆gap = 1, and 1 remaining undetermined coefficient,

W̃5 = x50 +
16− a0,0,5

7
x41x2 − 4

16− a0,0,5
7

x20x
2
1x2 + . . . . (5.5.13)

If we demand that the remaining degeneracies are positive integers, we find that
a0,0,5 must be an integer satisfying 0 ≤ a0,0,5 ≤ 16. If we set a0,0,5 = 16, we recover
the code theory corresponding to the complete graph K5. None of the other values
of a0,0,5 can derive from a code via New Construction A due to the signs in (5.5.13)

n = 8 Noting that n = 6 and n = 7 are similar to n = 5, we proceed to n = 8. In
this case, we find that we can cancel enough states to make ∆gap = 7/4, leading to
a partition function with negative integer degeneracies. If we require non-negative
degeneracies,15 the maximum gap is ∆gap = 5/4. This does not saturate the bound
∆gap = c/8 + 1/2 of [95].

Alternatively, we may try to only cancel scalar degeneracies. If we try to cancel
the maximum number, we find ∆s=0

gap = 5/2, but then a number of other states have
negative degeneracies. More interestingly, if we cancel the maximum number while
requiring unitarity, we find a unique theory with ∆s=0

gap = 2. This theory is described
by the enumerator polynomial

W̃ s=0
8 = x80 + 60x60x

2
1 + 60x61x

2
2 + 134x40x

4
1 − 32x40x

4
2 − 32x41x

4
2 − 192x20x

2
1x

4
2 + 256x82 .

(5.5.14)

Current modular bootstrap bounds require that ∆s=0
gap < 2 for n < 8, with a kink at

∆s=0
gap = 2 for n = 8 which is conjectured to be saturated by the E8 WZW model at

level 1 [95]. This theory holomorphically factorizes, Z(q, q̄) = ZE8(q)ZE8(q̄) into two
copies of the chiral theory which results from from compactifying 8 chiral bosons on
the E8 lattice. This theory is also related to the Hamming code via Construction A.

This gives another example for which a theory which is extremal in some sense
can be written in EP form but does not arise from a code. That it does not derive
from a code is obvious because of the negative coefficients appearing in (5.5.14). This
may be thought of as analogous to the enumerator-polynomial form representation
of the Leech lattice and Monster partition functions.

A third interesting example exists for n = 8 – the theory described in [186] with
O+

10(2).2 automorphism group. This theory is completely fixed from the general
15We have only checked that all Virasoro degeneracies are positive up to ∆ = 10, since we do

not know a way to enforce it for all degeneracies in practice.
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invariant EP form by requiring that our partition functions have only integer scaling
dimensions, and that the degeneracy of scalars at ∆ = 1 is 496. The resulting
enumerator polynomial is

W
O+

10(2).2
n=8 = x80−2x60x21 + 10x40x

4
1−2x20x61 + x81 + 30x40x

4
2 + 180x20x

2
1x

4
2 + 30x41x

4
2 + 8x82 .

(5.5.15)

In principle, it should be possible to check if these genus 1 partition functions
correspond to a single genus 2 partition function. Since these theories do not derive
from codes, it may be that their genus 1 partition functions have EP form but their
genus 2 partition functions do not – we do not know if this is possible. For the
chiral CFTs, we found that extremal genus 2 partition functions at c = 24 is entirely
fixed by factorization, so it would be interesting to try that here. However, the
most general genus 2 polynomial is beyond what we are able to do with our desktop
computers right now, so we will have to leave exploring them to the future.

n = 24 In this case, by allowing for negative degeneracies we can construct a mod-
ular invariant function with ∆gap = 5. As an interesting side note, it is possible to
identify the theory Z = ZMonster(q)ZMonster(q̄) by setting quarter integer degenera-
cies to 0 and requiring a gap. However, this modular-invariant partition function
has negative degeneracies from the point of view of a non-chiral CFT because the
1 − q in the vacuum character of ZMonster(q) has a minus sign, which multiplies all
of the characters in ZMonster(q̄), and vice-versa.

Asymptotics at large c

Finally, let us make a few comments about theories in the limit of large central
charge.

Complete graphs

The complete graphs provide a special class of code theories, which includes every
positive integer n. We can study them by explicitly constructing their enumerator
polynomials from their B-matrices, which have a 1 in every entry except on the
diagonal. For c ⩾ 4, the gap of very complete-graph theory has ∆gap = 1. In fact,
this is the upper bound on the gap of any code theory [19].

As we noted before, the n = 4 deriving from the complete graph K4 is equivalent
to the SO(8) WZW model. It appears that this pattern continues beyond n = 4.
We have checked for n up to 15 that the number of currents is always given by
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Nn = n(2n − 1). Extra currents require extra symmetries, and n(2n − 1) is the
number of currents one would find in the presence of symmetry enhancement to
SO(2n). In fact, for large enough n, no other rank n Lie group contains this many
currents, so SO(2n) is the only possibility. As a result, we conjecture that the
complete graph codes give a family of CFTs with symmetry enhancement to SO(2n).
It would be interesting to study these theories further, to try to prove this conjecture
or understand their holographic duals, in the future.

Estimate for non-unitarity theories

It is also possible to provide an estimate of the maximal gap possible by comparing
the number of degeneracies we need to cancel with the number of coefficients we can
choose. That is, if we have k coefficients, then we should be able to set k degeneracies
to zero.16

First we consider the number of possible operators up to a given scaling dimen-
sion. Because these theories have quarter-integer scaling dimensions, the maximal
number of possible operators up to ∆ given by

ρ(∆) = 4
∆∑

k=0

(k + 1) = 2(∆ + 2)(∆ + 1) . (5.5.16)

So to create a gap ∆, one must cancel 2(∆ + 2)(∆ + 1) theories.
Next we determine the number of coefficients which we can pick to cancel de-

generacies. This is given by the coefficients appearing in the Molien series. The nth

such coefficient is given by

ω(n) =
1

72

(
47 + 9(−1)n + 6n(6 + n) + 16 cos

2nπ

3

)
. (5.5.17)

At large n, ω(n) ∼ n2/12 and ρ(∆) ∼ 2∆2. Thus we can create a gap up to ∆ at
central charge c = n as long as ω(n) = ρ(∆), leading to the estimate

∆gap =
n√
24
. (5.5.18)

This is a huge gap, and is inconsistent with the strongest current asymptotic bounds
given in [101]. However, those bounds require unitarity. So we expect that if such
large gaps are possible then they must come from modular invariant functions with

16This is not rigorous because in principle it is possible that the coefficients do not appear in the
degeneracies independently, which could prevent us from canceling some degeneracies. In practice
we see that this does not happen, at least up to n = 24. Still, one should take this subsection as a
speculation rather than a proof.
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negative degeneracies of Virasoro characters. This is exactly what we find for n = 24.
In that case, ∆gap = 5 but the function with that gap has negative degeneracies. Thus
our estimate on gap avoids the bootstrap bounds because the modular invariant
functions satisfying it will be non-unitarity.

5.6 Discussion

This chapter is an invitation to study the consequences of higher-genus modular in-
variance, using the example of theories defined from quantum error-correcting codes
through the New Construction A of [19]. The guiding idea is that higher-genus
modular invariance should be more constraining than genus 1. Error-correcting code
theories provide a simple playground to explore this because their partition functions
conform to the polynomial ansatz central to this chapter. In this simple “enumerator-
polynomial form,” the action of the modular group SP (2g,Z) becomes a set of simple
linear transformations on the polynomial variables. This allows for a simple algo-
rithm to solve the constraints and list every partition function which could possibly
derive from a code. This also requires that we impose (1) that all polynomial coef-
ficients are positive integers, as they should derive from degeneracies of codewords,
and (2) that the higher-genus partition functions factorize into lower-genus partition
functions in the limit where Riemann surface they live on becomes singular.

We find that higher-genus modular invariance is very constraining. Specifically,
there are a large number of genus 1 expressions which look like consistent partition
functions. We have proven that such partition functions cannot arise, via factor-
ization, from genus 2 partition functions with enumerator polynomial form. This
means that they cannot be code theories, but, importantly, it does not imply that
they cannot be CFTs at all. Since the number of actual B-form codes is known, we
can compare our results to the true set of code theories. We find that for n = 3, genus
2 modular invariance rules out all polynomials which do not derive from codes. For
n > 3, the number of fake polynomials is greatly reduced by genus 2 considerations,
and presumably pushing our algorithm to higher genus would be required to remove
all fake polynomials. It would be interesting to understand exactly what genus is
required for a given n.17

In [19], a number of isospectral code CFTs were discovered – theories which
are known to be different, but which have the same genus 1 partition function and
thus the same spectrum. Such theories are non-chiral analogs of Milnor’s example

17For chiral theories, it is known that the required genus is at most n/2− 1. See [129, 160].
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isospectral Euclidean lattices in 16 dimensions, which define isospectral chiral CFTs.
We find that all of the examples given in [19] of isospectral theories up to n = 8

can be distinguished by their genus 2 partition functions. This is similar to how the
theories in Milnor’s example can be distinguished by their genus 5 partition functions
[142].

One of the main lessons of this chapter is that the enumerator polynomial ansatz
for the partition function greatly simplifies a number of questions. One direction we
have investigated is the maximum gap of theories with enumerator polynomial form.
Theories deriving from actual codes have a maximal gap of 1. In the case of n = 4,
∆gap = 1 is the actual upper bound on the gap [95], and the theory saturating it,
the SO(8) WZW model, is known to be a code theory [19]. However it is possible
that there are non-code theories with enumerator polynomial form, which occurs for
chiral CFTs, for instance, in the case of the Monster CFT. For n > 4, we found that
a larger gap is consistent with enumerator polynomial form. If we allow for negative
Virasoro degeneracies, we can construct very large gaps (ex. ∆gap = 5 for n = 24).
For the more interesting case of unitary theories, we were not able to say as much.
This is because we do not have a simple way to impose positivity over all Virasoro
primaries, since they are not related to the code variables in a simple way. If such
a method could be found, we believe it could be very interesting to investigate the
maximum gap of theories with enumerator polynomial form.

We found a few other examples of known theories with enumerator polynomial
form. Two n = 8 theories saturating various bootstrap bounds were shown to be
non-code theories whose partition functions have enumerator polynomial form. It
is notable that such theories only appear at n = 4 and n = 8. There are known
theories saturating the bounds of [95, 186] at other values of c – in particular, these
include a number of other WZW models. These cannot have enumerator polynomial
form because their scaling dimensions are not all quarter-integers. It would be very
interesting to try to see if such theories might derive from some generalization of the
New Construction A. An important step in this direction was taken in [168], where a
construction was given for error-correcting codes over fields Fp for any prime p. See
also [187].

Finally, it would be interesting to use our work to address quantum gravity.
AdS3/CFT2 is one of the most useful testing grounds for new ideas about holography.
Recently, this has included new insights about the significance of averaging over the
moduli space of CFTs to define a particular bulk theory [161, 121]. In a future work
[185] we will apply some of these insights to the case of chiral CFTs. In [19], a formula

145



for the average over B-form codes was given, and the holographic interpretation was
discussed in [163]. It would be interesting to try to discover the genus 2 average for
B-form codes, and understand its holographic implications.
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Chapter 6 Conclusion

In this thesis, we studied aspects of 2 dimensional CFTs related to integrability,
thermalization and quantum information.

In Chapter 2, we obtained the spectrum of quantum KdV charges Q2n−1 up to
quadratic order and the semi-classical spectrum up to cubic order in a 1/c expansion.
This perturbative expansion in powers of c is inspired by the AdS/CFT duality. The
classical kdV charges are first expressed in a perturbative expansion in powers of
the classical action variables Ik. A semi-classical quantization scheme is used to
promote these classical action variables to quantum numbers nk. The quantization
is completely fixed using additional constraints from the knowledge of how Q2n−1

act on primary states from the ODE/IM correspondence.
These results are expected to be helpful in the study of the Generalized Eigenstate

Thermalization Hypothesis in large central charge CFTs, especially holographic ones.
Numerical studies of integrable spin chains, corresponding to c > 1 minimal model
CFTs, that aim to investigate thermalization may benefit from knowledge of the
exact spectrum of these charges.

The thermal expectation values of these conserved charges i.e. ⟨Q2n−1⟩∆ ≡
Tr∆(qL0−c/24Q2n−1) are covariant under torus modular transformations. One may
speculate that imposing higher genus modular covariance of such an average, by
writing down the average in terms of known Siegel modular forms would give enough
constraints to completely fix the spectrum of the quantum charges. This is still an
open question. Hopefully, the results obtained here can be used to ask further sharp
and interesting questions about black hole thermalization in a solvable setting.

In Chapter 3, we studied the information metric as an alternate means to encode
some or all of the same information as the original correlator in a holographic CFT.
Interestingly, the information metric geometrizes the correlator in a seemingly novel
fashion.

The modular bootstrap constrains the torus partition function based on the re-
quirement that it be invariant under the group of modular transformations. The
constraints from genus 1 modular invariance have been used to derive interesting
universal bounds on the spectrum. In Chapter 4, we used a known construction
relating a class of classical error correction codes to chiral meromorphic CFTs to
study the consequences of higher genus modular invariance.

We find that a quantity natural to error correcting codes, ie. the weight-g enu-
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merator polynomial, evaluated at theta constants is the numerator of the genus-g
partition function of the CFT. For the class of theories we study, the constraints
of higher genus modular invariance of the partition function can be written as lin-
ear transformations on the enumerator polynomial. Further constraints are imposed
by requiring that the partition function factorizes as the genus-g Riemann surface
factorizes into two lower-genus Riemann surfaces.

In Chapter 5, the same guiding principle is used to show that the weight-g enu-
merator polynomial of a quantum error correction code is related to the numerator
of the genus-g partition function of certain Narain CFTs. Our observations are that
a large number of genus 1 expressions which look like consistent partition functions,
cannot arise, via factorization, from genus 2 partition functions with enumerator
polynomial form. We also find that certain examples of isospectral but distinct
Narain theories can be distinguished by their genus 2 partition functions.

By showcasing how some limitations of the genus 1 bootstrap can be overcome
by using these larger symmetries, these investigations motivate a further exploration
into the higher genus modular bootstrap. There are interesting opportunities to
better understand how these symmetries constrain dynamical information in CFTs,
i.e. OPE coefficients by formulating such questions in terms of the higher genus
partition functions of the “code theories” we discussed.
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Chapter A Appendices

A.1 One-zone potentials: details

One-zone potentials u can be found from the condition {Q3 + αQ1, u} = 0 for some
constant α. From here we immediately find, see section 2.4 of [10],

λ0 = −
α

24
− k2

12
(θ3(τ)

4 + θ4(τ)
4), (A.1.1)

λ1 = −
α

24
− k2

12
(θ2(τ)

4 − θ4(τ)4), (A.1.2)

λ2 = −
α

24
+
k2

12
(θ2(τ)

4 + θ3(τ)
4). (A.1.3)

Pertubatively, i.e. in the limit of small q = eiπτ , corresponding potential is

u = h+
32k4

k2 + h
q2 − 16k2q cos(kφ)− 32k2q2 cos(2kφ) +O(q3). (A.1.4)

There are useful relations involving Jacobi elliptic functions and hypergeometric
function,

m := θ42(τ)/θ
4
3(τ), F

(
1

2
,
1

2
, 1;m

)
= θ3(τ)

2,
F
(
1
2
, 1
2
, 1; 1−m

)
F
(
1
2
, 1
2
, 1;m

) = − 1

π
log q,

F
(
3
2
, 1
2
, 1;m

)
F
(
1
2
, 1
2
, 1;m

) = 1+2
∂ ln θ23(τ)

∂ lnm
,

−16
∞∑
n=0

q2n+1

(1− q2n+1)2
+2θ3(τ)

4−2θ4(τ)4
F
(
3
2
, 1
2
, 1;m

)
F
(
1
2
, 1
2
, 1;m

) = 0.

We also give here more terms in the q-expansion of Ik,

Ik =
32k3q2

h+k2
+
64q4 (3h2k3+12hk5+k7)

(h+k2)3
+
128k3q6 (3h4+42h3k2+108h2k4−58hk6+k8)

(h+k2)5

+
128k3q8 (7h6+156h5k2+1083h4k4+1232h3k6−4035h2k8+788hk10+k12)

(h+k2)7
+O(q10)

which with help of Q1 = h+ kIk immediately yields

Q1 = h+
32k4

k2 + h
q2 +

64k4(3h2 + 12hk2 + k4)

(k2 + h)3
q4 (A.1.5)

+
128k4(3h4 + 42h3k2 + 108h2k4 − 58hk6 + k8)

(k2 + h)5
q6 +O(q7). (A.1.6)
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The relation for Ik in terms of q can be solved for q in terms of Ik iteratively,
which was used in section 2.2.

q2 =
(h+ k2)

32k3
Ik −

(3h2 + 12hk2 + k4)

512k6
I2k +

(15h3 + 87h2k2 + 105hk4 + k6)

8192k9
I3k

− (187h4 + 1402h3k2 + 3012h2k4 + 1606hk6 + k8)

262144k12
I4k +O(I5k).

A.2 Perturbative calculation for finite-zone potentials

We start with the two-zone case and parametrize corresponding differential dp with
help of two infinitesimal parameters ϵ1, ϵ2 and λ0,

λ1 = λ0 +
k2

4
+ ϵ1 + a1ϵ

2
1 + b1ϵ1ϵ2 + c1ϵ22 + . . . , (A.2.1)

λ2 = λ0 +
k2

4
− aϵ1 + a2ϵ

2
1 + b2ϵ1ϵ2 + c2ϵ22 + . . . , (A.2.2)

λ3 = λ0 +
ℓ2

4
+ ϵ2 + a3ϵ

2
1 + b3ϵ1ϵ2 + c3ϵ22 + . . . , (A.2.3)

λ4 = λ0 +
ℓ2

4
− bϵ2 + a4ϵ

2
1 + b4ϵ1ϵ2 + c4ϵ22 + . . . , (A.2.4)

r1 = λ0 +
k2

4
+ d1ϵ

2
1 + e1ϵ1ϵ2 + f1ϵ

2
2 + . . . , (A.2.5)

r2 = λ0 +
ℓ2

4
+ d2ϵ

2
1 + e2ϵ1ϵ2 + f2ϵ

2
2 + . . . (A.2.6)

The parametrization is redundant, with different choices related by redefinitions of
ϵ1, ϵ2. We assume ϵ1 ∼ ϵ2 are of the same order and in what follows we refer to
expansion in ϵ1, ϵ2 simply as ϵ expansion. While keeping two-zone case in mind for
concreteness, most of the discussion below applies to m-zone case with arbitrary m.

a-cycles

To impose a1-cycle constraint (2.2.9), we need to integrate from λ1 to λ2. By intro-
ducing x via

λ =
λ2 + λ1

2
+ x

λ2 − λ1
2

, (A.2.7)

and then expanding in powers of ϵ we reduce the integral to standard integrals of
the form ∫ 1

−1

dx x2n√
1− x2

=

√
πΓ(n+ 1/2)

Γ(n+ 1)
. (A.2.8)

Provided we want to find Q2n−1 in terms of Ik by expanding up to p-th power, we
would need to keep 2p terms in ϵ-expansion, up to and including ϵ2p. This method
works for any a-cycle integral and any number of zones.
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b-cycles

We start with the b1-cycle, which goes from λ0 to λ1, and introduce another variable
x

λ = λ1 − x(λ1 − λ0). (A.2.9)

We can use the proximity of λ4 to λ3 to expand
√
(λ− λ3)(λ− λ4) in ϵ. Now the

integral of interest reduced to a sum of integrals of the form∫ 1

0

dxP (x)√
x(1− x)(16w + x)(x− c)r

(A.2.10)

where 16w is a small parameter of order ϵ,

16w =
λ2 − λ1
λ1 − λ0

, (A.2.11)

P (x) is some polynomial and c = 1 − ℓ2/k2 (we assumed ℓ > k). The integral
(A.2.10) can be related to

Jn(c) :=

∫ 1

0

dx xn√
x(1− x)(16w + x)(x− c)

(A.2.12)

by differentiating over c. To evaluate it, it is helpful to first introduce the integral

In :=

∫ 1

0

dx xn√
x(1− x)(16w + x)

=
∞∑

m=0

am(n)w
m +

∞∑
m=n

bm(n)w
m lnw, (A.2.13)

which can be expressed as formal series in w. Coefficients am(n) for n > m and
bm(n) for any n,m can be found analytically

am(n) =
(−16)mΓ

(
m+ 1

2

)
Γ(n−m)

Γ(m+ 1)Γ
(
−m+ n+ 1

2

) , n > m, (A.2.14)

bm(n) =
16m(−1)n+1Γ

(
m+ 1

2

)
Γ(m+ 1)Γ(m− n+ 1)Γ

(
−m+ n+ 1

2

) . (A.2.15)

To find am(n) for m ≥ n we can use the iterative relation

In = (1− 2n)(In − In−1)−
1

8
∂w(In+1 − In), (A.2.16)

which follows from the integration by parts, and am(0) which can be found directly
from (A.2.13) since the corresponding integral can be evaluated analytically. For
example we find the following iterative relation for an(n),

am+1(m+ 1) =
(−1)m22m+3Γ(2m+ 1)

Γ(m+ 2)2
− 8(2m+ 1)am(m)

m+ 1
, a0(0) = 0.(A.2.17)
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So far we are interested only in first 2p powers of w, we only need to worry about
am(n) with m ≤ 2p. In our case p = 3 and we simply tabulate values of am(n) for
0 ≤ m ≤ 6 and m ≥ n for convenience, am(n) =

0

8 8

−84 −104 −112
2960
3

1152 4288
3

4736
3

−37310
3

−42040
3

−16368 −60992
3

−68224
3

820008
5

180656 203584 1189248
5

1478144
5

1666048
5

−11153912
5

−12097344
5

−7995904
3

−9011456
3

−17549824
5

−65468416
15

−74166272
15


.

Going back to (A.2.12), we can expand (x − c) in the denominator into power
series in x, thus reducing the integral to a sum of (A.2.13). Provided n > 2p and
so far we are only interested in terms of order wr and wr lnw with r ≤ 2p, only
relevant contributions would come from am(n)w

m term in (A.2.13) with m < n.
Corresponding coefficients are known analytically, (A.2.14), and can be re-summed
yielding,

Jn(c) = −
2p∑

m=0

(−16)mωmΓ
(
m+ 1

2

)
Γ(l−m) 2F1

(
1, l−m; l−m+ 1

2
; 1
c

)
cΓ(m+ 1)

+O(w2p+1).

Here 2F1 is regularized hypergeometric function and this expression is only valid for
n > 2p. To extend it to smaller n we use the iterative relation, which follows from
the integration by parts,

Jn =
Jn+1−In

c
. (A.2.18)

This completes technical preliminaries as now integral over b1 cycle can be reduced
to a number of integrals Jn and their derivatives, so far we are only interested in
terms of order wr with r ≤ 2p. Clearly, the approach above can be used to evaluate
integrals over b1 when there are more than two zones. In this case one would need
to evaluate integrals ∫ 1

0

dx xn√
x(1−x)(16w + x)

∏m−1
i=1 (x− ci)

, (A.2.19)

where m is the number of zones. This can be reduced to (A.2.12) by noting

m−1∏
i=1

1

(x− ci)
=

m−1∑
i=1

αi

x− ci
, (A.2.20)
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with the appropriate coefficients αi.
To evaluate the integral over b2-cycle from λ2 to λ3 is more challenging because

in the ϵ → 0 limit there are singularities appearing at both boundaries. There is
a straightforward but complicated way. By appropriately changing variables and
expanding in ϵ all terms except for

√
(λ− λ1)(λ− λ2)(λ− λ3)(λ− λ4) we reduce

the calculation to the integral∫ 1

0

dx
xn√

x(1− x)(16w + x)(1 + 16u− x)
(A.2.21)

for positive small w, u. The indefinite integral of this kind can be evaluated analyt-
ically. Then the definite integral above can be integrated by expanding it powers
of w, u (which both are of order ϵ), and keeping terms up to order 2p. This is an
involved exercise and instead one can use one of the following shortcuts.

In the particular case of two-zone potential, instead of evaluating integral over
b2, one can combine the integral over b1 and b2 such that the contour would enclose
λ0, . . . , λ3. Now one can deform the contour to go from λ4 to infinity, if necessary
accompanied by a circle at infinity. At this point integrand can be expanded in ϵ such
that brunch-cut from λ1 to λ2 disappears, yielding pole singularities at λ = λ0+k

2/4.
At this point corresponding integral can be rewritten as∮ −16w

−∞
dx

P (x)√
x(1− x)(x+ 16w)(x− c)r

, (A.2.22)

where P (x) is some polynomial and 0 ≤ c ≤ 1. We also emphasize that to render
this integral finite, one may need to close the contour at infinity. This integral can
be decomposed into a sum of integrals of the form∮ −16w

−∞
dx

xn√
x(1− x)(x+ 16w)

, (A.2.23)

and ∮ −16w

−∞
dx

1√
x(1− x)(x+ 16w)(x− c)

, (A.2.24)

and its derivatives. First integral can be reduced to (A.2.13) by deforming the
contour to go from 0 to 1. Last integral can be reduced to J0 and J1 with help of
modular transformation mapping ∞ to 1, −16w to 0, and 0 to −16w.

x→ x+ 16w

x− 1
. (A.2.25)
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This shortcut works for two-zone case, but with more zones present it is not
applicable. Neveftheless there is a very simple trick which make evaluation of b2 and
other b-cycles unnesessary. Indeed, to satisfy (2.2.9) and (2.2.10) for all cycles, it is
sufficient to satisfy (2.2.9) for all cycles and (2.2.10) for b1 and also impose that the
expansion (A.2.1-A.2.6), and its generalizations for the case of more than two zones,
is invariant under permutation of indexes and ki defined in (2.2.11). Say, for two
zones we find

λ1 = λ0 +
k2

4
− ϵ1 +

3ϵ21
k2

+
4ϵ22k

2

ℓ2(k2 − ℓ2)
+O(ϵ3), (A.2.26)

λ2 = λ0 +
k2

4
+ ϵ1, (A.2.27)

r1 = λ0 +
k2

4
+

ϵ21
2k2

+
2ϵ22k

2

ℓ2(k2 − ℓ2)
+O(ϵ3). (A.2.28)

and λ3,4, r2 related to λ1,2, r1 by the exchange ϵ1 ↔ ϵ2 and k ↔ ℓ. The same logic
with the permutation symmetry works for any number of zones.

Above we only explicitly wrote terms up to ϵ2, while evaluating all terms up to
ϵ6. The simple form of λ2 above is a parametrization choice. With this choice taking
ϵ2 = 0 does not close the second zone. One can check that taking

ϵ2 = −
2ℓ2ϵ21

k2 (k2 − ℓ2)
+ . . . (A.2.29)

such that λ4 = λ3 would make Iℓ dicussed below vanish. Alternatively one could
chooe ϵi to control the size of λ2i − λ2i−1, but with this choice both all λi would
depend on all ϵi.

Evaluation of Ik, h and Q2n−1.

Evaluation of action variables Ik as a pertubative series in ϵi is straightforward. It
is an integral over a-cycle and therefore can be evaluated along the lines discussed
above. The only difference, in comparision with the discussion in subsection A.2, is
the term lnλ, which needs to be expanded in powers of ϵ yielding polynomials in x

in the numerator of (A.2.8),

Ik =
2ϵ21

k(λ0 + k2/4)
+O(ϵ3). (A.2.30)

Again, we only keep terms up to ϵ2 for simplicity.
Evaluation of h is also straightforward. To that end one needs to calculate p(0),

given by an integral from 0 to λ0. After expanding the integrand in powers of ϵ it
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becomes the integral which can be evaluated in a closed form, yielding

h/4 = λ0 + λ0

(
2ϵ21

k2(λ0 + k2/4)
+

2ϵ22
ℓ2(λ0 + ℓ2/4)

)
+O(ϵ3). (A.2.31)

Finally, evaluation of Q2n−1 for any given n is also straightforward since λi are
known explicitly. As a result we obtain Ik, h,Q2n−1 as functions of λ0 and ϵi. One
can then reverse-engineer coefficients in (2.2.1) such that it is satisfied.

A.3 Spectrum of Q2n−1 acting on primaries

In this appendix we outlined calculation of Q0
2n (2.3.6) following [51]. Starting from

the Schrödinger equation (2.3.2), one introduces the following change of variables

Ψ(x) = El(l−3/2)/4αw(l−3/2)/4y(w), x = E
1
2αw

1
2l , (A.3.1)

such that (2.3.2) becomes

−ϵ2∂2wy + Z(w)y = 0, Z(w) = w, ϵ = E−α+1
2α . (A.3.2)

Taking ϵ as a formal small parameter this equation can be solved via WKB expansion,

y(w) = e
1
ϵ
S(w), −ϵS ′′ − S ′2 + Z = 0, S(w) =

∞∑
n=0

ϵnSn. (A.3.3)

The resulting Riccati equation can be rewritten as the iterative relation to find S ′
n

with S ′
0 = −

√
Z(w). It is more convenient for what follows to make another change

of variables z = wα/(l+1/2) and introduce the polynomial ansatz

S ′
n = i

α

2l + 1
z1−

l+1/2
α S̃n, S̃n =

n∑
k=0

inc
(n)
k z−k+(n−1)(1−1/2α)(1− z)k−(3n−1)/2(A.3.4)

The Ricatti equation rewritten in terms of c(n)k gives rise to (2.3.4), which can be
used together with (2.3.5), to iteratively find c(n)k . The first few c

(n)
k read

c
(2)
0 =

5

8
α, c

(2)
1 =

1

4
(2α− 1), c

(2)
2 = − 1

8α
(4u2α2 − 1). (A.3.5)

c
(3)
0 = −15α2

8
, c

(3)
1 = −9α2

4
+

9α

8
, c

(3)
2 =

1

2
α2
(
u2 − 1

)
+

3α

4
− 3

8
,

c
(3)
3 = − 1

8α
(4u2α2 − 1). (A.3.6)
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To obtain Q0
2n−1 one needs to integrate S̃2n(w(z)) over a Pochhammer contour

γP ,

Q0
2n−1 = (−1)n

Γ
(
3
2
− n− 2n−1

2α

)
√
πΓ
(
1− 2n−1

2α

) (2n− 1)Γ(n+ 1)

4n(α + 1)n
Ǐ2n−1(α, l̂), (A.3.7)

Ǐ2n−1 =
1

2(1− e
−iπ(2n−1)

α )

∫
γP

dz S̃2n(z). (A.3.8)

This integral can be evaluated using,

(1− e2πia)(1− e2πib)B(a, b) =

∫
γP

dz za−1(1− z)b−1, (A.3.9)

where B(a.b) is the Euler beta function. Combining everything together yields
(2.3.6).

Evaluating Q0
2n−1 explicitly, using computer algebra to solve for c(n)k iteratively,

for small and moderate n is an easy task. To obtain 1/c expansion of λ02n−1 for
arbitrary n requires knowing corresponding c(n)k in 1/c expansion, i.e. in the limit of
large α. This proved to be a difficult task. We obtained first three non-trivial terms
of λ02n−1 in 1/c̃ expansion (2.3.7), with the first two terms (2.3.8,2.3.9) in closed
analytical form. Functions yi and ζi there are defined as follows

y1(j) =

j∑
ℓ=0

1

2ℓ+ 1
, (A.3.10)

y2(j) =

j∑
ℓ=0

1

(2ℓ+ 1)2
, (A.3.11)

ζ2(j) =
∑

j1+j2=j

ζ(−2j1 − 1)ζ(−2j2 − 1), (A.3.12)

ζ3(j) =
∑

j1+j2+j3=j

ζ(−2j1 − 1)ζ(−2j2 − 1)ζ(−2j3 − 1), (A.3.13)

where sum goes only over non-negative j1, j2, j3. Third term (2.3.10) was fixed up
to one coefficient pj, with the first several values for 0 ≤ j ≤ 17 given below for pj =(
− 31

224
,
103

576
,− 7883

21120
,
868487

748800
,−505639

100800
,
394694297

13708800
,−68117454019

321753600
,
4929720750223

2540160000
,

−199232137825687

9180864000
,
48745030162337923

167650560000
,−618684597383137

134534400
,
7442737871872435019

87783696000
,

−1420749127340184137621

788237049600
,
46636700018927407368821

1065512448000
,−198277953077778046100039

164670105600
,

21869843836862719834306038469

587058612940800
,−31428771773709445918185916879

24404109649920
,

4187283526052269558397574465940213

84663488093184000
, . . .

)
.
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A.4 Conventional Genus 2 Transformations

For convenience, we provide the more conventional set of Sp(4,Z) transformations
in terms of their action on our code variables. These are given by six elements which
act on the period matrix according to

T1 : Ω11 7→ Ω11 + 1, T2 : Ω22 7→ Ω22 + 1, (A.4.1)

S1 :


Ω11 7→ −1/Ω11,

Ω12 7→ −Ω12/Ω11,

Ω22 7→ Ω22 − Ω2
12/Ω11

S2 :


Ω22 7→ −1/Ω22,

Ω12 7→ −Ω12/Ω22,

Ω11 7→ Ω11 − Ω2
12/Ω22,

V : Ω12 7→ −Ω12, (A.4.2)

U : Ω12 7→ Ω12 + 1. (A.4.3)

⟨S1, T1⟩ and ⟨S2, T2⟩ are the Sp(2, Z) subgroups which generate modular transforma-
tions for the two tori. These transformations lead to simple linear transformations
on the code variables:

T1 : x0 7→ ix0, x2 7→ ix2, x1 7→ x1, x3 7→ x3;

T2 : x0 7→ x0, x2 7→ x2, x1 7→ ix1, x3 7→ ix3;

U : x0 7→ −x0, x2 7→ x2, x1 7→ x1, x3 7→ x3;

(A.4.4)

and

S1 : x0 7→
x2 − x0√

2
, x2 7→

x2 + x0√
2

, x1 7→
x3 − x1√

2
, x3 7→

x3 + x1√
2

; (A.4.5)

S2 : x0 7→
x1 − x0√

2
, x1 7→

x1 + x0√
2

, x2 7→
x3 − x2√

2
, x3 7→

x3 + x2√
2

. (A.4.6)

A.5 Siegel Modular Forms

Forms in the code basis

We consider Siegel modular forms for the group Sp(2g,Z). First recall from sec-
tion 5.2 that we have

G4
∼= x80 + 14x40x

4
1 + x81,

G6
∼= x120 − 33x80x

4
1 − 33x40x

8
1 + x121 ,

∆12
∼=

1

16
x40x

4
1(x

4
0 − x41)4 .

(A.5.1)
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Note also the alternative ways (4.3.49) of writing the forms G4 and ∆12. In the
code basis, the modular forms at genus 2 are given by

E4
∼= x80 + 14x40x

4
2 + 14x40x

4
1 + 14x40x

4
3 + 168x20x

2
2x

2
1x

2
3 + x82 + 14x42x

4
1 + 14x42x

4
3 + x81

+ 14x41x
4
3 + x83, (A.5.2)

E6
∼= x120 − 33x80x

4
2 − 33x80x

4
1 − 33x80x

4
3 + 792x60x

2
2x

2
1x

2
3 − 33x40x

8
2 + 330x40x

4
2x

4
1

+ 330x40x
4
2x

4
3 − 33x40x

8
1 + 330x40x

4
1x

4
3 − 33x40x

8
3 + 792x20x

6
2x

2
1x

2
3

+ 792x20x
2
2x

6
1x

2
3 + 792x20x

2
2x

2
1x

6
3 + x122 − 33x82x

4
1 − 33x82x

4
3 − 33x42x

8
1 + 330x42x

4
1x

4
3

− 33x42x
8
3 + x121 − 33x81x

4
3 − 33x41x

8
3 + x123 ,

(A.5.3)

χ10
∼=

1

256

(
x140 x

2
2x

2
1x

2
3 − x120

(
x42

(
x41 + x43

)
+ x41x

4
3

)
− x100 x22x21x23

(
x42 + x41 + x43

)
+ x80

(
2x82

(
x41 + x43

)
+ x42

(
2x81 + 13x41x

4
3 + 2x83

)
+ 2x41x

4
3

(
x41 + x43

))
− x60x22x21x23

(
x82 + 14x42

(
x41 + x43

)
+ x81 + 14x41x

4
3 + x83

)
− x40

(
x122

(
x41 + x43

)
− x82

(
2x81 + 13x41x

4
3 + 2x83

)
+ x41x

4
3

(
x41 − x43

)2
+ x42

(
x121 − 13x81x

4
3 − 13x41x

8
3 + x123

))
+ x20x

2
2x

2
1x

2
3

(
x122 − x82

(
x41 + x43

)
− x42

(
x81 + 14x41x

4
3 + x83

)
+
(
x41 − x43

)2(
x41 + x43

))
− x42x41x43

(
x82 − 2x42

(
x41 + x43

)
+
(
x41 − x43

)2))
,

(A.5.4)

158



χ12
∼=

1

768

(
x180 x

2
2x

2
1x

2
3 + 2x160

(
x42

(
x41 + x43

)
+ x41x

4
3

)
− 12x140 x

2
2x

2
1x

2
3

(
x42 + x41 + x43

)
− 2x120

(
x82

(
x41 + x43

)
+ x42

(
x81 − 38x41x

4
3 + x83

)
+ x41x

4
3

(
x41 + x43

))
+ 2x100 x

2
2x

2
1x

2
3

(
11x82 − 26x42

(
x41 + x43

)
+ 11x81 − 26x41x

4
3 + 11x83

)
−2x80

(
x122

(
x41 + x43

)
−18x82

(
x81 + x41x

4
3 + x83

)
+ x42

(
x121 −18x81x43−18x41x83 + x123

)
+ x41x

4
3

(
x81 − 18x41x

4
3 + x83

))
− 4x60x

2
2x

2
1x

2
3

(
3x122 + 13x82

(
x41 + x43

)
+ x42

(
13x81 + 2x41x

4
3 + 13x83

)
+ 3x121 + 13x81x

4
3 + 13x41x

8
3 + 3x123

)
+ 2x40

(
x162

(
x41 + x43

)
−x122

(
x81−38x41x43 + x83

)
−x82

(
x121 −18x81x43−18x41x83 + x123

)
+ x42

(
x161 + 38x121 x

4
3 + 18x81x

8
3 + 38x41x

12
3 + x163

)
+ x41x

4
3

(
x41 − x43

)2(
x41 + x43

))
+ x20x

2
2x

2
1x

2
3

(
x162 − 12x122

(
x41 + x43

)
+ x82

(
22x81 − 52x41x

4
3 + 22x83

)
− 4x42

(
3x121 + 13x81x

4
3 + 13x41x

8
3 + 3x123

)
+
(
x41 − x43

)2(
x81 − 10x41x

4
3 + x83

))
+ 2x42x

4
1x

4
3

(
x122 −x82

(
x41 + x43

)
−x42

(
x81−18x41x43 + x83

)
+
(
x41−x43

)2(
x41 + x43

)))
.

(A.5.5)

The normalization of χ10 has been fixed by matching with the alternative formula

χ10 = 2−14
∏
A

θ[A](Ω)2, (A.5.6)

where the product is over the 10 vectors of the form (a1, a2, b1, b2)
T , ai, bi ∈ {0, 1/2}

that give a non-zero theta constant, see comments after (4.3.59).
At genus 3 we find (in the notation of [129])

α4
∼= (8) + 14(4, 4) + 168(2, 2, 2, 2) + 1344(1, 1, 1, 1, 1, 1, 1, 1), (A.5.7)

j8 = 1344
[
2(9, 1, 1, 1, 1, 1, 1, 1) + (8, 0, 0, 0, 2, 2, 2, 2) + (6, 2, 2, 2, 4, 0, 0, 0)

+ 4(5, 5, 1, 1, 1, 1, 1, 1)− (4, 4, 4, 0, 4, 0, 0, 0)− 2(4, 4, 0, 0, 2, 2, 2, 2)

(A.5.8)

+ 16(3, 3, 3, 3, 1, 1, 1, 1)− 72(2, 2, 2, 2, 2, 2, 2, 2)
]
.

Holomorphic Eisenstein series and modular forms

Here we will provide a few details on the holomorphic Eisenstein series which might
be useful for computating the modular forms. At general genus, can be defined as

E
(g)
k =

∑
C,D

(
det(CΩ +D)

)−k
,

(
A B

C D

)
∈ Sp(2g,Z), (A.5.9)
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however there are different normalization conventions used in the literature.
For genus 1 and 2, the holomorphic Eisenstein series generates the entire ring

of modular forms [188]. For genus g ⩾ 3 this is no longer the case, since there are
modular forms which cannot be written as a polynomial of the Eisenstein series [133].
For the genus g ⩽ 3, the ring of modular forms has the following generators,

g = 1 G4, G6, (A.5.10)

g = 2 E4, E6, χ10, χ12, (A.5.11)

g = 3
α4, α6, α10, α12, α

′
12, β14, α16, β16, χ18, α18,

α20, γ20, β22, β
′
22, α24, γ24, γ26, χ28, α30,

(A.5.12)

where there are 19 generators at genus g = 3 [134]. [133] originally gave 34, however,
[134] show that there are 19 generators among these 34 forms forms. The case at
genus g = 2 was demonstrated in [189], and related to codes in [126] (using references
in [129]). The general theorem, that the (pseudo)reflections on codes generate the
ring of modular form was done in [129]. The set of generators at genus 4 is not
known [123, 134].

Degree one

At degree 1 we follow [108] and define

Gk(e
2πiτ ) =

1

2ζ(k)

∑
(c,d)∈Z2\{(0,0)}

1

(cτ + d)k
. (A.5.13)

This evaluates to

Gk(q) = 1 +
2

ζ(1− k)

∞∑
n=1

σk−1(n)q
n, (A.5.14)

where σk(n) is the divisor sum function defined by

σk(n) =
∑
d|n

dk. (A.5.15)
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The basis is generated by two elements, G4 and G6. In terms of these,

G8 = G2
4 , (A.5.16)

G10 = G4G6 , (A.5.17)

G12 =
441

691
G3

4 +
250

691
G2

6 , (A.5.18)

G14 = G2
4G6 , (A.5.19)

G16 =
1617

3617
G4

4 +
2000

3617
G4G

2
6 , (A.5.20)

G18 =
38367

43867
G3

4G6 +
5500

43867
G3

6 , (A.5.21)

and
∆12 =

1

1728
(G3

4 −G2
6). (A.5.22)

Notice that there is a direct relation

∆12(e
2πiτ ) = η(τ)24 , (A.5.23)

where η(τ) is the Dedekind eta function defined in (4.2.12).

Degree two

The ring of degree two modular forms are generated by four elements, E4, E6, χ10,
and χ12, which are given in terms of code variables in equations (A.5.2)-(A.5.5). We
may write the holomorphic Eisenstein series in terms of these:

E8 = E2
4 , (A.5.24)

E10 = E4E6 −
9231667200

43867
χ10 , (A.5.25)

E12 =
441

691
E3

4 +
250

691
E2

6 −
36980665344000

53678953
χ12 , (A.5.26)

E14 = E2
4E6 −

187420262400

657931
E4χ10 , (A.5.27)

E16 =
1617

3617
E4

4 +
2000

3617
E4E

2
6 −

4600443838734729216000

6232699579062017
E4χ12

− 473779992577941504000

6232699579062017
E6χ10 , (A.5.28)

E18 =
38367

43867
E3

4E6 +
5500

43867
E3

6 −
1688190624014720716800

6651496075469717
E2

4χ10

− 2177976079791654912000

6651496075469717
E6χ12 . (A.5.29)
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We shall briefly describe the implementation of the holomorphic Eisenstein series,
which was also reviewed in [108] following [190]. These are given in terms of the
moduli Ω by

Ek(Ω) =
∞∑

m,n=0

∑
p2⩽4mn

ak(m,n, p)q
nrpsm , (A.5.30)

where q, r, and s are defined in (4.3.8), the sum over p includes all integers (including
negative ones) satisfying p2 ⩽ 4mn, and the Fourier coefficients ak are given by

ak(m,n, p) =
2

ζ(3− 2k)ζ(1− k)
∑

d|(n,m,p)

dk−1H

(
k − 1,

4nm− p2

d2

)
, (A.5.31)

where the sum is over the divisors d of the GCD of n, m, and p. H(r,N) is the
Cohen function, defined in [191] as

H(r,N) =


∑

d2|N h(r,N/d
2) (−1)rN ≡ 0 or 1 (mod 4) ,

ζ(1− 2r) N = 0,

0 otherwise .

(A.5.32)

The sum in the first term is over all squares d2 which divide N . The function h(r,N)

is then defined by

h(r,N) =

(−1)⌊r/2⌋(r−1)!N r−1/221−rπ−rL(r, χ(−1)rN), (−1)rN ≡ 0 or 1 (mod 4),

0, (−1)rN ≡ 2 or 3 (mod 4).

(A.5.33)

Finally, the character χD(d) can be written using the Kronecker symbol via

χD(d) =

(
D

d

)
, (A.5.34)

which allows us to compute the L−function

L(r, χ(−1)rN) =
∞∑
n=1

(
(−1)rN

n

)
n−r . (A.5.35)

The result of this chain of computations is an algorithm for computing the Eisenstein
series Ek. In practice, we could not compute the infinite sums associated with the
L-functions exactly, so we computed them to large values of n and determined the
formulas (A.5.24)–(A.5.29) numerically.
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A.6 Generators for invariant ring at genus 2

In section 5.4 we analyzed the generators for ring Rg of invariant genus 2 polynomi-
als. It is convenient to organize the generators by degree. Consider the set Q[2]

n of
generators of degree n, then the ring is given by

R2 =
〈
Q

[2]
1 ∪Q

[2]
2 ∪ · · · ∪Q

[2]
11

〉
. (A.6.1)

We represent each generator by an undirected graph, and show the generators in
figures A.1–A.9.

Figure A.1: Q[2]
1 (left), Q[2]

2 (middle), and Q[2]
3 (right).

Figure A.2: Q[2]
4

Figure A.3: Q[2]
5

Figure A.4: Q[2]
6
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Figure A.5: Q[2]
7

Figure A.6: Q[2]
8

Figure A.7: Q[2]
9

Figure A.8: Q[2]
10

Figure A.9: Q[2]
11
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A.7 Genus 2 partition functions in enumerator polynomial form

Here we include a few expressions too big to conveniently include in the main text.

n = 3 theories

First let us provide the genus 2 partition functions of each of the actual n = 3 code
theories.

W 3
1 = (x0 + x2)

3(
W

(2)
1

)3
= y30 + 3y4y

2
0 + 3y5y

2
0 + 3y6y

2
0 + 3y24y0 + 3y25y0 + 3y26y0

+ 6y4y5y0 + 6y4y6y0 + 6y5y6y0 + y34 + y35 + y36 + 3y4y
2
5

+ 3y4y
2
6 + 3y5y

2
6 + 3y24y5 + 3y24y6 + 3y25y6 + 6y4y5y6

(A.7.1)

W1W2 = (x0 + x2)(x
2
0 + x21 + 2x22)

W
(2)
1 W

(2)
2 = y30 + y4y

2
0 + y5y

2
0 + y6y

2
0 + y21y0 + y22y0 + y23y0 + 2y24y0 + 2y25y0

+ 2y26y0 + 2y27y0 + 2y28y0 + 2y29y0 + 2y34 + 2y35 + 2y36 + 2y4y
2
5

+ 2y4y
2
6 + 2y5y

2
6 + 2y4y

2
7 + 2y5y

2
7 + 2y6y

2
7 + 2y4y

2
8 + 2y5y

2
8 + 2y6y

2
8

+ 2y4y
2
9 + 2y5y

2
9 + 2y6y

2
9 + y21y4 + y22y4 + y23y4 + y21y5 + y22y5 + y23y5

+ 2y24y5 + y21y6 + y22y6 + y23y6 + 2y24y6 + 2y25y6

(A.7.2)

W3 = x30 + 3x21x2 + 3x0x
2
2 + x32

W
(2)
3 = y30 + 3y24y0 + 3y25y0 + 3y26y0 + y34 + y35 + y36 + 3y5y

2
7 + 3y6y

2
7 + 3y4y

2
8

+ 3y6y
2
8 + 3y4y

2
9 + 3y5y

2
9 + 3y21y4 + 3y22y5 + 3y23y6

+ 6y4y5y6 + 6y3y7y8 + 6y2y7y9 + 6y1y8y9

(A.7.3)

W̃3 = x30 + 3x0x
2
1 + 4x32

W̃
(2)
3 = y30 + 3y21y0 + 3y22y0 + 3y23y0 + 4y34 + 4y35 + 4y36 + 12y4y

2
7

+ 12y5y
2
8 + 12y6y

2
9 + 6y1y2y3

(A.7.4)
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Chiral theories

The genus 1 partition function for the extremal n = 24 chiral theory, also known as
the Monster CFT, is

W̃
(1)
24 (x0, x1) = x240 −

9

2
x41x

20
0 + 777x81x

16
0 + 2549x121 x

12
0 + 777x161 x

8
0 −

9

2
x201 x

4
0 + x241

(A.7.5)

while its genus 2 partition function is

W̃
(2)
24 (x0, x1, x2, x3) =

1

4

(
4x240 −18

(
x41+x

4
2+x

4
3

)
x200 +63x21x

2
2x

2
3x

18
0

+12
(
259x81+3

(
x42+x

4
3

)
x41+259x82+259x83+3x42x

4
3

)
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166



The c = 48 extremal theory has partition function in EP form given by

W̃
(1)
48 (x0, x1) = x480 − 9x41x
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32
x81x

40
0 +

41641

4
x121 x
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28
0 +

121555689

16
x241 x
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8
x321 x
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0 +

41641

4
x361 x

12
0 +

1155

32
x401 x

8
0 − 9x441 x

4
0 + x481

(A.7.7)

We have also obtained the polynomial expression for the genus 3 partition func-
tion of the c = 24 extremal theory, and for the genus 2 partition function of the
conjectured c = 48 extremal theory. These were too large to included even here but
are available upon request.
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