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INTERIOR LAYERS IN A REACTION–DIFFUSION EQUATION

WITH A DISCONTINUOUS DIFFUSION COEFFICIENT
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This paper is dedicated to G. I. Shishkin on the occassion of his 70th birthday

Abstract. In this paper a problem arising in the modelling of semiconductor

devices motivates the study of singularly perturbed differential equations of

reaction–diffusion type with discontinuous data. The solutions of such prob-

lems typically contain interior layers where the gradient of the solution changes

rapidly. Parameter–uniform methods based on piecewise–uniform Shishkin

meshes are constructed and analysed for such problems. Numerical results

are presented to support the theoretical results and to illustrate the benefits

of using a piecewise–uniform Shishkin mesh over the use of uniform meshes in

the simulation of a simple semiconductor device.
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1. Introduction

The solutions of singularly perturbed differential equations with smooth data ex-
hibit steep gradients in narrow layer regions adjacent to part or all of the boundary
of the domain. When the data for the problem is not smooth, additional interior
layers can appear in the solutions of these singularly perturbed problems. There
are two broad classes of interest within singularly perturbed problems: problems
of reaction–diffusion type and problems of convection–diffusion type. In this pa-
per, we examine numerical methods for singularly perturbed ordinary differential
equations of reaction–diffusion type with non-smooth data. Our interest is in the
design and analysis of parameter–uniform numerical methods, for which the error
constants in the associated asymptotic error bounds are independent of any singular
perturbation parameters.

Farrell et al. [7] constructed and analysed a parameter–uniform method for a
reaction–diffusion problem of the form: find u ∈ C1(0, 1) such that

(1.1) − (εu′)′ + r(x)u = f(x), x ∈ (0, 1) \ {d}, u(0), u(1) given, r(x) ≥ 0,

where r, f were allowed to be discontinuous at a point d ∈ (0, 1) and ε was a positive
small parameter. The method consisted of a standard difference operator combined
with an appropriate piecewise–uniform Shishkin [6] mesh and it was shown in [7]
to be essentially a first order parameter–uniform method. By using a different
discretization at the interface, Roos and Zarin [11] analysed a second order method
for the case when the source term f is discontinuous and ε ≤ CN−1. A first order
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numerical method was analysed in [8] for a nonlinear version of (1.1), where r(x)u
is replaced by r(u)u and the source term f is allowed to be possibly discontinuous
at some point d. Two dimensional versions of problem (1.1) with point sources were
considered in [3, 2] where the parameter uniform convergence of numerical methods
incorporating Shishkin meshes was examined.

In this paper, we return to the one dimensional problem (1.1) with possible point
sources included, but we add some new features into the problem class. Firstly, we
allow the diffusion coefficient ε to be variable, ε = ε(x), and to be possibly dis-
continuous. Such discontinuous diffusion coefficients can arise, for example, in the
modelling of phase transitions. Moreover, this means that the resulting problem is a
two parameter singularly perturbed problem. In the context of parameter–uniform
methods, this forces one to ensure that the convergence of the numerical approxi-
mations is independent of both singular perturbation parameters. In addition, we
also consider the effect of interfacing a reaction–diffusion equation with an equation
with no reactive term (r ≡ 0) on one side of the interface x = d. The examination
of this second class of problems was motivated by a modelling problem from the
area of semiconductor devices. The resulting interior layer in the solution can be
weaker than in the case of (1.1), but we see below that it is still desirable to use
an appropriate fitted mesh in order to achieve parameter-uniform convergence. In
§2,3,4, a priori bounds on the continuous solutions are established, which are used
in §5 to construct an appropriate fitted mesh. Combining this fitted mesh with a
finite difference operator in conservative form, it is shown in §6 that the resulting
numerical method is essentially a globally second order parameter–uniform numeri-
cal method [6] for both of the problem classes being considered. Parameter–uniform
convergence estimates for the appropriately scaled fluxes are also given. Numerical
results in §7 are presented to support the theoretical results.

In §8, we consider a class of linear singularly perturbed ordinary differential
equations of reaction–diffusion type with non–smooth data, associated with a non-
linear singularly perturbed ordinary differential equation arising in the modelling
of a Metal Oxide Semiconductor (MOS) capacitor. To determine the capacitance
of this nonlinear device over a practical range of applied voltages, it is necessary
to approximate the scaled derivative of the solution of the associated linear singu-
larly perturbed problems over a wide range of the singular perturbation parameter.
Parameter–uniform methods are designed for this purpose. At the end of the pa-
per, we observe an improvement in the accuracy of the capacitance when a suitably
fitted mesh is employed within the numerical algorithm.

In passing we note that the piecewise–uniform mesh used in this paper is only
one of a family of possible layer–adapted meshes [10] which could be used for this
singularly perturbed problem. In particular, it is well established that Bakhvalov
[1] meshes outperform piecewise-uniform meshes by typically obtaining parameter–
uniform convergence orders ofO(N−p) as opposed toO((N−1 lnN)p) for the piecewise–
uniform meshes. Likewise, in the case of ordinary differential equations, many
possible analytical approaches exist [10] to establish these theoretical results. In
this paper, we choose the classical analytical approach of stability and consistency,
suitably modified for singularly perturbed problems, to establish our theoretical
results. The main reason for this choice and, also, for our choice of a piecewise–
uniform mesh, is that this same approach has been extended to a wide class of
singularly perturbed partial differential equations [13].
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Throughout this paper C (sometimes subscripted) is a generic constant that is
independent of the singular perturbation parameters ε1, ε2 and the discretization
parameter N .

2. Two classes of reaction–diffusion problems

Consider the singularly perturbed reaction–diffusion equation (1.1) with discon-
tinuous data on the unit interval Ω = (0, 1). Let Ω1 = (0, d) and Ω2 = (d, 1).
Denote the jump at the point d in any function by [ω](d) = ω(d+) − ω(d−). Our
first problem class is given by:

find uε ∈ C0(Ω̄) ∩ C2(Ω1 ∪ Ω2) such that

− (ε(x)u′ε)
′ + r(x)uε = f, x ∈ Ω1 ∪ Ω2,(2.1a)

uε(0) = B0, uε(1) = B1,(2.1b)

[−εu′ε](d) = Q′1,(2.1c)

[f ](d) = Q2, [r](d) = Q3,(2.1d)

ε(x) =

{
ε1p(x), x ∈ Ω1

ε2p(x), x ∈ Ω2
, p(x) ≥ p > 0, x ∈ Ω1 ∪ Ω2,(2.1e)

where ε1 > 0, ε2 > 0 are singular perturbation parameters,

|Q′1| ≤ C(
√
ε1 +

√
ε2),(2.1f)

r(x) ≥ r0 > 0,
r(x)

p(x)
> β > 0, x ∈ Ω1 ∪ Ω2,(2.1g)

and ε1, ε2 are sufficiently small so that

(2.1h)
√
εiβ|p′(x)| ≤ r(x)− βp(x), ∀x ∈ Ω1 ∪ Ω2, i = 1, 2.

In particular, equations (2.1d) and (2.1e) above indicate that all the coefficients in
(2.1a) may exhibit a jump at x = d, while equation (2.1c) allows for a jump in the
flux (−εu′ε) at x = d. The constraint (2.1h) on the magnitude of |p′| is required
in Corollary 2.1 to establish the parameter–uniform stability of the solution. Note
that if p(x) is piecewise constant, then this stability constraint is automatically
satisfied.

We will also examine a second problem class given by: find uε ∈ C0(Ω̄)∩C2(Ω1∪
Ω2) such that (2.1a-e) are satisfied and

|Q′1| ≤ C1
√
ε1 + C2ε2,(2.2a)

r(x) ≥ r0 > 0, r(x)
p(x) > β > 0, x ∈ Ω1, r(x) ≡ 0, x ∈ Ω2,(2.2b)

f(x) =

{
f1(x), x ∈ Ω1

ε2f2(x), x ∈ Ω2
,(2.2c)

and ε1 is sufficiently small so that

(2.2d)
√
ε1β|p′(x)| ≤ r(x)− βp(x), ∀x ∈ Ω1.

In this second problem class, the inhomogeneous term f(x) is suitably scaled so
that the solutions uε are uniformly bounded. For both problem classes, we assume
throughout the paper that r, p, f ∈ C4(Ω \ {d}). Let Lε denote the linear operator
given by

Lεω :=

 −(ε(x)ω′)′ + r(x)ω, x 6= d
[−εω′](d), x = d
ω(x), x = {0, 1}.

Then Lε satisfies the following minimum principle on Ω̄.
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Lemma 2.1. Suppose that a function ω ∈ C0(Ω̄)∩C2(Ω1 ∪Ω2) satisfies Lεω(x) ≥
0, ∀x ∈ Ω̄. Then ω(x) ≥ 0, ∀x ∈ Ω̄.

Proof. We consider the problems (2.1) and (2.2) separately. In the case of problem
(2.1), when r(x) > 0, x ∈ Ω1 ∪ Ω2 we argue as follows. Let x∗ be any point at
which ω attains its minimum value in Ω̄ and assume that ω(x∗) < 0. With the above
assumption on the boundary values, either x∗ ∈ Ω1 ∪Ω2 or x∗ = d. If x∗ ∈ Ω1 ∪Ω2

then ω′(x∗) = 0, ω′′(x∗) ≥ 0 and so Lεω(x∗) = −(εω′)′(x∗)+r(x∗)ω(x∗) < 0, which
is false. If x∗ = d, then ω′(d−) ≤ 0 and ω′(d+) ≥ 0. We are led to a contradiction
if either of these inequalities are strict. Hence ω ∈ C1(Ω) and ω′(d) = 0. Recalling
that ω(d) < 0 it follows that there exists a neighbourhood Nh = (d − h, d) such
that ω(x) < 0 for all x ∈ Nh. Now choose a point x1 ∈ Nh such that ω(x1) > ω(d).
It follows from the Mean Value Theorem that, for some x2 ∈ Nh,

(εω′)(x2) = ε(x2)
ω(d)− ω(x1)

d− x1
< 0.

Note that when ω′(d) = 0 then εω′ ∈ C0(N̄h) ∩ C1(Nh). So there exists some
x3 ∈ Nh,

(εω′)′(x3) =
εω′(d)− εω′(x2)

d− x2
=
−εω′(x2)

d− x2
> 0.

Note also that ω(x3) < 0, since x3 ∈ Nh. Thus

Lεω(x3) = −(εω′)′(x3) + r(x3)ω(x3) < 0,

which is the required contradiction.
In the case of problem (2.2) (when r(x) ≡ 0, x ∈ Ω2), note that if the minimum

point x∗ ∈ Ω2 then to avoid a contradiction we must have ω(x) ≡ ω(x∗), ∀x ∈ Ω̄2.
Complete the proof using the arguments above. �

Corollary 2.1. If uε is a solution of problem (2.1) and ε1, ε2 are sufficiently small
so that (2.1h) is satisfied, then

‖uε‖Ω̄ ≤ max{|uε(0)|, |uε(1)|, 1

r0
‖f‖Ω1∪Ω2}+ C

|Q′1|√
ε1 +

√
ε2
.

Proof. Consider the barrier function

G(x) =

 e
−
√

β
ε1

(d−x)
, x ≤ d

e
−
√

β
ε2

(x−d)
, x > d

,

which has the property that for sufficiently small ε1, ε2 (such that
√
εiβ|p′| ≤ r −

pβ, i = 1, 2),

LεG =

 ((r − pβ)−
√
ε1βp

′)G
(
√
ε1p(d

−) +
√
ε2p(d

+))
√
β

((r − pβ) +
√
ε2βp

′)G
≥


0, x < d
p(
√
ε1 +

√
ε2)
√
β, x = d

0, x > d
.

Then, use the barrier functions

Ψ±(x) = max{|uε(0)|, |uε(1)|, 1

r0
‖f‖Ω1∪Ω2}+

( |Q′1|
p(
√
ε1 +

√
ε2)
√
β

)
G± uε(x)

to complete the proof. �

Corollary 2.2. If uε is a solution of problem (2.2), ε1 is sufficiently small so that
(2.1h) is satisfied and |Q′1| ≤ C1

√
ε1 + C2ε2, then

‖uε‖Ω̄ ≤ max{|uε(0)|, |uε(1)|, C‖f1‖Ω1
, C‖f2‖Ω2

}+ C(C1 + C2).
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Proof. Consider the barrier functions

G(x) =

 1√
ε1
e
−
√

β
ε1

(d−x)
, x < d

1√
ε1
, x > d

, P (x) =

{ ∫ 1

d
t
p(t) d t, x ≤ d∫ 1

x
t
p(t) d t, x > d

,

which have the properties that

LεG =

 ((r − pβ)−
√
ε1βp

′)G, x < d
p(d−)

√
β, x = d

0, x > d
, LεP =

 rP (d), x < d
ε2d, x = d
ε2, x > d

.

Then, for sufficiently small ε1, use the barrier functions

Ψ±(x) = max{|uε(0)|, |uε(1)|, 1

r0
‖f1‖Ω1

,KP (x)}+
( C1

√
ε1

p(d−)
√
β

)
G± uε(x),

where K := max{‖f2‖Ω2 ,
C2

d }, to complete the proof. �

Theorem 2.1. Each of the problems (2.1) and (2.2) has a unique solution.

Proof. We modify the corresponding argument from [7]. The proof is by construc-
tion. Let y1, y2 be particular solutions of the differential equations

−(εy′1)′ + r(x)y1 = f, x ∈ Ω1 and − (εy′2)′ + r(x)y2 = f, x ∈ Ω2.

Define φ1(x), φ2(x) ∈ C2(Ω) ∩ C0(Ω̄) as the solutions of the boundary value prob-
lems

−(ε∗φ′1)′ + r∗(x)φ1 = 0, x ∈ Ω, φ1(0) = 1, φ1(1) = 0;

−(ε∗φ
′
2)′ + r∗(x)φ2 = 0, x ∈ Ω, φ2(0) = 0, φ2(1) = 1,

where ε∗, ε∗, r
∗, r∗ ∈ C1(Ω) are appropriate extensions of the functions so that e.g.

r∗(x) = r(x), x ∈ Ω1, r∗(x) ≥ 0.5β > 0, x ∈ Ω̄,

ε∗(x) = ε(x), x ∈ Ω2, Cε2 ≥ ε∗(x) ≥ 0.5ε2 > 0, x ∈ Ω̄.

In the case of (2.2), where r(x) ≡ 0, x ∈ Ω2, then take r∗(x) ≡ 0, x ∈ Ω̄. Note
that φ1 and φ2 cannot have an internal maximum or minimum. Hence

0 < φ1, φ2 < 1, φ′1 < 0, φ′2 > 0, x ∈ (0, 1).

Then we construct the solution as follows:

y(x) =

{
y1(x) + (uε(0)− y1(0))φ1(x) +Aφ2(x), x ∈ Ω1,
y2(x) +Bφ1(x) + (uε(1)− y2(1))φ2(x), x ∈ Ω2,

where A,B are constants chosen so that y ∈ C0(Ω) and [εy′](d) = −Q′1. The
constants A,B exist as ∣∣∣∣ φ2(d) −φ1(d)

ε(d−)φ′2(d) −ε(d+)φ′1(d)

∣∣∣∣ > 0.

Uniqueness follows from the previous corollaries. �
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3. A priori bounds on the derivatives of the solution of problem (2.1)

To establish the parameter–robust properties of the numerical methods involved
in this paper, the following decomposition of uε into regular vε and singular wε
components will be useful. The regular component vε is defined as the solution of

Lεvε = f, x ∈ Ω1 ∪ Ω2, r(x)vε(x) = f(x), x ∈ {0, d−, d+, 1};

and the singular component wε is given by

Lεwε = 0, x ∈ Ω1 ∪ Ω2,

[wε(d)] = −[vε(d)], [εw′ε(d)] = −[εv′ε(d)]−Q′1,
wε(0) = uε(0)− vε(0), wε(1) = uε(1)− vε(1).

Note that, in general, vε, wε 6∈ C0(Ω). In fact, vε, wε are multi–valued at x = d.
As before, the singular component wε is well defined and is given by

(3.1) wε(x) =

{
wε(0)ψ1(x) +A1ψ2(x), x ∈ Ω1

A2ψ3(x) + wε(1)ψ4(x), x ∈ Ω2
,

where ψi(x), i = 1, 2, 3, 4 are the solutions of the boundary value problems

− (εψ′1)′ + r(x)ψ1 = 0, x ∈ Ω1, ψ1(0) = 1, ψ1(d) = 0;(3.2a)

−(εψ′2)′ + r(x)ψ2 = 0, x ∈ Ω1, ψ2(0) = 0, ψ2(d) = 1;(3.2b)

−(εψ′3)′ + r(x)ψ3 = 0, x ∈ Ω2, ψ3(d) = 1, ψ3(1) = 0;(3.2c)

−(εψ′4)′ + r(x)ψ4 = 0, x ∈ Ω2, ψ4(d) = 0, ψ4(1) = 1.(3.2d)

The constants A1 = A2 + [vε(d)] are chosen so that the jump conditions at x = d
are satisfied. One can show that

A2 =
[vε(d)](εψ′2)(d−) + wε(0)(εψ′1)(d−)− wε(1)(εψ′4)(d+)− [εv′ε(d)]−Q′1

(εψ′3)(d+)− (εψ′2)(d−)

A1 =
[vε(d)](εψ′3)(d+) + wε(0)(εψ′1)(d−)− wε(1)(εψ′4)(d+)− [εv′ε(d)]−Q′1

(εψ′3)(d+)− (εψ′2)(d−)
.

Define the barrier function

Bε1(x) = e−x
√
β/ε1 .

Observe that
√
ε1B

′
ε1 =

√
βBε1 , ε1B

′′
ε1 = βBε1 and Bε1(0) = 1. Hence, (for ε1

sufficiently small) we have

−(ε1pB
′
ε1)′ + rBε1 = (r − βp−

√
βε1p

′)Bε1 ≥ 0.

Lemma 3.1. Assume the ε1, ε2 are sufficiently small so that (2.1h) is satisfied and
that |Q′1| ≤ C(

√
ε1 +

√
ε2). For each integer k, satisfying 0 ≤ k ≤ 4, the regular

and singular components vε and wε of the problem (2.1) satisfy the bounds.

|v(k)
ε (x)| ≤

{
C + Cε

1− k2
1 (|wε(0)|Bε1(x) +Bε1(d− x)) , x ∈ Ω1

C + Cε
1− k2
2 (|wε(1)|Bε2(1− x) +Bε2(x− d)) , x ∈ Ω2

,

|w(k)
ε (x)| ≤

{
Cε
− k2
1 (|wε(0)|Bε1(x) +Bε1(d− x)) , x ∈ Ω1

Cε
− k2
2 (|wε(1)|Bε2(1− x) +Bε2(x− d)) , x ∈ Ω2

,

where C is a constant independent of ε1, ε2.
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Proof. Note that uε = vε + wε and

|vε(d−)|+ |vε(d+)|+ ‖vε‖Ω1∪Ω2 ≤ C, ‖uε‖Ω̄ ≤ C + C
|Q′1|

(
√
ε1 +

√
ε2)

.

Hence if |Q′1| ≤ C(
√
ε1 +

√
ε2) then |wε(d−)| + |wε(d+)| ≤ C. Bounding the

derivatives separately on the intervals Ω1 and Ω2 (for example, see [6]), we get that
for 0 ≤ k ≤ 4,

(3.3) |u(k)
ε (x)| ≤ C + C

{
ε
− k2
1 (|wε(0)|Bε1(x) +Bε1(d− x)) , x ∈ Ω1

ε
− k2
2 (|wε(1)|Bε2(1− x) +Bε2(x− d)) , x ∈ Ω2

.

On the domain Ω1, the regular component is of the form

vε(x) =
f(x)

r(x)
+ ε1zε1(x),

where the remainder term zε1 satisfies the boundary value problem

Lεzε1 =
(
p(
f

r
)′
)′
, zε1(0) = zε1(d) = 0.

Apply the bounds (3.3) to the remainder to derive the bounds on |v(k)
ε (x)|.

Consider the boundary layer function ψ1(x) defined in (3.2a). From the maxi-
mum principle, we can deduce that for ε1 sufficiently small, 0 ≤ ψ1(x) ≤ Bε1(x) and
ε1|(pψ′1)′(x)| ≤ CBε1(x). Note that ψ′1(x) < 0 and by the Mean Value Theorem,

using the argument from [1], we have that |ψ′1(x)| ≤ Cε
−1/2
1 Bε1(x) . Differentiate

the differential equation (3.2a) to obtain bounds on the third and fourth derivatives
of ψ1(x). Appropriate bounds on the other layer functions ψi(x), i = 2, 3, 4 can be
deduced in an analogous fashion and then we can deduce that the constants in (3.1)
satisfy |A2| ≤ C and |A1| ≤ C. The bounds on wε and its derivatives follow. �

4. A priori bounds on the derivatives of the solution of problem (2.2)

In the case of problem (2.2), the regular component is continuous and satisfies

Lεvε = f, x ∈ Ω1 ∪ Ω2,

r(0)vε(0) = f(0), r(d−)vε(d) = f(d−), vε(1) = uε(1).

The singular component wε is hence also continuous and is given by

Lεwε = 0, x ∈ Ω1 ∪ Ω2,

[εw′ε(d)] = −[εv′ε(d)]−Q′1, wε(0) = uε(0)− vε(0), wε(1) = 0.

The singular component wε is explicitly given by

wε(x) =

{
wε(0)ψ1(x) +Aψ2(x), x ∈ Ω1

Aψ5(x), x ∈ Ω2
,

where − (εψ′5)′ = 0, x ∈ Ω2, ψ5(d) = 1, ψ5(1) = 0,

and A =
wε(0)(εψ′1)(d−)− [εv′ε(d)]−Q′1

(εψ′5)(d+)− (εψ′2)(d−)
= O

(√ε1 + ε2 + |Q′1|
ε2 +

√
ε1

)
.

Lemma 4.1. Assume that ε1 is sufficiently small so that (2.2d) is satisfied and
that |Q′1| ≤ C(

√
ε1 + ε2). For each integer k, satisfying 0 ≤ k ≤ 4, the regular and

singular components vε and wε of the problem (2.2) satisfy the bounds.

|v(k)
ε (x)| ≤

{
C + Cε

1− k2
1 (|wε(0)|Bε1(x) +Bε1(d− x)) , x ∈ Ω1

C, x ∈ Ω2

,
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|w(k)
ε (x)| ≤

{
Cε
− k2
1 (|wε(0)|Bε1(x) +Bε1(d− x)) , x ∈ Ω1

C, x ∈ Ω2

,

where C is a constant independent of ε1, ε2.

5. Discrete Problem

On Ω1 ∪ Ω2 a piecewise-uniform mesh of N mesh intervals is constructed as
follows. The interval Ω1 is subdivided into the three subintervals

[0, σ1], [σ1, d− σ1] and [d− σ1, d]

for some σ1 that satisfies 0 < σ1 ≤ d
4 . On [0, σ1] and [d − σ1, d] a uniform mesh

with N
8 mesh–intervals is placed, while on [σ1, d− σ1] has a uniform mesh with N

4
mesh-intervals. The subintervals [d, d + σ2], [d + σ2, 1 − σ2], [1 − σ2, 1] are treated
analogously for some σ2 satisfying 0 < σ2 ≤ 1−d

4 . The interior points of the mesh
are denoted by

(5.1) ΩNε = {xi : 1 ≤ i ≤ N

2
− 1} ∪ {xi :

N

2
+ 1 ≤ i ≤ N − 1}.

Let hi = xi − xi−1 be the mesh step and h̄i = (hi+1 + hi)/2. Clearly xN
2

= d and

Ω
N

ε = {xi}N0 . In the case of problem (2.1) we take

(5.2) σ1 = min

{
d

4
, 2

√
ε1

β
lnN

}
, σ2 = min

{
1− d

4
, 2

√
ε2

β
lnN

}
.

In the case of problem (2.2)

(5.3) σ1 = min

{
d

4
, 2

√
ε1

β
lnN

}
, σ2 =

1− d
4

.

Let h+ (h−) be the fine mesh interval sizes on the right (left) side of x = d and
h = max{h−, h+}. Thus h− = 8σ1N

−1, h+ = 8σ2N
−1. Define the discrete finite

difference operator LNε as follows. For any mesh function Z, define

LNε Z :=

 −εiδ
2Z(xi) + r(xi)Z(xi), xi 6= d,

−εiδ2Z(d) + r̄(d)Z(d), xi = d,
Z(xi), xi = {0, 1},

where εiδ
2Z(xi) :=

(
ε̄(xi)D

+Z(xi)− ε̄(xi−1)D−Z(xi)
) 1

h̄i

ε̄(xi) :=
ε(x−i+1) + ε(x+

i )

2
; r̄(d) :=

h−r(d− h−) + h+r(d+ h+)

h− + h+
;

D+v(xi) :=
v(xi+1)− v(xi)

xi+1 − xi
, D−v(xi) := D+v(xi−1).

Since the system matrix LNε is an M-matrix, the finite difference operator LNε has
properties analogous to those of the differential operator Lε.

Lemma 5.1. Suppose that a mesh function W satisfies LNε W (xi) ≥ 0 for all

xi ∈ Ω
N

ε , then W (xi) ≥ 0 for all xi ∈ Ω
N

ε .
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The discrete problem is: find Uε such that

− εiδ2Uε(xi) + r(xi)Uε(xi) = f(xi), xi ∈ ΩNε ,(5.4a)

−εiδ2Uε(d) + r̄(d)Uε(d) = f̄(d) +
Q′

h̄
, xi = d,(5.4b)

Uε(0) = uε(0), Uε(1) = uε(1),(5.4c)

where f̄(d) :=
h−f(d− h−) + h+f(d+ h+)

h− + h+
.(5.4d)

6. Error analysis

We begin by examining the truncation error for xi 6= d, where

(εiδ
2)uε(xi)− (εu′ε)

′(xi) = ε(xi)(δ
2uε(xi)− u′′ε (xi))

+
ε′(xi)

hi + hi+1

(∫ xi+1

t=xi−1

∫ t

s=xi

u′′ε (s) ds dt

)
+
D+uε(xi)

hi + hi+1

(∫ xi+1

t=xi

∫ t

s=xi

ε′′(s) ds dt

)

− D−uε(xi)

hi + hi+1

(∫ xi

t=xi−1

∫ xi

s=t

ε′′(s) ds dt

)

= ε(xi)(δ
2uε(xi)− u′′ε (xi)) +

ε′(xi)

hi + hi+1

(∫ xi+1

t=xi−1

∫ t

s=xi

∫ s

p=xi

u′′′ε (p) dp ds dt

)

+
D+uε(xi)

hi + hi+1

(∫ xi+1

t=xi

∫ t

s=xi

∫ s

p=xi

ε′′′(p) dp ds dt

)
− D−uε(xi)

hi + hi+1

(∫ xi

t=xi−1

∫ xi

s=t

∫ s

p=xi

ε′′′(p) dp ds dt

)

+
ε′′(xi)

4
(h2
i δ

2uε(xi) +
h2
i+1 − h2

i

h̄i
D+uε(xi)).

In the case of problem (2.1), by classical estimates and Lemma 3.1, we have that
for all i 6= N/2,

|ε(xi)(
d2

dx2
−δ2)vε(xi)| ≤

{
Cε(xi)(xi+1 − xi−1)|vε|3 ≤ C

√
ε(xi)N

−1

Cε(xi)h
2|vε|4 ≤ CN−2, xi+1 − xi = xi − xi−1 = h,

where |v|k := max

∣∣∣∣dkvdxk

∣∣∣∣ , ∀k ∈ N, and we also have

|ε(xi)(
d2

dx2
− δ2)wε(xi)| ≤


Cε(xi)(xi+1 − xi−1)|wε|3 (a)
Cε(xi)h

2|wε|4, xi+1 − xi = xi − xi−1 = h (b)
Cε(xi) max

x∈[xi−1,xi+1]
|w′′ε (x)|. (c)

Using (c) in the outer–layer regions [σ1, d− σ1] ∪ [d+ σ2, 1− σ2] gives

|ε(xi)(
d2

dx2
− δ2)wε(xi)| ≤ CN−2.

Using (b) within the layer regions (0, σ1) ∪ (d− σ1, d) ∪ (d, d+ σ2) ∪ (1− σ2, 1),

|ε(xi)(
d2

dx2
− δ2)wε(xi)| ≤ Cσ2

j ε
−1
j N−2 ≤ C(N−1 lnN)2.

Hence

|ε(xi)(
d2

dx2
− δ2)wε(xi)| ≤ C(N−1 lnN)2, xi 6= d.
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Using the decomposition uε = vε + wε and the bounds on the derivatives of these
components, we conclude that for xi 6= d

|LNε (Uε − uε)(xi)| ≤
{

C
√
ε(xi)N

−1 + C(N−1 lnN)2

C(N−1 lnN)2 if xi+1 − xi = xi − xi−1.

At the point xi = d,

h̄
(
−εiδ2 + r̄(d)

)
(Uε − uε)(d)

=
1

h+

∫ d+h+

t=d

∫ t

s=d

(εu′ε)
′(s) ds dt

− 1

h−

∫ d

t=d−h−

∫ t

s=d

(εu′ε)
′(s) ds dt + h̄(f̄(d)− r̄(d)uε(d)

)
+

1

h+

∫ d+h+

t=d

(ε̄(d)− ε(t))u′ε(t) dt+
1

h−

∫ d

t=d−h−
(ε(t)− ε̄(d− h−))u′ε(t) dt

= − 1

h+

∫ d+h+

t=d

∫ t

s=d

(f − ruε)(s) ds dt

+
1

h−

∫ d

t=d−h−

∫ t

s=d

(f − ruε)(s) ds dt + h̄(f̄(d)− r̄(d)uε(d)
)

+O(h̄2)

=
1

h+

∫ d+h+

t=d

∫ t

s=d

∫ d+h+

p=s

+
1

h−

∫ d

t=d−h−

∫ t

s=d

∫ s

p=d−h−
(f − ruε)′(p) dp ds dt

+
h+r(d+ h+)

2

∫ d+h+

t=d

u′ε(t) dt+
h−r(d− h−)

2

∫ d

t=d−h−
u′ε(t) dt+O(h̄2).

Hence,
|
(
−εiδ2 + r̄(d)

)
(Uε − uε)(d)| ≤ CN−1 lnN.

Theorem 6.1. In the case of both problems (2.1) and (2.2) we have that

max
xi∈Ω̄Nε

|Uε(xi)− uε(xi)| ≤ C(N−1 lnN)2,

where C is a constant independent of ε1, ε2 and N .

Proof. We outline the proof for problem (2.1). Minor modifications to this proof
will yield the proof for (2.2). Note that for problem (2.2) the mesh is uniform on Ω2.
Consider first the case where σ1 < 1/4 and σ2 < 1/4. Define the mesh functions
ω1, ω2 to be

ω1(xj) = Πj
i=1(1 +

√
βhi√
2ε1

); ω2(xj) = ΠN
i=j(1 +

√
βhi√
2ε2

)−1.

Note the following properties of these mesh functions

D−ω1(xi) =

√
β√

2ε1(1 +
√
βhi/

√
2ε1)

ω1(xi) ; D+ω1(xi) =

√
β√

2ε1
ω1(xi);

D+ω2(xi) = −
√
β√

2ε2(1 +
√
βhi/

√
2ε2)

ω2(xi) ; D−ω2(xi) = −
√
β√

2ε2
ω2(xi).

This implies that for 0 < xi < d

−ε1p(xi)δ
2ω1(xi) + r(xi)ω1(xi) ≥ (r(xi)− βp(xi))ω1(xi) > 0

and, hence, for ε1 sufficiently small and xi < d

−εiδ2ω1(xi) + r(xi)ω1(xi) ≥ (r(xi)− βp(xi))ω1(xi) +O(
√
ε1‖p′‖)ω1(xi) ≥ 0.
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Define the three barrier functions ζ1(xi), ζ2(xi), ζ3(xi) as follows

ζ1(xi) =


xi
σ1
, 0 ≤ xi ≤ σ1

1, σ1 ≤ xi ≤ 1− σ2
1−xi
1−σ2

, 1− σ2 ≤ xi ≤ 1,
; ζ2(xi) =


ω1(xi)

ω1(d−σ1) , 0 ≤ xi ≤ d− σ1

1, d− σ1 ≤ xi ≤ d+ σ2
ω2(xi)

ω2(d+σ2) , d+ σ2 ≤ xi ≤ 1

;

ζ3(xi) =

{
ω1(xi)
ω1(d) , 0 ≤ xi ≤ d
ω2(xi)
ω2(d) , d ≤ xi ≤ 1

.

Use the mesh function

Ξ(xi) = C(N−1 lnN)2(1 +

3∑
j=1

ζj(xi))± Uε − uε

to conclude that ‖uε − Uε‖ ≤ C(N−1 lnN)2. In the case when σ1 = 1/4 (or σ2 =
1/4) use ω1(xi) = xi (or ω2(xi) = 1− xi). �

Theorem 6.2. [5] In the case of problem (2.1),

|D+(Uε−uε)(xi)| ≤

 CN−1 lnN/
√
ε1, xi ∈ [0, σ1) ∪ [d− σ1, d), if σ1 < 0.25,

CN−1 lnN/
√
ε2, xi ∈ [1− σ2, 1) ∪ [d, d+ σ2), if σ2 < 0.25,

CN−1(lnN)2, otherwise.

In the case of problem (2.2),

|D+(Uε − uε)(xi)| ≤
{
CN−1 lnN/

√
ε1, xi ∈ [0, σ1) ∪ [d− σ1, d), if σ1 < 0.25,

CN−1(lnN)2, otherwise.

We have the parameter–uniform global error bound

Corollary 6.1. [6, pp. 55-56] In the case of problems (2.1) and (2.2)

‖uε − Uε‖ ≤ C(N−1 lnN)2,

where Uε is the piecewise linear interpolant of Uε.

Let us finally examine the error in the scaled derivatives. Define the boundary
layer widths to be:

τ1 =

√
ε1

β
ln

1

ε1
, τ2 =

√
ε2

β
ln

1

ε2
.

Theorem 6.3. [5] In the case of problem (2.1),

|(D+Uε − u′ε)(xi)| ≤

 CN−1(lnN)2/
√
ε1 xi ∈ [0, τ1) ∪ [d− τ1, d)

CN−1(lnN)2/
√
ε2 xi ∈ [1− τ2, 1) ∪ [d, d+ τ2)

CN−1(lnN)2 otherwise.

In the case of problem (2.2),

|(D+Uε − u′ε)(xi)| ≤
{
CN−1(lnN)2/

√
ε1 xi ∈ [0, τ1) ∪ [d− τ1, d)

CN−1(lnN)2 otherwise.
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7. Numerical results

In this section both the global and the nodal errors and their corresponding
orders of convergence are estimated using the double mesh principle [6]. Define the
parameter uniform double mesh nodal differences DN to be

DN := max
(ε1,ε2)∈Rε

DN
ε and DN

ε := max
xi∈Ω

N
ε

∣∣UNε (xi)− Ū2N
ε (xi)

∣∣ ,
where Ū2N

ε is the piecewise linear interpolant of the mesh function U2N
ε onto [0, 1].

Here Rε is the range of the singular perturbation parameters over which the nu-
merical performance of the schemes will be tested. In this paper, we have taken Rε
to be

Rε := {(ε1, ε2)|ε1 = 20, 2−2, . . . , 2−40, ε2 = 20, 2−2, . . . , 2−40}.
Define the double mesh global differences D̄N to be

D̄N := max
(ε1,ε2)∈Rε

D̄N
ε and D̄N

ε := max
xi∈Ω

N
ε ∪Ω

2N
ε

∣∣ŪNε (xi)− Ū2N
ε (xi)

∣∣ .
From these quantities the parameter–robust orders of nodal pN and global conver-
gence p̄N are computed from

pN := log2

( DN

D2N

)
, p̄N := log2

( D̄N

D̄2N

)
.

When an exact solution is available we compute the parameter–uniform nodal error
EN and the corresponding convergence rate pNE defined as

EN := max
(ε1,ε2)∈Rε

ENε , ENε := max
xi∈Ω

N
ε

∣∣UNε (xi)− uε(xi)
∣∣ , pNE := log2

( EN
E2N

)
.

We also examine the relative error QN in the fluxes at the interface x = d and their
corresponding convergence rates qN defined by

QNε :=


|D−UNε (d)−D−U2N

ε (d)|
|D−UNε (d)| , if ε1 ≤ ε2

|D+UNε (d)−D+U2N
ε (d)|

|D+UNε (d)−[εu′ε]d|
, if ε1 > ε2

, QN := max
(ε1,ε2)∈Rε

QNε , q
N := log2

( QN
Q2N

)
.

The different definitions given above for QNε only differ by a factor of CN−1. This
choice of approximation to the relative error in the flux at d was required to reduce
the probability of round-off errors accumulating for extreme values of the ratio of
ε1 to ε2.

Again, when an exact solution is available, we use the exact value of the flux to
compute the relative error and its convergence rate from

QNE,ε :=


|D−UNε (d)−u′ε(d

−)|
|u′ε(d−)| , if ε1 ≤ ε2

|D+UNε (d)−u′ε(d
+)|

|u′ε(d+)−[εu′ε]d|
, if ε1 > ε2

, QNE := max
(ε1,ε2)∈Rε

QNE,ε, q
N
E := log2

( QNE
Q2N
E

)
.

7.1. Example 1. Consider the following problem, from the class (2.2), whose
exact solution uex is easily determined. Find uε ∈ C1[0, 1] such that

− (εu′ε)
′
+ r uε = f, x 6= 0.5, uε(0) = 1, uε(1) = 0,(7.1a)

ε =

{
ε1, 0 ≤ x ≤ 0.5

ε2, 0.5 < x ≤ 1
; r =

{
1, 0 ≤ x < 0.5

0, 0.5 < x ≤ 1
; f =

{
1, 0 ≤ x ≤ 0.5

ε2, 0.5 < x ≤ 1.
.(7.1b)
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N=64 N=128 N=256 N=512 N=1024 N=2048

EN 0.001276 0.0004609 0.000157 5.131e-05 1.624e-05 5.011e-06

pNE 1.421 1.469 1.553 1.614 1.66 1.696

QNE 0.1077 0.06485 0.03788 0.02166 0.01218 0.006769

qNE 0.6651 0.7316 0.7756 0.8067 0.8298 0.8479

Table 1. Performance of the fitted mesh scheme (5.4), (5.1), (5.3)
applied to (7.1).

N=64 N=128 N=256 N=512 N=1024 N=2048

EN 0.835 0.822 0.797 0.7513 0.7263 0.6806

pNE 0.01149 0.02273 0.04448 0.08529 0.04874 0.09385

QNE 1 1 1 1 1 0.9999

qNE 1.29e-07 5.16e-07 2.064e-06 8.255e-06 3.302e-05 0.0001321

Table 2. Performance of the scheme (5.4) on a uniform mesh
applied to (7.1).

The results in Tab. 1 indicate that the rate of nodal convergence is tending
towards the rate (N−1 lnN)2 predicted by Theorem 6.1 and that the rate of con-
vergence of the flux is in agreement with the rates predicted by Theorem 6.3. These
rates of convergence should be compared to the lack of convergence on a uniform
mesh given in Tab. 2.

N=64 N=128 N=256 N=512 N=1024 N=2048

DN
0.02217 0.008099 0.002748 0.000964 0.0003221 0.000105

pN 1.074 1.453 1.559 1.511 1.581 1.617

D̄N
0.02217 0.008099 0.002748 0.000964 0.0003221 0.000105

p̄N 1.074 1.453 1.559 1.511 1.581 1.617

QN 0.2729 0.2574 0.1975 0.1433 0.09493 0.05852

qN 1.132 0.08439 0.3821 0.4629 0.5942 0.6978

Table 3. Performance of the fitted mesh scheme (5.4), (5.1), (5.2)
applied to problem (7.2).

7.2. Example 2. Consider the particular problem: find uε ∈ C0[0, 1] such that

− (εu′ε)
′
+ r uε = f,(7.2a)

uε(0) = f(0)/r(0), uε(1) = f(1)/r(1),(7.2b)

ε(x) =

{
ε1(1 + x), 0 ≤ x ≤ 0.5

ε2(2− x)2, 0.5 < x ≤ 1
; r =

{
1− x, 0 ≤ x < 0.5

1 + x, 0.5 < x ≤ 1
;(7.2c)

f = x2, x 6= 0.5, [εu′ε]d =
√
ε1.(7.2d)

The example (7.2) in this section comes from the problem class (2.1). In this
example, the diffusion coefficient is variable and there is a point source in the data.
The results presented in Tables 3 and 4 again display the advantages of using a
fitted mesh over a uniform mesh.
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N=64 N=128 N=256 N=512 N=1024 N=2048

DN
0.1131 0.1121 0.1116 0.1114 0.1113 0.1112

pN 0.0234 0.01239 0.006376 0.003237 0.001641 0.0008698

D̄N
0.1904 0.1906 0.1907 0.1907 0.1907 0.1907

p̄N -0.002289 -0.001224 -0.0006321 -0.000304 -7.8e-05 0.0002638

QN 10.51 6.641 5.59 5.177 4.991 4.902

qN 3.128 0.6621 0.2484 0.1109 0.0527 0.02585

Table 4. Performance of the scheme (5.4) on a uniform mesh
applied to problem (7.2).

Figure 1. One dimensional Metal-Oxide-Semiconductor (MOS) Structure

8. A Modelling Problem

Consider the one dimensional Metal-Oxide-Semiconductor (MOS) structure de-
picted in Fig. 1, consisting of a slab of uniformly p-doped silicon of thickness tSi
and a layer of silicon–dioxide of thickness tox. One ohmic contact is placed at the
oxide end of the device (Gate) and one at the semiconductor end (Bulk). Let NA
be the density of p-type dopant ions in the semiconductor and Nox be the density
of ionized impurities in the oxide. This structure is used as a nonlinear capacitor in
integrated circuits, therefore the interest in numerical simulations is focused on ac-
curately predicting the capacitance per unit area C(VA) := ∂Q

∂VA
where Q indicates

the total net charge per unit area in the semiconductor and VA is the voltage applied
at the Gate. We will show below that this problem gives rise to a diffusion–reaction
problem with coefficients that are discontinuous and whose magnitude spans several
orders of magnitude as VA varies within the range of practically admissible values.
This clearly demands for the use of a parameter–uniform numerical method, whose
pointwise accuracy is independent of the magnitude of the equation coefficients.

If we choose the X axis to be normal to the Si/SiO2 interface and its origin to be
in correspondence with the bulk contact, the electric potential V (X) in the device
can be computed as a solution of the following nonlinear problem [9, 12]

− d

dX

(
κ

q

dV (X)

dX

)
− ρ(X,V (X)) = 0, 0 ≤ X ≤ L = tSi + tox,(8.1a)

V (0) = V0, V (L) = VL,(8.1b)

κ(X) = κ0 κSi χ[0,tSi) + κ0 κox χ(tSi,L],(8.1c)

where κ0 is the electrical permittivity of free space and κSi,κox denote the relative
permittivity of silicon and of silicon-dioxide respectively and χ[0,tSi) denotes the
indicator function of the interval [0, tSi). Assuming a uniform temperature and
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that Maxwell–Boltzmann statistics apply, the net charge density ρ(X,V (X)) is
given by

(8.1d) ρ(X,V (X)) = ni

[
− exp

(
V

Vth

)
+ exp

(
− V

Vth

)]
χ[0,tSi) +D(X),

where the intrinsic carrier density ni and the thermal voltage Vth are constants
depending only on the temperature and D(X) denotes the volume density of fixed
charged impurities. As we have assumed uniform p-type doping,

(8.1e) D(X) = DSi χ[0,tSi) +Dox χ(tSi,L],

where DSi = −NA < 0 and Dox << DSi. The boundary values of V in (8.1) are

Quantity Symbol Value / Range

constants

Electric permittivity of free space κ0 8.810× 10−12 F/m
Unitary electric charge q 1.6022× 10−19 A s
Relative permittivity of Silicon κSi 11.7
Relative permittivity of Silicon Dioxide κox 3.9
Thermal voltage at room temperature Vth 26× 10−3 V
Oxide voltage Vox 0.6 V
Silicon Intrinsic carrier density in at 300K ni 10−10 m−3

device parameters

Density of acceptor impurities NA 1010 − 1025 m−3

Net density of trapped charges in oxide gate Nox 106 − 1013m−3

Oxide gate thickness tox 10−9 − 10−7 m
Bulk thickness tSi 10−7 − 10−6 m
Applied voltage at the gate VA 0− 10 V

Table 5. Typical values of relevant physical quantities appearing
in (8.1)

set as follow

• the value of V at the Bulk contact is set by enforcing charge neutrality

ρ(0, V (0)) = 0 ⇒ V (0) ' Vth ln

(
|DSi|
ni

)
=: V0,

• the value at the gate contact equals the applied voltage VA displaced by
the contact built-in potential

V (L) = VA + Vox =: VL.

Remark 8.1. Applying Gauß’s theorem to (8.1), we get that the charge is given by

Q =

tSi∫
0

qρ dX = − d(κV )

dX

∣∣∣∣tSi
0

.

That is, the charge Q equals the flux of the electric displacement vector through the
boundary of the semiconductor.
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It is convenient for the subsequent discussion to rescale our unknown V with
respect to its values at the boundary and to rescale the domain to be (0, 1). Hence,
we define the nondimensional quantity w, the scaled spatial coordinate x and the
scaled junction location d by

w :=
V − V0

VL − V0
, x :=

X

L
and d :=

tSi
L
.

Furthermore, we define the following nondimensional coefficients:
ε :=

κ (VL − V0)

q L2 |DSi|
, α :=

VL − V0

Vth
, f :=

D

|DSi|
,

θ :=
ni
|DSi|

exp

(
V0

Vth

)
, γ :=

ni
|DSi|

exp

(
− V0

Vth

)
.

Note that ε will have different values on either side of the junction. We arrive at
the following scaled nonlinear problem

(8.2)

{
− (εw′)

′
+ [θ eα w − γ e−α w] χ[0,d) = f, x ∈ (0, 1),

w(0) = 0, w(1) = 1.

For any given value V̄ of the applied voltage VA, an approximation to the capaci-
tance can be computed as follows. Let w̄ be the solution of (8.2) for VA = V̄ . By
perturbing the boundary value at x = 1 by a small amount δw � 1 we get the
following perturbed problem{

− (ε(w̄ + y)′)
′
+
[
θ eα (w̄+y) − γ e−α (w̄+y)

]
χ[0,d) = f, x ∈ (0, 1),

(w̄ + y)(0) = 0, (w̄ + y)(1) = 1 + δw.

By linearizing the zero order term and recalling that w̄ is a solution of (8.2), we get{
− (εy′)

′
+ [θ α eα w̄ + γ α e−α w̄] y χ[0,d) = 0, x ∈ (0, 1),

y(0) = 0, y(1) = δw.

This is linear and so we can set δw = 1 without loss of generality, and arrive at the
following class of linear problems. Find u such that

(8.3)

{
− (ε̄u′)

′
+ r̄(x)u = 0, x ∈ (0, 1),

u(0) = 0, u(1) = 1,

(8.4) r(x) = α(θ eα w̄ + γ e−α w̄)χ[0,d), r̄(x) =
r(x)

‖r‖
, ε̄ =

ε

‖r‖
and the scaled capacitance is given by

(8.5) c = (εu)′|d0.
Note that the coefficient r̄ in (8.3) vanishes in (d, 1] and is a function of w̄, which

is the unknown solution of the nonlinear problem (8.2). In this paper we focused on
linear problems only. The theory developed in the earlier sections is not immediately
applicable to the nonlinear problem (8.2). To produce a fair comparison between
the performance of a uniform mesh method and a fitted mesh method applied to the
linear problem (8.3) we use the same value for the coefficient r̄ in both cases, which is
computed from solving (8.2). To reduce to a minimum the impact of inaccuracies in
the computation of r̄ we use a much finer mesh for the solution of (8.2) than for (8.3).
Although the detailed description of the solution strategy for the nonlinear problem
is beyond the scope of the present paper, we wish to note that the Newton iteration
algorithm used to solve (8.2) consists in the solution of a sequence of problems
each of a form analogous to (8.3). This justifies the use of a suitably fitted piece-
wise uniform mesh for the solution of (8.2) as well. The computed values for the
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coefficient r(x) in (8.3) as a function of VA are displayed in Fig. 2b. In this figure, we
observe that away from the interior layer, the coefficient r(x) can become arbitrary
small and, moreover, this coefficient contains its own layers. Hence, the theory
we have developed in the earlier sections of this paper is not directly applicable
with this effect. However, in [4] it is shown, in the case of a reaction–diffusion
problem where the coefficient of the reactive term contains it’s own layer and tends
to zero within the layer, that the parameter-uniform convergence of second order is
retained using the same piecewise–uniform mesh as is described here. Hence, below
we examine the numerical output from using a fitted mesh of the form (5.1), (5.3)
with the transition parameter β taken to be 1/2. This choice can be justified by
considering that, as is apparent from the definitions in (8.4), 0 < r̄(x) < 1, x ∈ (0, d)
and that numerical computations for physically acceptable values of the parameters
produce values of r̄ such that r̄ ≥ 1/2 within the layer region.

8.1. Simulation of a 1-D MOS Capacitor. In Figs. 2, 3 we consider the sim-
ulation of an MOS capacitor with the following specific data

(8.6) tSi = 10−5 m, tox = 10−7 m, NA = 1022 m−3, Dox = 0 m−3.

It is worth noting that the scaled diffusion coefficient ε/ρ, as shown in Fig. 2a,
spans several orders of magnitude for 0 ≤ ‖VA‖ ≤ 4V . In Fig. 3 the values of the
capacitance CN ≡ −εD−U200(d) + εD+U200(0) computed using a uniform mesh
and a fitted mesh are compared. Fig. 3a shows that both methods qualitatively pre-
dict the expected behaviour of C, with a minimum corresponding to the threshold

voltage and an asymptotic value for large voltages of
κ0κox
tox

corresponding to that

of a metal plate capacitor. Fig. 3b shows that in the range of values for the applied
voltage VA where the nonlinear behaviour of the device is stronger, the capacitance
computed on the fitted mesh is approximately five times more accurate than the
capacitance computed on a uniform mesh.
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Figure 2. The scaled diffusion coefficient ε̄ and the scaled reaction
coefficient r̄ as a function of the applied voltage VA and of position
x.
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